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Bounds in proton-proton elastic scattering at low momentum transfer

A. T. Bates* and N. H. Buttimore†
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~Received 21 December 2000; published 12 December 2001!

We present a bound on the imaginary part of the single helicity-flip amplitude for spin 1/2–spin 1/2
scattering at small momentum transfer. The variational method of Lagrange multipliers is employed to opti-
mize the single-flip amplitude using the values ofs tot , sel and diffraction slope as equality constraints in
addition to the inequality constraints resulting from unitarity. Such bounds provide important information
related to the determination of the polarization of a proton beam. In the case of elastic proton collisions the
analyzing power at small scattering angles offers a method of measuring the polarization of a proton beam, the
accuracy of the polarization measurement depending on knowledge of the single helicity-flip amplitude. The
bound obtained on the imaginary part of the single helicity-flip amplitude indicates that the analyzing power
for proton-proton collisions in the Coulomb nuclear interference region should take positive values at high
energies.
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I. INTRODUCTION

The proton spin puzzle has intrigued experimentalists
theorists since the surprising result from the European M
Collaboration~EMC! experiment at CERN in 1988, whic
found a smaller than expected contribution to the spin of
proton from the component quarks. The question, ‘‘wh
does the spin of the proton come from?’’ remains un
swered@1,2#. Recent data suggests a value of;20230 %
for the fraction of the spin carried by theup, down and
strangequarks. The contribution from the gluons and fro
the orbital angular momentum of the quarks and gluons
not completely known. The Relativistic Heavy Ion Collid
~RHIC! at Brookhaven National Laboratory plans to pro
the proton structure using the deep inelastic scattering
protons at high center-of-mass energies (As5502500 GeV!
and momentum transfers (pT>10 GeV/c) @3#. To measure
the contribution of the gluons to the spin of the proton, w
sufficient accuracy, a polarized proton beam with a be
polarization error of 5% is necessary. One method of m
suring the polarization of a proton beam uses the analyz
power in elastic proton collisions at small scattering angl

In polarized proton-proton elastic collisions the transve
single spin asymmetryA can be measured by counting th
scatters with the beam polarized up (N↑) and then down
(N↓), where

A5
N↑2N↓

N↑1N↓ . ~1.1!

The polarizationP of a proton beam is related to the me
sured asymmetryA—through the analyzing powerAN :

A5ANP, ~1.2!
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the transverse asymmetryA being equal to the analyzing
power when the beam is 100% polarized. Therefore, ac
rate knowledge of the analyzing powerAN enables the beam
polarization to be calculated, given a measured value of
single spin asymmetry. In this paper we present a metho
finding a bound on the range of values which the analyz
power can assume for a particular center-of mass~c.m.! en-
ergy at low momentum transfer. Lagrangian optimizati
provides a technique of deriving bounds on scattering am
tudes in proton-proton elastic collisions particularly t
single helicity-flip amplitude, which consequently, limits th
size of the analyzing power at low momentum transfers
side the Coulomb nuclear interference~CNI! region. The
Lagrange multiplier variational technique, extended by E
horn and Blankenbecler@4# to include equality and inequal
ity constraints in the context of scattering theory, is used
derive a bound on the single helicity-flip amplitude, modifi
by a kinematical factor. For elastic spin 0–spin 1/2 scatter
a number of bounds on the helicity amplitudes have b
found using the Lagrangian optimization technique@5–7#. A
unitarity representation for helicity amplitudes has been u
to derive an asymptotic bound on the single helicity-flip a
plitude at low momentum transfers which limits its growth
high energies@8#.

A review of s-channel helicity amplitudes, appropriate fo
a discussion of bounds and CNI polarimetry, is presented
Sec. II. We shall indicate how the magnitude of the sin
helicity-flip amplitude can limit the value of transvers
single spin asymmetry at both high energy and small co
sion angles. Expressions for the scattering observables—
total cross section, the elastic cross section and the hadr
slope parameter—which are used as constraints in the o
mization of the single helicity-flip, are exhibited in Sec. II
The inequality unitarity constraints are also introduced.
detailed calculation of the bound is presented in Sec.
followed by a treatment of errors in Sec. V. A discussion
the bound with its consequences for polarimetry is provid
in the concluding Sec. VI.
©2001 The American Physical Society15-1
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II. AMPLITUDES AND ASYMMETRY

For the elastic scattering of two protons with helicitiesl1

and l2, at c.m. energyAs, there are sixteen helicity ampli
tudesf i in general, each a function ofs andt. The number of
independent amplitudes reduces to five under the follow
relations@9–11#, l18 andl28 referring to the outgoing proton
helicities taking values61/2:

Parity conservation,

^l18l28uful1l2&5~21!m2l^2l182l28ufu2l12l2&.
~2.1!

Time reversal invariance,

^l18l28uful1l2&5~21!m2l^l1l2uful18l28&. ~2.2!

