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Bounds in proton-proton elastic scattering at low momentum transfer
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We present a bound on the imaginary part of the single helicity-flip amplitude for spin 1/2—spin 1/2
scattering at small momentum transfer. The variational method of Lagrange multipliers is employed to opti-
mize the single-flip amplitude using the values \f;, o and diffraction slope as equality constraints in
addition to the inequality constraints resulting from unitarity. Such bounds provide important information
related to the determination of the polarization of a proton beam. In the case of elastic proton collisions the
analyzing power at small scattering angles offers a method of measuring the polarization of a proton beam, the
accuracy of the polarization measurement depending on knowledge of the single helicity-flip amplitude. The
bound obtained on the imaginary part of the single helicity-flip amplitude indicates that the analyzing power
for proton-proton collisions in the Coulomb nuclear interference region should take positive values at high
energies.
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[. INTRODUCTION the transverse asymmetitt being equal to the analyzing
power when the beam is 100% polarized. Therefore, accu-
The proton spin puzzle has intrigued experimentalists andate knowledge of the analyzing pow&y, enables the beam
theorists since the surprising result from the European Muopolarization to be calculated, given a measured value of the
Collaboration(EMC) experiment at CERN in 1988, which single spin asymmetry. In this paper we present a method of
found a smaller than expected contribution to the spin of thf?inding a bound on the range of values which the analyzing
proton from the component quarks. The question, “whereyower can assume for a particular center-of mass) en-
does the spin of the proton come from?” remains unangrgy at low momentum transfer. Lagrangian optimization

swered[1,2]. Recent data suggests a value-020-30%  prgvides a technique of deriving bounds on scattering ampli-
for the fraction of the spin carried by thep, downand  ,4es in proton-proton elastic collisions particularly the

strangequarks. The contribution from the gluons and from_ single helicity-flip amplitude, which consequently, limits the

;hoei (?(r)kr:]talle?er}gulli:)anomrigtuRrgl;)Iivtir']s?icqnaeg(\f a:gg gg”oigser'%ize of the analyzing power at low momentum transfers in-
P Y i y side the Coulomb nuclear interferen¢ENI) region. The

(RHIC) at Brookhaven National Laboratory plans to prObel].,agrange multiplier variational technique, extended by Ein-

the proton structure using the deep inelastic scattering % ) . .
. ' orn and Blankenbecl¢#] to include equality and inequal-
rotons at high center-of-mass energigs<£ 50— 500 Ge . S . )
P g g d—(: v ity constraints in the context of scattering theory, is used to

and momentum transferp{=10 GeVk) [3]. To measure ) . S ) -
the contribution of the gluons to the spin of the proton, Withderlve a bound on the single helicity-flip amplitude, modified

sufficient accuracy, a polarized proton beam with a bean?y @ kinematical factor. For elastig ;pin 0—spin 1/2 scattering
polarization error of 5% is necessary. One method of mea@ NuMber of bounds on the helicity amplitudes have been
suring the polarization of a proton beam uses the analyzinfPund using the Lagrangian optimization technigge-7]. A
power in elastic proton collisions at small scattering anglesUnitarity representation for helicity amplitudes has been used

In polarized proton-proton elastic collisions the transversd0 derive an asymptotic bound on the single helicity-flip am-
single spin asymmetryd can be measured by counting the plitude at low momentum transfers which limits its growth at
scatters with the beam polarized upl') and then down high energieg8].

(N}, where A review of s-channel helicity amplitudes, appropriate for
a discussion of bounds and CNI polarimetry, is presented in

NT—N! Sec. Il. We shall indicate how the magnitude of the single

A=m. (1.)  helicity-flip amplitude can limit the value of transverse

single spin asymmetry at both high energy and small colli-
o ) sion angles. Expressions for the scattering observables—the
The polarizationP of a proton beam is related to the mea- total cross section, the elastic cross section and the hadronic

sured asymmetryl—through the analyzing powéky: slope parameter—which are used as constraints in the opti-
mization of the single helicity-flip, are exhibited in Sec. Ill.
A=A\P, (1.2 The inequality unitarity constraints are also introduced. A

detailed calculation of the bound is presented in Sec. IV

followed by a treatment of errors in Sec. V. A discussion of
*Email address: atbates@maths.tcd.ie the bound with its consequences for polarimetry is provided
"Email address: nhb@maths.tcd.ie in the concluding Sec. VI.
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Il. AMPLITUDES AND ASYMMETRY The reduced ratior 5, of the hadronic helicity single-flip to

