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Uncertainties of predictions from parton distribution functions. Il. The Hessian method
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We develop a general method to quantify the uncertainties of parton distribution functions and their physical
predictions, with emphasis on incorporating all relevant experimental constraints. The method uses the Hessian
formalism to study an effective chi-squared function that quantifies the fit between theory and experiment. Key
ingredients are a recently developed iterative procedure to calculate the Hessian matrix in the difficult global
analysis environment, and the use of parameters defined as components along appropriately normalized eigen-
vectors. The result is a set of 2D eigenvector basis parton distributidmered~ 16 is the number of parton
parametensfrom which the uncertainty on any physical quantity due to the uncertainty in parton distributions
can be calculated. We illustrate the method by applying it to calculate uncertainties of gluon and quark
distribution functionsW boson rapidity distributions, and the correlation betw®¥¢and Z production cross
sections.
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[. INTRODUCTION tainties of PDF's in a systematic manner have been made
recently[9-13].

The partonic structure of hadrons plays a fundamental The task is difficult because of the diverse sources of
role in elementary particle physics. Interpreting experimentaéxperimental and theoretical uncertainty in the global QCD
data according to the standard mod8M), precision mea- analysis. In principle, the natural framework for studying
surement of SM parameters, and searches for signals aeincertainties is that of the likelihood functi¢f©2,14,13. If
physics beyond the SM, all rely on the parton picture ofall experimental measurements were available in the form of
hadronic beam particles that follows from the factorizationmutually compatible probability functions for candidate
theorem of quantum chromodynami¢®@CD). The parton theory models, then the combined likelihood function would
distribution functions (PDF's) are nonperturbative—and Pprovide the probability distribution for the possible PDF's
hence at present uncalculable—functions of momentum fradhat enter the theory. From this, all physical predictions and
tion x at a low-momentum transfer scal®. They are deter- their uncertainties would follow. Unfortunately, such ideal
mined phenomenologically by a global analysis of experi-likelinood functions are rarely available from real experi-
mental data from a wide range of hard-scattering processe@?ents- To begin with, most published data sets used in global

using perturbative QCD to calculate the hard scattering angn@lysis provide only effective errors in uncorrelated form,
to determine the dependence of the PDF's @nby the along with a single overall normalization uncertainty. Sec-

renormalization-group based evolution equations. onedri)t/é EUbQZ??g f::rgtrasng:r dsgtrgfst\.’gll't:ttzbl(';he%hg(fe”'
Considerable progress has been made in several parall | ree gfpfree domlma deviate sli r|1ificantl ,frdr%xl 0. mak-
efforts to improve our knowledge of the PDH'$-3], but 9 » may 9 y -

manv oroblems remain . In th nventional ] ing the data set quite “improbable.” In addition, when the
any probiems remain open. € conventiona %pp 0aChy experiments that are individually amenable to likelihood
specific PDF sets are constructed to represent the “best es

y . . . _ . ) t<‘:\'nalysis are examined together, they appear to demand mu-
maf[e_under various input assumptions, including selectlve[u(,i"y incompatible PDF parameters. A related problem is
variations of some of the parametgrs-6]. From these re- ¢ the theoretical errors are surely highly correlated and by
sults, however, it is impossible to reliably assess the uncefefinition poorly known. All these facts of life make the
tainties of the PDF's or, more importantly, of the physicsidealistic approach impractical for a real-world global QCD
predictions based on PDF’s. The need to quantify those urgnalysis.

certainties for precision SM studies and new physics The problems that arise in combining a large number of
searches in the next generation of collider experiments hagiverse experimental and theoretical inputs with uncertain or
stimulated much interest in developing new approaches tinconsistent errors are similar to the problems routinely
this problem[7,8]. Several attempts to quantify the uncer- faced in analyzing systematic errors within experiments, and
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in averaging data from measurements that are marginally 1l. GLOBAL QCD ANALYSIS AND EFFECTIVE CHI
compatible[16]. Imperfections of data sets in the form of SQUARED
unknown systematic errors or unusual fluctuations—or

, we describe the main features of the global QCD

we Imusthad(ajlpt and_gxgalland the Stagfticil tools v(\j/e Use tonalysis, and explain how we quantify its uncertainties
analyze the data, guided by reasonable physics judgementy, o0 the behavior oo

In this paper we develop a systematic procedure to study
the uncertainties of PDF's and their physics predictions,
while incorporating all the experimental constraints used in A. Experimental and theoretical inputs

the pre\éious .CTEQ analysis]. An effective ){2 func.ti('),n, We use the same experimental input as the CTEQ5 analy-
called xgopq, 1S Used not only to extract the “best fit,” but 111 15 data sets on neutral-current and charged-current
also to explore the neighborhood of the global minimum ingyeeninelastic scatterir@!S), Drell-Yan lepton pair produc-
order to quantify the uncertainties, as is done in the classigyn torward backward lepton asymmetry from produc-
error matrix approach. Two key ingredients make this pOStjon and highp; inclusive jets, as listed in Table | of Ap-
sible: (i) a recently established iterative proced{t] that  enix A. The total number of data points is 1295, after cuts
yields a reliable calculation of the Hessian matrix in thesuch ax>2 GeV andW>4 GeV in DIS designed to re-
complex global analysis environment, afiid the use of ap-  ,c6 the influence of power-law suppressed corrections and

propriately normalized eigenvectors to greatly improve theyer sources of theoretical error. The experimental precision
accuracy and utility of the analysis.

) . . ._and the information available on systematic errors vary
The Hessian approach is based on a quadratic apprommgﬂde'y among the experiments, which presents difficulties
tion to x5i,na iN the neighborhood of the minimum that de- for the effort to quantify the uncertainties of the results.
fines the best fit. It yields a set of PDF’s associated with the The theory input is next-to-leading-ord@iLO) perturba-
eigenvectors of the Hessian, which characterize the PDF paive QCD. The theory has systematic uncertainties due to
rameter space in the neighborhood of the global minimum iruncalculated higher-order QCD corrections, including pos-
a process-independentay. In a companion paper, referred sible resummation effects near kinematic boundaries, power-
to here as “the preceding papelr18], we present a comple- suppressed corrections, and nuclear effects in neutrino data
mentary process-dependent method that stu)glgq%;ga, as a on heavy targets. These uncertainties—even more than the

function of whatever specific physical variable is of interest.€xperimental ones—are difficult to quantify.
That approach is based on the Lagrange multipilevl) The theory contains free parametdes}={ai, ... aq}
method[17], which does not require a quadratic approxima_defined be]ow t_h.at characterize the nonperturbati\_/e input to
tion to Xélobal’ and hence is more robust; but, being focusedhe analysis. Fitting theo,ry to experiment determines these
on a single variabléor a few variables in a generalized for- 1ai} and f[hereby the PDF's. The uncertainty of the resul_t due
mulation it does not provide complete information about theto exp_erlmental and th_eoretlcal Errors 1S assessed In our
neighborhood of the minimum. We use the LM method toanalysus. by an assumption on the permissible rang)ot
verify the reliability of the Hessian calculations, as discussetjOr the fit, which is discussed in Sec. Il D.
in Sec. V. Further tests of the quadratic approximation are o
described in Appendix B. B. Parametrization of PDF's

The outline of the paper is as follows. In Sec. Il we sum-  The PDF’s are specified in a parametrized form at a fixed
marize the global analysis that underlies the study, and defingw-energy scaleQ,, which we choose to be 1 GeV. The
the functionxéoba, that plays the leading role. In Sec. Ill we PDF'’s at all higheiQ are determined from these by the NLO
explore the quality of fit in the neighborhood of the mini- perturbative QCD evolution equations. The functional forms
mum. We derive the eigenvector basis sets, and show howe use are
they can be used to calculate the uncertainty on any quantity
that depends on the parton distributions. In Sec. IV we apply f(X,Qo) = AgX"1(1—x)"2(1+ Agx*4) 1)
the formalism to derive uncertainties of the PDF parameters

and of the PDF's themselves. In Sec. V we illustrate th&yt independent parameters for parton flavor combinations
method further by finding the uncertainties on predictions for — — — —

the rapidity distribution of/ production, and the correlation Yv=Y_"Y:_ d,=d-d, g, and u_+d. we assumes=s
betweenW and Z production cross sections. We summarize = 0-2(u+d) atQ,. A somewhat different parametrization for
our results in Sec. VI. Two appendixes provide details on théhe d/u ratio is adopted to better fit the current data:
estimate of overall tolerance for the effecti)(éobaI function,
and on the validity of the quadratic approximation inherent — —
in the Hessian method. Two further appendixes supply ex- d(X’QO)/u(X’QO):BOXBl(l_X)BH(1+B3X)(1_X)B4'2
plicit tables of the coefficients that define the best fit and the )
eigenvector basis sets. The mathematical methods used here

have been described in detail [ib7]. Some preliminary re- The specific functional forms are not crucial, as long as the
sults have also appeared|[in,8]. parametrization is flexible enough to include the behavior of
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the true—but unknown—PDF’s at the level of accuracy to The generic form for the individual contributions in Eq.

