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Evidence against instanton dominance of topological charge fluctuations in QCD
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The low-lying eigenmodes of the Dirac operator associated with typical gauge field configurations in QCD
encode, among other low-energy properties, the physics behind the solution to the UA(1) problem~i.e., the
origin of the h8 mass!, the nature of spontaneous chiral symmetry breaking, the physics of string-breaking,
quark-antiquark pair production, and the Okubo-Zweig-Iizuka~OZI! rule. Moreover, the space-time chiral
structure of these eigenmodes reflects the space-time topological structure of the underlying gauge field. We
discuss initial evidence from lattice QCD on thelocal chiral structureof low Dirac eigenmodes which suggests
that topological charge fluctuations of the QCD vacuum are not instanton dominated. Such a conclusion would
support Witten’s arguments that topological charge is produced by confinement-related gauge fluctuations
rather than instantons.
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I. INTRODUCTION

In the late 1970s it became clear through the study
instantons@1–4# that gauge field topology plays an importa
role in the resolution of the UA(1) problem: topological tran-
sitions could produce anh8 mass via the axial anomaly. It i
now quite well established from lattice QCD that topologic
charge is indeed important, with theh8 mass quite nicely
explained by its coupling to the UA(1) current anomaly and
with topological charge playing a significant role in oth
parts of QCD as well@5–14#.

In two remarkable 1979 papers@15#, Witten argued that,
while topological charge fluctuations were clearly involve
thedynamicsunderlying theh8 mass need not be associat
with the semiclassical tunneling events called instant
since the large vacuum fluctuations associated with confi
ment would also necessarily entail large fluctuations of to
logical charge. In fact, Witten argued that not only are inst
tons not required for resolving the UA(1) problem, but that
the instanton resolution is in conflict with predictions bas
on the large-Nc approximation. Instantons would produce
h8 mass that vanishes exponentially for largeNc , while con-
siderations based on large-Nc chiral dynamics strongly sug
gest that theh8 mass should be of order 1/Nc . Given the
incompatibility of large-Nc dynamics and instantons, and th
strong empirical support for the applicability of the large-Nc
limit, Witten speculated that the true dynamical origin of t
h8 mass would be the coupling of the UA(1) anomaly to
topological charge associated with confinement-rela
vacuum fluctuations andnot instantons.

From this point of view, the particular kind of quantize
locally self-dual or anti-self-dual gauge fluctuations asso
ated with an instanton gas or liquid model of the QC
vacuum are only a small subset of all the configurations c
taining significant fluctuations of topological charge. A
0556-2821/2001/65~1!/014502~12!/$20.00 65 0145
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though instantons are favored by the Yang-Mills action, a
parently the much greater entropy of the many noninstan
configurations causes them to dominate the QCD path i
gral. As a result, the instanton expansion is invalidated, p
sumably by large quantum fluctuations associated with c
finement. A very analogous situation in the two-dimensio
CP(N21) model is cited by Witten as further evidence th
even a theory with classical instanton solutions can hav
quantum mechanical ground state which is not even appr
mately described by an instanton expansion@16#. Witten’s
arguments are also consistent with a view of the QC
vacuum based on the strong-coupling expansion in which
gauge fields are highly disordered over a distance chara
ized by the confinement scale. This disorder leads very
rectly to confinement, as seen from the area law exhibited
large Wilson loops. The semiclassical gauge configurati
associated with an instanton picture are highly ordered
quite atypical in a strong-coupling framework.

In this paper we investigate the prevalence of instant
in the QCD vacuum using numerical lattice QCD. In th
absence of analytic control in the continuum, this is the m
direct way of resolving this nonperturbative issue from fi
principles. To achieve this it is necessary to design a test
~a! is capable of distinguishing the typical vacuum config
rations implied by the instanton picture from the bulk
generic configurations containing topological charge fluct
tions, and~b! can lead to a meaningful result using availab
lattice techniques. With respect to~a! we propose to test the
local ~anti-!self-duality properties of the gauge fields in th
regions where the field strength is large. Indeed, it is inher
to an instanton picture of the gauge vacuum@such as the
instanton liquid model~ILM ! @4##, that strong fields are con
centrated in small regions of space-time, with the fields
ing locally ~anti-!self-dual. Checking gauge field dualit
properties directly on Monte Carlo generated lattice gau
©2001 The American Physical Society02-1
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configurations is problematic because, as is freque
pointed out, the short-distance fluctuations associated
lattice artifacts can mask the expected continuumlike beh
ior. To avoid artificially changing the configuration in som
type of smoothing or cooling procedure, we advocate the
of fermionic methods instead. In particular, we will arg
that local self-duality properties of gauge fields are enco
in the local chirality properties of low-lying Dirac eigen
modes.The main point of this paper is to present a detail
fermionic method for studying the role of instantons in t
QCD vacuum and to discuss some initial evidence wh
suggests that the local chiral structure of low-lying Wilso
Dirac eigenmodes is not consistent with instanton do
nance.

The gauge configurations used in this study are a subs
the Fermilab ACPMAPSb ensemble recently used in exte
sive calculations@17,18# which confirmed in considerabl
detail the chiral properties expected from continuum ch
Lagrangian arguments. These included the magnitude
time dependence of theh8 hairpin correlator, the value of th
pure-glue topological susceptibility, and a number
‘‘quenched chiral logarithm’’ effects associated with theh8.
Although the gauge coupling used in our study is rat
strong (b55.7), the previously reported chiral results on t
same configurations suggest that, for topological fluctuati
on a spatial scale larger than about 0.2 fm, they provid
reasonable representation of the continuum theory. Howe
a definitive conclusion on the basic issue raised by Wit
will require further studies at smaller lattice spacing as w
as more detailed investigation of the space-time structur
these fluctuations. The ‘‘chirality histogram’’ method d
scribed here should be a useful tool for such studies.