Identical particle scattering,

^l18l28uful1l2&5~21!l2m^l28l18uful2l1&, ~2.3!

wherel5l12l2 , m5l182l28 . The five helicity amplitudes
include two non helicity-flip amplitudesf15^11ufu11&
andf35^12ufu12&, two double helicity-flip amplitudes
f25^11ufu22& and f45^12ufu21&, and one single
helicity-flip amplitudef55^11ufu12&, with partial wave
expansions@9,10#:

f1~s,t !5
As

2k (
J

~2J11!@ f 0
J~s!1 f 11

J ~s!#d00
J ~u! ~2.4!

f3~s,t !5
As

2k (
J

~2J11!@ f 1
J~s!1 f 22

J ~s!#d11
J ~u!

~2.5!

f2~s,t !5
As

2k (
J

~2J11!@ f 11
J ~s!2 f 0

J~s!#d00
J ~u!

~2.6!

f4~s,t !5
As

2k (
J

~2J11!@ f 22
J ~s!2 f 1

J~s!#d121
J ~u! ~2.7!

f5~s,t !5
As

2k (
J

~2J11! f 21
J ~s!d10

J ~u! ~2.8!

wheref i
J(s) ( i 50,1,11,22,21) denotes-channel partial wave

amplitudes and the c.m. momentum isk5As24m2/2. The
c.m. scattering angle is given by

cosu511t/2k2. ~2.9!

The analyzing powerAN expressed in terms of thes-channel
helicity amplitudes is

AN

ds

dt
52

4p

s~s24m2!
Im@f5* ~f11f21f32f4!#.

~2.10!
01401
g

The reduced ratio,r 5, of the hadronic helicity single-flip to
imaginary hadronic non-flip amplitude is defined as@12#

r 55
m

A2t
3

f5

Im
1

2
~f11f3!

. ~2.11!

The analyzing powerAN for the Coulomb nuclear interfer
ence~CNI! region can be written as follows, when the tran
verse total cross section spin difference is neglected@12,13#:

AN5
A2t

m

~mp2122 Im r 5!~ tc /t !12~r Im r 52Rer 5!

~ tc /t !222~r1d!~ tc /t !1~11r2!
~2.12!

where tc528pa/s tot'20.0012 (GeV/c)2. The electro-
magnetic and hadronic components of the average hel
non-flip amplitude are of the same magnitude wh
t5A3 tc @14#. The Coulomb phase isd, mp5kp11
52.7928 is the magnetic moment of the proton and@12#

r5
Re~f11f3!

Im~f11f3!
. ~2.13!

Apart from the photon pole term, thet-dependence of helic
ity nonflip and flip electromagnetic and hadronic amplitud
due to form factor and nuclear slope effects is not expec
to play a significant role in the amplitude ratios featuring
the asymmetry. An important contribution to the maximu
of AN , in the CNI region (utu,utcu), comes from Imr 5 in the
form of mp2122 Im r 5 as indicated in Eq.~2.12!. There-
fore, a bound on Imr 5 which satisfiesmp2122 Im r 5.0
ensures that the maximum analyzing power in the CNI
gion is positive.

III. SCATTERING OBSERVABLES

In the CNI region it is convenient to express the fi
helicity amplitudes in terms of Jacobi polynomials. To rela
the dl m

J (u) functions to Jacobi polynomials of the variab
z5cosu, it is suitable to separate the space ofl andm into
four regions @15#. In the region wherel1m>0 and
l2m>0, the relation is

dl m
J ~u!5A ~J1l!! ~J2l!!

~J1m!! ~J2m!! S 11z

2 D (l1m)/2

3S 12z

2 D (l2m)/2

PJ2l
(l2m,l1m)~z!, ~3.1!

andJ2l50,1,2, . . . . Equivalent forms in the other region
are obtained by use of symmetry relations@10,15#;

dl m
J ~u!5H ~21!l2mdm l

J ~u!, l1m>0, l2m<0,

~21!l2md2l2m
J ~u!, l1m<0, l2m<0,

~21!l2md2l2m
J ~u!, l1m<0, l2m>0.

~3.2!
5-2
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Expressing thedl m
J (u) functions in terms of Jacobi polyno

mials, the five independent helicity amplitudes can be writ
as

f1~s,t !5
As

2k (
J

~2J11!@ f 0
J~s!1 f 11

J ~s!#PJ
(0,0)~z! ~3.3!

f2~s,t !5
As

2k (
J

~2J11!@ f 11
J ~s!2 f 0

J~s!#PJ
(0,0)~z!

~3.4!

f3~s,t !5
As~11z!

4k (
J

~2J11!@ f 1
J~s!1 f 22

J ~s!#PJ21
(0,2)~z!

~3.5!

f4~s,t !5
As~12z!

4k (
J

~2J11!@ f 22
J ~s!2 f 1

J~s!#PJ21
(2,0)~z!

