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Uncertainties of predictions from parton distribution functions.
I. The Lagrange multiplier method
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We apply the Lagrange multiplier method to study the uncertainties of physical predictions due to the
uncertainties of parton distribution functioRDF’s), using the cross sectian,, for W production at a hadron
collider as an archetypal example. An effectjy&function based on the CTEQ global QCD analysis is used
to generate a series of PDF’s, each of which represents the best fit to the global data for some specified value
of o . By analyzing the likelihood of these “alterative hypotheses,” using available information on errors
from the individual experiments, we estimate that the fractional uncertaingyafue to current experimental
input to the PDF analysis is approximatety4% at the Fermilab Tevatron, and8—-10% at the CERN Large
Hadron Collider. We give sets of PDF's corresponding to these up and down variatiops &%e also present
similar results orZ production at the colliders. Our method can be applied to any combination of physical
variables in precision QCD phenomenology, and it can be used to generate benchmarks for testing the accuracy
of approximate methods based on the error matrix.
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[. INTRODUCTION points (~1300 in our casedo not come from a uniform set
of measurements, but consist of a collection of measure-
All calculations of high-energy processes with initial had- ments from many experiments-(15) on a variety of physi-
rons, whether within the standard mod&M) or exploring  cal processes~5—6) with diverse characteristics, preci-
new physics, require parton distribution functidPDF's) as  sion, and error determination. The difficulty is compounded
an essential input. The reliability of these calculations, whichby a large number of fitting parameters {6) which are not
underpins both future theoretical and experimental progressiniquely specified by the theory. Several approaches to this
depends on understanding the uncertainties of the PDF'groblem have been proposed, with rather different emphases
The assessment of PDF uncertainties has, therefore, becorae the rigor of the statistical method, scope of experimental
an important challenge to high-energy physics in receninput, and attention to various practical complicatiohs7].
years. Our group has initiated one of these efforts, with the empha-
The PDF's are derived from global analyses of experi-sis on utilizing the full constraints of the global d&@. This
mental data from a wide range of hard processes in thwork has motivated a closer examination of the standard
framework of perturbative quantum chromodynamicstechniques of error analysis, and necessary improvements
(PQCD. Quantifying the uncertainties in a global QCD and extensions to these techniques, as applied to a complex
analysis is far from being a straightforward exercise in stareal world problem such as global QCD analysis of PDF’s
tistics. There are non-Gaussian sources of uncertainty froi8].
perturbation theorye.g., higher-order and power-law correc-  In this paper we present a detailed analysis of uncertain-
tions) from choices of parametrization of the nonperturbativeties of physical observables due to parton distribution func-
input (i.e., initial parton distributions at a low energy sgale tions, using the Lagrange multiplier method proposed in
from uncertain nuclear corrections to experiments performed7,8]. This method explores the entire multidimensional par-
on nuclear targets, and from normal experimental statisticaion parameter space, using an effectpfefunction that con-
and systematic errors. These sources of error need to be stugeniently combines the global experimental, theoretical, and
ied individually, and eventually combined in a systematicphenomenological inputs to give a quantitative measure of
way. the goodness-of-fit for a given set of PDF parametefs
We shall be concerned in this paper with uncertainties ofSec. I). The method probes directly the variation of the ef-
PQCD predictions due to uncertainties of PDF’s arising fromfective x? along a specific direction in the PDF parameter
experimental measurement errors. This problem is considespace—that of maximum variation of a specified physical
ably more complicated than it appears on the surface. Theariable. The result is a robust setaytimized sample PDF's
reason is that in global analysisthe large number of data (or “alternative hypotheseg"from which the uncertainty of
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TABLE |. List of data sets used in the global analysis.

Experiment Process Label No. data pts. Reference
BCDMS DIS up BCDMSp 168 [14]
BCDMS DIS pd BCDMSd 156 [14]
H1 DISep H1 172 [15]
ZEUS DISep ZEUS 186 [16]
NMC DIS up NMCp 104 [17]
NMC DIS wp/un NMCr 123 [17]
NMC DIS wp/un NMCrx 13 [17]
CCFR DISvp CCFR2 87 [18]
CCFR DISwvp CCFR3 87 [18]
E605 DYpp E605 119 [19]
NA51 DY pd/pp NA51 1 [20]
E866 DY pd/pp E866 11 [21]
CDF Wiep-asym CDFw 11 [22]
DO Hpﬂjetx DOjet 24 [23]
CDF pp—jetx CDFjet 33 [24]

the physical variable can be assessed quantitatively withouhethod can set useful benchmarks for the general purpose
the approximations inherent in the traditional error matrixerror matrix approach.
approach. For concreteness, we consider the cross section
ow of W boson production at the Tevatron as the archetypal
example(cf. Sec. ). Il. THE GLOBAL QCD ANALYSIS
The definition of the effectivg? function, and the inputs
that go into it, do not permit a direct statistical interpretation \We adopt the same experimental and theoretical input as
of its numerical value. To obtain meaningful confidence lev-the CTEQ5 analysifl1]: 15 data sets from 11 experiments
els for the optimized sample PDF sets, it is necessary ten neutral-current and charged-current deep inelastic-
conduct a series of likelihood analyses of these samplgcattering(DIS), lepton-pair productioriDrell-Yan (DY)],
PDF's, using all available information on errors for the indi- |epton asymmetry iW production, and higlp inclusive jet
vidual experiments. The results from these analyses serve ggoduction processes are udetl Table ). The total number
the basis to assign an overall uncertainty range on the physgf data points isN=1295. We denote the experimental data
cal variable, and a corresponding tolerance measure for thgyjues by{D}={D,;1=1, ... N}. The theory input is next-
effective y? function used in the analysis, that are consistenfeading-order(NLO) PQCD, and the theory value for the
with the experiments used in the current global QCD analyyata point will be denoted byT, . The theory depends on a
sis (cf. Sec. IV). _ _ _ set of parameter§a}={a;;i=1, ... d}. These parameters
This method can be applied to any physical variable, ofparacterize the nonperturbative QCD input to the analysis;

combination of physical variables, in precision QQD phe'they determine the initial PDF'Sf(x,Q,:{a})} defined at a
nomenology. In Sec. V we present resultsWiproduction at low-energy scaleQo, below the energy scale of the data,

the Large Hadron Collide(LHC), and Z production at the . N
Fermilab Tevatron and the CERN LHC. We compare theWhICh we choose t0 b@y=1 GeV. When we need to em-

uncertainties obtained in all cases, and comment on previOLfgms‘Ize that 'the theoretllca.I values depend on the PDF param-
estimates in the context of these results. In Sec. VI weters: We writeT,(a) to indicate the dependence fa}.
present parton distribution sets that are optimized to give 1he parametrization off(x,Qo)} is somewhat arbitrary,
high and low values of th& and Z cross sections, while Motivated by physics, numerical considerations, and
remaining consistent with current experiments according t¢conomy. Another parametrization might be employed, and
our analysis. differences among the possible parametrizations are, in prin-
The Lagrange multiplier method provides a useful tool tociple, a source of theoretical uncertainty in their own right.
test the reliability of the more traditional method of error For most of this study we focus on a single parametrization,
propagation via the error matrfd.,4,9, which relies on the but we comment on the effect of changing the parametriza-
quadratic expansion of the? function around its minimum. tion at the end of Sec. IV. The numbéof the parameter&}
In a companion papgrl0] we perform an in-depth analysis is chosen to be commensurate with current experimental
of the uncertainties of the PDF’s in the error matrix ap-constraints. For this study we ude=16. The detailed forms
proach, using the much improved numerical method for caladopted for the initial function$f(x,Qq;{a})} are not of
culating the Hessian that was developed[®. There we particular concern in this study, since we shall be emphasiz-
demonstrate how the more specialized Lagrange multiplieing results obtained by ranging over the full parameter
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space: The explicit formulas are given in Appendix C — N\ 2 N.D, =T (a) 2
(where relevant PDF’s from the results of our study are pre- Xﬁ(a)z( N “) +> (%) _
sentedl. TheT,({a}) are calculated as convolution integrals On : Oni