If further studies confirm that the large-Nc view of the
QCD vacuum is correct, and that instantons are not the do
nant source of topological charge fluctuations, how does
affect our picture of low-energy QCD? Instantons are usu
invoked in qualitative explanations of phenomena associa
with topological charge. However, as was explained by W
ten @15#, these physical effects do not necessarily requ
instantons, and can be qualitatively understood in any pic
involving confinement.~Note that it has long been recog
nized that instantons alone are not likely to lead to confi
ment, so it is natural to suspect that their relevance to lo
energy QCD is limited.! An important implication of this
result would be to call into question phenomenological
proaches based on semiclassical methods in favor of
proaches where confinement plays a central role. In con
to the situation for instantons, there is no all-encompass
confinement-based framework comparable to the ILM, p
viding a physics picture for how the key low-energy ph
nomena of QCD are driven by confinement. However, in t
paper we will refer to the new strong-coupling quark mod
@19# as possibly providing such a framework. In his discu
sion of these matters, Witten used not only the generic pr
erties of the confining vacuum, but also specific proper
following from the large-Nc expansion of QCD@20,21#. The
derivation of the Witten-Veneziano formula@22# for the h8
mass serves as an example of how the large-Nc limit can be
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used as a tool in quantitative calculations relevant to th
questions.

In fact, the success of the large-Nc expansion is in itself
evidence for a noninstanton picture of the QCD vacuum.
this regard, we remind the reader that the successes of
Nc are by now very broad and include a basis for the vale
quark model@23,19#, Regge theory@24#, the utility of the
narrow resonance approximation, quasi-two-body domina
of hadronic decays, the Okubo-Zweig-Iizuka~OZI! rule @25–
28#, and the general systematics of hadronic spectra and
trix elements@29,30#. Also, a growing body of lattice result
appears to confirm the empirical evidence that the largeNc

expansion is good, i.e., that 1/Nc51/3 is reasonably close to
1/Nc50. Most directly relevant to theh8 mass problem are
the lattice results showing that the topological suceptibilit
x t at Nc52 andNc53 are almost equal within errors. Wit
the string tensions used to set the scale, it is found@31# that
x t

1/4/As50.45560.015 in SU(3)c while this same dimen-
sionless ratio takes the value 0.48760.012 in SU(2)c . Fi-
nally, it should be pointed out that Witten has recently p
vided new evidence in favor of his conjecture on the pur
theoretical front @32#. Using the anti–de Sitter space
conformal field theory@AdS conformal field theory~CFT!#
connection which has emerged from superstring theory,
assuming that there are no phase transitions as a certai
rameterh varies between the regionh→0 ~where it ap-
proaches 4D gauge theory! and h@1 ~where it becomes a
weakly coupled string theory which can be studied as a lo
wavelength supergravity theory!, Witten showed that theu
dependence of SU(Nc) gauge theory is of leading order i
Nc asNc→`, as anticipated@15#. In an instanton picture, the
u dependence would vanish exponentially. The AdS-C
correspondence also reveals the existence of stable no
generate vacua and nonanalyticu dependence of the vacuum
energy in the large-Nc limit, confirming other aspects of Wit-
ten’s no-instanton hypothesis.

In Sec. II we begin by introducing the reader to the circ
of ideas that led Witten to conclude that at the quantum le
instantons might simply ‘‘disappear’’ from QCD@15#. This
includes an elementary discussion of how the physical
fects usually ascribed to instantons naturally occur in a c
fining vacuum even without instantons. In Sec. III we discu
the relation between Dirac near-zero modes, the chiral c
densate, and theh8 mass. Sections II and III both have
pedagogical character and serve as theoretical backgro
for Sec. IV, where we present the main results of the pa
There we show how an instanton-dominated vacuum wo
be reflected in the local chiral structure of near-zero mod
describe our lattice methods, and present the results. Fin
Sec. V summarizes our conclusions.

II. WITTEN’S CONJECTURE

A. The vulnerability of QCD instantons

To illustrate how large quantum corrections could ma
instantons irrelevant~‘‘evaporate’’! in QCD, Witten consid-
ered two U(1) gauge theories in 111 dimensions, namely,
2-2
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L15Dmf* Dmf2m2f* f2
1

4
FmnFmn , ~1!

L25Dmf* Dmf2l~f* f2a2!22
1

4
FmnFmn , ~2!

where Dm[]m1 ieAm , f is a charged scalar field,Fmn

5]mAn2]nAn , and the theories are defined in an infin
volume. The first theory has an unbroken U(1) symme
and a spectrum of neutralff̄ bound states~since in one
dimension the Coulomb potential is a linear confining on!.
The second has a characteristic Higgs spectrum with a
physical scalar and a massive ‘‘photon.’’ BothL1 and L2
possess the topological chargeQ5(e/2p)*d2xemnFmn ; in
L2 it is quantized to integer values and an instanton gas p
an important role, while inL1 it is not quantized and instan
tons play no role. Of course, even in theory~1! there is a
global quantization of Euclidean topological charge on a
nite periodic torus, but in this case the quantization is stric
a finite volume effect~analogous to the quantization of mo
mentum in a finite box! and has no relevance to the loc
structure of the vacuum.

Another distinguishing feature of the noninstanton the
is in the dependence of physics on the vacuum parametu
~Fourier conjugate to the topological charge!. For the spon-
taneously broken theory~2!, u dependence arises via an i
stanton expansion and physical quantities are smooth
lytic functions of cosu, while for the unbroken theory~1!, u
represents a background electric field, and physical qua
ties ~e.g., the vacuum energy! are singular at certain value
of u, corresponding to the physical effect of af1f2 pair
popping out of the vacuum and screening and cancelin
unit of electric flux. Witten’s recent consideration of this i
sue in 4D gauge theory via the AdS-CFT corresponde
@32# has demonstrated that a similar nonanalytic behavio
the vacuum energy as a function ofu arises in the large-Nc
limit of QCD ~with wrapped six-branes playing a role anal
gous to units of electric flux in the 2D case!. Thus, at least a
large Nc , the u dependence of four-dimensional SU(Nc)
gauge theory resembles unbroken 2D scalar electrodyna
~1!, and not the instanton-dominated Higgs theory~2!.