which they can currently be determined. The parametrization3) is

should also provide additional flexibility to model the de-

grees of freedom that remain indeterminate. On the other D= To 2

hand, too much flexibility in the parametrization leaves some Xﬁ=2 ( ) , (4)

parameters poorly determined at the minimum &t To

avoid that problem, some parameters in the present study

were frozen at particular values. whereT,,, D,,, ando,, are the theory value, data value,
The number of free parameters has increased over th@nd uncertainty for data poihbof data setor “experiment”)

years, as the accuracy and diversity of the global data set h&ls In practice, Eq.(4) is generalized to include correlated

gradually improved. A useful feature of the Hessian approacf@rrors such as overall normalization factors, or even the full

is the feedback it provides to aid in refining the parametriza£Xperimental error correlation matrix if it is availalies].

tion, as we discuss in Sec. IV A. The current analysis uses a The value ofxgny depends on the PDF set, which we

total of d=16 independent parameters, referred to generidenote byS We stress thakgons(S) is an “effective x*,”

cally as{a;}. Their best-fit values, together with the fixed Whose purpose is to measure how well the data are fit by the

ones, are listed in Table Il of Appendix CSome of the fit ~ theory when the PDF's are defined by the parameter set

parameters; are defined by simple functions of their related {2i(S)}. We usexgona(S) to study how the quality of fit

PDF shape parametefs or B, , as indicated in the table, to V&rnes with the PDF parameters, but we do not asaigmi-

keep their relevant magnitudes in a similar range, or to eng)ri statistical significance to specific values of it—e.g., in the

force positivity of the input PDF’s, etcThe set of fit param- manner that would be appropriate to an ideal chi-squared

eters{a;} could also include parameters associated with Cor_dlstrlbutlon—smce th_e e_xperlmentgl and theore_t|cal Inputs
. are often far from being ideal, as discussed earlier.

related experimental errors, such as an unknown

normalization error that is common to all of the data points

in a particular experiment; however, such parameters were D. Global minimum and its neighborhood

kgpt fixed fgr _simpli_city in this initial study. The QCD cou- Having specified the effectivg? function, we find the
pling was similarly fixed atvg(Mz)=0.118. parameter set that minimizes it to obtain a “best estimate” of
the true PDF’s. This PDF set is denoted &' The param-
eter values that characteri®g are listed in Table 11l of Ap-
pendix C.

Our analysis is based on an effective global chi-squared To study the uncertainties, we must explore the variation
function that measures the quality of the fit between theonf Xgiobal in the neighborhood of its minimum, rather than
and experiment: focusing only onS, as has been done in the past. Moving the
parameters away from the minimum increa§€'§ba| by an
amountAXg|oba|. It is natural to define the relevant neighbor-
hood of the global minimum as

C. Effective chi-squared function

Xélobalz ; WnXﬁ , 3

AXGiobar=T?, ®)

wheren labels the 15 different data sets.

The weight factorsv, in Eq. (3), with default value 1, are where T is a tolerance parameterThe Hessian formalism
a generalization of the selection process that must begin areveloped in Sec. Ill provides a reliable and efficient method
global analysis, where one decides which data sets to includef calculating the variation of all predictions of PDF's in this
(w=1) or exclude w=0). For instance, we include neu- neighborhood, as long asis within the range where a qua-
trino DIS data(because it contains crucial constraints on thedratic expansion ofgepe. in terms of the PDF parameters,
PDF’s, although it requires model-dependent nuclear targds adequate.
correction$ but we exclude direct photon dagahich would In order to quantify the uncertainties of physical predic-
help to constrain the gluon distribution, but suffers from deli-tions that depend on PDF's, one must choose the tolerance
cate sensitivity tck, effects from multiple soft gluon emis- Parametefl to correspond to the region of “acceptable fits.”
sion). The w, can be used to emphasize particular experi-Broadly speaking, the order of magnitudeTofor our choice
ments that provide unique physical information, or to de-Of Xopa iS already suggested by self-consistency consider-
emphasize experiments when there are reasons to suspé@gons: Our fundamental assumption—that the 15 data sets
unquantified theoretical or experimental systematic errorgised in the global analysis are individuatigceptableand
(e.g., in comparison to similar experimentSubjectivity =~ Mmutually compatible in spite of departures from ideal statis-
such as this choice of weights is not covered by Gaussiatical expectations exhibited by some of the individual data
statistics, but is a part of the more general Bayesian ap-
proach, and is, in spirit, a familiar aspect of estimating sys-
tematic errors within an experiment, or in averaging experi- ‘Itis very similar to the CTEQ5M1 sét.], with minor differences
mental results that are marginally consistent. arising from the improved parametrizati¢2) for d/u.
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2-dim (i,j) rendition of d-dim (~16) PDF parameter space

2
contours of constant global
u,: eigenvector in the I-direction ‘[

~l

p(i): point of largest a; with tolerance T

FIG. 1. lllustration of the basic ideas of our
implementation of the Hessian method. An itera-
tive procedurd17] diagonalizes the Hessian ma-
trix and rescales the eigenvectors to adapt the
step sizes to their natural scale. The solid points
represent the resulting eigenvector basis PDF's
described in Sec. Il C. Poirg(i) is explained in
(b) Sec. IVA.

Original parameter basis Orthonormal eigenvector basis

Sq: global minimum

diagonalization and

rescaling by
the iterative method

» Hessian eigenvector basis sets

sets, as well as signs of incompatibility between some of The general idea of our approach is illustrated conceptu-
them if the errors are interpreted according to strict statisticadlly in Fig. 1. Every PDF se§ corresponds to a point in the
rules [12]—must, in this effectivey? approach, imply a d-dimensional PDF parameter space. It can be specified by
value of T substantially larger than that of ideal expectations.the original parton shape parametéas(S)} defined in Sec.
More quantitatively, estimates df have been carried out in 1l B, as illustrated in Fig. (a); or by the eigenvector basis
the preceding papef18], based on the comparison of coordinates{z(S)}, which specify the components &
A)(Sloba| with detailed studies of experimental constraints onalong the eigenvector basis PDF’s that will be introduced in
specific physical quantities. The estimatesTofvill be dis-  Sec. Il C, as illustrated in Fig.(h). The solid points in both
cussed more extensively in Sec. V, where applications ar&igs. 1a) and 1b) represent the basis PDF sets.

presented, and in Appendix A. For the development of the

formalism in the next section, it suffices to know tfgtthe A. Quadratic approximation and the Hessian matrix

order of magnitude of these estimates is , , ,
The standard error matrix approach begins with a Taylor

T~10 to 15, (6) §eries expansiop Qté,oba(S) ar'ound its minimunS,, Ifeep— .
ing only the leading terms. This produces a quadratic form in

and (i) the master formulas, given in Sec. Il D, imply that the displacements from the minimum:

all uncertainties are proportional Iy hence the results are

fully scalable, according to the best available estimat&.of

d d
AX*=x*~x6=3 2, 2 Hy(a-ad(a-ap, (@

N| =

IIl. THE HESSIAN FORMALISM . ..
where x5=x*(Sp) is the value at the minimum{af}

The most efficient approach to studying uncertainties in a={a;(Sy)} is its location, and{a;}={a;(S)}. We have
global analysis of data is through a quadratic expansion ofiropped the subscript “global” o? for simplicity. We also
theXz function about its gIObaI mlnlmuﬁ]ThlS is the well- suppress the PDF argume{& in X2 and{ai} here and else-
known error matrix or Hessian method. Although the methodyhere when it is not needed to make the discussion clear.

is standard, its application to PDF analysis has, so far, been The Hessian matriki;; has a complete set of orthonormal
hindered by technical problems created by the complexity ogigenvectors;, defined by

the theoretical and experimental inputs. Those technical
problems have recently been overcofi&]. d

The Hessian matrix is the matrix of second derivatives of > Hijvjk= ik » (8)
x? at the minimum. In our implementation, the eigenvectors =1
of the Hessian matrix play a central role. They are used both
for an accurate evaluation of the Hessian itself, via the itera- d
tive method off17], and to produce an eigenvector basis set Z VilVik= ik » ©)
of PDF's from which uncertainties of all physical observ-
ables can be calculated. The basis PDF’s provide an opt
mized representation of the parameter space in the neighb
hood of the minimumy?.