of the relevant NLO QCD matrix elements and the universal ()]

parton distributionsf(x,Q;{a})} for all Q. The latter are
obtained from the initial function$f(x,Qq;{a})} by NLO
QCD evolution. For thenth experimentD,,, ok, and T, (a) denote the
The global analysisconsists of a systematic way to deter- data value, measurement uncertaitgatistical and system-
mine the best values for th@}, and the associated uncer- atic combined and theoretical valuédependent oga}) for
tainties, by fitting{T(a)} to {D}. Because of the wide range the Ith data pointg! is the experimental normalization un-
of experimental and theoretical sources of uncertainty mencertainty, and\;, is an overall normalization factofwith
tioned in the Introduction, there are a variety of strategies tQjefault value 1) for the data of experimentThe factorw,,
deal with the complex issues involvgdi-4,7. In the next s a possible weighting factaiwith default value 1) which
two sections, the primary tool we employ is conventiopal  may be necessary to take into account prior knowledge based
analysis. The2 important task is to define an ef_fec)u%éunc- on physics considerations or other information. Ehgriori
tion, called xgo5a(@), that conveniently combines the theo- choices represented by the, values are present, explicitly

retical and global experimental inputs, as well as relevang, implicitly, in any data analysis. For instance, data inclu-

physics considerations based on prior knowledge, 0 give agi,n o omission(choices which vary for different global

g\;?ar‘?rl]lertr;er:\sure of the goodness-of-fit for a given set of PDFanaIysis efforts represent extreme cases, assigning either
. o 0 . . )
Experience in global analysis of PDF’s during the pastloom or 0% weight to each available experimental data set.

two decades has demonstrated that the PDF’s obtained by t émnarly, choices of various elements of the analysis proce-

T . . dure itself represent subjective input. Subjectivity of this
minimization of such a suitably chose‘rgmbm provide very kind also enters into the analysis of systematic errors in ex-
useful up-to-date hadron structure functions which, although fiments y y

not unique, are representative of good fits between theor9e L , . .
and experiments. Now we must quantify the uncertainties of 1€ functionxggns(@) allows the inclusion of all experi-

the PDF’s and their predictions; i.e., we must expand thdnéntal constraints in a uniform manner while allowing flex-

scope of the work from merely identifying typical solutions iPility for incorporating other relevant physics input. We will

to Systematica"y mappmg the PDF parameter space in th@ake use of this function to explore the neighborhood of the

neighborhood around the minimum gf. best fit, and to generate sample PDF’s pertinent to the uncer-
The simplest possible choice for tly@ function would be  tainty of the prediction of a specific physical variable of in-

terest. However, the numerical value of this effectiy®

function should not be given am priori statistical interpre-

N _ 2
(@)= I IIC) (1) tation, because correlations between measurement errors, and
=1 of correlated theoretical errors, are not included in its definition.

In particular, the likelihood of a candidate PDF &gtcannot

where, is the error associated with data polnfThrough P& de’Fe_rm|nezpl by the value of the !ncre%-)eglolba(a) above
T/(a), x2(a) is a function of the theory parametefal. the minimum: Instead, the_ evalgatlon of I|.keI|hoo<.js and es-
Minimization of y2(a) would identify parameter values for timation of global uncertainty will be parned out in a sepa-
which the theory fits the data. However, the simple fdn rate step in Seq. \VA aftgr sets of optimal sampl'e PDF'’s for
is appropriate only for the ideal case of a uniform data sefh® pPhysical variable of interest have been obtained.

with uncorrelated errors. For data used in the global analysis,

most experiments combine various systematic errors into one

effective error for each data point, along with the statistical Ill. THE LAGRANGE MULTIPLIER METHOD

error. Then, in addition, the fully correlated normalization

) . o The Lagrange multiplier method is an extension of iife
error of the experiment is usually specified separately. For . . =~ A
. o . L minimization procedure, that relates the range of variation of
this reason, it is natural to adopt the following definition for

L ) . a physical observablX dependent upon the PDF’s, to the
the effectivey” (as done in previous CTEQ analyses variation of the functiorp(sloba,(a) that is used to judge the
goodness of fit of the PDF’s to the experimental data and

Xsloba( a)= ; Wan21(a) PQCD.

(n labels the different experiments), (2) °The often quoted theorem of Gaussian error analysis, that an
increase of¢? by one unit in a constrained fit to data corresponds to
one standard deviation of the constrained variable, is true only in

YIn other words, for this paper, the PDF parametgas play the absence of correlations. When existing correlations are left out,
mostly the role of “internal variables.” In contrast, they occupy the the relevant size oA y? can be much larger than 1. Appendix A
center stage in the companion pap#0]. discusses this point in some detail.
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5 FIG. 1. Left: The LM method provides
sample points along a single curkg in the mul-
tidimensional PDF parameter space, relevant to
the observableX. Right: For a given tolerance

i
]
a; 2 E y Axéoba', the uncertainty in the calculated value
Xp+Ay 2 1 2 of X'is = AX. The solid points correspond to the
MC sampling - 2 ' sample points on the cuniey in the left plot.
LM method ® XO 1 X

A. The method
The method has been introduced [ih,8]. The starting

Ng— MW (N ,,8)]=amin(A o) =X, and XJopara

point is to perform a global analysis as described in Sec. lifor @=1,2,3 ... ,M. The result is a parametric relationship

by minimizing the functiorp(éoba(a) defined by Eq(2), thus

generating a set of PDF’s that represents the best estim

betweenX and yZope. through X. We call this function
2Ioba(x); SO XglobaKXa):Xélobal,a is the minimum of

consistent with current experiment and theory. We call thisyg,a(@) when X is constrained to be&X,. The absolute

set the “standard set”denotedS,. The parameter values
that characterize this set will be denoted faf®}={a{®;i
=1, ... d}, and the absolute minimum (;‘/fg,obal will be de-
noted beS. Now, let X be a particular physical quantity of
interest. It depends on the PDFX=X(a), and the best
estimate(or prediction of X is Xo=X(a®). We will assess

minimum of x§,pa1, Which we denote, is the minimum of

W (A=0,), occurring at{a}={a®}. Thus the procedure
generates a set of optimized sample PDF’s along the curve of
maximum variation of the physical variablX in the
d-dimensional PDF parameter spa¢eith d=16 in our
casg. These PDF set§S,} are exactly what is needed to

the uncertaintyof this predicted value by a two-step analysis. assess the range of variation Xfallowed by the data. In
First, we use the Lagrange multiplier method to determinedther words, the Lagrange multiplier method provides opti-

how the minimum ofxgloba(a) increases, i.e., how the qual-
ity of the fit to the global data set decreasesXadeviates

mal PDF’s tailored to the physics problem at hand, in con-
trast to an alternative methofB] that generates a large

from the best estimats,. Second, in Sec. IV, we analyze the Sample of PDF’s by the Monte Carlo method. The underlying

appropriate tolerance Qjé,oba,.