Although it is not believed to happen in two-dimension
scalar electrodynamics, it is easily imaginable that a the
with classical instantons, likeL2, could be converted into a
theory like L1 by quantum corrections, if those correctio
changed the broken Higgs-type effective potential to an
broken one. Given the apparent incompatibility of instan
and large-Nc ideas and the strong phenomenological e
dence for the latter, Witten conjectures that, in spite of
fact that QCD at the classical level resembles a theory
type L2, quantum effects most likely change it into a theo
of typeL1. To illustrate this view more convincingly, he the
argues in detail that precisely this kind of behavior occurs
the two-dimensional CP(N21) model. This model has a
global SU(N) symmetry and, like QCD, is asymptoticall
free and classically scale invariant. The condition of fin
action leads to a field boundary condition at infinity th
breaks the SU(N) symmetry, and results in a quantized t
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pological charge at the classical level. There are instant
for all N, but the solution of the theory in terms of a 1/N
expansion reveals that instantons in fact evaporate@16#. This
can be interpreted as invalidation, by large quantum corr
tions, of the boundary condition that breaks the SU(N) sym-
metry. In the true vacuum, the symmetry is actually restor

At the classical level, the situation in QCD is quite ana
gous to that of a CP(N21) model. Furthermore, Witten ar
gues, the phenomenon of confinement in QCD plays
analogous role to that of an SU(N) symmetry restoration in
the CP(N21) case. Indeed, the standard semiclassical c
dition of finite action results in the requirement that the fie
is pure gauge at infinity. However, with the assumption
confinement, this condition is not reasonable in QCD. T
correct boundary condition at infinity should reflect the b
havior that is typical of a confining vacuum, while the pu
gauge behavior corresponds to a perturbative, nonconfin
vacuum. This suggests that the QCD path integral is do
nated by configurations that invalidate the semiclassic
motivated pure gauge boundary condition, and that the
stantons ‘‘evaporate’’ due to large quantum corrections.

B. Low-energy QCD without instantons

An important role in the qualitative arguments of Sec. II
is clearly played by the assumption of confinement. Wh
the structure of the confining vacuum is not fully understoo
Witten argued that large gauge field fluctuations, generic
present in the confining vacuum, are sufficient for a qual
tive explanation of the physical effects usually associa
with instantons. This is quite easily seen, since many of th
effects, including theu dependence of physics and the so
tion of the UA(1) problem, depend only on the fact that, f
the configurations typical of the QCD vacuum, topologic
charge fluctuations can be large~or, more precisely, that the
topological susceptibility of the pure-glue vacuum is no
zero!. The Euclidean topological charge is defined as

Q [
1

32p2E d4x
1

2
emnrsGmn

a Grs
a [

1

32p2E d4xGmn
a G̃mn

a

~3!

where Gmn
a 5]mAn

a2]nAm
a 1 f abcAm

b An
c . A basic property of

Q is that its density is a total divergence and thus it can
represented as an integral over the large hypersphere

Q5E d4x]mKm5E dSmKm ~4!

with dSm the surface element and

Km5
1

16p2 emnrsS An
a]rAs

a1
1

3
f abcAn

aAr
bAs

c D ~5!

the topological current.
Let us now consider theu dependence of physics. Befor

the discovery of instantons, the inclusion of the perfec
acceptable termS8}u*d4x Gmn

a G̃mn
a into the gauge action

was believed to have no effect on physical observab
since, according to Eq.~4!, it is just a surface term. The
2-3
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behavior of fields at infinity should reflect the ‘‘typical be
havior in the vacuum’’ which, according to the usual~pertur-
bative! lore inherited from QED, corresponds to physic
fields being zero~pure gauge!. Hence, it appeared that the
was no reason to believe that theu term would contribute,
andS8 was discarded.

The discovery of instantons revealed that, even if o
retains the picture of the vacuum as asymptotically p

gauge, the integral*d4xGmn
a G̃mn

a does not necessarily hav
to vanish. Indeed, the Belavin-Polyakov-Schwartz-Tyup
~BPST! instanton solution@1#, even though pure gauge a
infinity, winds nontrivially around the group and yields
nonzero value for the integral (Q51). More generally, any
gauge configuration that is pure gauge at infinity~not just
solutions of the equation of motion! and winds nontrivially
around the group will have a nonzero, integer value ofQ.
Since the number of windings is stable under a continu
deformation of gauge fields, this pointed to the role of top
ogy in QCD and, more importantly, led to the fundamen
discovery that physics actually will depend onu ~except in
the presence of massless fermions!.

At the same time, from the confinement point of view,u
dependence is rather obvious. If confinement is assumed
simply should not describe the vacuum as being asymp
cally pure gauge. Consequently, the correct boundary co
tion at infinity should involve a nonzeroGmn

a in some form.
For such configurations there is absolutely no reason w
*d4x Gmn

a G̃mn
a should vanish; hence theu dependence. A

concrete model that illustrates that instantons do not hav
play any significant role in this respect is the Schwing
model, which is a theory of type~1! without quantized topo-
logical charge. Theu term corresponds to a background ele
tric field and the physics depends on it, except when fer
ons are massless.

By the same argument, confinement also provides an
ternative mechanism forh8 mass generation. The flavor sin
glet axial vector currentj 5

m[Sac̄agmg5ca (a being the fla-
vor index! exhibits an axial anomaly, but the correspondi
divergence is proportional to the topological charge dens
]m j 5

m}Gmn
a G̃mn

a . Consequently, one can use the topologi
current~5! to define a conserved but gauge variant curre
To solve the UA(1) problem, it is necessary to show that th
conserved current does not lead to a Goldstone pole@33#, so
that theh8 remains massive in the chiral limit, unlike th
other pseudoscalar mesons. ’t Hooft has shown@2# that in the
semiclassical approximation, using the instanton gas pict
this is indeed what happens. At the same time, as Wi
argues, this conclusion relies only on the fact that the se
classical framework naturally emphasizes configurations
give nonzero*d4x Gmn

a G̃mn
a . While it is interesting that the

UA(1) problem is solved already at the semiclassical lev
the fluctuations of a confining vacuum, as we noted abo
will also naturally include configurations with nonvanishin
topological charge. As a result, the UA(1) problem is ex-
pected to be solved in any confinement-based picture of
QCD vacuum. This is exhibited, for example, by the deriv
tion of the Witten-Veneziano formula@22# for the h8 mass,
01450
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which is carried out in the large-Nc framework without ref-
erence to semiclassical arguments.

