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Density peaks and chiral peaks of fermion eigenmodes in QCD
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We show that the fermion number density of low-lying eigenfunctions of the Dirac operator in quenched
QCD peaks at the same locations that the density of chirality is peaked. We use an overlap Dirac operator that
has an exact chiral symmetry. The gauge connections in the Dirac operator are smeared links. We consider two
different smearing procedures. Our conclusion is independent of the smearing procedure used for the gauge

links.
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[. INTRODUCTION the expectation value ofs of a real eigenmode is a function
of the eigenvalue.
In a recent publicatiofil] we have shown that the low- The action of Ref[1] has exact chiral symmetry. There is

lying eigenmodes of a chiral lattice fermion Dirac operator,no additive mass renormalization of the quark mass and there
an overlap fermion operat§2] (described in Ref.3]), hasa are no exceptional configurations. Zero eigenvalue eigen-
local chiral density(x) Tys#/(x) that shows a peaked struc- modes are chiral eigenstates. Nonzero eigenvalue eigen-
ture. The positions and signs of the peaks are strongly comodes have zero expectation value wf The action has
related with the locations of topological objects, whichonly O(a?) discretization artifacts.
would be identified as instantons and anti-instantons detected Our action uses “fat links.” Fat link actions replace the
using a pure gauge operator. Zero modes correlate with onlysual one-link gauge connection with a combination of sev-
one sign of topological objects, while nonzero eigenmodes o¢ral gauge paths. This combination might or might not be
the Dirac operator interpolate between both signs of topoprojected to SUB), but in any case it is gauge invariant and
logical object. This correlation dies away slowly as the ei-local. Locality assures that the fat link action is in the same
genvalue of the mode rises. Spatially averaged correlatiodniversality class as the thin link one. Fat links improve the
functions of hadrons made of light quarks are saturated bghiral behavior of nonchiral actiori$], and their use in our
propagators of quarks restricted to a few low eigenmodesmplementation of the overlap action is simply to make the
The whole picture is very reminiscent of an instanton liquidcalculation of the overlap operator more efficiéoy a factor
model. of roughly 20 for the action of Ref3], compared to the use
However, this work did not consider the possibility that of the thin link Wilson action in the overlapThe particular
the density of the fermionic modes might be large in placeshoice of fattening is not too important. In Rét], we used
where the local chiral density was small. Subsequently, thi&n APE-blocked link[9] as the gauge connection. In Ref.
point was raised by Hort, Isgur, McCune, and Thacker [10] it is shown that the perturbative effect df levels of
[4]. They also presented evidence from lattice simulationdAPE smearing with a smearing parameteis to multiply
claiming to show that the behavior of fermionic eigenmodeshe vertices by a form factor (—1a612/6)’\' with q the gluon
in the QCD vacuum is inconsistent W|t_h an instanton picture o mentum and312=4/a22Msin2qMa/2. In coordinate space
Why is it important to resolve this disagreement? There iSpis corresponds to a Gaussian smearing with a spread
an apparent inconsistency, first described by Witten in 197?x2>=(aN/3)a2 of the quark-gluon vertex. Some readers
[5], between large number of colofargeN,) dynamics and  might he concerned that several levels of APE smearing
instanton-based phenomenology. We do not wish to SUMMagpight adversely affect our results. To address that point, we
rize arguments favoring one or the other approach, which argegcripe results from another fattening, one chosen to lie

well described in a variety of publicatiof§]. In principle, rigorously within a hypercubgl1]. We observe no qualita-
lattice simulations might distinguish between the qualitative;,,o change in our results.

features of the two phenomenologies, if discrepancies be-
tween variou_s simglation; co_uld be resolved. Il. ANALYSIS OF FERMION EIGENMODES

The two simulations differ in several ways. Both are done
in quenched approximation, using the Wilson gauge action. The statement of the problem is as follows: If an
Referencg4] works at a lattice couplingg=5.7 and Ref[1]  instanton-dominated picture of low eigenmodes is at all
works atB=5.9. The lattice spacingsare at nominal values valid, we would expect the peaks of the wave function to
of 0.17 and 0.11 fm, respectively, from the Sommer paramelosely resemble instanton zero modes. Thus, if instantons
eter, using the interpolating formula of Rg7]. The fermion  dominate, a local peak in the wave function for a low-lying
action of Ref.[4] is the Wilson fermion action. This action eigenmodéa fermion lump should be dominantly a lump in
has rather poor chiral properties, as evidenced by its Iarg¢[¢L=wT(1—y5)¢ or w;&pR: (14 vs) ¢, but not both.
additive quark mass renormalization and the presence of exdowever, if it happened that a local peak #fy was not
ceptional configurations. Formally, it h&¥(a) scaling vio- also a peak of chirality, the instanton picture would not be
lations. Its real eigenmodes are not eigenfunctiongspfind  correct.
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FIG. 1. Histogram ofp(X) of the lowest two nonchiral eigen-

: . : FIG. 2. Histogram ofp(X) of the highest two eigenmodésut
0,
modes for the overlap action, with a cut keeping the top 2.5% of . | ) for the overlap action, with a cut keeping the top 0.3% of