As explained i 7,8], the first step is taken by introducing
a Lagrange multiplier variabl®, and minimizing the func-
tion

W(\,2) = X§obal @)+ AX(Q) (4)

with respect to the originad parameterga} for fixed values
of . In practice we minimizeV(\,a) for many values of
the Lagrange multiplieh,,\,, ... \y . For each specific
value\ ,, the minimum of¥(\,,a) yields a set of param-
eters{amin(\y)}, for which we evaluate the observab{eand
the relatedxgloba,. We use the shorthandX(,, Xglobal,a) for
this pair. XSIObaI,a represents the lowest achievalyg,,,, for
the global data, for whiclX has the valuex,, taking into
account all possible PDF’s in tHell d-dimensional param-
eter spaceof points{a}. In other words, the resufain(\,)}
is a constrained fi—with X constrained to b&,. We can
equivalently say thaX, is an extremum oiX if X§|oba| is
constrained to bqé,oba,'a. We denote the resulting set of
PDF's byS, .

We repeat the calculation for many values\gffollowing
the chain

ideas of these two complementary approaches are illustrated
in the plot on the left side of Fig. 1.

X500 X) is the lowest achievable value gf,,,(a) for
the valueX of the observable, wher)eslobal(a) represents our
measure of the goodness-of-fit to the global data. Therefore,
the allowed range oK, say fromXy,—AX to Xy+AX, cor-
responding to a chosen tolerance of the goodness of fit
A XGioba™ X5joba— X5+ Can be determined by examining a
graph of xgiopar VErsusX, as illustrated in the plot on the
right-hand side of Fig. 1. This method for calculatidgK
may be more robust and reliable than the traditional error
propagation because it does not approximxtg) and
Xéloba(a) by linear and quadratic dependence{ah, respec-
tively, around the minimum.

Although the parameter&} do not appear explicitly in
this analysis, the results do depend, in principle, on the
choice of parameter spacacluding the dimensiongd) in
which the minimization takes place. In practice, if the de-
grees of freedom represented by the parametrization are cho-
sen to match the constraining power of the global data sets
used, which must be true for a sensible global analysis, the
results are quite stable with respect to changes in the param-
etrization choices. The sensitivity to these choices is tested,
as part of the continuing effort to improve the global analy-
sis.

The discussion so far has left open this question: What is

3This standard set is very similar to the published CTEQ5M1 sethe appropriate tolerane®y . to define the “error” of the

[11].

predictionXy? This question will be addressed in Sec. IV.
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mz E hd = E L5 E Comparison to NLO calculation
23 o - . F based on MRS98 and MRS99
5 : gt gl adl ot qf gl 1 = E
o 22F - - 1 3
B 3 NLO QCD calculations using CTEQ PDFs B
2.1 ~ W = 05 F compared to
L ] DO and CDF W total cross-sections
2.0 i
0

FIG. 2. Calculated cross section faf= boson productiorfmultiplied by the branching ratio de‘—>e;) at the Tevatron, for various
current and historical PDF’s. The two plots are from REi€] and[7], respectively.

Our method can obviously be generalized to study theus functionyjp.(X). We see that all the sample PDF sets
uncertainties of a collection of physical observablespptained by this method lie on a smooth quasiparabolic curve
(X1, X3, ... Xs) by introducing a separate Lagrange multi- with the best-fit value at the minimum.
plier for each observable. Although the principle stays the As discussed earligin Fig. 1) points on the curve repre-
same, the amount of computational work increases dramatsent our sample of optimal PDF’s relevant to the determina-

cally with each additional observable. tion of the uncertainty ofr,,. To quantify this uncertainty,
we need to reach beyond the effectiygq,a function, and
B. A case study: TheW cross section establish the confidence levels for these “alternative hypoth-

eses” with respect to the experimental data sets used in the

In thi tion we examine the cr sectgn for inclu- -
S section we e e the cross sectigp fo global analysis.

sive W= production at the Tevatronp@ collisions at/s

=1.8 TeV) to iIIu§trate the method and_ to lay the groun_d IV. QUANTIEYING THE UNCERTAINTY

work for the quantitative study of uncertainties to be given in

Sec. IV. Other examples will be described in Sec. V. Prelimi- Consider a series of sample PDF sets along the curve

nary results of this section have been reported previouslyé,oba(X) of Fig. 3 denoted by{S,;a=0,1,... M} where

[7.8]. S, is the standard set. These represent “alternative hypoth-
Until recently the only method for assessing the uncereses” for the true PDF’s, and we wish to evaluate the likeli-

tainty of oy due to PDF’'s has been to compare the calcuhoods associated with these alternatives. To do so, we go

lated values obtained from a number of different PDF’s, ashack to the individual experiments and, in each case, perform

illustrated in Fig. 2, in which the plots are taken from exist- as detailed a statistical analysis as is permitted with available

ing literature? The PDF’s used in these comparisons are eiinformation from that experiment. After we have obtained

ther the “best fits” from different global analysis groups meaningful estimates of the “errors” of these candidate

[11,12 (hence are not pertinent to uncertainty stupl@sare ~ PDF’s with respect to the individual experiments, we shall

chosen by some simple intuitive critefia3]. The meaning try to combine this information into a global uncertainty

and reliability of the resulting range afy, are not at all measure in the form oA X andAXélobal'

clear. Furthermore, these results do not provide any leads on

how the uncertainties can be improved in the future. The W production at the Tevatron

Lagrange multiplier technique provides a systematic method
to address and remedy both of these problems. 1350
Let the physical quantitX of the last section be the cross
sectionay, for W= production at the Tevatron. Applying the 3 1320
Lagrange method, we obtain the constrained minimum of Afa1290
X5iobas @S @ function ofory, shown as solid points in Fig. 3. 1260
The best estimate value, i.e., the prediction for the standard 1230
setSy, is owp=21.75 nb. The curve is a polynomial fit to 1200
the points to provide a smooth representation of the continu-
21 215 22 225
ow (nb)
“These plots show the product ofy times a leptonic branching FIG. 3. Minimum x5y, Versusay, the inclusivew* produc-

ratio, which is what is measured experimentally. The branchingion cross section at the Tevatropy( collisions at/s=1.8 TeV) in
ratio B has some experimental error. For studying the uncertaintiesb. The points were obtained by the Lagrange multiplier method.
of oy, we will focus onayy itself in the rest of the paper. The curve is a polynomial fit to the points.
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The experimental data sets included in our global analysis
are listed in Table I. For some of these experiments, infor-

mation on correlated systematic errors is availatakbeit z 11

usually in unpublished forin For these, statistical inference L 106

should be drawn from a more accuratg function than the T 1.02

simple formula Eq(3) used for the global fit. In particular, if

o is the uncorrelated error af@,, ;k=1,2, ... K} are the 0.98

coefficients oK distinct correlated errors associated with the 21 215 22 75
data pointl, then an appropriate formula for tt\é function ow (nb) Tevatron

is

FIG. 4. x?/N of the H1 data, including error correlations, for
sample PDF's obtained by the Lagrange multiplier method for con-