For the elastic scattering of two protons with helicities imaginary hadronic non-flip amplitude is defined[4s]

and\,, at c.m. energy/s, there are sixteen helicity ampli-

tudesg; in general, each a function efandt. The number of = m ¢s

. ' . . rs X . (2.11
independent amplitudes reduces to five under the following V-t |m£(¢> o)

relations[9—11], A; and\ referring to the outgoing proton 2 71T

helicities taking valuest 1/2:
Parity conservation The analyzing poweAy for the Coulomb nuclear interfer-
ence(CNI) region can be written as follows, when the trans-
(NN DN N ) = (= D)~ M =N = Nol | —N1—\p). verse total cross section spin difference is negleft@di 3:
2.1

i invari PR (up—1—=21mrs)(tc/t)+2(pImrs—Rers)
Time reversal invariance N e

(NNl BIN A = (—D)E ML GINAY). (2.2 (212

where t.= —8mal o~ —0.0012 (GeVt)2. The electro-
magnetic and hadronic components of the average helicity
non-flip amplitude are of the same magnitude when
t=3t, [14]. The Coulomb phase iss, u,=x,+1
=2.7928 is the magnetic moment of the proton &h#|

Identical particle scattering
(MRl @I = (=DM H (NN g dINoNg), (2.3

wherex=\;—\,, u=\;—\5. The five helicity amplitudes

include two non helicity-flip amplitudeg,=(+ +|¢|+ +) Re( b1+ bs)
and ¢3=(+ — ||+ — ), two double helicity-flip amplitudes p=——1 23 (2.13
$o=(++|¢|——) and p,=(+ —|¢|—+), and one single IM(1+ bs)

helicity-flip amplitudegs={+ +|#|+ —), with partial wave

expansions9,10]: Apart from the photon pole term, thiedependence of helic-

ity nonflip and flip electromagnetic and hadronic amplitudes
Js due to form factor and nuclear slope effects is not expected
b1(s,t) === E (2~J+1)[fé(8)+fil(s)]d€,0( 6) (2.4 to play a significant role in the amplitude ratios featuring in
2k 3 the asymmetry. An important contribution to the maximum
of Ay, in the CNI region [t|<|t¢|), comes from Int 5 in the
s ; 3 3 form of u,—1—-21Imrs as indicated in Eq(2.12. There-
ba(st)= 5 EJ: (23+D)[f1(s) +25(5)]d14(6) fore, a bound on Ims which satisfiesu,—1—2 Imrs>0
(2.5 ensures that the maximum analyzing power in the CNI re-
gion is positive.

S
da(s,t)= 2K ; (23+1)[14(5)— F3(s)1d3( 0) IIl. SCATTERING OBSERVABLES

(2.6) In the CNI region it is convenient to express the five
helicity amplitudes in terms of Jacobi polynomials. To relate
the d;‘ .(0) functions to Jacobi polynomials of the variable
Z=co0s¥, it is suitable to separate the spacexodnd u into
four regions [15]. In the region wherex+u=0 and

Pals )= Z—f 2 23+ D[fs) - fi()Id1a(0) (27

Js N—u=0, the relation is
s(s.)= o 2 (23+1)T34(s)d1( 6) (2.8
J & (o) (J+NII-N)! (142 A+l
A = —
wheref(s) (i=0,1,11,22,21) denotechannel partial wave g Q) I=mw!l 2
amplitudes and the c.m. momentumkis: \/s—4m?/2. The 1—z\(A—m)2 it )
c.m. scattering angle is given by X - Py (2), 3.0
— 2
COSO=1+1/2K". 2.9 andJ—\=0,1,2 ....Equivalent forms in the other regions

The analyzing poweA expressed in terms of theechannel are obtained by use of symmetry relatidd®,15;

helicity amplitudes is (_1)x—ﬂdix(0), A+u=0, A—u<0,

do 41 . d;\’ﬂ(a): (—1)>\7#d{)\7ﬂ(0), AN u<0, N—pu<O0,
Ndt :~:(s—4m2)|m[¢’5(d)ﬁ¢2+¢3 ba)l- (M #d?,_(0), A+u=<0, A—u=0.
(2.10 3.2
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Expressing thel;

as

$a(s,)= z—f 2 (+DIf9+ (8PP (33

bals)= ,j;g(ml)[f ()~ 1(s)PPA2)

(3.9
¢3(S,t)=fs(1— E (23+1)[f(s)+345)1PL2(2)
(3.9
ba(s,t)= f( — )E (23+ D[ f2(5)— f1(5)]P?%(2)
(3.6
ss0="a 41k 2 (23+1) Vo e
3.7
wherez=cosé. The Jacobi polynomials have the properties
[16]
I(a+n+1)
(.B)(1) =
Py = T 3.8
d” _ T(m+n+a+8+1)
—pl@h)(z)=p—m (a+m,3+m)
dzmpn B (z)=2 F(I”I+a’+,8+1) Lat T B (2).
(3.9

We will next derive expressions for the observables which
are included as equality constraints in the optimization of the

single helicity-flip amplitude.