¢
'8 o,

In Ref.[1] we used an overlap action witi=10 levels
of APE smearing withw= 0.45 the APE parameter. We mea-
sured the autocorrelation function of the local chirality den-
sity w(x)=(x)Tys(x) and the correlator ob(x) with a
pure gauge observable sensitive to topological ch&r(e .
We saw that both kinds of correlator were strongly peaked at
small operator separation, indicating the chiral density ha : . ) )
spatially localized lumps and those lumps correlate with thesquared D'Tac operator. The imaginary part of the_ eigenvalue
lumps of the topological charge density. However, there is é’f the Dirac _operator for these modes 0 'STf a_round
logical possibility that a lump ino(x) = w[z,lfL— z//;;z,/xR does (k’-zoﬁ‘oh%ﬁ: Figure 2, v;/]here about the t?(p OIB/OIfdf IS
not indicate a lump in eitheg, ¢, or yyr. To check that ept in the histogram, shows strong peaks arodMmd=1.

- ) . The peaks disappear as we add more points to the distribu-
pOSSIbIlIty,”We follow Ref.[4] and define a “chiral order tion. With 2.5% of the lattice points kept the histogram is
parameter”X(x),

almost flat, as Fig. 3 shows.

and these eventually overwhelm the chiral structure. This
happens very slowly with the two smallest nonchiral modes.
Even with 30% of the lattice points the two-peak structure is
clearly visible.

Figures 2 and 3 show the results for the largest modes we
ave recorded, the ninth and tenth eigenvalue modes of the
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and plot histograms of the density of the varialflep(X),
for regions of the lattice whereg(x)"¢(x) is large, a few
percent of the points of the lattice. We distinguish two cases. 400 — |
(a) Zero modes are chiral. Distributions p{X) for our 1 ]
action are just delta functiong(X)=46(X=1). Any chiral — I
symmetry breaking inherent in a lattice fermion action would I - —
broaden this distributiofand could serve as a signal for the ]
degree of chiral symmetry breaking in those actjons
(b) Nonzero eigenvalue eigenmodes are nonchiral, but we
find that the distributionp(X) is strongly peaked near
X=+1. To show this, we take a set of six“1&ttices from
our data set and plot histograms(fX). Figure 1 shows the i ]
result for the lowest two nonchiral eigenmodes for the over- " —‘ T
lap action, with a cut keeping the top 2.5% ¢fy. The 0
imaginary part of the eigenvalue of the Dirac operator for -1.0 -05 0.0 0.5 1.0
these modes is in the range 0836 0.094. Keeping more X
lattice points in the histogram will fill in the dip. That simply FIG. 3. Histogram ofp(X) of the highest two eigenmodésut
implies that as we keep more and more lattice points we pickf ter) for the overlap action, with a cut keeping the top 2.5% of
up more of the vacuum fluctuations around the chiral lumpsy'y.
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WO =T lattice points as in Fig. 1. The shape of the curve is qualita-
tively similar to that from APE-blocked links. The peaks of
fermion density are again chiral. For this action, keeping the
sites of the lattice wheres™ is in its top 2.5% corresponds
to capturing about 17% of the volume integralyfy in an
eigenmode.
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IIl. CONCLUSIONS

Our studies with a chiral fermion action at a lattice spac-
ing near 0.11 fm showed that low-eigenvalue fermionic
eigenmodes have a structure strongly correlated with the lo-
cations of instantons and anti-instantons. This note demon-
strates that in the locations where the fermionic modes are
largest the modes are also chiral. It seems to us that the
simplest description of what we see is in terms of an instan-
_05 0.0 05 10 ton liquid model of the QCD vacuum. We do not doubt that

) X ’ ' the numerical results of Reff4] are correct, but we are con-

cerned that the combination of a larger lattice spacing and

FIG. 4. Histogram ofp(X) of the lowest two nonchiral eigen- the use of a nonchiral fermion action introduces lattice arti-
mOdeS(0ut of ter) for the OVerIap action, with a hypercubic fat |ink, facts Wh'Ch Compr0m|se extrapolat|0n to the Cont|nuum
with a cut keeping the top 2.5% af' . limit.

i ) i Since this paper appeared, other groups have addressed

Lower-eigenvalue eigenmodes show stronger peaking,e same question. Similar results to those shown here have
than higher-eigenvalue modes, but all the modes we exankeen presented using an alternative chiral lattice adtioa
ined show peaking. We remind the reader that we showed iQyjison overlap action[12], a lattice action with improved
Ref. [1] that_ hadronic correlators for light quark masses arg,t inexact chiral symmetrydomain wall fermions [13],
well approximated by quark propagators containing only anq 3 Jattice action with inexact chiral symmetry but smaller
few eigenmodes. _ _ _ lattice spacing(the clover action [14]. None of these last

Next we consider results obtained with an overlap actionpree works compared the distribution of chirality with topo-

that uses more local fat links. The fat links of the hypercubiqogica| charge density measured with a gauge observable.
blocking[11] mix links only within a hypercube but achieve

almost the same level of smoothness as the APE smearing
considered previously.

The analogue of Fig. 1 from eigenmodes of the overlap We acknowledge conversations with 1. Hotlveand H.
action with hypercubic fat links is shown in Fig. 4. We used Thacker about the points we have raised in this paper. This
the same 12 configurations and kept the same fraction of work was supported by the U.S. Department of Energy.
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