C. Discussion

Early attempts at studying topological effects in QC
were framed in the context of a dilute instanton gas. While
is now well known that this framework is not capable
providing an accurate description of low-energy QCD, t
associated basic picture of the vacuum has survived in m
elaborate scenarios based on instanton methods, such a
instanton liquid model@4#. In particular, the typical vacuum
gauge configuration is imagined as being very inhomo
neous, containing lumps of very strong~anti-!self-dual fields,
surrounded by regions of very weak fields. When the non
teracting instanton gas picture is refined to include corre
tions, one can no longer speak of first-principles semicla
cal calculations, but rather of a semiclassically motiva
phenomenology. An extensive examination of the poss
roles of instantons in low-energy QCD~including their role
in spontaneous chiral symmetry breaking and the propa
tion of light quarks in the vacuum! has been made in th
context of the ILM @4#. Reference@4# also provides an ex-
cellent overview of the history of instantons and some v
beautiful pedagogical discussion of low-energy QCD. F
other recent important work on instantons, see@5–11#.

To further motivate the suggestion that such models
not viable, we note that from the confinement point of vie
the instanton picture is unnaturally ordered. Indeed, with
~anti-!self-dual restriction entailed by instanton excitation
the chromoelectric and chromomagnetic fields are locked
gether (Ea56Ba). The important property of this condition
is that the role of topological charge is maximally emph
sized in the sense that, for a given value of the action den
~anti-!self-duality implies the maximal topological charg
density. This can be seen from the fact thatS}(E•E
1B•B), while Q}E•B. The resulting lumpiness of topologi
cal charge then affects the propagation of quarks. While
large value of topological susceptibility in the pure gau
vacuum obtained from lattice simulations suggests that to
logical charge is indeed lumpy@14#, this lumpiness is per-
fectly natural for a highly fluctuating confining vacuum a
well: confinement automatically entails large localized flu
tuations ofEa and Ba with energy densities of the order o
1 GeV/fm3, generating ‘‘hot spots’’ in both (E•E1B•B)
andE•B. What is not natural from the confinement point
view is the maximally ordered situation implied by the i
stanton picture. There appears to be no good reason to ex
that the confining vacuum would fluctuate in such a way
to generate only~anti-!self-dual lumps. In the strong
coupling quark model@19#, these fluctuations are associat
with virtual scalar glueballs mixed into the bare stron
coupling vacuum~leading to a strong space-time localizatio
of the gauge field fluctuations! and a loosely correlated angl
betweenEa andBa associated with the fields internal to th
scalar glueball.

III. THE ROLE OF FERMIONIC NEAR-ZERO MODES

Since the approach pursued in this paper relies on fer
onic near-zero modes, we now discuss their role in determ
2-4
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ing the low-energy properties of QCD. In particular, we w
concentrate on spontaneous chiral symmetry break
(SxSB) and theh8 mass. The common origin of these ph
nomena is an attractive feature of the ILM, but we will arg
below that the same connection will arise in any picture t
incorporates large fluctuations of topological charge dens

We begin by recalling the derivation of the Banks-Cas
relation @34# which clarifies the role of near-zero modes
the Dirac operator in forming the chiral condensate.~Al-
though we will ultimately address these issues numerica
using the lattice Wilson-Dirac operator, we restrict our the
retical considerations to the continuum Dirac operator. T
effects of lattice discretization will be discussed in the n
section in the context of the Monte Carlo results.! The spec-
tral requirement for a nonvanishing chiral condensate
found by considering the eigenmode expansion of a sc
quark loop with massm in a background gauge fieldA in
Euclidean four-space,

^c̄~x!c~x!&A5Tr G~x,x!5(
i

c i
†~x!c i~x!

2 il i2m
. ~6!

Here thec i ’s andl i ’s are the eigenvectors and eigenvalu
of the masslessDirac operator,

iD” c i5l ic i . ~7!

Because of the anticommutator$g5,D” %50, nonzero eigen-
values come in chiral pairs6l i with eigenvectorsc i and
g5c i , respectively. Symmetrizing the eigenvalue expans
~6! over chiral pairs, we have

^c̄~x!c~x!&A52 (
l i.0

S 2m

l i
21m2D c i

†~x!c i~x!

2
1

m (
l i50

c i
†~x!c i~x!. ~8!

After averaging over gauge fields, the expectation value
the left hand side becomes translation invariant, so we m
integrate over the four-volumeV and use the fact that th
eigenfunctions are normalized to*c i

†c id
4x51 to get

^c̄c&52
1

V (
i

2m

l i
21m2

2
N0

mV
. ~9!

At this point it is important to take the volume to infinit
before taking the chiral limitm→0. If we were to take the
chiral limit first, we would conclude that only the mode
with exactlyzero eigenvalue contribute to^c̄c&. Instead, the
infinite volume limit at small but finite mass replaces t
sum by an integral over a density functionr(l), which re-
ceives contributions from a large number of near-z
modes. In fact, the contribution of exact zero modes to
integral becomes negligible compared to the near-z
modes in the infinite volume limit.~For constant topologica
susceptibility, the typical number of exact zero modesN0

grows asAV, while the total number of low-lying mode
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grows linearly with the volume.! As a result, only the density
of near-zero modes is relevant for chiral symmetry breaki

^c̄c&52E
0

`

dlr~l!S 2m

l21m2D . ~10!

In the chiral limit, this reduces to the Banks-Casher relat

^c̄c&52pr~0! ~11!

wherer(0)5 lim
l→0

r(l). Thus, the requirement for spon

taneous chiral symmetry breaking is that the density of ne
zero modesr(0) in a very large box must be finite. Th
number of low-lying modes needed to achieve this is
course much larger than what would be available for f
fermions in four dimensions, where the density vanishes
l3. In the instanton liquid model, the required excess
near-zero eigenmodes is posited to be supplied by the to
logical zero modes of the instantons and anti-instanto
which mix and spread into a band of eigenvalues near z
But a finite value ofr(0), andhence a chiral condensate, ca
arise under much more general circumstances. The insta
liquid model populates the vacuum with a finite density
gauge field ‘‘lumps’’ which act like attractive potentials i
the quark eigenvalue problem. In this case, each lump s
ports one low-lying eigenmode, so the total number of lo
lying modes grows linearly with the volume and the fini
density of states required for SxSB can be achieved. Bu
note that the Atiyah-Singer index theorem@35# tells us that
any gauge configuration with an overall topological char
~which is an integer in a periodic box, with or without in
stantons! will exhibit at least that number of zero eigenvalu
in its Dirac spectrum. More generally, large gauge fluctu
tions of all types will act as attractive potentials in the Dir
operator ~see Sec. IV!, giving rise to low-lying ‘‘bound
state’’ eigenmodes. Just as in the instanton model, for a g
density of large gauge fluctuations we would expect
number of such modes to grow linearly with the volum
This argument shows that a finite density of near-zero Di
eigenmodes, and hence SxSB, can be a result of the types o
large gauge fluctuation that are implied by confinement a
do not require any of the more specific restrictions of t
instanton picture.