A. Equality constraints

In proton-proton elastic scattering the spin observables

can be written in terms of the five helicity amplituded].

The observables are vital to the optimization, since each ob-

«(0) functions in terms of Jacobi polyno-
mials, the five independent helicity amplitudes can be written

PHYSICAL REVIEW &5 014015

kys

Im .,(5,00= 7—0t(S). (3.11

The total cross section expressed in terms offln{s,0) has
the partial wave expansion

010 S) = % 2 (23+1){(ad+al)Po(1)

+(ay+az) PP} (3.12
where the imaginary and real parts of the partial waves are
given by

=Imf’, b=Ref], i=0,1,11,22,21. (3.13
Using property (3.8) the normalized dimensionless total
cross section can be expressed as a partial wave expansion

AO=§ (23+1){ad(s)+ai(s)+aiy(s) +as(s)}
(3.19

whereAy= (k?/ ) ooy

2. Slope of the imaginary non-flip amplitude

The slope of the imaginary non-flip amplitude has been
used in bounds for other spin dependent elastic collisions
[5-7,17. We find it convenient to use the imaginary part of
the spin-averaged amplitude at a particular valug. afhe
second equality constraint employs the imaginary spin aver-
age non-flip amplitude at a particulaiinside the Coulomb
nuclear interference region, written as a Taylor expansion

’
t=0

(3.19

where|t| is sufficiently small so that inclusion of the linear
term in the Taylor expansion is an accurate approximation.
Use of propertieg3.8) and (3.9) leads to the partial wave
expansion for the imaginary non-flip amplitude

Im ¢, (s,t)~Im ¢+(s,0)+t(%lm b (S,1)

Js
Im ¢, (st)= K ; (2J+1){ay+aj+aj;+aj,)

servable can be included as an equality constraint in the op-

timized system. The derivation of the bound uses three
equality constraintsg.;, o andg, and two inequality con-

straints related to unitarity.

1. Total cross section

The first equality constraint involves the total cross sec-
tion. The optical theorem is used to write the imaginary partg= d—In Im ¢, (S,t)|i=0=
of the spin average helicity non-flip amplitude, defined by

¢1(Svt) + ¢3(S,t)

¢(st)= > (3.10

in terms of the total cross sectian,:

{

X l—ZJ(J—Fl) (3.19

where /= —t/k2. The logarithmic derivative of the imagi-
nary spin average non-flip amplitude,

e | 00
ma. (50 \atm P+
(317

when combined with the Taylor expansion for #n (s,t),
given by Eq.(3.15), indicates that

Im ¢, (s,t)=Im ¢, (s,0{1+tg}. (3.18
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3. Elastic cross section m Im :ﬁs

The third equality constraint relates to the elastic cross Imr5=E Imé,(s,t)
section, expressed as a partial wave expansion by integrating
the differential cross section over momentum transfer

g C. Unitarity
0 't . . . _
Ue'(s):f dt o(st) . (3.19 The partial wave amplitudes obey the following unitarity
a2 dt inequalities[19]
The expression for momentum transfer Ui=a)—|f|>=0, Vi=aj,—|f]|?—|f3,/?=0
2
t=—2k*(1-2), (3.20 329

. . . Up=ay—[f1|>=0, Vi=ap,—|fy]*~|f]*=0.
enables one to equivalently integrate over zhariable. Ex-
pressing the elastic cross section in terms of partial waves
requires integrals of the form Itis useful to defin&x’= U7+ U3 andW’=V3+ V3, relating
to the inequalities

f+1dz|¢i(31t)|2
1

X!=al+aj—|f3]?—|fi|>=0 (3.26
to be calculated, wherie=1, . . . ,5. Theintegration formula
[18], with Kronecker delta functiod,,,,
W =aj,+ay,— |f1,]2—|f3,]2— 2| f3,/>=0. (3.27
+1
f_l (1-2)%(1+2)PP{P(z)P{P)(z)dz
20BN (@ +n+ 1) (B+n+1) For the elastic scattering of spin 0 on spin 1/2 particles there

= are two independent helicity amplitudes, a flip and a non-fli
ni(a+p+2n+ 1l (a+p+n+1) " amplitude, W?th partial Wav)e/ exppansions Whopse partial Wav%
(3.2) amplitudes obey unitarity relations similar hbi and U2 in
Eq. (3.25. The unitarity relationd/; andV; of Eq. (3.25
may be used to evaluate the integral are characteristic of spin 1/2 — spin 1/2 scattering, fthe
term coming from the single helicity-flip amplitudgs.