l/_v_here{ek} are the eigenvalues angj, is the unit matrix.
0IZr)ispIacements from the minimum are conveniently ex-
pressed in terms of the eigenvectors by

o

2The Lagrange multiplier methdd 7,18 is a complementary ap- a; —a%= z ViSKZ s (10)
proach that avoids the quadratic approximation. =
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L I I I The distribution of eigenvalues, ordered from largest to
@ smallest, is shown in Fig. 2. Interestingly, the distribution is
108 — — approximately linear in log. The eigenvalues span an enor-
" ~d =13 mous range, which is understandable because the large glo-
L %, od = 16 - bal data set includes powerful constraints—particularly on
o+ combinations of parameters that control the quark distribu-
"o +d =18 tions at moderate—Ieading to steep directions; while free
o parameters have purposely been added to @gsnd(2) to
the point where some of them are at the edge of being un-
constrained by the data, leading to shallow directions.
Figure 2 also shows how the range of eigenvalues ex-
10 + — pands or contracts if the number of adjustable parameters is
o . changed; the 16-parameter fit is the standard one used in
« O, most of this paper; the 18-parameter fit is defined by allow-
o’ ing Ai”;ﬁA‘l’“ andA%+#0 with Aj=6; the 13-parameter fit is
o0 b v b e defined byAZ”:Ajvzl andAJ""=0. The range spanned
S 10 15 by the eigenvalues increases with the dimensioof the
Eigenvalue number i parameter spadeoughly as logé, /ez)d %4
FIG. 2. Distribution of eigenvalues of the Hessian matrix for fits The large (18:1) frange spanned bY the eigenvalues
usingd=13, 16(standard and 18 free PDF parameters. makg; the s_maller ngenvalues an_d their eigenvectors very
sensitive to fine details of the Hessian matrix, making it dif-
where scale factors, are introduced to normalize the new ficult to computeH;; with sufficient accuracy. This technical
parameterg, such that problem hindered the use of Hessian or error matrix methods
in global QCD analysis in the past. The problem has been

Eigenvalue g,

d tamed by an iterative method introduced Y], which com-
Ax2=2, z. (11)  putes the eigenvalues and eigenvectors by successive ap-
k=1 proximations that converge even in the presence of numeri-
cal noise and nonquadratic contributions fG.
With this normalization, the relevant neighborhd&g of the The Hessian method relies on the quadratic approxima-
global minimum corresponds to the interior of a hypersphergion (7) to the effectivey? function. We have extensively
of radiusT: tested this approximation in the neighborhood of interest by

comparing it with the exacegéobm. The results are satisfac-
tory, as shown in Appendix B, which also explains how the
approximation is improved by adjusting the scale factyrs
for the shallow directions.

d
kgl Z2<T2, (12

The scale factorsy, are approximately equal tQ2/e,, as is
explained in Appendix B. C. PDF eigenvector basis setS§;”

The transformatiori10) is illustrated conceptually in Fig.  Thekth eigenvector of the Hessian matrix has component
1, wherefk, |} label two of the eigenvector directions. One of ;, along theith direction in the original parameter space,
the eigenvectors; is shown both in the original parameter according to Eq(8). Thusv;, is the orthogonal matrix that

basis and in the normalized eigenvector basis. transforms between the original parameter basis and the ei-
genvector basis. For our application, it is more convenient to
B. Eigenvalues of the Hessian matrix work with coordinateqz} that are normalized by the scale

pigctors{s,} of Eq. (10), rather than the “raw” coordinates of

The square of the distance in parameter space from t < . .
the the eigenvector basis. Thus we use the matrix

minimum of x? is
d d Mik=vikSk (14)
L 0 2_ 2
;1 (ai—ay) k; (SicZ) (13 rather tharv;, itself. M, defines the transformation between
the two descriptions that are depicted conceptually in Fig. 1:

by Egs.(9), (10). Becauses,~\/2/e;, an eigenvector with
large eigenvalues, therefore, corresponds to a “steep di-
rection” in {a;} space, i.e., a direction in whick? rises
rapidly, making the parameters tightly constrained by the
data. The opposite is an eigenvector with sn&ll which
corresponds to a “shallow direction,” for which the criterion  3The iterative algorithm is implemented as an extension to the
Ax?<T? permits considerable motion—as is the casevfor widely used CERNLIB programinuit [30]. The code is available
illustrated in Fig. 1. at http://www.pa.msu.edw/pumplin/iterate/

d
ai—aiozkzl Mikzk. (15)
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It contains information about the physics in the global fit, D. Master equations for calculating uncertainties using the
together with information related to the choice of parametri- eigenvector basis set§S;"}

zation, and is a good object to study for insight into how the | o X(S) be any variable that depends on the PDF's. It

parametrization might be improved, as we discuss in SeGg pe a physical quantity such as ¥eproduction cross
IVA. _section; or a particular PDF such as the gluon distribution at

_ The eigenvectors provide an qptimized orthor_10rma| bas'%pecificx andQ values; or even one of the PDF parameters
n t_he .PDF parameter space, Wh'Ch I_eads to "%S'mp'e pararré—i . All of these cases will be used as examples in Secs. IV
etrization of the parton distributions in the neighborhood Ofand vV

the global minimunS,. In the remainder of this section, we The best-fit estimate foX is X°=X(S). To find the un-

Shg\’\: _hOW to construct ;hefs,(Tllgehvector 'baS|sPDFr’]s certainty, it is only necessary to evaluatéor each of the 2
“E]S ’ El’ T ’dé’ and (;n the Io IOWIngh section, we s ]?W sets{S"}. The gradient o in the z representation can then
ow they can be used to calculate the uncertainty of any,, c5icylated, using a linear approximation that is essential

chosen variablX(s). . , _ to the Hessian method, by
The eigenvector basisetsS;~ are defined by displace-

ments of a standard magnitutd&up” or “down” along each axX  X(S§H)—X(Sy)
of the d eigenvector directions. Their coordinates in the 9 2t (19
basis are thus k

wheret is the scale used to defifé&} in Eq. (16). It is

(S ) =%ty . (16)  useful to define
D(X)=X(S¢)—X(Sy), 20
More explicitly, S is defined by ¢, ...z X =X(S) = XS 20
=(t,0,...,0),etc. We make displacements in both direc- d 112
tions along each eigenvector to improve accuracy; which di- D(X)= 2 [D(X)]2 (21)
rection is called “up” is totally arbitrary. As a practical mat- k=1 '

ter, we chooset=5 for the displacement distance. This

choice improves the accuracy of the quadratic approximation D (X)=Dy(X)/D(X), (22)

by working with displacements that have about the same size

as those needed in applicatichs. . . . A -

The{a;} parameters that specify the eigenvector basis Setlsﬁot:wheaaki'g)\(/)e (I:Stoa: \I/ne ct::]?";{tlgi:’:zgt%rr? dient direction aB(X)

S’ are given by The gradient direction is the direction in whichvaries

most rapidly, so the largest variationsXhpermitted by Eq.
ai(Si)—aiO= *tM,, (17 (12) are obtained by displacement from the global minimum

Sy in the gradient direction by a distanceT. Hence

by Egs.(15), (16). Hence d
Ax=k21 (Tlﬁk)a—zk. (23)
a(S)—a(S )=2tM;,. (18
From this, using Eq9.19)—(22), we obtain thenaster equa-
Interpreted as a difference equation, this shows directly thaion for calculating uncertainties,
the elementM;, of the transformation matrix is equal to the
gradient of paramete; along the direction otz .