Given the finite density of low-lying Dirac eigenvalue
implied by SxSB and the Banks-Casher relation, we no
want to consider the resolution of the UA(1) problem from
the point of view of low Dirac eigenmodes. The most dire
way to address this issue is to consider the eigenmode
pansion for the pseudoscalar ‘‘double hairpin,’’ i.e., the loo
loop correlator associated with theh8 mass,

Ddh
(A)~x,y!5^Tr g5G~x,x!Tr g5G~y,y!&A . ~12!

As before, the eigenmode expansion represents the q
propagators in a particular background gauge configura
A. In the end, the expressions are averaged over an ense
of gauge configurations. As in the derivation of the Bank
Casher relation, each loop can be symmetrized over the
tribution of chiral pairs, giving
2-5
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Ddh
(A)~x,y!5(

i , j
S m

l i
21m2D S m

l j
21m2D

3c i
†~x!g5c i~x!c j

†~y!g5c j~y!. ~13!

Because of the two factors in parentheses, we see that,
like ^c̄c&, the pseudoscalar hairpin correlator is domina
by the low eigenmodes in the chiral limitm→0. The size
and space-time dependence of this correlator, after avera
over gauge configurations, can be estimated by chiral
grangian arguments. In either quenched or full QCD,
hairpin correlator will be large and will have a long-ran
component in the chiral limit which falls off exponentiall
according to the pion mass. In quenched QCD, the hai
correlator at zero three-momentum falls off aste2mpt, while
in full QCD it falls off as e2mpt ~canceling the Goldstone
pole of the valence propagator!.

A recent study of the hairpin correlator@17#, using the
same~quenched! gauge configurations that we study he
has confirmed that both the size and time dependence o
hairpin correlator are in excellent agreement with chiral L
grangian predictions, in which the double-hairpin vertex
treated as anh8 mass insertion. The study in Ref.@17# uses a
different method for computing the hairpin correlator~i.e.,
not an eigenmode expansion!, but we take those results a
strong evidence that the correct physical mechanism forh8
mass generation, in particular the structure of the low eig
modes which should dominate the result, is well represen
by the lattice data. The interpretation of these results is
cussed in both Refs.@28# and @19#, where theh8 double
hairpin is an ordinaryqq̄→q8q̄8 OZI-violating diagram of
the quark model.

Before discussing the lattice results of this paper, so
further remarks on the eigenmode formula for the hair
correlator~13! will be useful. A finite density of modes nea
l'0 is already guaranteed by the existence of the ch
condensate. The additional property required to have a l
hairpin correlator~and hence a finiteh8 mass! in the chiral
limit is that the typical low-lying eigenmodes must have s
nificant space-time regions in which the pseudoscalar ch
c i

†g5c i is large. Note that, in the Banks-Casher relation,
contribution of a given mode to the chiral condensate w
fixed by the wave function normalization conditio
*d4x c i

†c i51. By contrast, the pseudoscalar charge fo
modec i with nonzero eigenvalue must integrate to zero,

E d4xc i
†g5c i50, ~14!

sincec i andg5c i have opposite eigenvalues ofiD” and are
therefore orthogonal to each other. What is required to p
duce a nonvanishingh8 mass and resolve the UA(1) problem
is for the low-lying eigenmodes to exhibit local regions
which c i

†g5c i is large, even though the integrated quant
~14! vanishes. This does not happen, for example, for
eigenmodes of a free fermion in a periodic box, for which t
pseudoscalar product vanishes locally,c i

†g5c i50. Eigen-
modes that resemble free plane wave states will thus
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contribute to theh8 hairpin correlator. In the instanton
model, the low-eigenmode wave functions will exhibit loc
peaks on the instantons and anti-instantons in wh
c i

†g5c i56c i
†c i , respectively. Thus, if the instanton pictur

is correct, the low eigenmodes will produce a large hair
correlator via lumps of right-handed chiral chargec i

†(1
1g5)c i5c iR

† c iR interspersed with other lumps of left
handed chiral chargec i

†(12g5)c i5c iL
† c iL . This is a de-

finitive prediction of the instanton model which follows d
rectly from the self-duality and anti-self-duality of the gau
lumps, and it is this prediction that we address here. What
want to emphasize is that the resolution of the UA(1) prob-
lem requires only that the low eigenmodes exhibit patche
lumps that contain significant amounts ofc†g5c charge, not
that these lumps bepurely right handed or left handed.

IV. THE CHIRAL STRUCTURE OF THE NEAR-ZERO
MODES

A. Methods

As we discussed in the preceding section, the structur
the QCD gauge vacuum in any instanton-based model
volves a particular assertion about the structure of typ
gauge excitations in the regions in which the field strength
large. Specifically, these excitations are supposed to be d
nantly self-dual or anti-self-dual. We will test this asserti
by studying the chiral structure of the low Dirac eigenmod
In an instanton picture, these low eigenmodes are appr
mately given by linear combinations of topological zer
mode wave functions centered around each instanton
anti-instanton in the configuration. The fermion zero mo
associated with an instanton~anti-instanton! is a lump of
purely right ~left-!handed chiral charge,c†(16g5)c. For
more general large gauge field fluctuations, we expect
the right- and left-handed components of the low-lyi
eigenfunctions will clump around the same large gauge fl
tuations, with relative strength determined by the relat
size of self-dual and anti-self-dual gauge components. To
why this is true, consider the eigenfunctions of the co
tinuum Dirac operator in a background gauge field. We n
that the Dirac eigenfunctions satisfyiD” c5lc, from which
we can obtain second-order differential equations for the
and right components,

~ iD” !2c5F2D21
1

2
smnGmnGc5l2c. ~15!