~3.6!

f5~s,t !5
AsA12z2

4k (
J

~2J11!AJ11

J
f 21

J ~s!PJ21
(1,1)~z!

~3.7!

wherez5cosu. The Jacobi polynomials have the properti
@16#

Pn
(a,b)~1!5

G~a1n11!

G~a11!n!
, ~3.8!

dm

dzm
Pn

(a,b)~z!522m
G~m1n1a1b11!

G~n1a1b11!
Pn2m

(a1m,b1m)~z!.

~3.9!

We will next derive expressions for the observables wh
are included as equality constraints in the optimization of
single helicity-flip amplitude.

A. Equality constraints

In proton-proton elastic scattering the spin observab
can be written in terms of the five helicity amplitudes@11#.
The observables are vital to the optimization, since each
servable can be included as an equality constraint in the
timized system. The derivation of the bound uses th
equality constraints,s tot , sel andg, and two inequality con-
straints related to unitarity.

1. Total cross section

The first equality constraint involves the total cross s
tion. The optical theorem is used to write the imaginary p
of the spin average helicity non-flip amplitude, defined b

f1~s,t !5
f1~s,t !1f3~s,t !

2
, ~3.10!

in terms of the total cross sections tot :
01401
n

h
e

s

b-
p-
e

-
rt

Im f1~s,0!5
kAs

4p
s tot~s!. ~3.11!

The total cross section expressed in terms of Imf1(s,0) has
the partial wave expansion

s tot~s!5
p

k2 (
J

~2J11!$~a0
J1a11

J !PJ
(0,0)~1!

1~a1
J1a22

J !PJ21
(0,2)~1!% ~3.12!

where the imaginary and real parts of the partial waves
given by

ai5Im f i
J , bi5Ref i

J , i 50,1,11,22,21. ~3.13!

Using property ~3.8! the normalized dimensionless tot
cross section can be expressed as a partial wave expan

A05(
J

~2J11!$a0
J~s!1a1

J~s!1a11
J ~s!1a22

J ~s!%

~3.14!

whereA05(k2/p)s tot .

2. Slope of the imaginary non-flip amplitude

The slope of the imaginary non-flip amplitude has be
used in bounds for other spin dependent elastic collisi
@5–7,17#. We find it convenient to use the imaginary part
the spin-averaged amplitude at a particular value oft. The
second equality constraint employs the imaginary spin av
age non-flip amplitude at a particulart inside the Coulomb
nuclear interference region, written as a Taylor expansio

Im f1~s,t !'Im f1~s,0!1tS d

dt
Im f1~s,t ! D U

t50

,

~3.15!

whereutu is sufficiently small so that inclusion of the linea
term in the Taylor expansion is an accurate approximati
Use of properties~3.8! and ~3.9! leads to the partial wave
expansion for the imaginary non-flip amplitude

Im f1~s,t !5
As

4k (
J

~2J11!$a0
J1a1

J1a11
J 1a22

J %

3S 12
z

4
J~J11! D ~3.16!

where z52t/k2. The logarithmic derivative of the imagi
nary spin average non-flip amplitude,

g5
d

dt
ln Im f1~s,t !u t505

1

Im f1~s,0! S d

dt
Im f1~s,t ! D U

t50

,

~3.17!

when combined with the Taylor expansion for Imf1(s,t),
given by Eq.~3.15!, indicates that

Im f1~s,t !5Im f1~s,0!$11t g%. ~3.18!
5-3
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3. Elastic cross section

The third equality constraint relates to the elastic cr
section, expressed as a partial wave expansion by integra
the differential cross section over momentum transfert:

sel~s!5E
24k2

0

dt
ds~s,t !

dt
. ~3.19!

The expression for momentum transfer

t522k2~12z!, ~3.20!

enables one to equivalently integrate over thez variable. Ex-
pressing the elastic cross section in terms of partial wa
requires integrals of the form

E
21

11

dzuf i~s,t !u2

to be calculated, wherei 51, . . . ,5. Theintegration formula
@18#, with Kronecker delta functiondmn ,

E
21

11

~12z!a~11z!bPn
(a,b)~z!Pm

(a,b)~z!dz

5
2a1b11G~a1n11!G~b1n11!

n! ~a1b12n11!G~a1b1n11!
dmn

~3.21!

may be used to evaluate the integral

E
21

11

dlm
J ~u!dlm

J8 ~u!dz5
2

2J11
dJJ8 , ~3.22!

leading to a partial wave expansion for the normaliz
dimensionless elastic cross section, defined
Sel5(k2/p)sel :

Sel~s!5(
J

~2J11!$u f 0
Ju21u f 1

Ju21u f 11
J u21u f 22

J u212u f 21
J u2%.

~3.23!