2
f R (0)d,(0)dz= 55— 855, (3.22

IV. OPTIMIZATION

leading to a partial wave expansion for the normalized
dimensionless elastic cross section, defined
Ee|=(k2/7'r)0'e|:

a Equipped with partial wave expansions for the observ-
Ables and partial wave inequality relations, representing uni-
tarity, we are in a position to optimize the modified helicity

single-flip amplitude Imps. We follow the variational tech-
Se(8)=> (23+1){|F32+|f3|2+ |12 +|f3,]2+2|f3J?).  nique of Einhorn and Blankenbeclg4] by constructing a
J Lagrangian consisting of an objective function and a set of
(323 equality and inequality constraints. We use the full set of
constraints,oy, 0¢, g and unitarity, although a bound on
B. Imaginary single-flip amplitude Im s, with fewer constraints, can be derivgzD].
The imaginary single helicity-flip amplitude, modified by
a kinematical factor, is the objective function in the system.
Before optimization we must first express the single-flip am-
plitude in a suitable form. The imaginary amplitude, from  The normalized dimensionless total cross secAgnex-
Eq. (3.7) with the Jacobi polynomlaiP(1 1)(z) expanded as a pressed as an equality constraint, is included in the Lagrange
Taylor series in the CNI region, can be written as function along with the normalized dimensionless elastic
N cross section¥, written as an equality constraint, the
~ s [I+1 4 J imaginary spin average non helicity-flip amplitude
Im ¢5~E ; (23+1) T‘](l_ §[J(‘]+1)_2] 421 Im ¢, (s,t) at a fixed smallt| value, also expressed as an
(3.24 equality constraint, and the partial wave unitarity relations
written as inequality constraints. The modified single

where z=1+t/(2k?) and {=—t/k?. At small collision helicity-flip amplitude Im¢s is introduced as the objective
angles, the ratio Img is approximated as function in the Lagrange function:

A. Lagrange formalism

014015-4
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I*={J|X;>0X,=0}, B*={J|X;=0X,=0}. (4.7)

L=1M s+ al Ag— ; (23+1){a)+al+al;+ad,)

Likewise for the W’ unitarity inequality the interior and
boundary unitarity classes are

+8 ze.—g (23+ 1) (| F3]2+[F1]2+] 142

IWE{J|WJ>0,ILJ=O}, BWE{J|WJ=O,7LJ>0}

s 4.9
22+ 20507 |+ Im b — g 2 (23+1)
J 1. I* and B* unitarity classes
The interior unitarity class,
x{a}+al+aj,+al)} 1—§J(J+1) Y
IX={J|X’=aj—aj?>0Xx,=0}, 4.9
+§ (23+ 1) py(ag,+ag,— |12 =32 = 2[f3,]?) under the four constraints, is expressed as
I*={J|0<a)<1x,=0}. (4.10
+§ (23+ 1)\ (ag+ai—|f3|2—|F1]?) (4.0

Equation (4.3 with X; set to zero enables us to write the
imaginary partial wave amplituc%, in the interior unitarity

where «a, and y are equality multipliers. The inequalit
a, B Y q % p q y class, as

multipliers, A; and u;, are by definition non-negative and
{=—1/(k?). In the high energy or largd limit only the ¢
leading orderd terms need be included and E¢.1) may be ag=r1+r2( 1- —Jz). (4.11
written with 2J replacing 2+ 1. The system is optimized by 4

taking first and second derivatives with respect to the reaﬁ-he constraint @[a8<1 restricts the values of the equality

a_nd imaginary _part|al wave amphtudeb-, and & Th_'s multipliers,r, andr,, to 0<r;+r,<1 andr,>0. The num-
gives the optimized set of partial waves, at some fikedl o o partial waves is thus limited to

the CNI region;