K K
(DnI_TnI)2 _ i indi -
XﬁZE - _ 2 2 Bi(A l)kk’Bk’ . (5 straln_ed_ values ofry at the Tevatron. The arrow indicates the glo
I on k=1 -1 bal minimum.
whereBy is a vector, andi a matrix, inK dimensions: correlated systematic errors are available for this daté set,
and are incorporated in the calculation using Es). The
B, = Z ﬁku(Dnu—Tn|)/<fﬁ| ; number of data points in this sethg;;=172. The calculated

values ofxﬁllNHl are plotted againstry, in Fig. 4. The
curve is a smooth interpolation of the points. The value of
2 . .
B 5 Xxh1/Ny1 for the standard se3, (indicated by a short arrow
Akk’_‘skk’Jrzl: BBl o - ©  on'the ploj is 0.975, and it is 0.970 at the minimum of the
curve. These values are quite normal for data with accurately
(The sum ovet here includes only the data from experiment determined measurement errors. We can, therefore, apply
n.) Traditionally, x2 is written in other ways, e.g., in terms of standard statistics to calculate the 90% confidence level on
the inverse of thelx N) variance matrix. For experiments X°/N for N=172. The resultis shown as the dashed horizon-
with many data points, the inversion of such large matriceda! line in Fig. 4. o o _
may lead to numerical instabilities, in addition to being time ~ We have similarly calculateg,/N, including information

consuming. Our formuld5) has a significant advantage in on the correlations of systematic errors for the BCDMSp
that all the systematic errors are first combin@analyti- data set. The results are similar to the H1 results, except that

cally”) in the definitions ofB, and A, . Equation(5) re-  the absolute values are all larger than 1.12, a large value for
quires only the inverse of the much smallé¢X K) matrix =~ N=168 data points. This is a familiar problem in data analy-
A - (K is the number of distinct systematic error§he  Sis, and it is encountered in several other data sets in this
derivation of these formulas is given in Appendix B. Equa-global analysigcf. below. The x3/N,, calculation including
tion (5) reduces to the minimum gf? in Eq. (3) with respect ~ correlations of the errors, is also done for the DO and Col-
to A, if the only correlated error is the overall normalization lider Detector at FermiladCDF) jet cross section§.For
error for the entire data set; in that ca8e= — ame _ those experiments that have only provideffective uncor-

By using Eq.(5) or Eqg. (3) for cases where the correla- r_elateq errors, we must rely on EQ) _for our error ca!cula-
tions of systematic errors are unavailable, we obtain the bedon: since that represents the best information available.
estimate on the range of uncertainty permitted by available N order to obtain usable likelihood estimates from all the

information on each individual experiment. We should noted@ta@ sets, one must address the problem mentioned in the

that the experimental data sets are continuously evolving2/€Vious paragraph: Even in a "best fit,” the valuesifper
Some data sets in Table | will soon be updat@elus, H) or data point,x,/N,,, for individual experiments vary consider-
replaced(CCFR.% In addition, most information on corre- ably among the established experime(tébeled byn). Spe-

lated systematic errors is either unpublished or preliminarycifically, x7/N, ranges from 1.5 1.7 (for ZEUS and CDF-

The results presented in the following analysis should, thergiet) on the high end to 0.5-0.(for someDY experiments

fore, be considered more as a demonstration of principle—agn the low end in all good fits. Considering the fact that
the first application of our proposed method—rather than theome of these data sets contain close to 200 points, the range
final word on the PDF uncertainty of th& cross section. of variation is huge from the viewpoint of normal statistics;

A. Uncertainty with respect to individual experiments 6 ] ]
These systematic errors are unpublished results, but are made

As an example, we begin by comparing t{,} series  yailable to the public on the H1 Web page. For convenience, we
for oy at the Tevatron to the H1 data dét5]. Results on  have approximated each of the pair of four nonsymmetrical errors
by a single symmetric error. The size of the resulting erroogn
inferred from this evaluation, is not affected by that approximation.
SCompare talks presented by these collaborations at DIS2000'The measurement errors of the jet cross sections are dominated
Workshop on Deep Inelastic Scattering and Related Tojhiv®r- by systematic errors, so the error correlation matrices are used for
pool, England, 2000. X5 of these experiments even iy -
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experiments with»(ﬁ IN,, deviating from 1.0 by a few times X*—x0? vs ow (Tevatron)
V2/N, in either direction would have to be ruled out as ex-
tremely unlikely[25]. 40 40 40
The reasons fox/N, to deviate from 1.0 in real experi- 30 BEDMEpHIcE] | g9 Joy HIG2)
ments are complex, and vary among experiments. They armgw _28 18
almost by definition, not understood, since otherwise the er- 55 Fl7 55 55 Ti5 iE 5 BT

rors would have been corrected and the resulgfgvould
become consistent with the expected statistical value. Unde ZEUS (186) g — (};t/ < —— a23)

these circumstances, a commonly adopted pragmatic ag
proach is to focus on the relatiyg? values with respect to i _1 e e ol
some appropriate refereng@.? Accordingly, in the context 212 217 222 212 217 222 212 217 222
of performingglobal QCD analysis, we adopt the following 12, 40

{
<

—_

5
procedure. For each experimgtabeled byn): g MR D) 20| SFR267) % diL
(i) Let x2 o denote the value of?, for the standard se. 2’%\.«’/ 2 \ %
We assume, is a viable reference set. Becaugp, may be 212 27 @2 032 27 22 212 217 222
far from a likely value for random errors, wescalethe i 10
values ofy?2 , (for =0,1,2 ... ,M) by a factorC, calling ? E605 (119) 3| NASL(Q) 8| CDFw(l
the resulty? , P 2y 4 3
) a 96000 Ofe-o—oooo®
Coa n=CroXlm- @ Dz 21 B2 73 217 B2 517 217 003
E866 (11) 1$ DOjet (24) 38 CDFjet (33)

The constantC,, is chosen such that, for the standard set, : 10
;2&0 assumes the most probable value for a chi-squared vari _{[—®s—®ooee _i: -eeseoee| (oo eee®]
able:;ﬁyoz &s0= the 50th percentile of the chi-squared dis- 212 217 22 22 2l7 22 a2 2T 22
tribution P(x?,N,) with N, degrees of freedom, defined by  FIG. 5. The abscissa isy, in nb, at the Tevatron. The ordinate

is Xﬁ—Xﬁ,O- The number in parentheses is the number of data
points. The horizontal lines are explained in the text.

€50
f P(x% N,)dx?=0.50. (8)
° same, due to the large variations in the vaIueAqﬁ]a for
different experiment$.The ordering of the experiments in
Fig. 5 is the same as in Table I, with experiments ordered by
process(DIS, DY, W, and jet production It is clear from
these graphs that the DIS experiments place the strongest
constraints onry,, because they have the largdsg? for the
sameAoy,. This is to be expected since quark-antiquark

(If N, is large thenésp~N,,.) The rescaling constafi, is
thus §5o/Xﬁ,o- For random errors the probability that®
<égo (Or >E&50) is 50%. For those experiments whogéo
deviates significantly frongsg, this rescaling procedure is
meant to provide a simpl@ut crude way to correct for the

unknown correlations or unusual fluctuations. L ) S

. ) _ annihilation makes the dominant contribution ¢g,. We

(ii) We then examine the values gf , for the altemative 210 observe that most experiments place some constraint on
setsS, with @=1,2, ... M, usingx? ,— x2 , to compute the ow on both sides, but a few bound it on one side only.
statistical likelihood of the alternative hypothestg with Globally, as shown in Fig. 3, the combined constraints give
respect to the data sef based on the chi-squared distribu- rise to a classic parabolic behavior f}@globa(gw)_
tion with N, data points. To estimate the statistical significance of the individyl

This procedure does not affect the results presented ear"'ier{creases we assume that the rescaled varﬁ,ﬁlebeys a
for the H1 experiment, sincgﬁ’oan is already very close to chi-squaréd distributionP(x2,N,) for N, data points.