B. Imaginary single-flip amplitude

The imaginary single helicity-flip amplitude, modified b
a kinematical factor, is the objective function in the syste
Before optimization we must first express the single-flip a
plitude in a suitable form. The imaginary amplitude, fro
Eq. ~3.7! with the Jacobi polynomialPJ21

(1,1)(z) expanded as a
Taylor series in the CNI region, can be written as

Im f̃5'
As

4k (
J

~2J11!AJ11

J
JS 12

z

8
@J~J11!22# Da21

J

~3.24!

where z511t/(2k2) and z52t/k2. At small collision
angles, the ratio Imr 5 is approximated as
01401
s
ing

s

d
s

.
-

Im r 55
m

k

Im f̃5

Im f1~s,t !
.

C. Unitarity

The partial wave amplitudes obey the following unitari
inequalities@19#

U1
J5a0

J2u f 0
Ju2>0, V1

J5a11
J 2u f 11

J u22u f 21
J u2>0

~3.25!

U2
J5a1

J2u f 1
Ju2>0, V2

J5a22
J 2u f 22

J u22u f 21
J u2>0.

It is useful to defineXJ5U1
J1U2

J andWJ5V1
J1V2

J , relating
to the inequalities

XJ5a0
J1a1

J2u f 0
Ju22u f 1

Ju2>0 ~3.26!

WJ5a11
J 1a22

J 2u f 11
J u22u f 22

J u222u f 21
J u2>0. ~3.27!

For the elastic scattering of spin 0 on spin 1/2 particles th
are two independent helicity amplitudes, a flip and a non-
amplitude, with partial wave expansions whose partial wa
amplitudes obey unitarity relations similar toU1

J andU2
J in

Eq. ~3.25!. The unitarity relationsV1
J and V2

J of Eq. ~3.25!
are characteristic of spin 1/2 – spin 1/2 scattering, thef 21

J

term coming from the single helicity-flip amplitudef5.

IV. OPTIMIZATION

Equipped with partial wave expansions for the obse
ables and partial wave inequality relations, representing u
tarity, we are in a position to optimize the modified helici
single-flip amplitude Imf̃5. We follow the variational tech-
nique of Einhorn and Blankenbecler@4# by constructing a
Lagrangian consisting of an objective function and a set
equality and inequality constraints. We use the full set
constraints,s tot , sel , g and unitarity, although a bound o
Im f̃5, with fewer constraints, can be derived@20#.

A. Lagrange formalism

The normalized dimensionless total cross sectionA0, ex-
pressed as an equality constraint, is included in the Lagra
function along with the normalized dimensionless elas
cross sectionSel , written as an equality constraint, th
imaginary spin average non helicity-flip amplitud
Im f1(s,t) at a fixed smallutu value, also expressed as a
equality constraint, and the partial wave unitarity relatio
written as inequality constraints. The modified sing
helicity-flip amplitude Imf̃5 is introduced as the objectiv
function in the Lagrange function:
5-4
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L5Im f̃51aFA02(
J

~2J11!$a0
J1a1

J1a11
J 1a22

J %G
1bFSel2(

J
~2J11!~ u f 0

Ju21u f 1
Ju21u f 11

J u2

1u f 22
J u212u f 21

J u2!G1gF Im f12
As

4k (
J

~2J11!

3$a0
J1a1

J1a11
J 1a22

J %S 12
z

4
J~J11! D G

1(
J

~2J11!mJ~a11
J 1a22

J 2u f 11
J u22u f 22

J u222u f 21
J u2!

1(
J

~2J11!lJ~a0
J1a1

J2u f 0
Ju22u f 1

Ju2! ~4.1!

where a, b and g are equality multipliers. The inequalit
multipliers, lJ and mJ , are by definition non-negative an
z52t/(k2). In the high energy or largeJ limit only the
leading orderJ terms need be included and Eq.~4.1! may be
written with 2J replacing 2J11. The system is optimized b
taking first and second derivatives with respect to the r
and imaginary partial wave amplitudes,bi

J and ai
J . This

gives the optimized set of partial waves, at some fixedt in
the CNI region;

bi
J50 for all i implying f i

J5 iai
J , ~4.2!

a0
J5a1

J5
r 11r 2~12zJ2/4!1l̃J

112l̃J

, ~4.3!

a11
J 5a22

J 5
r 11r 2~12zJ2/4!1m̃J

112m̃J

~4.4!

and

a21
J 5

J~12zJ2/8!

8b~112m̃J!
~4.5!

where l̃J5lJ/2b, m̃J5mJ /2b, r 152a/(2b), r 25
2g/(4b) and b.0 for a maximum ~or b,0 for a
minimum!.

B. Unitarity classes

The imaginary partial wave amplitudes, optimized und
the four constraints, obey the following unitarity inequaliti

XJ5a0
J2a0

J 2>0, WJ5a11
J 2a11

J 22a21
J 2>0. ~4.6!