J .. . 3.3 2 4 rl
biy=0 for all i implying f;i=ia;, (4.2 0=<J <Z 1+E . (4.12
Al g r1+r2(1—§J2/4)+7\J 3 The boundary unitarity clasB* splits into two sub-classes,
=ay= ~ , . X o
0~ %1 1+2%, B”0 andB™1:
~ BX={J|X;=a}—a}?=0X,=0
s Tatra(1—3%A)+ » BIXs=a0-2 2=0;
A ;- (4.13
and B 1={J|a0:1,)\‘]>0}
) In the boundary unitarity clasB*c the imaginary partial
3 J1-4378) (a5 wave amplitudeay is equal to zero and from Eq¢4.3 the
2 8p(1+25,) inequality multiplier ; is given by
where XJ:)\J/Zﬁ, ILJ:,U/JIZB, I’1=—a/(2,8), = X =—(r14+ro)+r £J2>0 4.1
—y/(48) and >0 for a maximum (or B<0 for a = (natra)try ' (4.14
minimum).

The BXo class begins af?=M?=4/¢(1+r,/r,), and for

J=M;+1, with 0<r;+r,<1 andr,>0, the inequality

. : . ) - multiplier X, is positive. Therefore the boundary unitarity
' J in this unitarity class, there are no contributions to the

observables from this unitarity class. The imaginary partial

wave amplitudeaf) is equal to unity in the boundary unitarity

It is natural to divide the partial waves into two classes, oneclassB*1 and from Eq.(4.3) the inequality multiplier ; is
with contributions from the interior unitarity clagsand the  given by
other with contributions from the boundary unitarity cld&s ;
For theX” unitarity inequality the interior and boundary uni- N 2

. . =(rqtry)—1-—ry,—J% 4.1
tarity classes are defined as Ay=(ry+ro) 249 (4.19

B. Unitarity classes

X'=a}-aj?=0, W=ajl,—aj,’—a},’=0. (4.6
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By definition X;=0 and the value of), in the boundary The function f,(J) is negative forJ>M;, where M,

unitarity class, is limited to =F[4/f(1+r,/r,)] and consequentlys; is positive for
suchJ values. By definitionu;=0, therefore the positive
< 4f(ryt r2)—1) 4.16 solution is chosen:;
{ ra
but with 0<r,;+r,<1 andr,>0, J? is negative, orJ is ﬁJ:E{\/l—m‘z(J)—l}. (4.26
complex and therefore the boundary unitarity cl&$ is 2
empty.

In summary, the unitarity classes‘ and BXo, are non- To summarize, both the class¢¥ andB", are non-empty:
empty and the unitarity cla®®*1 is empty: , ,
IW={J]aj,—aj;—a)>0, 0<JI<M,}, 4.2
IXE{J|O<a‘(])<1,O<J$M1}, (417) { | 11 11 21 l} ( 7)

2 2
BXo={J|al=0M,+1<J<M,} (4.18 BY={Jaj;—a3,—a3;=0, M +1=<J=M,}, (4.28

where M =F[\V4/{ (1+r,/ry)], M,=F[\{8/{] and with 7o=1, where M =F[V4lZ(1+r4/r5)],

{=—1/k%. TheF[x] function gives the greatest integer less M,=F[8/¢] and /= —t/k?. It is important to notice that

than or equal tox. with 7,=1 both interior unitarity classes’ and I, are
non-empty over the same regiohe [0,M1]. Similarly the
2. 1" and B" unitarity classes boundary unitarity classeBXo andB"Y, are non-empty over
The interior unitarity clas$"’ under the optimization be- the same regiorM;+1<J<M,. In other words there is no
comes mixing of unitarity classes, all classes being either interior

unitarity classes)=1*ul%W

W={JW=al,-al;-a}>0, u,=0}. (419 B=BYUBY, foragiven).

, Or boundary unitarity classes,

Substituting Eqs(4.4) and (4.5), with ;=0, into the inte- C. Solution of interior unitarity class
. ) 2 2 ]
rior constraintay;—aj;—aj,>0 leads to the equation; Consider the set of interior unitarity classéss|XUI".
e e = The inequality multipliersk; and;, in the interior region
fa(J)=a,+ax)"+asd"+a,3°>0 (420 are equal to zero. The imaginary partial wave amplitudes are

_ ~ therefore written as
where a;=(rq+ry) [1—(ri+ry)], a,=ry[2(r{+r5)

—1]/4—1/(6482), ag={/(25662)— 130416, a,=—{% ' ¢
(64]ﬂ)2, an(d Lc]fﬂz/ posiiivegl goluet?o%s aﬁé aIIowed.‘lThegsqu— A=ritra| 1- ZJ2> (4.29
tion can be put in the following form, where it is known that
72~1, and
0<J?<73M3. (4.2 3 ¢
aglz—( 1- —JZ) : (4.30
The boundary unitarity clasB" is written as 8B 8