1 for that experiment. .
p Thereby, we estimate the valueﬁ that corresponds to the

Before presenting the results of the likelihood calculation, o X ) s
it is interesting to examine, in Fig. 5, the differenckg? 90% confidence levdlC.L.) uncertainty foroy, (with respect

) . w2 .
=x2,—x2, (before rescalingversusoy, for the 15 data sets. {0 experimenn) from the formulay;, = £q0, Whereéq is the
(N.B. The vertical scales of the various plots are not the?0th percentile defined by

b0 5 2
P(x“,Np)dx“=0.90. 9
8The alternative is to take thebsolutevalues ofXﬁ seriously, and 0

hence only work with alternative hypotheses and experiments that . . o
are both self-consisterite., have|x2/N,— 1|=< y2/N,) and mutu- For example, Fig. 6 shows the chi-squared distribution

ally compatible in the strict statistical senée., have overlapping P (x*:Np) for N,=172, the number of data points in the H1
likelihood functions. Since few of the precision DIS experiments data set. The 50th and 90th percentiles are indicated. We

are compatible in this sense, one must then abandon global analys®)oose a conservative 90% C.L. because there are other the-
and work instead with several distinand mutually exclusije  oretical and phenomenological uncertainties not taken into
analyses based on different experiments. account by this analysis.
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by each experiment; rather they represent the ranges allowed
by the experiments for alternativgobal fits {S,}. For this
reason, and others related to the rescalingofmentioned
earlier, as well as approximations inherent in many of the
original published error$jt is not obvious how tacombine
these errors. We refer to the ranges in Fig. 7 by the generic
termlocal (i.e., single-experimehuncertainties On a quali-
X tative level, Fig. 7 exhibits the same features seen earlier in
Fig. 5: (i) the quark dominated DIS experiments give the
FIG. 6. The chi-square distributiod(y2N,) for N,=172 data Smallest error bars, andi) a few experiments only set
points. The dashed lines indicate the 50th and 90th percentiles. bounds on one side, while the rest limit the range in both
directions. In addition, Fig. 7 gives us an overall view which
To summarize our procedure, an alternative PDFSset  clearly shows thair, is well constrained in the global analy-
lies within the 90% C.L. for experimem if it has ;ﬁa sis, and the experimental bounds are consistent with each
<&qo; that is, if ’ other. o _ _
The important question is how to provide a sensible mea-
Xﬁ W £oo sure of the overall uncertainty in view of the complexity of
> <z (100  the problem already described. The situation here is not un-
Xn,0 €50 like the problem of assigning an overall systematic error to
i . i 5 an experimental measurement. Figure 7 shows a set of 90%
We judge the “kg“hOOd 0B, from theratio of x;, , o the ¢ | “ranges fore, from different sources, but these ranges
reference valuey, o, rather than from the absolute magni- gre highly correlated, because the alternative hypotheses be-
tude. The horizontal lines in Fig. 5 correspond to the valuesng tested come from global fits. The final uncertainty must
of Ax2 obtained in this way. Finally, from the intercepts of be a reasonable intersection of these ranges.
the line with the interpolating curve in each plot in Fig. 5, we  We will state an algorithm for obtaining the final uncer-
obtain an estimated uncertainty rangeogf from each indi-  tainty measure otr,, based on Fig. 7. The same algorithm
vidual experiment. The results are presented collectively irfan be applied in the future for predictions of other observ-
Fig. 7, where, for each experiment, the poi@t)(is the value ~ ables. It has the following two partél) determine the cen-
of oy for which Xﬁ is minimum, and the error bar extends tral value using all the experiments, that is the solid line in

across the 90% C.L. based on that data set. Fig. 7; (2) take theintersectionof the error ranges as the
The uncertainty ranges shown in Fig. 7 with respect to”

ombined uncertainty. But in calculating the intersection, ex-
individual experiments represent the most definitive result eriments below the mean are used only for setting the lower
of our study, in the sense that the input and the assumptio

ound, and experiments above the mean are used only for
o o . .nssetting the upper bound. With this algorithm, experiments
can be stated clearly and the analysis is quantitative withi hat permit a large range ofyy, i.e., that depend on aspects
the stated framework. It is natural to proceed further andys 4.« PDE's that are not se\:/\;w’sifiv'é to the valueogf, will
estlzmate a global measure dfoy, and the corresponding ot affect the final uncertainty meast(gs they should not
Axgoba- This last step is, however, less well defined andaccording to this algorithm, the result for the uncertainty of

| P PR ol

3
o

130 160 190 220

requires some subjective judgment. ow is 20.9 nb<oy<22.6 nb. These bounds are approxi-
_ mately =4% deviations from the predictiof21.75 nb and
B. The global uncertainty so we quote at4% uncertainty ino, due to PDF's.

It should be emphasized that the ranges shown by the Now we may determine the increasex'ré,oba, that corre-

error bars in Fig. 7 are not errors determined independentlgponds to our estimated uncertaityy, in the oy, predic-
A (T tion. Referring to Fig. 3, a deviation af,, by £4% from

25 3y (Tevatron) the minimum corresponds to an increasgs .~ 180. That
iS, A X500z IN Fig. 1 is 180. In other words, along the direc-
tion of maximum variation ofo, a PDF set WithA)(sIobal
=180 is found to violate some experimental constraints by
== this analysis.

T_ T [ * C. Comments
S0 (N N U Y PR o - |- L d_|—

We should point out that the above uncertainty estimate,
20 Aowlow~4%, represents only a lower bound on the true

BCDMSp
BCDMSd
" E605
| NAST
CDF
—E866
I Dojet
DFjet

FIG. 7. Ranges ofry, within the 90% C.L. for the individual  9or instance, the single uncorrelated systematic error associated
experiments. The ordinate is, for the Tevatron procespp with each data point, which is the only systematic error given for
—W=X. The solid line is the best estimate according to the stanmost experimental data sets, is clearly only an “effective uncorre-
dard PDF se§,. The dashed lines are the bounds described in Sedated error” which qualitatively represents the effects of the many
IV B. sources of systematic error, some of which are really correlated.
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uncertainty, since many other sources of error have not yet W production at the LHC
been included in the analysis, theoretical ones such as QCD 1400
higher-order and resummation effects, power-law correc- 1360

tions, and nuclear corrections. These need to be taken into
consideration in a full investigation of the uncertainties, but !

that goes beyond the scope of this paj3ate shall add only »Q“ 1280
two remarks which are more directly related to our analysis.