It is natural to divide the partial waves into two classes, o
with contributions from the interior unitarity classI and the
other with contributions from the boundary unitarity classB.
For theXJ unitarity inequality the interior and boundary un
tarity classes are defined as
01401
al

r

e

I X[$JuXJ.0,l̃J50%, BX[$JuXJ50,l̃J>0%. ~4.7!

Likewise for the WJ unitarity inequality the interior and
boundary unitarity classes are

I W[$JuWJ.0,m̃J50%, BW[$JuWJ50,m̃J>0%.
~4.8!

1. IX and BX unitarity classes

The interior unitarity class,

I X[$JuXJ5a0
J2a0

J 2.0,l̃J50%, ~4.9!

under the four constraints, is expressed as

I X[$Ju0,a0
J,1,l̃J50%. ~4.10!

Equation~4.3! with l̃J set to zero enables us to write th
imaginary partial wave amplitudea0

J , in the interior unitarity
class, as

a0
J5r 11r 2S 12

z

4
J2D . ~4.11!

The constraint 0,a0
J,1 restricts the values of the equalit

multipliers,r 1 andr 2, to 0,r 11r 2,1 andr 2.0. The num-
ber of partial wavesJ is thus limited to

0<J2,
4

z S 11
r 1

r 2
D . ~4.12!

The boundary unitarity classBX splits into two sub-classes
BX0 andBX1:

BX[$JuXJ5a0
J2a0

J 250,l̃J>0%

→H BX0[$Jua0
J50,l̃J>0%,

BX1[$Jua0
J51,l̃J>0%.

~4.13!

In the boundary unitarity classBX0 the imaginary partial
wave amplitudea0

J is equal to zero and from Eq.~4.3! the

inequality multiplierl̃J is given by

l̃J52~r 11r 2!1r 2

z

4
J2>0. ~4.14!

The BX0 class begins atJ25M1
254/z(11r 1 /r 2), and for

J>M111, with 0,r 11r 2,1 and r 2.0, the inequality
multiplier l̃J is positive. Therefore the boundary unitari
classBX0 is non-empty forJ>M111 but witha0

J50, for all
J in this unitarity class, there are no contributions to t
observables from this unitarity class. The imaginary par
wave amplitudea0

J is equal to unity in the boundary unitarit

classBX1 and from Eq.~4.3! the inequality multiplierl̃J is
given by

l̃J5~r 11r 2!212r 2

z

4
J2. ~4.15!
5-5
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By definition l̃J>0 and the value ofJ, in the boundary
unitarity class, is limited to

J2<
4

z S ~r 11r 2!21

r 2
D ~4.16!

but with 0,r 11r 2,1 and r 2.0, J2 is negative, orJ is
complex and therefore the boundary unitarity classBX1 is
empty.

In summary, the unitarity classes,I X and BX0, are non-
empty and the unitarity classBX1 is empty:

I X[$Ju0,a0
J,1,0,J<M1%, ~4.17!

BX0[$Jua0
J50,M111<J<M2% ~4.18!

where M15F@A4/z (11r 1 /r 2)#, M25F@A8/z# and
z52t/k2. The F@x# function gives the greatest integer le
than or equal tox.

2. IW and BW unitarity classes

The interior unitarity classI W under the optimization be
comes

I W[$JuWJ5a11
J 2a11

J2
2a21

J2
.0, m̃J50%. ~4.19!

Substituting Eqs.~4.4! and ~4.5!, with m̃J50, into the inte-

rior constrainta11
J 2a11

J2
2a21

J2
.0 leads to the equation;

f 2~J!5ã11ã2J21ã3J41ã4J6.0 ~4.20!

where ã15(r 11r 2) @12(r 11r 2)#, ã25r 2z@2(r 11r 2)
21#/421/(64b2), ã35z/(256b2)2r 2

2z2/16, ã452z2/
(64b)2, and only positiveJ solutions are allowed. The solu
tion can be put in the following form, where it is known th
h2;1,

0,J2,h2
2M1

2 . ~4.21!

The boundary unitarity classBW is written as

BW[$JuWJ5a11
J 2a11

J2
2a21

J2
50, m̃J>0%. ~4.22!

The constrainta11
J 2a11

J2
2a21

J2
50 can be written as a qua

dratic equation:

m̃J
21m̃J1 f 2~J!50 ~4.23!

where

f 2~J!5ã11ã2J21ã3J41ã4J6. ~4.24!

The solutions are

m̃J5
1

2
$6A124 f 2~J!21%. ~4.25!
01401
The function f 2(J) is negative for J.M1 , where M1

5F@4/z(11r 1 /r 2)# and consequentlym̃J is positive for
such J values. By definitionm̃J>0, therefore the positive
solution is chosen;

m̃J5
1

2
$A124 f 2~J!21%. ~4.26!

To summarize, both the classes,I W andBW, are non-empty:

I W[$Jua11
J 2a11

J2
2a21

J2
.0, 0<J<M1%, ~4.27!