BWE{J|WJ:ail_aﬁ_a£:o, w,=0}. (422 k=0, 1, 11, 22, with OsJ<M,;, where

. M1=F[V4/{(1+r,/r,)] is the maximumJ in the interior
The constraintaj,—aj,—ay;=0 can be written as a qua- Unitarity class. In this case the contributions to the observ-

dratic equation: ables and to the objective function &g solely come from
o the interior unitarity clasd; Al=A,, Im¢'. =Im¢,, 3.,
pi+uytf(3)=0 (423 =3, and ImpL=Imds. The normalized dimensionless total
Cross section upon reconstruction is
where
-~ o~ ~ ~ My
fo(d)=a;+a,J%+ad"+a,d°% (4.24 Ag=8> J|r,+r1, 1—§J2”. (4.30)
J=0

The solutions are
The Euler-Maclaurin expansiof21] for large J is used to

~ 1 ; ; ; ; ;
e+ 1—af( =1 42 write the n(_)rmallzed dlmfensmnless total cross sectigras
m=31 2(9) =1} @25 o integration oved, leading to
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M2 -
Ao~ {B(ri+12)—ry{M3}. (4.32 lm%wfze.— A(ry+15)°M{
In a similar manner the imaginary spin average helicity non- 25 12
flip amplitude, the dimensionless normalized elastic cross —(ry 1)1 Mi+ —— 12 M3
section and the modified imaginary single-flip amplitude are
also reconstructed: M2 1o §M 2, & 2 M4 2 4.3
4 6 128 (4.39
2 g 2 2§2 4 . T
Im¢, ~M] 2(r1+r2)—(2r2+rl)ZMl+ WM The equality multipliersq, r, and 8 are found to be
433 AU(1-31mé., IA)) w36
ri= , .
202 Y 36(1-2Im. IAg)?
S e A(r+1)2M3—(r+1)rdMf+ —M$
12 A2§
0
I’2= > (437)
M ; g 72(1-21mé. IA,)
1 2, 4
1- M1+ —M7y, 4.3
64,82[ 61" 128 1] “3 and
|
éf 2 . 1/2
M ( 1- EM + 1_28M ]
B= 272 72 (4.38
8{2 (4(r1+r2) M2—(ry+ 1)1 M7+ iz Ml)}
|
where /= —t/k?. The equality multiplier, with solutions  The equality multipliers in the low limit become
for ry andr,, is expressed as
Ay (1+3gt A
_9(Ao—2Im¢)1-2Im ¢ /As+36 Imqﬁ/Ag. = el 2 g (4.43
2A0ENT2 o= 2A%¢1(1—2 1M ¢ 1A,)
(439 and
The optimized modified imaginary single-flip amplitude, ex- \/Egg k? | (2+9gu8) ]2
ressed as a function of, r, and 3, becomes = 1+gt(2+9gt :
P L1z andp VT2 o~ 2A%(gk)
3 (Ag—21md.) JI2—2(1—Im ¢, IAg) Im - (4.44
m =
° 4A0d V363 —A5L/(1—21m ¢, IA,) The upper bound on [Imrg|, where |Imrg
(440 =m|Im$s|/(k Im ¢.), can be expressed analytically:
ith
" | ﬁm kg\ /183 Ag h 4.4
< [
12 Im ¢+ | mr5| AO el ngzx (t) ( . 5)
Jna=—|1—2 : (4.4
4 Ao
where
For low momentum transfers the imaginary spin average "
non-flip amplitude Imp ., expanded to order is written as h(t)= [1+9gt(2+9gt/8)] (4.46
Im ¢, ~(Ay/2)(1+gt). Under this approximation the maxi- - (1+gt) ' '

mum J inside the interior unitarity class is independent,of
and in the limitt—0, the number of partial waves is finite The variableh(t) has the value one d@=0 and does not

where vary much over the CNI region. Writingo=k?c /7 and
3 o=k?0¢ /1, enables the bound dimrs| to be expressed
Jmax= V12gk. (442 as
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36mgoy 1/2 TABLE Il.  |Imrg|™ inside the interior region at
|Imr5|<m\/—( Te 1) X h(t). (4.47 =-0.01 (GeVk)?.
U'tot
\/§ (Ge\/) i ) 18 Jmax ||m r5|
D. Results 19.4 ~125 149 85 81 0.97
The value of the bound ditmrs| is given in Tables | and  23.5 —-1.05 1.27 111 98 0.91
[l with the values of the equality multipliers. The most no- 30.7 —1.00 1.22 150 131 0.92
ticeable feature of the bound is its size at low momentumi4.7 -0.92 1.14 204 195 1.05
transfers, having a value of 0.89 afs=52.8 GeV, 528 095 117 276 231 0.89
t=—0.001 (GeVt)2. The partial wave series terminates at 62.5 -0.94 1.18 337 276 0.86