The first concerns a technical detail. In the results re- 1240
ported so far, we have fixed the normalization factoké} 1200
in the definition OfXglobal[Eq- (2)] at their values determined 175 185 195 205
in the standard fiS,. If we let these factors float when we Tw (nb)
perform the Lagrange multiplier analysisg, will increase FIG. 8. Minimum Xslobal versusay, in nb, for inclusiveW*

noticeably compared to Fig. 3 for the same? . How- production at the LHC(CF. Fig. 3) The prediction is 189.7 nb. The
ever, upon closer examination, this behavior can be easilgoints are the results of LM calculations. The curve is a polynomial
understood and it does not imply a real increase in the uniit to the points.

certainty ofoy,. The key observation is that the additional

increase(or decreasein oy is entirely due to auniform  summed over the two final states. The curve is a smooth
increase(or decreaseof {\;} for all the DIS experiments. interpolation of a series of PDF sefS,} generated by the

There is a simple reason for this: The values ofqh]mda Lagrange multiplier method. The best estimate value of the
distributions in the relevant range (which determine the LHC cross section isry=189.7 nb.
value of o) are approximately proportional to\;}ps. Comparing Figs. 3 and 8, one immediately notices that
Although every experiment does have a normalization unceithe uncertainty of o(LHC) is greater than that of
tainty, the probability that the normalization factors of all the o(Tevatron) for the samAx§|0ba|. This indicates that be-
independenDIS experiments would shift in theamedirec-  causeW production inpp collisions at the LHC andp
tion by the sameamount is certainly unlikely. Hence we collisions at the Tevatron involve different mixtures of par-
avoid this artificial effect by fixing AV} at their “best val-  ton subprocesses as well as different kinematic ranges, the
ues” for our study. Allowing the factor§\;,} to varyran-  constraints imposed by current experiments included in the
domly (within the published experimental normalization un- global analysis are also different for the two cases. Referring
certaintieg would not change our estimated value df,  to the map of tha-dimensional PDF parameter space on the
significantly. left-hand side of Fig. 1, we are generating sample PDF's
The second remark concerns the choice of parametrizaslong different directionk  in the two cases. Therefore, it is
tion. We have mentioned that even the robust Lagrange muhot surprising that the rate of variation J?Elobal is also dif-
tiplier method depends in principle on the choice of the parferent.
ton parameter space, i.e., on the choice of the functional To demonstrate this point, and to quantify the uncertainty
forms used for the nonperturbative PDF's at the low-on the LHC prediction, we have carried out the same error
momentum scal€o. To check how our answers depend on gnalysis as in Sec. IV, i.e., comparing the alternative PDF’s
the choice of parametrization in practice, we have done many, the individual experiments. Figure 9 gives the final over-
similar calculations, using different numbers of free paramvjew of the 90% C.L. ranges of, obtained from these
eters within the same functional forfef. Appendix Q and  comparisons, analogous to Fig. 7 for the Tevatron cross sec-
using different functional forms for the factor multiplying tion. There are some differences compared to the Tevatron
x*(1-x)°. We have not seen any dependence of the uncegase. The LHC prediction is more tightly constrained by ex-
tainty estimates on these changes. Although more radicderiments that are sensitive to PDF’s at smallhis makes
ways of parametrizing the nonperturbative PDF's might af-sense, becaus# production at the LHC is not dominated by

fect the r_esu_lt more, there is no know_n exar_"p'e Of. such Fi‘/alenceqainteractions. We note in particular that the two
parametrization, which at the same time still provides an

equally good fit to the full data set. Ao (LHC)
V. FURTHER EXAMPLES 51 g8 sd888 ey b
. _ 250 88—@2;2au%"<’%£§3
A. W= production at the LHC | /a =z Z 42290 z A v
- . . 225
A study similar to the last section has been carried out for 3 l ﬂ‘ }»
inclusive W= production at the LHC. Figure 8 shov;(%,Obal S2000 7 11 739 T o | 4 1 B
versus oy, for the processpp—W*X at \s=14 TeV, © 175 f {_I_T_ ? _’ - —} J{ T_‘_F 1Tz
150

1%8ecause there are these additional sources of uncertainty, we 125
have used 90% C.L.’s, rather than 68% C.L.’s, to calculate the
error. FIG. 9. The same as Fig. 7, except for the LHC case.
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Z production at the Tevatron Z production at the LHC
1360 1360 FIG. 10. Minimum x3,z Ver-
sus o7 for (@) the Tevatron, and
3 1320 5 1320 (b) the LHC.(Cf. Fig. 3) The pre-
%,,1280 S 1280 dictions are 6.55 nb at the Teva-
= S tron and 58.0 nb at the LHC. The
1240 1240 points are results of LM calcula-
tions. The curves are polynomial
1200 1200 fits to the points.
63 64 65 66 6.7 68 54 56 58 60 62
oz (nb) g7z (nb)

inCll-JSive Jet prOdUCtion experiments place Significant Con-XglobaI' Symmetrized for S|mp||c|ty’ is approximate|y 130.
straints onoy at the LHC. o For the LHC procespp—Z°X, Fig. 10b) shows the

We can combine the individual error bars in Fig. 9 accord-minimum X2opa @S @ function ofa,. The dependence of
ing to the algorithm proposed in Sec. IV to produce a global)(zI .1 0N owz(LHC) exhibits a behavior departing from
uncertainty measure far,, at the LHC. The lower bound on 7,22

: . ; o quadratic over the full range afy,,; under study. This is
‘TW(LHC). obtained by the intersections of the mdmdual evidence that the Lagrange multiplier method can go beyond
ranges is ow=175.3 nb; the upper bound isoy

the traditional error matrix approadlhich depends on the

=204.6 nb. These bounds, shown as the dashed lines in Figy aqratic approximationin exploring the neighborhood of
9, correspond ta- 8% deviations from the predictiod89.7  iha minimum.

nb). The global uncertainty oo, (LHC) is thus significantly The global prediction isr,=58.0 nb. Analyzing the lo-
larger than that ory,(Tevatron). Reinforcing this conclu- cal y2 as in the other cases, we find that the uncertainty of
sion is the fact that the scatter of the points in Fig. 9 is Iargergz(l_ﬁc) due to PDF’s is ap;proximatel;t 10%. As in the
than in Fig. 7. A . . case ofW™ production, the PDF uncertainty f@ produc-
We can again mspec_:t th_e increase )‘élob_a' from the  4jon at the LHC is significantly larger than that at the Teva-
guoted range of alternative fits. A8% deviation from the tron. Measurement ofv* and Z° production at the LHC

minimum,zsymmetrized_for simplicity, corresponds to the in-yij| “therefore, provide significant information on PDF's.
creasel xgiopar~ 200. This number is similar to the increase

in Xélobal for our estimated uncertainty of,, at the Tevatron.
In the companion pap€fl0], we make some process- )
independent estimates df)(élobal based on completely dif- ForWandz productlon_ at the Tevatron, we can compare
ferent considerations. Those arguments also yield the sanf&!f calculated_kcr(())ss seitloobs,\, and oz, with their ranges
order-of-magnitude estimates AfXSlobal (in the range from of uncertainty=4% and= 3% respectively, to the measure-
100 to 200 for acceptable PDF’s around the global mini- ments Qf C.DF and DO from Run_[l26]. The comparison is
mum. Since the eﬁectivgé,oba,, as a measure of goodness- shown in Fig. 11. The two experiments do not measye
of-fit, does not have a normal statistical implication, points"’md‘fZ per s but ratherav\@w andozBz, whereBy is the

on a constanj ., surface in the PDF parameter space doPranching ratio folV" —e» and By is the branching ratio
not necessarily correspond to a constant likelihood. Soméor Z°—ee We have used the valuds,,=0.106 andB;
variation with the direction in the multidimensional space is=0.0337 for the calculatior{27]. The bands in Fig. 11 show

C. Comparison with existing data

to be expected. the ranges ofoyB,y, and ozB, from our PDF uncertainty
study (but no uncertainty included fror8,y and B;). The
B. Uncertainties onZ° production two measurements af,B,y, are consistent with the uncer-