BW[$Jua11
J 2a11

J2
2a21

J2
50, M111<J<M2%, ~4.28!

with h251, where M15F@A4/z(11r 1 /r 2)#,
M25F@A8/z# and z52t/k2. It is important to notice that
with h251 both interior unitarity classes,I W and I X, are
non-empty over the same region,JP@0,M1#. Similarly the
boundary unitarity classes,BX0 andBW, are non-empty over
the same region,M111<J<M2. In other words there is no
mixing of unitarity classes, all classes being either inter
unitarity classes,I[I XøI W, or boundary unitarity classes
B[BXøBW, for a givenJ.

C. Solution of interior unitarity class

Consider the set of interior unitarity classes,I[I XøI W.
The inequality multipliers,l̃J and m̃J , in the interior region
are equal to zero. The imaginary partial wave amplitudes
therefore written as

ak
J5r 11r 2S 12

z

4
J2D ~4.29!

and

a21
J 5

J

8b S 12
z

8
J2D , ~4.30!

k 5 0, 1, 11, 22, with 0< J < M1, where

M15F@A4/z(11r 1 /r 2)# is the maximumJ in the interior
unitarity class. In this case the contributions to the obse
ables and to the objective function Imf̃5 solely come from
the interior unitarity classI; A0

I 5A0 , Imf1
I 5Imf1 , Sel

I

5Sel and Imf̃5
I 5Imf̃5. The normalized dimensionless tot

cross section upon reconstruction is

A058(
J50

M1

JF r 11r 2S 12
z

4
J2D G . ~4.31!

The Euler-Maclaurin expansion@21# for large J is used to
write the normalized dimensionless total cross sectionA0 as
an integration overJ, leading to
5-6
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A0'
M1

2

2
$8~r 11r 2!2r 2zM1

2%. ~4.32!

In a similar manner the imaginary spin average helicity n
flip amplitude, the dimensionless normalized elastic cr
section and the modified imaginary single-flip amplitude
also reconstructed:

Im f1'M1
2H 2~r 11r 2!2~2r 21r 1!

z

4
M1

21
r 2z2

24
M1

4J ,

~4.33!

Sel'H 4~r 11r 2!2M1
22~r 11r 2!r 2zM1

41
r 2

2z2

12
M1

6J
1

M1
4

64b2 H 12
z

6
M1

21
z2

128
M1

4J , ~4.34!
x-

g

i-

e

01401
-
s
e

Imf̃5'H Sel2S 4~r 11r 2!2M1
2

2~r 11r 2!r 2zM1
41

r 2
2z2

12
M1

6D J 1/2

3
M1

2

4 H 12
z

6
M1

21
z2

128
M1

4J 1/2

. ~4.35!

The equality multipliersr 1 , r 2 andb are found to be

r 15
A0

3z~123 Imf1 /A0!

36~122 Imf1 /A0!2
, ~4.36!

r 25
A0

2z

72~122 Imf1 /A0!2
~4.37!

and
b5

M1
2H 12

z

6
M1

21
z2

128
M1

4J 1/2

8H Sel2S 4~r 11r 2!2M1
22~r 11r 2!r 2zM1

41
r 2

2z2

12
M1

6D J 1/2 ~4.38!
wherez52t/k2. The equality multiplierb, with solutions
for r 1 and r 2, is expressed as

b5
9~A022 Imf1!A122 Imf1 /A0136 Imf1

2 /A0
2

2A0zA72Sel22A0
2z/~122 Imf1 /A0!

.

~4.39!

The optimized modified imaginary single-flip amplitude, e
pressed as a function ofr 1 , r 2 andb, becomes

Im f̃55
~A022 Imf1!

4A0z

A1/222~12Im f1 /A0! Im f1

A36Sel2A0
2z/~122 Imf1 /A0!

~4.40!

with

Jmax5
12

z S 122
Im f1

A0
D . ~4.41!

For low momentum transfers the imaginary spin avera
non-flip amplitude Imf1 , expanded to ordert, is written as
Im f1'(A0/2)(11gt). Under this approximation the max
mum J inside the interior unitarity class is independent oft,
and in the limit t→0, the number of partial waves is finit
where

Jmax5A12gk. ~4.42!
e

The equality multipliers in the lowt limit become

r 15
A0

72g2k2 S 113gt

t D , r 252
A0

72g2k2t
~4.43!

and

b5
A29gk2

A72Sel22A0
2/~gk2!

@11gt~219gt/8!#1/2.

~4.44!

The upper bound on uIm r 5u, where uIm r 5u
5muIm f̃5u/(k Im f1), can be expressed analytically:

uIm r 5u<
A2m kg

A0
A18Sel2

A0
2

2gk2
3h~ t ! ~4.45!

where

h~ t !5
@11gt~219gt/8!#1/2

~11gt!
. ~4.46!