Basis PDF sets along two of the eigenvector directions are
illustrated conceptually in Figs.(d and Xb) as solid points
displaced from the global minimum s8¢. The coefficients This equation is applied to obtain numerical results in Secs.
that specify all of the set§;” are listed in Table IV of Ap- IV and V.
pendix D. For applications, it is often important to also construct the

PDF setsS; and S; that achieve the extreme valués
=X%+ AX. Their z coordinates are

T
AX=5:D(X). (24)

“The value chosen for is somewhat smaller than the typical

given in Eq.(6) because in applications, the component of displace- Zk(si) =+ Tﬁk(x). (25)
ment along a given eigenvector direction will generally be smaller
than the total displacement. which follows from the derivation of E¢24). Their physical

STechnically, we .calcglate the orthogo_nal matrj}g using dis- parameterga;} then follow from Egs(15) and (18):
placements that giva y“=5, where the iterative procedufé7]

converges well. The eigenvectors are then scaled up by an amount
that is adjusted to maka& y?=25 exactly for eact, to improve ai(Si)—a-O:
the quadratic approximation. '

||+
—

d
gl Di(X)[ai(S!)—ai(Sc)]. (26)

N

t
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In practice, we calculate the parameters &jr and S; by Table IlI also lists the components of the displacement
applying Eq.(26) directly to the parton shape parametersvectorsz(a;") of Eq.(25) which have been renormalized to
InA¥, Aj, ... listed in Table IV, except that the normal- Sz2=1. These reveal which features of the PDF’s are gov-

ization factorsAg”, Agv, andAJ are computed from the mo- erned_ most stro.ngly by ;pecific eiggnvector direqtions. The
mentum sum rule and quark number sum rules table is d'|V|ded into sections acc_ordmg to the various flavor
combinations that are parametrized. One can see, for ex-
1 ample, that the flattest directiang is strongly related to the
> f xfi(x)dx=1, (27)  gluon parametera§ andA$, confirming that the gluon dis-
b Jo tribution atQy=1 GeV is a highly uncertain aspect of the
PDF’s. The second-flattest directiag relates mainly to the

fluu(x)dx=2, fldu(x)dx= 1 (28)  d/uratio, as seen by the large components atpador Bg
0 0 andBY"". Meanwhile, the steepest directiap mainly influ-
ences the valence quark distribution \A?ii”.

All of the parametrized aspects of the PDF's @,
namely,u,, d,, g, d+u, andd/u receive substantial contri-
butions from the four-flattest directions 13—16, which shows
A. Uncertainties of the PDF parameters{a;} that the current global data set could not support the extrac-
tion of much finer detail in the PDF’s. This can be confirmed
Py noting that the error ranges of the individual parameters
a; are not small.

to ensure that those sum rules are satisfied exactly.

IV. UNCERTAINTIES OF PARTON DISTRIBUTIONS

As a useful as well as illustrative application of the gen-
eral formalism, let us find the uncertainties on the physica
PDF parameters; . We only need to follow the steps of Sec.
[l D. Letting X=a; for a particular, Egs.(20) and(18) give

Dy(a)=ai(S{) —ai(S)=2tMy. (29

B. Uncertainties of the PDF’s

The uncertainty range of the PDF’s themselves can also
be explored using the eigenvector method. For example, let-
ting the gluon distributiorg(x,Q) at some specific values of
(x,Q) be the variableX that is extremized by the method of

112 Sec. Il D leads to the extreme gluon distributions shown in
Aai=T(2 MiZK) ) (300 the left-hand side of Fig. 3. The envelope of such curves,
k obtained by extremizing at a variety wialues at fixed, is
shown by the shaded region, which is definedTsy10, i.e.,
The parameter sefs@;(a;")} and{a;(a;")} that produce by allowing X§|oba| up to 100 above its minimum value.

The uncertainty o, in the global analysis follows from the
master equatioli24):

the extreme values @&; can be found using Eq26). In the The right-hand side of Fig. 3 similarly shows the allowed
conceptual Fig. 1, the parton distribution set with the largestegion and two specific cases for thiequark distribution.
value ofg; for Ax§|0ba|= T2 is depicted as poir(i). The uncertainty is much smaller than for the gluon, reflecting

The uncertaintie$Aa;} of the standard parameter set, cal- the large amount of experimental data included in the global
culated from Eq.(30) with T=5 are listed along with the analysis that is sensitive to thequark through the square of
central valuega’} in Table IIl. To test the quadratic approxi- its electric charge.
mation, asymmetric errors are also listed. These are defined The dependence onin these figures is plotted as a func-
by displacements in the gradient directit®9) that are ad- tion of x”® to better display the region of current experimen-
justed to makeA y? exactly equal toT?=25. They agree tal interest. The values are weighted by a facté?, which
quite well with the errors calculated using E®0O), which  makes the area under each curve proportional to its contri-
shows that the quadratic approximation is adequate for oupution to the momentum sum rule. Note that the uncertainty
purposes. decreases markedly with increasi@as a result of evolu-
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tion. Also note that the gluon distribution is large and fairly mentioned in Sec. Il D, self-consistency considerations in-

well determined at smalletvalues and larg®—the region  herent to our basic assumption that the 15 data sets used in

that will be vital for physics at the CERN Large Hadron the global analysis are acceptable and compatible, in con-

Collider (LHC). junction with the detailed comparison to experiment con-
Figure 4 displays similar information foQ=10 GeV, ducted in the preceding pap€t8] using the same)(ék,baI

expressed as the fractional uncertainty as a function af.log function, yield a best estimate dt~ 10 to 15[(Eq. 6)]. De-

It shows that the gluon distribution becomes very uncertairtails of these considerations are discussed in Appendix A.

at largex, e.g.,x>0.25.(At x>0.6, where the distribution is Of the estimates of described there, the most quantita-

extremely small, the lower envelope of fractional uncertaintytive one is based on the algorithm of the preceding paper

begins to rise. This is an artifact of the parametrization with[ 18] to combine 90% confidence level error bands from the

A$=0; making the parametrization more flexible by freeing 15 individual data sets for any specific physical variable such

A$ with AJ=6 leads to a broader allowed range indicated byas the total production cross sectionWfor Z at the Fermi-

the dotted curves. lab Tevatron or LHC(see Appendix A for a summary, and
The boundaries of the allowed regions for the PDF’s arghe preceding papdi8] for the detailed analysisFor the

not themselves possible shapes for the PDF’s, since if a pagase ofa&?v, the uncertainty according to the specific algo-

ticular distribution is extremely high at one valuexgfit will rithm is £4%, corresponding td@ ~13. With our working

be low at other values. This can be seen most clearly in thaypothesisT~10-15, the range of the uncertainty @ﬁv

gluon distributions of Figs. 3 and 4, where the extremewill be +3.3% to+4.9%.

PDF’s shown push the envelope on the high side in one The numerical results on applications presented in the fol-

region ofx, and on the low side in another. lowing sections are obtained with the same choic& a5 in
Sec. IV, i.e.,T=10. Bearing in the mind the linear depen-
V. UNCERTAINTIES OF PHYSICAL PREDICTIONS dence of the uncertainties dn one can easily scale these up

. . . .._by the appropriate factor if a more conservative estimate for

In applying the Hessian method to study the uncertaintieghe ncertainty of any of the physical quantities is desired.
of physical observables due to PDF’s, it is important to Unyye shoyid also note that the experimental data sets used in
derstand how the predictions depend on the tolerance parang;iq analysis are continuously evolving. Some data ts
eterT, and how wellT can be determined. We discuss theseTabIe | in Appendix A will soon be updatedH1, ZEUS or
issues first, and _thfan proceed .to_ illustrate the ut.ili_ty Of th_isreplaced(CCFR).6 In addition, theoretical uncertainties have
method by examining the predictions for the rapidity distri-y ot {4 pe systematically studied and incorporated. Therefore,
bution of W and Z boson production as well as the correla- he specific results presented in this paper should be consid-
tion of W andZ cross sections ipp collisions. ered more as a demonstration of the method rather than de-

First, note that the uncertainties of all predictions are lin-finitive predictions. The latter will be refined as new and
early dependent on the tolerance paramé&tar the Hessian  better inputs become available.

approach, by the master formul24); hence they are easily
scalable. The appropriate value Bfis determined, in prin-
ciple, by the region of “acceptable fits” or “reasonable
agreement with the global data sets” in the PDF parameter Figure 5 shows the predicted rapidity distributidar/dy
space. Physical quantities calculated from PDF sets withifor W* production inpp collisions at\s=1.8 TeV. The
this region will range over the values that can be consideredross section is not symmetric i because of the strong
“likely” predictions. As discussed in the introductory sec- contribution from the valence quark in the proton—indeed,
tions, the complexity of the experimental and theoretical in-the forward backward asymmetry produces an observable
put to the functiorp(slob,Sll in the global analysis, in particular,

the unknown systematic errors reflected in apparent abnor-——

malities of some reported experimental errors as well as®Compare talks presented by these collaborations at DIS2000
seeming incompatibilities between some data sets, makes\itorkshop on Deep Inelastic Scattering and Related Topicer-
difficult to assign an unambiguous value ToHowever, as  pool, England, 2000.

