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Density peaks and chiral peaks of fermion eigenmodes in QCD
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~Received 12 March 2001; published 28 November 2001!

We show that the fermion number density of low-lying eigenfunctions of the Dirac operator in quenched
QCD peaks at the same locations that the density of chirality is peaked. We use an overlap Dirac operator that
has an exact chiral symmetry. The gauge connections in the Dirac operator are smeared links. We consider two
different smearing procedures. Our conclusion is independent of the smearing procedure used for the gauge
links.
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I. INTRODUCTION

In a recent publication@1# we have shown that the low
lying eigenmodes of a chiral lattice fermion Dirac operat
an overlap fermion operator@2# ~described in Ref.@3#!, has a
local chiral densityc(x)†g5c(x) that shows a peaked struc
ture. The positions and signs of the peaks are strongly
related with the locations of topological objects, whi
would be identified as instantons and anti-instantons dete
using a pure gauge operator. Zero modes correlate with
one sign of topological objects, while nonzero eigenmode
the Dirac operator interpolate between both signs of to
logical object. This correlation dies away slowly as the
genvalue of the mode rises. Spatially averaged correla
functions of hadrons made of light quarks are saturated
propagators of quarks restricted to a few low eigenmod
The whole picture is very reminiscent of an instanton liqu
model.

However, this work did not consider the possibility th
the density of the fermionic modes might be large in pla
where the local chiral density was small. Subsequently,
point was raised by Horva´th, Isgur, McCune, and Thacke
@4#. They also presented evidence from lattice simulatio
claiming to show that the behavior of fermionic eigenmod
in the QCD vacuum is inconsistent with an instanton pictu

Why is it important to resolve this disagreement? There
an apparent inconsistency, first described by Witten in 1
@5#, between large number of colors~large-Nc) dynamics and
instanton-based phenomenology. We do not wish to sum
rize arguments favoring one or the other approach, which
well described in a variety of publications@6#. In principle,
lattice simulations might distinguish between the qualitat
features of the two phenomenologies, if discrepancies
tween various simulations could be resolved.

The two simulations differ in several ways. Both are do
in quenched approximation, using the Wilson gauge act
Reference@4# works at a lattice couplingb55.7 and Ref.@1#
works atb55.9. The lattice spacingsa are at nominal values
of 0.17 and 0.11 fm, respectively, from the Sommer para
eter, using the interpolating formula of Ref.@7#. The fermion
action of Ref.@4# is the Wilson fermion action. This actio
has rather poor chiral properties, as evidenced by its la
additive quark mass renormalization and the presence of
ceptional configurations. Formally, it hasO(a) scaling vio-
lations. Its real eigenmodes are not eigenfunctions ofg5, and
0556-2821/2001/65~1!/014503~3!/$20.00 65 0145
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the expectation value ofg5 of a real eigenmode is a functio
of the eigenvalue.

The action of Ref.@1# has exact chiral symmetry. There
no additive mass renormalization of the quark mass and th
are no exceptional configurations. Zero eigenvalue eig
modes are chiral eigenstates. Nonzero eigenvalue ei
modes have zero expectation value ofg5. The action has
only O(a2) discretization artifacts.

Our action uses ‘‘fat links.’’ Fat link actions replace th
usual one-link gauge connection with a combination of s
eral gauge paths. This combination might or might not
projected to SU~3!, but in any case it is gauge invariant an
local. Locality assures that the fat link action is in the sa
universality class as the thin link one. Fat links improve t
chiral behavior of nonchiral actions@8#, and their use in our
implementation of the overlap action is simply to make t
calculation of the overlap operator more efficient~by a factor
of roughly 20 for the action of Ref.@3#, compared to the use
of the thin link Wilson action in the overlap!. The particular
choice of fattening is not too important. In Ref.@1#, we used
an APE-blocked link@9# as the gauge connection. In Re
@10# it is shown that the perturbative effect ofN levels of
APE smearing with a smearing parametera is to multiply
the vertices by a form factor (12aq̂2/6)N with q the gluon
momentum andq̂254/a2(m sin2qma/2. In coordinate space
this corresponds to a Gaussian smearing with a spr
^x2&5(aN/3)a2 of the quark-gluon vertex. Some reade
might be concerned that several levels of APE smear
might adversely affect our results. To address that point,
describe results from another fattening, one chosen to
rigorously within a hypercube@11#. We observe no qualita
tive change in our results.

II. ANALYSIS OF FERMION EIGENMODES

The statement of the problem is as follows: If a
instanton-dominated picture of low eigenmodes is at
valid, we would expect the peaks of the wave function
closely resemble instanton zero modes. Thus, if instant
dominate, a local peak in the wave function for a low-lyin
eigenmode~a fermion lump! should be dominantly a lump in
cL

†cL5c†(12g5)c or cR
†cR5c†(11g5)c, but not both.