. . . tainty range. The two measurementsogfB, are not.
We conclude this section by presentlnog results_from aP- It should be noted that CDF and DO use different normal-
plying the Lagrange multiplier method @" production at  izations for their luminosity determinations. The CDF Col-

the Tevatron and the LHC. ) _ laboration bases its luminosity purely on its own measure-
Figure 1@a) shows the minimumyg,q,, @s a function of
o7 at the Tevatron. The global prediction is,=6.55 nb. W production Z production
The experimental measurement by the DO Collaboration is S 96/ CDF DO =y C%F DO
0,B=0.221+0.003-0.011 nb; the result from CDFall = §0'23
data from Run ) is o,B=0.250+ 0.004+0.010 nb[HereB 52'4 — S oot 3
22 - : '

is the branching ratio foZ°—ee, which is (3.367 0.005)
x10 2.] The comparison of the prediction to Tevatron data £, 11. Experimental measurementsoqfBy, ando,B; at the

is discussed below. Analyzing the locgf in the manner of Tevatron, compared to the PDF uncertainty band of the theoretical
Sec. IV, in order to quantify the uncertainty of the prediction, prediction. On the data points, the short error bar is the statistical
we find that the uncertainty af,(Tevatron) due to PDF’s is error, and the long error bar is the combined statistical and system-
+3% of the prediction. The corresponding increase inatic error.
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ment of the inelastipp cross sectiofi28,29, while DO uses ~ responding plots in Figs. 8 and J1frovide equally good or
the world average for this cross section. Thus current lumibetter fits to the global data sets compared to the fits of
nosities quoted by CDF are 6.2% lower than those quoted bfs],asl}.**? Thus, it is clear that the Lagrange multiplier
DO. Consequently, all CDF cross section measurements aféethod can generateptimal PDF’s, i.e., having théargest

ab initio 6.2% higher than those of DO. If the CDF/D0O mea- excursion of the variablX of interest, which are difficult to
surements ofrBy, and o,B, are rescaled by 6.2% with discover byad hoctrial-and-error methods used in the past.
respect to each other, they are in excellent agreement.

Because of the uncertainty in the inelasﬁp Cross sec-

. . . VI. PDF SETS FOR EXPLORING W AND Z PHYSICS
tion, it has been proposed to normalize future Tevateod

LHC) physics cross sections to the measufédross section The parton distribution sets used in the above calculations
(or ratheroyBy). This makes the determination of the un- are useful for exploring some aspectsWidfandZ physics at
certainty ofoy due to PDF’'s even more important. the Tevatron and LHC, since they provide much more reli-
able estimates on the PDF uncertainties than existing ones in
D. Comparison with previous uncertainty estimates the literature, which are not designed to probe the full range

of possibilities in the parton parameter space. With this in
?nind, we present in this section some representative PDF
sets for applications to the rate \f andZ production at the
Tevatron and LHC. These PDF’s are relevant to the total
cross sectionsry, and o, and each corresponds to a par-
ticular direction L) in the PDF parameter spa¢see Fig.
yl). Therefore they are not suitable for estimating the PDF
uncertainties of other observables that are sensitive to other
. . aspects of the PDF’s. Other PDF sets can be obtained, using
theRrefsuIts 0{13] in the context of this paper. the method introduced in this paper, to probe the range of
,e erence_[lS] construgts an extended set of MRST other variables, such as rapidity) or transverse momentum
PDF dS’ gf Whlﬁ]Rtgge_grgostémEortant forwfand 7z darg: the {%)T) distributions(hence relevant to the measuremeniof
Stan ard set and three pairs of up and down se as$. These will be investigated in subsequent work. Also,
designated the companion papefl0] supplies information from the
{ash,asl), {gT.9l}, {at.ql} Hes§ian method that can be used to construct the optimal
PDF’s for any observabl¥.
The PDF set that yields the “best estimate” for all of the
rphysical cross sections covered in this paper is our standard
FetSO. The parametrization of the initial distribution is given

It is interesting to contrast our results to existing estimate
of the uncertainties oér, and o, at the Tevatron and LHC
colliders based on the traditional method of comparing re
sults obtained from somewhatl hocPDF’s. Some of these
previous comparisons fas,(Tevatron) between historical
PDF’s as well as various trial up or down sets obtained b
the CTEQ and Martin-Roberts-Sterling-ThorndMRST)
groups, were shown in Fig. 2. We will briefly comment on

in which some aspect of the parton distributions is eithe
raised () or lowered () by an amount that represents an

educated guess of a “standard deviation.” The predictions of, Appendix C. In the following, we present two sets of

ow andoz are then compared for these alternative PDF setpprig that bound the likely range for each of the cross sec-
to get an idea of the uncertainty due to PDF’s. ;

In the case of the Tevatron processes, the deviations (;[%o
ow or oz from the value for MRST99 for sefsxsT,agl},
{97,9l}, and{q7,q]} were found to bet2%, +1%, and
+3%, respectively. From these results, the authorg18f
concluded that the uncertainties @fy and o7 at the Teva-
tron are no more than abotit4%, and mainly attributable to

ns.
To exemplify the PDF's that characterize the range of
uncertainty of W production at the Tevatron, we use two
representative sets, label&g, 1., which correspond tary
=ow(Sy) *Aoyw (with Aow/ow~0.04), respectively.
These two sets are extreme fits obtained by the Lagrange
the normalization uncertainty in the inputandd distribu- muiltiplier method. The parametets) for these sets are

. . X . : . iven in Appendix C. We now compare some of the parton
tions. This conclusion appears to be quite consistent with th istributiorf)spfrom the three setsy, P SoSi 7o), 10 exarr)n-
results of the previous sections based on exploring the varia- -~ (TeVe T, =W, Tev
. . ; ine the ranges of variation of the PDF’s themselves.
tion of the cross section over the entire PDF parameter space.
(This range of uncertainty also happens to coincide with
what one would get by comparing historical PDF sets, as ,, )
shown in the right-hand plot of Fig. 2. The values Ofygipa fOr {@sT,asl} are{1531,135¢ compared
For the LHC, the MRST study found that the uncertaintyto ~1400 for the outermost LHC sets shown in Figs. 8 and 10 and
of oy and o, at the LHC is only slightly larger than at the prﬁiﬁme? 'S tlhfe.t next ZeCtt'(;.n't . lorati i PDE
Tevatron; the uncertainty was estimated to Hh&%. The © global 1l's Used st ISt i our expioration o dneer

| b d - f h q tainty were conducted with fixedg. To make sure that this restric-
argest observed variations came from the sefs andas|, tion does not result in an underestimate of the uncertainties,of

differing from the standard prediction by4 -5 %. This €S- 4144, , we have examined the effect of freeing in the analysis
timate isconsiderably lowetthan the=8-10% result 0b-  (putimposing the known constraints from the world average f
tained by the detailed analysis of the previous sections. Wene results on the size of the uncertainties are not changed notice-
have verified that the PDF sets that giveB—-10% devia-  ably. This is because the full variations in the PDEpsrticularly
tions of oy (LHC) and o2(LHC) from the standard predic- the gluon allowed in the Lagrange approach, can absorb the added
tion (represented by the points at the outer edges of the cotegree of freedom.
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duction at the Tevatron and LHC. These correspond to the