Separating the gauge field into self-dual and anti-self-d
components

Gmn5
1

2
~Gmn1G̃mn!1

1

2
~Gmn2G̃mn![Gmn

(1)1Gmn
(2) ,

~16!

we obtain
2-6
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F2D21
1

2
smnGmn

(1)GcL5l2cL , ~17!

F2D21
1

2
smnGmn

(2)GcR5l2cR . ~18!

These are 4D Schro¨dinger-like eigenvalue equations, wit
the self-dual and anti-self-dual components of the gauge fi
playing the role of a potential term for the left- and righ
handed components of the eigenvector. If the gauge lum
purely self-dual or anti-self-dual, then only one of the tw
chiral components will be attracted by the gauge fluctuati
and the fermion lump will be purely left handed or rig
handed. For more general gauge fluctuations, we expec
chiral structure of the fermion lump to vary arbitrarily, a
determined by the relative size of theG(1) and G(2) com-
ponents of the gauge lump.

In the lattice results discussed here, we study the chira
of low Dirac eigenmodes by calculating the left and rig
chiral chargescL

†cL andcR
†cR for particular eigenvectors in

the regions where their wave functions are large. Spe
cally, we scan through each eigenvector site by site and
out the sites for which the overall size of the wave functi
c†c5cL

†cL1cR
†cR is greater than some minimum. We ha

chosen this threshold so that we sample about 1% of
sites on the lattice for a typical eigenmode. Thus we
looking at the very highest peaks of the fermion eigenfu
tions. If an instanton-dominated picture of low eigenmode
at all valid, we would expect the peaks of the wave funct
to closely resemble instanton zero modes. Thus, if instan
dominate, a local peak in the wave function for a low-lyin
eigenmode~a fermion lump! should be dominantly a lump in
cL

†cL or cR
†cR , but not both. On the other hand, fermio

lumps without a definite chirality would be an indication
non-self-dual gauge fluctuations, which would be expec
to occur in a confinement-related mechanism.

In the discussion of our results, an important distinction
made between exactly real modes and near-real modes o
Wilson-Dirac operator, which correspond to zero modes
near-zero modes, respectively, of the continuum Dirac op
tor. In the continuum theory, an exact zero mode is ass
ated with the global topology of the gauge field on a fo
torus. In any gauge configuration there would be a minim
number of exact zero modes equal to the integrated topol
cal charge. Such zero modes are unpaired and shoul
chiral, independent of whether the topological charge com
in the form of instantons or some other gauge fluctuatio
The true test of instanton- vs confinement-related fluct
tions comes from studying the near-real modes, which a
should belocally chiral if instantons are dominant. For ex
ample, a configuration of a nearby instanton–anti-instan
pair should produce a pair of near-real eigenmodes, eac
which exhibits two lumps of opposite chirality. For mo
general gauge fluctuations that are not instantons, the
tached fermion lumps will not have a definite chirality b
will have bothcL

†cL andcR
†cR charges.

It should be emphasized that the presence of locally ch
peaks in low Dirac eigenmodes is a necessary but not a
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ficient condition for instanton dominance. Even in Witten
scenario, some degree of local chirality might be expecte
regions of large field fluctuations, since self-duality or an
self-duality of the gauge field is favored by the equations
motion. However, the instanton picture requires both
tended regions of strong~anti-!self-dual fields and that thes
regions contain lumps of approximatelyquantizedtopologi-
cal charge. Under such circumstances, the degree of chir
in the peaks of low-lying near-zero modes and exact z
modes should be very similar~neglecting cases of strongl
overlapping instanton–anti-instanton pairs! since both are
presumed to be linear combinations of approximate ’t Ho
zero modes. On the other hand, a consistently smaller de
of chirality for near-zero modes would favor a noninstant
interpretation. In future studies, comparisons between ch
ity histograms of zero modes and near-zero modes may h
to be combined with detailed study of the space-time str
ture of lumps to reach a final conclusion.

B. Results

Using the procedure outlined in the previous section,
have carried out a detailed study of the low-lying eige
modes of the Wilson-Dirac operator on an ensemble
Monte Carlo generated lattice gauge configurations. T
gauge configurations used were a 30-configuration subse
the b lattice quenched ensemble from the Fermilab AC
MAPS library. Low eigenmodes were obtained using the A
noldi algorithm @36#. The lattice size is 123324, and the
gauge coupling isb55.7 ~corresponding to a lattice spacin
of a21.1.18 GeV). Although the lattice spacing is rel
tively coarse, recall that an extensive study of chiral symm
try and quenched chiral logarithms has been carried ou
this gauge ensemble@17,18#, showing that this lattice spac
ing is fine enough to reproduce in remarkable detail a var
of quenched chiral logarithm and chiral loop effects rela
to theh8 hairpin diagram. Combined with the clear observ
tion of chirality for exactly real modes~see below!, we ten-
tatively assume that lattice spacing effects do not invalid
our conclusions.

As described above, we select a subset of lattice points
each eigenmode, picking out the regions in which the wa
function is large. For each of the chosen points, we calcu
the magnitudes of the left and right components and par
etrize their ratio by a ‘‘chiral orientation’’ parameterX, de-
fined by

tanS p

4
~11X! D5

ucLu
ucRu

. ~19!

Note thatX is just an angle in theucLu-ucRu plane, rescaled to
run between21 and11. In particular, if the fermion eigen
mode lumps have a random chiral orientation, this will
reflected as a flat distribution inX. On the other hand, if the
eigenmodes are locally chiral, as with instanton zero mod
the distribution will be peaked nearX'61. For any particu-
lar eigenmode or set of eigenmodes we wish to examine,
construct a histogram of values of the chirality parameteX
for all the space-time points at which the size of the wa
2-7
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function is above threshold. In our examination of 1592 lo
lying eigenmodes on 30 gauge configurations, we fou
three distinct types of chirality histogram.

~1! The exactly real~unpaired! Wilson-Dirac eigenmodes
in the continuum band~i.e., nearkc) show a significant de-
gree of chirality, as seen in Fig. 1, i.e., the histogram exhi
clear peaks at the two endsX'60.5. ~Lattice effects have
shifted these peaks from their continuum location of61, but
the peaks are still clearly visible.! Figure 1 includes results
from 37 real modes.