A. Rapidity distribution for W production

014013-8
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FIG. 5. Left: Predicted rapidity distribution
for pp—W*+X at \s=1.8 TeV. The curves
are extreme predictions for the integrated cross
section o (solid), or the rapidity momentgy)
(long dash, or (y?) (short dash Right: same ex-
cept the best-fit prediction is subtracted to show
the details better.

do/dy

asymmetry in the distribution of leptons fromM/ decay, dom sets give good approximations to the three extreme

which provides an important handle on flavor ratios in thecurves. This is not really surprising, since the extrema are

current global analysis. produced by displacements in specifgradien} directions,
The left-hand side of Fig. 5 shows the six rapidity distri- and in 16-dimensional space, the component of a random

butions that give the extremésp or down of the integrated unit vector along any specific direction is likely to be small.

cross sectionr= [(da/dy)dy, the first momenty), or the  But it indicates that producing large numbers of random sets

second momerity?), as calculated using the Hessian formal-would at best be an inefficient way to unearth the extreme

ism for T=10. To show the differences more clearly, the behaviors.

right-hand side shows the difference between each of these

rapidity distributions and the best-fit distribution. B. Correlation betweenW and Z cross sections

Figure 6 shows three of the same difference curves as in One can ask what are the error limits on two quantiNes

Fig. 5 along with results obtained using the Lagrange multi- . . L
g g g grang andY simultaneously, according to timxgloba|<T criterion.

ment shows that the Hessian formalism, with its quadratidn the Hessian gpproximation, the boundarylof the allowed
region is an ellipse, as shown [17]. The ellipse can be

approximation(7), works well at least for this application. e ) "
Figure 7 shows the same three curves from Fig. 5, to€XPressed elegantly in a “Lissajous figure” form

gether with 6 random choices of the PDF's Wim(é,oba, X=X+ AX sin(6+ ),

=100. These random sets were obtained by choosing ran-

dom directions in{z;} space and displacing the parameters

from the minimum in those directions untj3 . has in- Y=Y0+AY sin(6), (31
creased by 100. Note that none of this small number of ran-

LI | T T 1T I T T TT I LI I T TT LI
L | LI | T 1T 17T I LI | LI I LI | ]
0.02 -
0.02 ~2 g
P S
> e
o 0
5 =
3 0.00
~ |
0.00
' 5
> G - o
o [
B s 1 |
o -0.02— et —
-0.02 5 ]
I ] L1 1 1 | L1 1 1 I L1 1 1 | L1 1 1 I 11 1 1 | L1 1 1
L1l | L1 | L1 | L1l | L1 | L1 -3 -2 -1 0 1 2 3
-3 -2 -1 0 1 2 3 y

y
FIG. 7. Comparison with random methods: three of the six

FIG. 6. Comparison with the Lagrange multiplier method: threecurves from Fig. Scorresponding to maximunx, (y), or (y2) for
of the six curves from Fig. &corresponding to maximums, (y), or AXSIobaIZ 100) are shown, together with results from PDF sets that
(y?)) are shown, together with the result of the exact LM methodare obtained by displacement in 6 random directionézgf space
for A xgiopa= 100. by A Xgiopa= 100.

014013-9



J. PUMPLINet al. PHYSICAL REVIEW D 65 014013

L I L I I lipses. The two experiments in fact use different assumptions

for the inelasticpp cross section which measures the lumi-
nosity; CDF uses its own measurement of it, while D@ uses
the world average. The dot-dashed data point shows the re-
sult of reinterpreting the CDF point by scaling the luminosity
down by a factor of 1.062 to correspond to the world average

pp cross sectiof31].

8.0

75

o, [nb]

VI. SUMMARY AND CONCLUDING REMARKS

6.5 Experience over the past two decades has shown that

minimizing a suitably defineq/é,oba, is an effective way to
extract parton distribution functions consistent with experi-
mental constraints in the PQCD framework. The goal of this
M | | | NPT I B paper has been to expand the scope of such analysis to make

<0 2 %4 =6 quantitative estimates of the uncertainties of PDF’s and their

oy [nb] predictions, by examining the behavior qfélobal in the
neighborhood of the minimum. The techniques developed in
_FIG. 8. Error ellipse for predicte? andZ boson production in  Ref, [17] allow us to apply the traditional error matrix ap-

pp collisions at 1.8 TeV. The error limifl{=10) of the predictionis  proach reliably in the complex global analysis environment.
the interior of the ellipse. Error bars show data from Q@btted  The eigenvectors of the Hessiéinverse of the error matrjx
and CDF(dashegl The dot-dash error bars show the result of rein- play a crucial role, both in the adaptive procedure to accu-
terpreting the CDF data by using the same assumption for luminosearely calculate the Hessian itself, and in the derivation of the
ity as DO[31]. compact master formula for determining the uncertainties of
parton distributions and their predictions, Eg4).

Our principal results aréi) the formalism developed in
Sec. Il D, leading to the master formulas, &fid the best-fit
parton distribution se§, plus the 21 eigenvector basis sets
S, presented in Sec. Ill C, which are used in applications of

d the master formul&24). The uncertainties are proportional to

cosgp= >, D(X)Dy(Y), (32) T, the tolerance parameter fdryg,ny. We present several
k=1 estimates, based on current experimental and theoretical in-

. . , put, that suggest is in the range 10-15. It is important to
whereD;(X) andD;(Y) are defined by Eq22). . , hote, however, that this estimate can, and should, be refined

As an example of thisT= 10 error limits forw™ andZ in the near future. First, several important data sets used in
production at the Tevatron are shown in Fig. 8. The errokne global analysis will soon be updated or repla@gdSec.
limits on the separate predictions for these cross sections (e footnote 5. Second, there are other sources of uncertain-
each about 3.3% folf =10. The predictions are strongly tjes which have yet to be studied and included in the analy-
correlated (co$=0.60), in part because the same quarksjs in a full evaluation of uncertaintie€The work of Botje
distributions—in different combinations—are responsible for[lo] describes possible ways to incorporate some of these.
both W andZ production, and in part because the uncertain-  Tpig paper, focusing on the presentation of a new formal-
tie_zs of all the quark d_istribution_s are r_1egative|y correlate(_jism and its utility, represents the first step in a long-term
with the more uncertain gluon distribution, and hence posipygject to investigate the uncertainties of predictions depen-
tively correlated with each other. _ dent upon parton distributions. We plan to perform a series of

The W and Z cross sections from Collider Detector at st,dies on processes in precision SM measurenisuth as
F_ermilab(CDF) (dasheg and D@(dotte_d_ are also shown in - the W massg and in new physics searchésuch as Higgs
Fig. 8 [31]. (The measured quantities By .., and  production cross sectiprwhich are sensitive to the parton

0z:Bz_e+e- Were converted ta, andoz using world av-  distributions, at the Tevatron and LHC.
erage values for the branching rat[d$]; the measured CDF

and D@ branching ratios fa/V agree with the world average
to within about 1%). The data points are shown in the form
of error bars defined by combining statistical and systematic
errors (including the errors in decay branching rajias This work was supported in part by NSF grant PHY-
guadrature. The errors in these measurements are also higl#g02564. We thank M. Botje and F. Zomer for several inter-
correlated, in part through the uncertainty in overall luminos-esting discussions and for valuable comments on our work.
ity, which both cross sections are proportional to—so théWe also thank John Collins, Dave Soper, and other CTEQ
experimental points would also be better represented by etolleagues for discussions.

6.0

N

where 0< <27 traces out the boundary. The shape of the
ellipse is governed by the phase anglewhich is given by
the dot product between the gradient vectorsXandY in
{z,} space:
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TABLE I. Data sets used in the global analysis. If experiment theory model, according to ideal statis)iciggest that the
is omitted,A,, denotes the amount by whigff for the remaining 14 required tolerance value for the overaﬂb(slobal (involving
experimentsan be reduced by readjusting the fit parameters. 1300 data pointsmust be rather large.