The variableh(t) has the value one att50 and does not
vary much over the CNI region. WritingA05k2s tot /p and
Sel5k2sel /p, enables the bound onuIm r 5u to be expressed
as
5-7
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uIm r 5u<mAgS 36pgsel

s tot
2

21D 1/2

3h~ t !. ~4.47!

D. Results

The value of the bound onuIm r 5u is given in Tables I and
II with the values of the equality multipliers. The most n
ticeable feature of the bound is its size at low moment
transfers, having a value of 0.89 atAs552.8 GeV,
t520.001 (GeV/c)2. The partial wave series terminates
J5231 which is the upperJ limit, M1, for the interior uni-
tarity classI. When considering both the interior and boun
ary unitarity classes, values ofJ.M1 are permitted.

The bound onuIm r 5u, under the approximation

g'
s tot

2

32psel
, ~4.48!

with momentum transfers in the CNI region is expressed

uIm r 5u<mAg

8
3h~ t ! ~4.49!

and in the zero momentum transfer limit,t→0, the bound on
uImr 5u is finite and can be expressed analytically as

uIm r 5u<mAg

8
. ~4.50!

This approximation generates a ‘‘stricter’’ bound onuIm r 5u.
The results are given in Table III.

E. Solution of interior and boundary classes

Consider the union of the classes I øB
[I WøI XøBWøBX. The boundary unitarity classes are

BX[$Jua11
J 2a11

J2
2a21

J2
50, M111<J<M2%

~4.51!

and

BW0[$Jua0
J50, M111<J<M2% ~4.52!

where M15F@A4/z(11r 1 /r 2)#, M25F@A8/z# and
z52t/k2. The contribution touIm r 5u from the boundary
unitarity classB can range from 0% to 100% and the co

TABLE I. uIm r 5umax inside the interior region a
t520.001 (GeV/c)2.

As (GeV) r 1 r 2 b Jmax uIm r 5u

19.4 212.54 12.77 90 81 0.97
23.5 212.56 12.79 117 98 0.92
30.7 212.02 12.24 158 131 0.92
44.7 211.22 11.44 217 195 1.05
52.8 211.53 11.76 293 231 0.89
62.5 211.56 11.79 358 276 0.86
01401
t

-

s

tribution to uIm r 5u, from the boundary unitarity class, can b
selected without violating any of the constraints and this c
tribution can be made arbitrarily small.

Consider the case withSel
B50.1Sel , Sel

I 50.9Sel , at
As552.8 GeV andt520.001 (GeV/c)2. The maximum
contribution to uIm r 5u is 34.7 where uIm r 5

I u<0.5 and
uIm r 5

Bu<34.2. The case withSel
B50.01Sel , Sel

I 50.99Sel ,
leads touIm r 5u<11.6 whereuIm r 5

I u<0.8 anduIm r 5
Bu<10.6.

The bound onuIm r 5
Bu falls when the fraction ofSel in the

boundary unitarity class is reduced. The partial wave am
tudes in this region also become smaller in amplitude a
contribute less to the bound onuIm r 5

Bu. The fraction ofSel in
the boundary unitarity class can be further reduced until
contribution from this class touIm r 5u is negligible in com-
parison with the contribution from the interior unitarity clas
In this limit the bound is, as before,

uIm r 5u<mAgS 36pg sel

s tot
2

21D 1/2

3h~ t ! ~4.53!

or, under the approximationg's tot
2 /(32psel),

uIm r 5u<mAg

8
3h~ t ! ~4.54!

where

h~ t !5
@11gt~219/8gt!#1/2

~11gt!
. ~4.55!

TABLE II. uIm r 5umax inside the interior region at
t520.01 (GeV/c)2.

As ~GeV! r 1 r 2 b Jmax uIm r 5u

19.4 21.25 1.49 85 81 0.97
23.5 21.05 1.27 111 98 0.91
30.7 21.00 1.22 150 131 0.92
44.7 20.92 1.14 204 195 1.05
52.8 20.95 1.17 276 231 0.89
62.5 20.94 1.18 337 276 0.86

TABLE III. uIm r 5umax, with an approximation forg, over the
CNI region.

As
~GeV!

t50
(GeV/c)2

t520.001
(GeV/c)2

t520.01
(GeV/c)2

19.4 0.803 0.805 0.825
23.5 0.805 0.808 0.827
30.7 0.819 0.821 0.842
44.7 0.839 0.841 0.864
52.8 0.841 0.843 0.866
62.5 0.846 0.848 0.871
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The bound is identical to the bound when only the inter
unitarity class is considered. A finite number of partial wav
at low momentum transfer ensures a finite value for the s

Im f̃55(
J

J2a21
J S 12

z

8
J2D ~4.56!

and consequently a finite upper bound onuIm r 5u of less than
unity.

V. ERROR ON BOUND

The upper bound on the imaginary single helicity-flip a
plitude, modified by a kinematical factor at zero momentu
transfer, is given by

uIm r 5u<mAg

8S 36pgsel

s tot
2

21D 1/2

. ~5.1!