~2! The near-real~paired! modes show a distribution tha
is strikingly flat over the central region ofX between'
20.5 and 0.5, as seen in Fig. 2. This plot shows the chira
distribution for 350 complex modes with imaginary pa
between 0.004 and 0.1 in lattice units~about 5 MeV to about
120 MeV in physical units!.

~3! The eigenmodes with larger imaginary parts give
chirality distribution that is peaked in the central regionX
'0. This is seen in Fig. 3. This plot includes 336 modes w
complex eigenvalues that haveuImlu.0.5.

We now discuss the significance of each of these th
types of chirality distribution. As we have discussed, t

FIG. 1. Chirality histogram for exactly real Wilson-Dirac eige
modes nearkc .

FIG. 2. Chirality histogram for near-real modes withuImlu
,0.1a21'120 MeV.
01450
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e

chirality of the exactly real modes is expected from gene
considerations, and has nothing to do with instantonsper se.
For continuum Dirac eigenmodes,g5 reflection relates con-
jugate pairs of eigenmodes at6l. Thus, an unpaired, non
degenerate mode with zero eigenvalue must be an eigen
of g5, i.e., g5c0(x)56c0(x). Of course, this argument i
rendered inexact by lattice effects and the non-a
Hermiticity of the Wilson-Dirac operator. Nevertheless, t
lattice results show clear evidence of the required chirality
the exactly real modes. This becomes even more clear if
look at histograms for individual real modes. In nearly
cases, the histogram for a single real eigenmode exh
only one chiral peak, not two, as seen in the plots of th
typical real modes~taken from three different gauge configu
rations! in Fig. 4. Thus the real modes exhibit aglobal
chirality, as expected from the analogy with exact ze
modes in the continuum. Again we emphasize that the
pectation that a zero mode will exhibit an overall chirali
has nothing to do with instantons but is expected~in the
continuum limit! on general principles: an exact zero mo
will appear in the spectrum if the overall integrated topolo
cal charge differs from zero@35#. In an instanton picture, a
positive chirality zero mode will have wave function peaks
the locations of some or all of the instantons but will
small in the vicinity of the anti-instantons. But chiral ze
modes will occur even if the topological charge appears
the form of non-self-dual~e.g., random! gauge fluctuations.

Next we turn to the near-real modes which come in co
jugate pairs and are therefore not required to be chiral
fact, their global chirality must vanish as a consequence
g5 Hermiticity of the Wilson-Dirac operator. The chiralit
histogram for near-real modes is shown in Fig. 2. In asse
ing our lattice results, we must be aware of the possibi
that finite lattice spacing effects may obscure the chiral
havior expected from continuum arguments. It is theref
particularly reassuring that we are able to clearly obse
chirality peaks in the histogram of exactly real modes, Fig
where chirality is required on general principles. It is dif
cult to imagine lattice effects that would destroy the chiral
of the near-real modes without also destroying it in the
actly real modes. The contrast between the chiral structur

FIG. 3. Chirality histogram for complex modes withuImlu
.0.5a21'600 MeV.
2-8



er
s

l-

th
a
s,

ed
ms
al
be
5
-

ues
no

e

n

es
xis.

V

EVIDENCE AGAINST INSTANTON DOMINANCE OF . . . PHYSICAL REVIEW D 65 014502
the exactly real eigenmodes~Fig. 1 and Fig. 4! and the flat
random chirality seen in the near-real modes~Fig. 2 and Fig.
5! thus makes the latter result more compelling. One v
identifiable lattice effect is that the histograms are suppres
near the boundariesX561, so that, for example, the chira
ity peaks for the real modes are atX'60.5 instead of61.
The same effect is visible at the ends of the histogram for
near-real modes, Fig. 2, where the flat central plateau f
off rapidly for uXu.0.5. Like that of the exactly real mode

FIG. 4. Chirality histograms for three typical single eigenmod
with exactly real eigenvalues. Note that these modes areglobally
chiral, i.e., they have either a positive or a negative peak but
both.
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the chiral structure of the near-real modes is further clarifi
by studying histograms for individual modes. The histogra
for three typical modes are shown in Fig. 5. The individu
modes displayed in Fig. 5 were intentionally chosen to
particularly close to the real axis, with imaginary parts of
MeV, 10 MeV, and 16 MeV, respectively. The Arnoldi algo
rithm has no trouble resolving such nearly real eigenval
into complex conjugate pairs, so in practice we found

s

ot

FIG. 5. Chirality histograms for three typical single eigenmod
with complex eigenvalues very close to, but not on, the real a
The values ofuImlu for these modes are 0.00431a21,0.00828a21,
and 0.0135a21, respectively, or about 5 MeV, 10 MeV, and 16 Me
in physical units.
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difficulty in distinguishing between unpaired, exactly re
modes, and nearly real, paired modes. The point emphas
by the modes shown in Fig. 5, and by the other near-
modes that we have inspected individually, is thateven
modes very close to the real axis show no tendency to
locally chiral, in marked contrast to the exactly real, u
paired modes.

The flat chirality distribution for the near-real modes e
hibited in Fig. 2 is our central lattice result. This may
contrasted not only with the chiral peaking of the real-mo
histogram, but also with the central peaking of the high
momentum modes in Fig. 3~with eigenvalues 0.5,uIm lu
,1.0). The central peaking atX'0 can be interpreted a
approximate ‘‘plane wave’’ behavior, in that these modes
hibit relatively little pseudoscalar charge. Note that the
chiral distribution of the low-lying modes in Fig. 2 corre
sponds to generally nonvanishingc†g5c charge in the wave
function peaks. Thus, these modes provide the mechan
for producing theh8 mass. To the extent that the high
plane-wave-type modes are centrally peaked, they h
c†g5c'0, and do not contribute significantly to theh8
mass. Of course, even the modes in Fig. 3 have modest-s
eigenvalues of'600 MeV to a GeV, and so the peak arou
X50 is still fairly broad. By examining histograms for var
ous ranges of eigenvalues, we see a gradual transition
the plateaulike behavior for small values ofuIm lu to the
more centrally peaked distribution of Fig. 3. By contrast, t
transition from Fig. 1 to Fig. 2 is sudden, with no indicatio
of chiral peaks even for complex modes very close to the
axis.