Tolerance required by mutual compatibility of the experi-

Exptn Process Nn Name Ref. A ments. We can quantify the degree of compatibility among
1 DISF,(up) 168 BCDMS [19] 19.7 the 15 data sets by removing each one of them in turn from
2 DISF,(ud) 156 BCDMS [19] 45 the analysis, and observing how much the _tqté_lfor the
3 DISF,(ep) 172 H1 [20] 37 remaining 14 sets can be Ip\(verezd by readjusting {tg.
4 DIS F,(ep) 186 ZEUS [21] 9.7 This is equivalent to minimizingy for each pQSS|bIe 14-
5 DISF,(up) 104 NMC [22] 78 experiment subget of the data, and_then a_sklng how much
6 DIS pup/ un 123 NMC [22] 19 increase in they” for those 14 experiments is necessary to
7 DIS up/un 13 NMC 221 139 acco'mmodate t.he return of the removed set. These increases
3 DIS F,(vp) 87 CCFR 23] 8.9 are listed as\,, in Tat_)le_z I. They range up te=20. In other _
9 DIS Fo(vp) a7 CCER 23] 55 words, We_have |mpI|C|tIy assume_d that when a new experi-
10 D-Yspp 119 E605 [24] 6.4 ment requires an increase of 20 in tjaépba, of a plausible _
1 D-Y pd/pp 1 NAG1 [25] 0'5 g_lobal data_set, that new experiment is peverthelgss suffi-
' ciently consistent with the global set that it can be included
12 D-Y pd/pp 1 Ese6  [26] 06 as an equal partnéiHence the value of2 must be substan-
13 Wiept. asym. 1 CDF [27] 151 tially larger than 20.
14 pp—jetX 24 DO (28] 3.4 A complementary, and more quantitative, estimate of the
15 pp—jetx 33 CDF  [29] 37 overall tolerance paramet&rfor our x5, follows from the
analyses of the preceding papés.
Tolerance calculated from confidence levels of individual
APPENDIX A: ESTIMATES OF THE TOLERANCE experiments. I{18], we examine how the quality of fit to

PARAMETER FOR A Xjiopa each of the 15 individual experiments varies as a function of

This appendix provides details of the various approachegqe predicted value for various specific observable quantities

mentioned in Secs. Il D and V to estimate the tolerance pag’u9h asoyy Or oz. The fit parame_te_r{;ai} are continupusly
rameterT defined by Eq(5). In our global analysis based on adiusted by the Lagrange multiplier method to yield the

A X opas all uncertainties of predictions of the PDF’s accord- Minimum possible value ofqp, for given values of the

ing to the master formula Eq24) are directly proportional chosgn observable. The con_stralnted fits obtal_ned th!s way,

to the value ofT. and interpreted as “alternative hypotheses” in statistical
The first two estimates rest on considerations of self2nalysis, are then compared to each of the 15 data sets to

consistency, which are required by our basic assumption th&Pt&in @ 90% confidence level error range for the individual

the 15 data sets used in the global analysée Table)l are e.xperlments. Finally, f{hese errors are comblneq with a defi-

acceptableand mutuallycompatible—in spite of the depar- nite algorithm to prowde a quantifiable uncertainty measure

ture from ideal statistical expectations exhibited within manyOr the cross section. Iqu/he case of Meproduction cross

of the individual data sets, as well as apparent incompatibilS€ction at the Tevatrom;, ", this procedure yields an uncer-

ity between experiments when the errors are interpreted a¢@nty of £4%, which translates into a value o180 for

cording to strict statistical rulglsl2]. A Xgiobar OF T~13. This method is definite, but it is, in prin-
Tolerance required by acceptability of the experimentsCiple, process dependent. However, when the same analysis

One can examine how well the best §§ agrees with the is applied too®", ay'®, and g% (which probe different

individual data sets, by comparir;@ﬁ in Eq. (3) with the  directions in the PDF parameter sppoe findAX§|0ba|to be

rangeN, =+ 2N, that would be the expectedrlrange if the  consistently in the same range as &gf", even though the

errors were ideal. The largest deviations found lie well outpercentage errors on the crossection vary from 4% at the

side that rangey2—N,(y2N,)=65.5(17.7),—64.8(18.5), Tevatron to 10% at LHC.

65.1(19.3),—25.9(15.4), and 22.4(8.1), for experimenmts Based on all the above results, we adopt as our working

=2,3,4,10, and 15, respectively. By attributing the “abnor-hypothesis,

mal” x2's to unknown systematic errors or unusual fluctua-

tions (or both, and accepting them in the definition g, T~10 to 15,

for the global analysis, we must anticipate a tolerance for the

latter which is larger than that for an “idealg? function.  which is guoted in Sec. Il DEQ. (6)], and used in Secs. IV

(Compare Appendix A of the preceding padd8] for a  and V for estimating the numerical results shown in the plots.

guantitative discussion of the increaseTimue to neglected

systematic errorsSince the sources of the deviation of these

real experimental errors from ideal eXpeCtationS are not ’since 5 or 6 of the experiments requikg in the range of 10-20,

known, it is not possible to give specific values for the over-this level of inconsistency is not caused by problems with just one

all tolerance. However, the sizes of the above quoted devigarticular experiment—which would simply invite the removal of

tions(which, in each case, imply a very improbable fieioy ~ that experiment from the analysis.
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TABLE 1. OveraIIX§|oba|vaIues and their increments above the U L B I
best-fit value, for some current and historical parton distribution H
sets.

Currentsets x>  Ax? Historical sets  x? Ax?
CTEQ5M1 1188 - CTEQ4M 1540 352 40
CTEQ5HJ 1272 84 MRSR2 1680 492
MRST99 1297 109 MRSR1 1758 570 )
MRST-a | 1356 168 CTEQ3M 2254 1066 éf
MRST-aT 1531 343 MRSA 3371 2183

20

Finally, it is of some interest to compare this tolerance
estimate with the traditional—although by now generally
recognized as questionable—gauge provided by differences
between published PDF's. ol e

Comparison of tolerance figures to differences between 50 -25 0.0 25 5.0
published PDF’s. Table Il lists the value obtained when our 7

XSIobal is computed using various current and historical PDF !
sets. TheA y? column lists the increase over the CTEQ5M1  FIG. 9. Variation ofy? with distance along representative eigen-
set. Typical values for the modern sets are similar to thevector directions 1, 4, 7, 10, 13, and 16. The first two, shown by
range 100—225 that correspondsTte 10—15. For previous solid curves, are nearly indistinguishable from each other and from
generations of PDF Setﬁélobal is much larger—not surpris- the idealAx?=z%. The remaining four, shown by dashed curves
ingly, because the obsolete sets were extracted from mudhith increasing dash length denoting increasing eigenvector num-
less accurate data, and without some of the physical prd)er, demonstrate that the quadratic approximation is adequate,
cesses such a& decay lepton asymmetry and inclusive jet though imperfect.

production.
APPENDIX C: TABLE OF BEST FIT Sy

Table Il lists the parameter values that define the “best
APPENDIX B: TESTS OF THE QUADRATIC fit" PDF set S, which minimizes 3 ,,g- It also lists the
APPROXIMATION uncertaintiesfor T=5) in those parameters.

The Hessian method relies on a quadratic approximation For each of thel=16 parameters, Table 1l also lists the
(7) to the effectivey? function in the relevant neighborhood COMponents of a unit vectar, . .. zy in the eigenvector
of its minimum. To test this approximation, Fig. 9 shows the
dependence of? along a representative sample of the eigen- 100
vector directions. The steep directions 1 and 4 are indistin-
guishable from the ideal quadratic curie 2= z2. The shal-
lower directions 7, 10, 13, and 16, are represented fairly 80
well by that parabola, although they exhibit noticeable cubic
and higher-order effects. The agreement at sma#f not
perfect because we adjust the scale factpia Eq. (10) (see 60
footnote 5 to improve the average agreement over the im-
portant regionz=<5, rather than defining the matrix;; in
Eq. (7) strictly by the second derivatives at0. For this 40
reason, the scale factosg in Eq. (17) are somewhat differ-
ent from they2/e, suggested by the Taylor series: the flattest
directions are extremely flat only over very small intervals in 20
Z, so it would be misleading to represent them solely by their
curvature az=0.