There are errors on all the experimental quantities in
~5.1! and consequently the upper bound onuIm r 5u has an
uncertainty. The experimental quantitiesg, s tot andsel have
a nominal value plus an uncertainty:g6Dg, s tot6Ds tot and
sel6Dsel . What are the values ofDg, Ds tot and Dsel?
Consider the value of Imr 5 at As552.8 GeV;
uIm r 5u<0.891 with g56.43560.14 GeV22 @22#, s tot
01401
r
s
m

-

.

542.906 mb@23# andsel57.407 mb@23#. The value ofDg
is known but we must calculateDs tot andDsel .

A parametrization for the total and elastic cross section
elastic pp collisions @23# allows a value for the cross sec
tions to be found and a value of their uncertainties to
calculated. Each cross section is parametrized as

s~p!5A1Bpn1C log2~p!1D log~p! ~5.2!

where s is in mb andp is the laboratory momentum in
GeV/c. The uncertainty ins is given by

Ds5H S ]s

]AD 2

~DA!21S ]s

]BD 2

~DB!21S ]s

]n D 2

~Dn!2

1S ]s

]CD 2

~DC!21S ]s

]D D 2

~DD !2J 1/2

. ~5.3!

The fitted parametersA, B, n, C andD are given in Table IV.
Using Eq.~5.3!, and the values of the fitted paramete

the uncertaintiesDs tot andDsel can be written as

Ds tot5A0.0112.531025log4~p!12.531023log2~p!
~5.4!

and
Dsel5A0.6412.89p22.42112.819p24.4214.4131024 log4~p!10.0676 log2~p!. ~5.5!

A laboratory beam momentum ofp5kAs/m51485 GeV/c at As552.8 GeV givesDs tot50.463 mb, or 1.08% ofs tot and
Dsel52.345 mb, or 31.66% ofsel . The uncertainty in Imr 5 is

D Im r 55AS ]Im r 5

]g D 2

~Dg!21S ]Im r 5

]s tot
D 2

~Ds tot!
21S ]Im r 5

]sel
D 2

~Dsel!
2. ~5.6!
ty
At As552.8 GeV, g56.43560.14 GeV22, s tot542.906
60.463 mb andsel57.40762.345 mb. The uncertainty
D Im r 550.049 and the upper bound onuIm r 5u is 0.891
60.049. The approximation

g'
s tot

2

32psel
~5.7!

can be used to write the bound onuIm r 5u as

uIm r 5u<mAg

8
~5.8!
at zero momentum transfer. The uncertaintyD Im r 5 is sim-
ply

D Im r 55AS ]Im r 5

]g D 2

~Dg!2. ~5.9!

At As552.8 GeV,g56.43560.14 GeV22, uIm r 5u<0.846
and D Im r 550.009 oruIm r 5u<0.84660.009. The error on
sel being large has relatively little effect on the uncertain
of the bound.
TABLE IV. Fitted parameters forpp scattering.

Reaction A B n C D

s tot 48.060.1 0.52260.005 24.5160.05
sel 11.960.8 26.961.7 21.2160.11 0.16960.021 21.8560.26
5-9
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VI. CONCLUSION

A bound on the imaginary part of the single helicity-fl
amplitude for proton proton elastic scattering in the CNI
gion has been obtained using a Lagrangian variatio
method. As equality constraints, the optimization used
total cross sections tot , the elastic cross sectionsel , and the
diffraction slope while partial wave unitarity involved
number of inequality constraints. The bound varies smoo
as the momentum transfer variablet→0 and, in fact, limits
the augmented helicity flip to nonflip amplitude ratiouIm r 5u
to values less than unity neart50. With additional informa-
tion, such as that provided by a double-spin asymmetry
improved bound could possibly be obtained although
would be necessary to have accurate knowledge of any
observables employed as constraints in the Lagrange f
tion. Use of a double-spin asymmetry, however, require
double summation over angular momentum that does
easily yield to analytical or computational approaches. C
straints used in the bound developed here involve the m
more tractable single summations. As the bound of ab
ev

.

d

01401
-
al
e

ly

n
it
w
c-
a
ot
-

ch
ut

0.84 on the helicity flip amplitude ratio is less tha
(mp21)/250.896 at the high energies considered, the co
ficient of (tc /t) in the expression for the asymmetry is co
strained to be positive. The analyzing power is therefore
pected to be greater than zero for at least a part of
interference region. Though the bound would have to be
proved to (mp21)/4050.0448 to limit the polarization erro
to the recommended 5% required for accurate measurem
of the contribution of gluons to the spin of the proton,
does, however, encourage the use of proton proton ela
collisions in the CNI region as a relative polarimeter. Ca
bration of such a polarimeter would be immediate when
method of determining Imr 5 from the absolute spin polar
ization of a high energy proton becomes available.
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