J=231 which is the upped limit, M4, for the interior uni-
tarity classl. When considering both the interior and bound-
ary unitarity classes, values df>M are permitted.
The bound orjimr;|, under the approximation
Utzot
3270y’

g~ (4.48

with momentum transfers in the CNI region is expressed af

(4.49

[Im r5|sm\/g>< h(t)

and in the zero momentum transfer lintit;> 0, the bound on
|Imrg| is finite and can be expressed analytically as

|Imr5|<m\ﬁ.
8

This approximation generates a “stricter” bound [dmrg|.

(4.50

tribution to|Imrs|, from the boundary unitarity class, can be
selected without violating any of the constraints and this con-
tribution can be made arbitrarily small.

Consider the case witl25=0.1%,, 3,=0.9%,, at
Js=52.8 GeV andt=—0.001 (GeVt)2. The maximum
contribution to |Imrg| is 34.7 where|Imry|<0.5 and
Imrg|<34.2. The case wittS5=0.015,, 34,=0.98,
leads to|/Imrg|<11.6 whergimrg|<0.8 and|Imr£|<10.6.
The bound onimrg| falls when the fraction o, in the
boundary unitarity class is reduced. The partial wave ampli-
tudes in this region also become smaller in amplitude and
contribute less to the bound ¢im rg|. The fraction ofS ¢ in
the boundary unitarity class can be further reduced until the
contribution from this class tbimr| is negligible in com-
parison with the contribution from the interior unitarity class.
In this limit the bound is, as before,

The results are given in Table III. 36 12
go
|Imr5|<m\/—< —1| xh(t) (4.53
E. Solution of interior and boundary classes ‘Ttot
Consider the union of the classeslUB o 5
=Wy I*uBYUBX. The boundary unitarity classes are or, under the approximatiog~ oo/ (327 oe),
BX={J|al,—al—ak=0, M,+1<J<M,} 9
(4.5 [Imrg|<m gx h(t) (4.59
and
where
BWo={J|aj=0, M;+1<J<M,} (4.52
1/2
where  M,=F[VAZ(1+13/r})], M,=F[\8I] and h(t)= LT 9U2+9/8gD)] (455
[=—1/k?. The contribution to|Imrs| from the boundary (1+gt)
unitarity classB can range from 0% to 100% and the con-
TABLE IIl. [Imrg|™* with an approximation fog, over the
TABLE I. |Imrg|™* inside the interior region at CNI region.
=-0.001 (GeVt)2.
Js t=0 t=-0.001 t=-0.01
Js (GeV) r r B Jmax  |Imrg| (GeV) (GeVic)? (GeVic)? (GeVic)?
19.4 —12.54 12.77 90 81 0.97 194 0.803 0.805 0.825
23.5 —12.56 12.79 117 98 0.92 235 0.805 0.808 0.827
30.7 —12.02 12.24 158 131 0.92 30.7 0.819 0.821 0.842
44.7 —11.22 11.44 217 195 1.05 44.7 0.839 0.841 0.864
52.8 —11.53 11.76 293 231 0.89 52.8 0.841 0.843 0.866
62.5 —11.56 11.79 358 276 0.86 62.5 0.846 0.848 0.871
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The bound is identical to the bound when only the interior=42.906 mb{23] and o= 7.407 mb[23]. The value ofAg

unitarity class is considered. A finite number of partial wavess known but we must calculat®o,, and Ao

at low momentum transfer ensures a finite value for the sum A parametrization for the total and elastic cross section in
elastic pp collisions[23] allows a value for the cross sec-

1— EJZ) (4.56 tions to be found and a value of their uncertainties to be

8 calculated. Each cross section is parametrized as

Im ‘(}5=; J?a),

and consequently a finite upper bound|tmr 3| of less than o(p)=A+Bp"+Clog?(p)+D log(p) (5.2
unity.
where o is in mb andp is the laboratory momentum in
V. ERROR ON BOUND GeV/c. The uncertainty inr is given by

The upper bound on the imaginary single helicity-flip am-
plitude, modified by a kinematical factor at zero momentum Ao=
transfer, is given by

1/2
36 +
[Im r5|<m\[§( S"’e'—l) . (5.1)

Tot
) o The fitted parameterd, B, n, C andD are given in Table IV.