Figure 10 shows the dependencexdf along some ran- 0
dom directions in{z} space. The behavior is reasonably EE——
close to the ideal quadratic cundey®=z?, implying that the
guadratic approximatiori7) is adequate. In particular, the
approximation gives the range ppermitted byT =10 to an FIG. 10. Variation ofy? with distance along 10 randomly cho-
accuracy of~30%. Since the tolerance paramefeused to  sen directions ifz} space. The dependence is represented accept-
make the uncertainty estimates is known only to perhapsably well by the quadratic approximatiany?=z?, which is shown
50%, this level of accuracy is sufficient. as the dotted curve.
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TABLE lIl. Parameters of the global fit. Errors shown are o5, i.e., A x3a= 25. Fixed parametertd*U=1.0, BY"=15.0, BY"
=10.0, andAd=0.0=AY irrelevant. Thez, are proportional to the,(a;") = +tM;, of Eq. (29) and are normalized t&,z2=1

Parameter Value Error Z; Z, Z3 Z, Z5 Zg z; Zg
Zg Z10 211 Z12 213 Z14 215 216
A‘iv+1 0.466 0.094 0.04 -0.01 0.00 -0.08 —0.04 —0.09 0.05 0.07
+0.083-0.079 —0.06 —0.06 0.35 —-0.74 —-0.37 —-0.39 —0.06 0.00
A;v 3.360 0.122 —-0.01 —-0.01 0.03 —-0.14 —-0.07 —-0.37 —-0.32 0.46
+.112-0.106 054 —-0.13 0.06 —-0.23 0.17 0.09 0.35 0.04
In(1+A3u”) 2.553 0.51 0.00 0.00 0.00 0.00 0.06 —0.01 —0.06 —-0.07
+0.44-0.45 0.10 0.02 -0.36 0.73 0.36 0.41 0.13 0.03
sz 0.855 0.118 0.01 0.00 -0.04 0.19 —0.09 —-0.13 —-0.29 0.51
+0.110-0.118 0.48 —0.05 0.05 0.06 0.47 0.19 0.30 —0.01
Ag” 4.230 0.45 0.00 0.00 0.00 0.00 0.06 —0.06 0.00 0.02
+0.45-0.40 —0.05 0.13 0.72 0.45 0.32 -0.23 -0.30 0.08
In(1+Agv) 2.388 0.64 0.00 0.00 0.00 0.00 —0.04 0.00 0.04 0.05
+0.59-0.62 —0.08 0.05 —0.04 0.88 0.38 0.26 —0.03 0.06
Ajv 0.763 0.30 0.00 0.00 0.00 —-0.01 —0.06 0.16 —0.13 -0.18
+0.24-0.23 0.26 0.11 0.52 0.37 0.49 -0.11 —-041 0.08
In?g —1.047 0.018 0.01 0.79 0.32 0.12 0.19 —0.25 -0.16 0.09
+0.018-0.019 —-0.19 0.26 0.00 -—-0.05 —-0.03 0.00 —0.06 -0.11
Af+1 0.469 0.40 0.00 0.00 0.02 0.01 0.02 0.02 0.23 0.05
+0.39-0.35 0.22 0.29 0.00 0.03 —0.09 0.04 0.12 0.89
Ag 5.574 2.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
+2.98-2.30 0.00 -—0.03 0.01 0.01 -0.03 0.03 0.11 0.99
AdTUL] —0.009 0.148 0.00 -0.03 0.10 0.07 0.01 001 —-024 -0.07
+0.142-0.119 -0.15 —0.65 0.06 0.15 -0.13 -0.07 —0.09 —0.65
A§+U 7.866 0.96 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00
+1.05-1.09 0.01 -0.21 0.03 —-0.15 0.89 0.28 —-0.10 —-0.22
In(1+A§+U) 2.031 0.89 0.00 0.00 0.00 0.00 0.00 0.00 —0.03 0.00
+0.78-0.89 —0.04 0.29 —0.05 -0.28 0.66 0.20 0.04 0.59
|ntTu 10.29 1.45 0.00 0.00 0.00 0.00 —0.01 -0.02 0.01 -0.04
+1.551-1.496 0.00 0.01 0.03 0.00 0.00 0.06 0.94 —0.32
B?U 5.379 0.85 0.00 0.00 0.00 -0.01 0.02 0.06 —-0.02 0.10
+1.02-0.75 —0.02 —0.03 0.01 0.04 0.16 —-0.21 0.93 —-0.24
BE/U 4.498 1.21 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.01
+1.20-1.12 0.00 0.01 0.06 —0.04 -0.27 0.94 -0.01 -0.20

basis. That unit vector gives the direction for which the pa-cients and the constructs that were used elsewhere in the

rameter varies most rapidly Wltlsgrg,oba,, i.e., the direction
along which the parameter reaches its extreme values for the tabulated parameters by

paper to derive them. The fit parametées} are related to

given increase ingopy- FOr parametes; , the components

z,. are proportional tdM; according to Eq(29). aleiqu 1, =A;v, a3=|n(1+A;v), a4=A:",
APPENDIX D: TABLE AND GRAPHS OF THE

d d
- az=A.", ag=In(1+Ay),
EIGENVECTOR SETS Sf* 572 6=IN(1+A;")

a7: Aiu y
Table IV and its continuation Table V completely specify
the PDF eigenvector basis s&$ and S by listing all of
their parameters &,. The notation and the best fit s§§
are specified at the beginning of the table.
The coefficients listed provide all of the information that
is needed for applications. For completeness, however, we
state here explicitly the connections between these coeffi-816= B4

a,=A+1, a; =AY, a;;=AI""+1, a; =AY,

313:|n(1+Ag+u), a14=|n Bg/u,

(D1
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TABLE IV. Parameters of the best f& and their definitions, followed by eigenvector s&§,S; ,S; .S, , . . . .

—0.1941
—0.7175

1.8914
—1.1174

10.2940

—0.1841
—0.7064
1.8919
—1.1342
10.2940
—0.1951
—0.7184
1.9025
—1.1609
10.2940
—0.1981
—0.7182
1.9095
—1.0925
10.2939
—0.1932
—0.7420
1.9005
—1.0798
10.2964
—0.2373
—0.7278
1.9071
—1.1096
10.2848
—0.2370
—0.6899
1.9021
—1.0919
10.2670
—0.2078
—0.7700
2.0853
—1.2032
10.3046
—0.0801
—0.7805
1.9359
—1.1401
10.2407

—0.5337
—0.5337
—0.5305
—1.0092

5.3793

—0.5298
—0.5298
—0.5304
—1.0089
5.3793
—0.5343
—0.5343
—0.5321
—1.0140
5.3794
—0.5338
—0.5338
—0.5244
—0.9946
5.3795
—0.5413
—0.5413
—0.5271
—0.9990
5.3748
—0.5372
—0.5372
—0.5244
—1.0071
5.3943
—0.5419
—0.5419
—0.5228
—1.0074
5.4325
—0.5282
—0.5282
—0.4301
—1.0484
5.3626
—0.5269
—0.5269
—0.5086
—1.0195
5.4629

3.3604
4.2296
5.5737
7.8658

15.0000

3.3596
4.2295
5.5737
7.8658
15.0000
3.3597
4.2291
5.5740
7.8662
15.0000
3.3645
4.2287
5.5730
7.8651
15.0000
3.3436
4.2312
5.5735
7.8655
15.0000
3.3513
4.2550
5.5733
7.8668
15.0000
3.3147
4.2039
5.5734
7.8633
15.0000
3.3181
4.2279
5.5687
7.9025
15.0000
3.4174
4.2376
5.5686
7.8611
15.0000

11.8404
9.8950
0.0000
6.6187

10.0000

11.8478
9.8957
0.0000
6.6191
10.0000

11.8372
9.8952
0.0000
6.6117
10.0000

11.8237
9.9098
0.0000
6.6340
10.0000

11.8275
9.8814
0.0000
6.6250
10.0000

12.2488
9.5924
0.0000
6.6099
10.0000

11.7529
9.8658
0.0000
6.6099
10.0000

11.4087

10.1816
0.0000
6.3721
10.0000

11.3977

10.2241
0.0000
6.6228
10.0000

0.8552
0.7628
1.0000
1.0000

4.4980

0.8558
0.7629
1.0000
1.0000
4.4980
0.8557
0.7636
1.0000
1.0000
4.4980
0.8501
0.7633
1.0000
1.0000
4.4980
0.8774
0.7592
1.0000
1.0000
4.4970
0.8440
0.7435
1.0000
1.0000
4.5012
0.8399
0.8113
1.0000
1.0000
4.5101
0.8179
0.7198
1.0000
1.0000
4.4919
0.9160
0.7090
1.0000
1.0000
4.5154

In Ay
In Ag
In A3
In Ag+u
In BJY
—0.2042
—0.7285
1.8910
—1.1010
10.2940
—0.1931
—0.7165
1.8802
—1.0751
10.2940
—0.1903
—-0.7167
1.8738
—1.1422
10.2941
—0.1960
—0.6928
1.8822
—1.1544
10.2916
—0.1528
—0.7078
1.8761
—1.1246
10.3029
—0.1529
—0.7483
1.8811
—1.1398
10.3201
—0.1833
—0.6769
1.7217
—1.0446
10.2850
—0.3093
—0.6640
1.8485
—1.0838
10.3449