However, if it happened that a local peak ofc†c was not
also a peak of chirality, the instanton picture would not
correct.
©2001 The American Physical Society03-1
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In Ref. @1# we used an overlap action withN510 levels
of APE smearing witha50.45 the APE parameter. We me
sured the autocorrelation function of the local chirality de
sity v(x)5c(x)†g5c(x) and the correlator ofv(x) with a
pure gauge observable sensitive to topological chargeQ(x).
We saw that both kinds of correlator were strongly peake
small operator separation, indicating the chiral density
spatially localized lumps and those lumps correlate with
lumps of the topological charge density. However, there
logical possibility that a lump inv(x)5cL

†cL2cR
†cR does

not indicate a lump in eithercL
†cL or cR

†cR . To check that
possibility, we follow Ref.@4# and define a ‘‘chiral order
parameter’’X(x),

tanS p

4
„11X~x!…D5

ucL~x!u
ucR~x!u

5S cL
†~x!cL~x!

cR
†~x!cR~x!

D 1/2

, ~1!

and plot histograms of the density of the variableX, r(X),
for regions of the lattice wherec(x)†c(x) is large, a few
percent of the points of the lattice. We distinguish two cas

~a! Zero modes are chiral. Distributions ofr(X) for our
action are just delta functionsr(X).d(X61). Any chiral
symmetry breaking inherent in a lattice fermion action wou
broaden this distribution~and could serve as a signal for th
degree of chiral symmetry breaking in those actions!.

~b! Nonzero eigenvalue eigenmodes are nonchiral, but
find that the distributionr(X) is strongly peaked nea
X561. To show this, we take a set of six 124 lattices from
our data set and plot histograms ofr(X). Figure 1 shows the
result for the lowest two nonchiral eigenmodes for the ov
lap action, with a cut keeping the top 2.5% ofc†c. The
imaginary part of the eigenvalue of the Dirac operator
these modes is in the range 0.03/a to 0.09/a. Keeping more
lattice points in the histogram will fill in the dip. That simpl
implies that as we keep more and more lattice points we p
up more of the vacuum fluctuations around the chiral lum

FIG. 1. Histogram ofr(X) of the lowest two nonchiral eigen
modes for the overlap action, with a cut keeping the top 2.5%
c†c.
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and these eventually overwhelm the chiral structure. T
happens very slowly with the two smallest nonchiral mod
Even with 30% of the lattice points the two-peak structure
clearly visible.

Figures 2 and 3 show the results for the largest modes
have recorded, the ninth and tenth eigenvalue modes of
squared Dirac operator. The imaginary part of the eigenva
of the Dirac operator for these modes is arou
0.20/a–0.26/a. Figure 2, where about the top 0.3% ofc†c is
kept in the histogram, shows strong peaks aroundX561.
The peaks disappear as we add more points to the distr
tion. With 2.5% of the lattice points kept the histogram
almost flat, as Fig. 3 shows.

f
FIG. 2. Histogram ofr(X) of the highest two eigenmodes~out

of ten! for the overlap action, with a cut keeping the top 0.3%
c†c.

FIG. 3. Histogram ofr(X) of the highest two eigenmodes~out
of ten! for the overlap action, with a cut keeping the top 2.5%
c†c.
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Lower-eigenvalue eigenmodes show stronger peak
than higher-eigenvalue modes, but all the modes we ex
ined show peaking. We remind the reader that we showe
Ref. @1# that hadronic correlators for light quark masses
well approximated by quark propagators containing only
few eigenmodes.

Next we consider results obtained with an overlap act
that uses more local fat links. The fat links of the hypercu
blocking @11# mix links only within a hypercube but achiev
almost the same level of smoothness as the APE smea
considered previously.

The analogue of Fig. 1 from eigenmodes of the over
action with hypercubic fat links is shown in Fig. 4. We us
the same 124 configurations and kept the same fraction

FIG. 4. Histogram ofr(X) of the lowest two nonchiral eigen
modes~out of ten! for the overlap action, with a hypercubic fat link
with a cut keeping the top 2.5% ofc†c.
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lattice points as in Fig. 1. The shape of the curve is qual
tively similar to that from APE-blocked links. The peaks
fermion density are again chiral. For this action, keeping
sites of the lattice wherec†c is in its top 2.5% correspond
to capturing about 17% of the volume integral ofc†c in an
eigenmode.

III. CONCLUSIONS

Our studies with a chiral fermion action at a lattice spa
ing near 0.11 fm showed that low-eigenvalue fermion
eigenmodes have a structure strongly correlated with the
cations of instantons and anti-instantons. This note dem
strates that in the locations where the fermionic modes
largest the modes are also chiral. It seems to us that
simplest description of what we see is in terms of an inst
ton liquid model of the QCD vacuum. We do not doubt th
the numerical results of Ref.@4# are correct, but we are con
cerned that the combination of a larger lattice spacing
the use of a nonchiral fermion action introduces lattice a
facts which compromise extrapolation to the continuu
limit.

Since this paper appeared, other groups have addre
the same question. Similar results to those shown here h
been presented using an alternative chiral lattice action~the
Wilson overlap action! @12#, a lattice action with improved
but inexact chiral symmetry~domain wall fermions! @13#,
and a lattice action with inexact chiral symmetry but smal
lattice spacing~the clover action! @14#. None of these last
three works compared the distribution of chirality with top
logical charge density measured with a gauge observabl
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