There are errors on all the experimental quantities in Eq. Using Eq. (5.9, and the values of the fitted parameters,
(5.1 and consequently the upper bound [dmrs| has an  the uncertaintied o and A o can be written as
uncertainty. The experimental quantitigso,; and o have
a nominal value plus an uncertainty:-Ag, o+ Ao and A= +/0.01+ 2.5x 10 Slog*(p) + 2.5% 10 3log?(p)
oo Adgg. What are the values ohg, Aoy, and Ao g? (5.4)
Consider the value of Im at s=52.8 GeV:
[Imrg|<0.891 with g=6.435-0.14 GeV? [22], oy and

&0)2 2 190)2 2 (&0')2 2

aO_)ZA ) Jdo 2A ) 1/2
—C) (AC?*+| 5| (AD)?} . (5.3

Aoe=+0.64+2.8P 2%2+12.819 ***+4.41x 10 *log*(p)+0.0676 logd(p). (5.5

A laboratory beam momentum @f=k./s/m=1485 GeVt at \'s=52.8 GeV givesA o,;=0.463 mb, or 1.08% ofr,y, and
Agg=2.345 mb, or 31.66% ofr.;. The uncertainty in Img is

dlmrg) 2 , . [dImrs)? , . [dImrs
almrs= \/< a9 ) (49) +( I o1 (A1) dogy

2
) (AO’e|)2. (5.6

At s=52.8 GeV, g=6.435-0.14 GeV 2, o,,=42.906 at zero momentum transfer. The uncertaiatymrs is sim-
+0.463 mb andog=7.407-2.345 mb. The uncertainty ply
Almrs=0.049 and the upper bound dimrg| is 0.891
+0.049. The approximation

, Al dlmrg\? Aq)? o
ok . mrs=\/| g~ | (49" (5.9
g 3270y '
can be used to write the bound dmrs| as At \/s=52.8 GeV,g=6.435+0.14 GeV 2, |Imr5|<0.846
and A Imr;=0.009 or|Imrs|<0.846+0.009. The error on
g9 o being large has relatively little effect on the uncertainty
Imr sm\/: ) el
[Imrs| 8 68 of the bound.
TABLE |V. Fitted parameters fopp scattering.
Reaction A B n C D
Tiot 48.0+0.1 0.522:0.005 —4.51+0.05
Tl 11.9+0.8 26.9£1.7 —1.21+0.11 0.16%0.021 —1.85+0.26
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VI. CONCLUSION 0.84 on the helicity flip amplitude ratio is less than

(up,—1)/2=0.896 at the high energies considered, the coef-
P

ficient of (t./t) in the expression for the asymmetry is con-
gion has been obtained using a Lagrangian variationa?trained to be positive. The analyzing power is therefore ex-
method. As equality constraints, the optimization used thél:1 ?g?gretr?cg?egirc?r?t('arrh:)zar;] tzheercz)(;‘ﬁrr] da;[/v(l)eualljthgvgatrc} t?(: itr:l-e
total cross sectiowry, the elastic cross sectian,, and the roved 10 —gl)/4.0=0 0?148 to limit the polarization error
diffraction slope while partial wave unitarity involved a P P : P

0 )
number of inequality constraints. The bound varies s;moothl)}0 the recommended 5% required for accurate measurement

as the momentum transfer varialile:0 and, in fact, limits of the contribution of gluons to the spin of the proton, It
T . . does, however, encourage the use of proton proton elastic
the augmented helicity flip to nonflip amplitude ration r 5|

4 ' " : collisions in the CNI region as a relative polarimeter. Cali-
to values less than unity net0. With addm_onal informa- pration of such a polarimeter would be immediate when a
tion, such as that provided by a double-spin asymmetry, an hod of d ining Ime f he absol ) |
improved bound could possibly be obtained although it.met. od of determining Ims from the absolute spin polar-

ization of a high energy proton becomes available.

would be necessary to have accurate knowledge of any new
observables employed as constraints in the Lagrange func-
tion. Use of a double-spin asymmetry, however, requires a
double summation over angular momentum that does not
easily yield to analytical or computational approaches. Con- The authors are grateful to Enterprise Ireland for partial

straints used in the bound developed here involve the muckupport under Scientific Research Project SC/96/778 and In-

A bound on the imaginary part of the single helicity-flip
amplitude for proton proton elastic scattering in the CNI re
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