V. CONCLUSIONS

It is now widely accepted that topological charge plays
important role in low-energy QCD. This was originally di
covered through the realization that vacuum topological tr
sitions can lead to a resolution of the UA(1) problem. How-
ever, since Witten’s 1979 papers, it has been unclear whe
the dynamicsunderlying theh8 mass is associated with th
semiclassical tunneling events called instantons or with
large vacuum fluctuations typical of confinement. More ge
erally, it has been unclear whether fluctuations of topolog
charge in the QCD vacuum are predominantly in the form
instantons.

In this paper we have approached this question from
fermionic point of view. After reviewing the role of fermi
onic near-zero modes in SxSB and in the generation of th
h8 mass, we have argued that the information about lo
fluctuations of topological charge is conveniently encoded
the local chirality properties of these near-zero modes. T
main points of this paper are~1! to propose the local chirality
calculation as a way of testing the instanton picture in
framework of lattice QCD, and~2! to present the results o
an initial study which indicate that the fluctuations of t
QCD vacuum are not instanton dominated, in agreem
with Witten’s conjecture. We also develop a technique ba
on the study of low Dirac eigenmodes which can be used
further studies of this important issue.

While our work uses the Wilson-Dirac operator, whic
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lacks exact lattice chiral symmetry, and a relatively coa
lattice, there are reasons to believe~as we argued extensivel
in the text! that our main conclusions may not be invalidat
by lattice artifacts.@In this respect, we would also like to
point out that the connection between~anti-!self-duality and
local chiral properties of low-lying Dirac eigenmodes is pa
ticularly transparent in QED2. We have tested this on
lattice using the Wilson-Dirac operator and the expected c
ral structure is indeed exposed even without exact lat
chiral symmetry~see the Appendix!.# Nevertheless, it would
obviously be quite interesting to see our calculations
peated using a Ginsparg-Wilson fermionic operator. Wh
this is more computationally demanding due to nonultra
cality @37#, a study analogous to ours is actually quite fe
sible. Further studies with Wilson and clover-improved W
son fermions at smaller lattice spacing should also
illuminating @38#.

The validity of Witten’s conjecture would have broad im
plications for hadron phenomenology. Some of these im
cations are explored in a companion paper by one of us@19#.
An ongoing effort to construct a data base of low eige
modes for a much larger ensemble of gauge configuration
currently underway. Further studies of the chiral and spa
time structure of low Dirac eigenmodes should enable us
extract the detailed structure of topological charge fluct
tions in typical gauge configurations, and hopefully lead
satisfactory phenomenological models. This should also p
vide us with a much more precise understanding of ch
symmetry breaking and the UA(1) problem, and allow us to
begin to explore the dynamics of phenomenologically criti
quark-pair creation processes, both in hairpin diagrams
in ordinary OZI-allowed decays.
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APPENDIX: LOCAL CHIRALITY IN QED2

To further examine the suitability of local chirality prop
erties of Dirac near-zero modes as a test of local self-dua
for the underlying gauge fields, we studied this connect
also in the case of QED2. This is an ideal testing ground
the underlying ideas we introduced in Sec. IV because
some sense, the gauge field is automatically~anti-!self-dual.
This can be seen from the fact thatFmn[]mAn2]nAm has
only one independent component~the electric fieldE5F12),
yielding for the Euclidean action densityL}FmnFmn}E2

and for the topological charge densityQ(x)}emnFmn}E.
Thus, the magnitude ofQ(x) is always locked in with the
magnitude ofL, as is the case for the~anti-!self-dual field in
four dimensions. We would like to stress, though, that in
2-10
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case of QED2 this has nothing to do with the relevance
instantons, but rather is a generic property of the gauge fi

In terms of the Dirac eigenvalue problem@analogous to
Eqs.~17! and ~18!#, one finds that the left and right compo
nents of the eigenvectorc in iD” c5lc have to satisfy

@2D21eE#cL5l2cL , ~A1!

@2D22eE#cR5l2cR , ~A2!

where Dm[]m1 ieAm , and we have used the conventio
g5[ ig1g2. From this one can see that in the region arou
the local positive maximum ofE it is energetically favorable
for the near-zero mode to have a largecR and relatively
smallcL . Similarly, around local negative maxima ofE, one
expects the dominance ofcL . In other words, there shoul
be a certain degree of local chirality exhibited by the ne
zero modes.~Again, we emphasize that in QED2, unlik
QCD4, the local chirality of the near-zero modes is expec
in the vicinity of any strong fluctuation of the gauge fiel
and thus doesnot imply the existence of instantons.!

We have tested this scenario on the lattice using a pro
dure analogous to the one we have discussed at length
QCD. In particular, we have calculated the eigenmodes
Wilson-Dirac operator in the background of Monte Ca
generated configurations of pure gauge compact QED2,
calculated local chirality in the regions where the low-lyin

FIG. 6. Chirality histogram for real modes in QED2.
.
,
,

o

01450
f
d.

d

r-

d

e-
for
a

nd

eigenfunction is large. In Figs. 6 and 7 we show the res
from 100 configurations on a 24324 lattice atb52 ~we use
the standard normalization for Wilson’s plaquette actio!.
The two histograms show the local chirality of real mod
and of near-real modes lying in the vicinity of the continuu
branch of the Wilson-Dirac spectrum, respectively. In Fig
near-real modes with imaginary part less than 0.3 in abso
value were included, while the maximal imaginary part f
the high modes is typically around 1.3~we use the standard
normalization for the Wilson-Dirac operator!. In both cases,
about 1% of the highest points in a given mode were us
Similar to the situation in QCD, significant local chirality i
observed for the real modes as expected from the index t
rem in the continuum. However, contrary to the situation
QCD, chiral peaks are also apparent for the nonzero mo
in accordance with the above arguments. It should be emp
sized here that these results not only illustrate the validity
the general approach proposed in this paper, but also fur
confirm that the required effects can be captured by
Wilson-Dirac operator. Indeed, we can observe the lo
chirality of near-zero modes even though the gauge fields
rather rough, even though the cut for the imaginary part
the included modes is rather high, and even though
lumpiness of the topological charge is not expected to be
pronounced here as in QCD.

FIG. 7. Chirality histogram for near-real modes in QED2 wi
complex eigenvaluesuImlu,0.3.
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