NN
1 2
Al AZ
A(i+u Ag+u
Bcli/u Bczi/u
—0.5376 3.3612
—0.5376 4.2297
—0.5306 5.5737
—1.0095 7.8658
5.3793 15.0000
—0.5331 3.3611
—0.5331 4.2301
—0.5288 5.5734
—1.0043 7.8654
5.3792 15.0000
—0.5336 3.3564
—0.5336 4.2304
—0.5364 5.5745
—1.0234 7.8665
5.3791 15.0000
—0.5260 3.3774
—0.5260 4.2279
—0.5340 5.5739
—1.0195 7.8661
5.3839 15.0000
—0.5303 3.3692
—0.5303 4.2049
—0.5364 5.5742
—1.0112 7.8648
5.3647 15.0000
—0.5258 3.4046
—0.5258 4.2545
—0.5379 5.5741
—1.0109 7.8682
5.3279 15.0000
—0.5383 3.3960
—0.5383 4.2310
—0.6150 5.5779
—0.9762 7.8349
5.3934 15.0000
—0.5402 3.3060
—0.5402 4.2220
—0.5514 5.5786
—0.9994 7.8703
5.2995 15.0000

NN
3 4
A3 AL
Ag+ u Ag+ u
Bg/u Bg/u
11.8331 0.8546
9.8942 0.7627
0.0000 1.0000
6.6182 1.0000
10.0000 4.4980
11.8437 0.8547
9.8947 0.7620
0.0000 1.0000
6.6256 1.0000
10.0000 4.4980
11.8567 0.8602
9.8806 0.7623
0.0000 1.0000
6.6037 1.0000
10.0000 4.4980
11.8536 0.8327
9.9087 0.7664
0.0000 1.0000
6.6122 1.0000
10.0000 4.4990
11.4555 0.8661
10.1974 0.7816
0.0000 1.0000
6.6272 1.0000
10.0000 4.4949
11.9257 0.8700
9.9232 0.7159
0.0000 1.0000
6.6271 1.0000
10.0000 4.4863
12.2156 0.8866
9.6594 0.7990
0.0000 1.0000
6.8326 1.0000
10.0000 4.5031
12.2779 0.7971
9.5897 0.8142
0.0000 1.0000
6.6147 1.0000
10.0000 4.4814

Each of thea; is thus related to a single PDF parameter,according to Eq(18), wheret=5 because that value was

except forag, which is related td

g

carried by gluons, and is thus determined A, . .. ,AjJ.
The matrix elements of the transformation from thecoor-
dinates to the eigenvector coordinates are given by

M :ai(3+)_ai(37)

il 2t

(D2)

d
;1 M; M= ;S -

the momentum fraction used to generate tHg" . Equations(9) and (14) imply

(D3)

For | #Kk, this become§?=lM” M;=0, which can serve as
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TABLE V. Continuation of Table IV: parameters of the eigenvector §tsSg , . . ., Sis.Sis-
—0.1659 —0.5391 3.4265 12.5012 0.9121 —0.2243 —0.5283 3.2943 11.2121 0.7983
—0.6220 —0.5391 4.2087 9.3472 0.8414 —0.8285 —0.5283 4.2505 10.4716 0.6842
2.0550 —0.4456 5.5690 0.0000 1.0000 1.7218 —0.6154 5.5785 0.0000 1.0000
—1.1277 —1.0312 7.8798 6.3693 1.0000 —1.0969 —0.9873 7.8518 6.8764 1.0000
10.2997 5.3659 15.0000 10.0000 4.4929 10.2883 5.3927 15.0000 10.0000 4.5031
—0.2209 —0.5385 3.3464 11.9679 0.8505 —0.1581 —0.5272 3.3793 11.6700 0.8616
—0.7087 —0.5385 4.2773 10.1973 0.7903 —0.7304 —0.5272 4.1650 9.4988 0.7256
2.0697 —0.4336 5.4996 0.0000 1.0000 1.6342 —0.6616 5.6741 0.0000 1.0000
—1.4530 —1.0911 7.6927 8.5071 1.0000 —0.6805 —0.8983 8.1000 4.6459 1.0000
10.3080 5.3568 15.0000 10.0000 4.5032 10.2750 5.4097 15.0000 10.0000 4.4910
0.0212 —0.4998 3.3685 9.5867 0.8619 —0.3963 —0.5645 3.3530 14.3021 0.8491
—0.3803 —0.4998 4.5680 9.5749 0.9267 —1.0637 —0.5645 3.9221 10.1942 0.6138
1.8986 —0.5295 5.5981 0.0000 1.0000 1.8849 -—-0.5314 5.5516 0.0000 1.0000
—1.0511 —0.9997 7.8935 6.2437 1.0000 —1.1519 —1.0178 7.8406 6.9762 1.0000
10.3431 5.3894 15.0000 10.0000 45718 10.2494 5.3702 15.0000 10.0000 4.4309
—0.6200 —0.6029 3.3322 17.6542 0.8617 0.2128 —0.4640 3.3889 7.8121 0.8487
—1.0990 —0.6029 4.4299 18.0058 0.8742 —0.3418 —0.4640 4.0277 5.2176 0.6505
1.9215 —0.5171 5.5927 0.0000 1.0000 1.8610 —0.5440 5.5546 0.0000 1.0000
—0.9608 —0.9876 7.7202 4.9575 1.0000 —1.2706 —1.0310 8.0126 8.7623 1.0000
10.2885 5.4121 15.0000 10.0000 4.4446 10.2995 5.3462 15.0000 10.0000 4.5518
—0.3285 —0.5667 3.3800 14.2366 0.9075 —0.0441 —0.4965 3.3383 9.5883 0.7962
—0.7740 —0.5667 4.3664 12.6923 0.9007 —0.6624 —0.4965 4.0754 7.4209 0.6073
1.8124 —0.5621 5.5060 0.0000 1.0000 1.9800 —0.4949 5.6501 0.0000 1.0000
—1.3022 —1.0266 8.6732 12.2662 1.0000 —0.9707 —0.9896 6.9557 3.0774 1.0000
10.2946 5.5039 15.0000 10.0000 4.1962 10.2934 5.2389 15.0000 10.0000 4.8382
—0.4030 —0.5716 3.3718 14.9177 0.8788 —0.0012 —0.4980 3.3497 9.4869 0.8330
—0.9934 —0.5716 4.1229 11.9127 0.7280 —0.4696 —0.4980 4.3301 8.2828 0.7956
1.9461 —0.5128 5.6623 0.0000 1.0000 1.8398 —0.5471 5.4902 0.0000 1.0000
—1.1804 —1.0206 8.1430 8.1232 1.0000 —1.0571 —0.9985 7.6046 5.4285 1.0000
10.3763 5.1976 15.0000 10.0000 5.6698 10.2164 5.5506 15.0000 10.0000 3.3936
—0.2036 —0.5399 3.4062 12.7490 0.8931 —0.1860 —0.5282 3.3199 11.0884 0.8217
—0.9051 —0.5399 4.0867 9.6572 0.6340 —0.5709 —0.5282 4.3557 10.1093 0.8765
2.0530 —0.4819 5.8758 0.0000 1.0000 1.7480 —0.5734 5.3071 0.0000 1.0000
—1.1784 —1.0238 7.7670 6.9327 1.0000 —1.0517 —0.9963 7.9530 6.3518 1.0000
11.7435 6.2127 15.0000 10.0000 4.4913 9.0144 4.6435 15.0000 10.0000 4.5039
—0.2054 —0.5338 3.3661 12.0453 0.8534 —0.1853 —0.5336 3.3560 11.6819 0.8566
—0.7110 —0.5338 4.2688 10.4095 0.7879 —0.7226 —0.5336 4.1988 9.5075 0.7431
3.2798 —0.1380 8.5257 0.0000 1.0000 0.7313 -—0.8385 3.2571 0.0000 1.0000
—1.7279 —1.1163 7.6289 12.7489 1.0000 —0.6889 —0.9252 8.0517 3.7937 1.0000
9.7697 5.1479 15.0000 10.0000 4.2287 10.7054 5.5609 15.0000 10.0000 4.7094

a check on numerical accuracy, while fbrek, it be-
comes 3¢ ;M3=s?, which can be used to reconstruct (high values ofl) control the gluon distribution, whose ab-

S1, .. .,5g-

pects of the quark distribution, while the shallower directions

solute uncertainty is larger. The variations in the gluon dis-

Finally, for the benefit of the reader who is curious abouttribution show less variety than the quarks because the gluon
them, graphs are shown in Fig. 11 of the differences dedistribution is described by only three paramet@nsluding
scribed by each of the PDF eigenvector sets. One sees thadrmalization such that the most general variation for it is
the steeper directionsmall values of) mainly control as-
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FIG. 11. Displacements of the
u quark and gluon distributions
ff(x,Q)—f (x,Q) at Q=10
GeV corresponding tdS" —S .
Length of dashes increases fbr
=1,...,16.
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