\
0.04 N Ag- Tevatron outlying points on Figs. 1@ and 1Qb). They are similar to
0.02 *\ Au+, Ad+ Sw.tev @nd Sy e, with small differences in the flavor de-
2 \ > pendence.
5 0f —==
4
—0.02 :;ii Auc, Ad— VIl. SUMMARY
—0.04 We have developed the Lagrange multiplier method to
calculate uncertainties of physical observables due to PDF’s,
-1 -05 and we have used the method to determine the uncertainty of
the total cross sections fov= production andZ® production
at the Tevatron and LHC. The method is more reliable than
0.04 Ag+ LHC past estimates becau&eg it explores all the possibilities in
the parameter space of the input PDF’s, independent of other
0.02 assumptions, andii) it produces the maximum allowed
) Au+, A STTT Sl range for the specified physical variables. This is in contrast
E 0 //W to previous attempts which relied on varying certain features
_002| AumAdZ-T v of the parton distributions chosen in somé hocway.
7 ,/ From this analysis, we find that the uncertainty of the
-0.04 // ) Ag- prediction foroy or o at the Tevatron with current experi-
Y ) Y SR Y mental constraints is apprOX|mat(_ely3—4 %, and at the
log x LHC the uncertainties are approximatety8—10%. These

numbers do not include other uncertainties associated with

FIG. 12. Comparison of PDF seS, to the standard se, for
the Tevatron(uppe) and LHC (lower) cases, respectivelAu.. is
the difference between(x) with ow= owe*= Aoy andu(x) with
ow=owo; Q=80 GeV. The solid curves amreAf (x) and the
dashed curves areAf _(x). The abscissa is Iggk.

theoretical approximations, nuclear corrections, and other
unexpected sources. We have explored, to some extent, the
possible effects due to the choice of parametrization of the
nonperturbative input PDF’s, and found them to be small.
The current work should be considered exploratory in nature,
as a first application of this improved approach to error esti-
mates. A more comprehensive study, based on soon to be
Sy 1ev: Compared to the standard StatQ=80 GeV. The improved data sets, and including other sources of uncertain-
function xAf(x) is plotted for each parton flavor, whefef ties, will produce better overall estimates of the physical pre-
is f—f,. The gluon function has been divided by 10 to fit on dictions.
the same graph. The solid curvesy, , Ad, , Ag, ) corre- This study should be regarded as the precursor for many
spond to Sy ey, and the dashed curves . For interesting applications to come, on physical processes of
S\X/,Tev' requiringoy to be larger thararw, makes theiand  interest to the precision study of the SM, and on predictions
d distributions larger than for the standard fif(andd,) so ~ for new physics at future colliders. Some examples are ra-
Au, andAd, are positive. Then the gluon distribution must pidity distributions ofw* andz® production, which contain
be smaller than the standard because of the momentum suanwealth of information on parton structure of the nucleon,
rule. In the case oSy, 1.y, the reverse is true, resulting in the W mass measurement, top and Higgs cross sections, etc.
almost a mirror behavior. At the Tevatron, a typigebr the There are other approaches to error estimates in global
parton-level procesqlazawt is Myy/\s=0.04. The dif- QCD arla_ly5|i1—4]. In ger)er_al, if greater emphasis is placed
ferencesAu and Ad are significant in the range 0.&k on th? rigor” of the stat_|st|cal m‘?thOd' then the_ range of
<0.04. The magnitude akf(x) in this range is a few per- experiments that can be mcl_uded in the analyss is narrower.
cent of the standaréb(x), which makes sense sindaryy is We havg chosen to emphaS|ze the inclusion of. the full range
2 A% shift of o, for theée PDE sets. of experlmental constraints, and adapt the statlstlca_ll analysis
We can carr\;/v out the same comparison Véproduction to deal Wlth t_he practical problems that one fa_ces in such a
at the LHC. The PDF’s that bound the range of uncertaintys.yStem' Within our general framewark, there Is an glterna—
: + . tive, complementary approach based on the conventional er-
zire desgnzt ted a}tf‘NALHC ’ / Whlcz)hogco;_rre]spgr[n)d': ©ow 1o matrix method 8]. We explore this latter method, as ap-
E;;V;/(:?é—giv‘er‘é\’ i\r’]\" Appei\(ljvixagzv. Fiéuré (lbieshows Eg:?(m plied to global QCD analysis of PDF's, in a companion paper
distributions fromS2,. ... (Again, the gluon has been di- [10]. We mention briefly the contrasting features and relative

! ) merits of the two approaches here.
vided by 10) In the LHC case, the typical for the process

i o _ The Lagrange multiplier method focuses on a given
q10,— W™ is Myy/+/s=0.006. The region wherku andAd  physical observableX (or a set of observablegX,}) and
are significant is seen accordingly lower xnthan for the

determines the uncertaintyX allowed by the global data set
Tevatron case. . within a specified tolerance for the global fit. The error ma-
In Appendix C we also present PDF se$s 1, and

trix approach, using the Hessian matrix, focuses instead on
S; Lnc that characterize the range of uncertaintieZgfro-  the uncertainties of the PDF’s as represented by the param-

Figure 12a) shows u(x,Q), d(x,Q) and g(x,Q) for
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eters{a;;i=1,... d}. Itis, in principle, universal because, Here C;; is a real symmetric matrix, and\
once determined, these errors can be propagatednyo = .DetC/(27)V? ensures the normalization condition
physical variableX. However, the results are reliable only if fdP=1.

the functionxéoba(a) and the observablX(a) can be ap- We will need the variance matria;«j), where the nota-

proximated by lowest-order expansions in the parameteron (Q) means the average & in the probability distribu-
{a}, and if the numerical computation of the derivativése tion (Al). For this Gaussian distribution,
Hessian matrixis under control. The latter problem is sur-
prisingly difficult for global QCD analysis, because the ei- <aiai>:(cfl)ij ' (A2)
gﬁg;g!uﬁigf }:t)?gb?(;‘ro] rr?;ztrg( e;?régﬁ(lég‘fnzn%rﬁf g:rgwrag The mean-square fluctuatié of theith measurementy; is
matrix results are consistent with the constrained fitting re- EE(a?):(C‘l)-A _ (A3)
sults[10]. Thus, at present, both methods appear to be appli- o :
cable to the study of uncertainties in global QCD analysis. To find the best estimate of the value wf from theseN

In Figs. 8 and 1(b) there is a significant cubic term in the measurementsgnoring the correlations in the measurement
dependence 0fgioba ON ow(LHC) and o2(LHC), respec-  errors, we define a chi-squared functiof(m) by
tively. To calculate)(sIobal versusX accurately in such cases,
the Lagrange multiplier method is necessary. Traditional lin- 5 N (m;—m)
ear error analysis based on the Hessian matrix can only pro- X“(m):izl —E (A4)
duce a quadratic approximation to the dependence. '

When both methods are applicable, the Hessian method i yajue ofm that minimizesy?(m), call it m, is then the
g}gg ftlre]:'bl_lgg?:ggza;'gtrhtg dﬁgpxo(;gr?ggittlznnﬂl);é l?:glgez'gest estimate ofn, based on this information. The function

. 2 . et : 2 H

we expand the investigation to other physical processes cé“(m) is analogous to the fitting fUnCtioigopy N the

. . : ' TEQ program, in the sense that it does not include infor-
interest, we will continue to test the efficacy of both methodsmation about the correlations between errors. The minimum
and cross check the results.

of x2(m) occurs at a weighted average of the measurements,

2
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APPENDIX A: THE EFFECT OF CORRELATED ERRORS measurements. _

ON Ax? Now, what are the fluctuations of the mea? That is, if
the “experiment” consisting ofN measurements could be
replicated many times, what would be the distributionres
btained in those many trials? It turns out thathas a
aussian distribution

The global fitting functionxéloba, defined in Eq.(2) re-
sembles the standard statistical variapfe so it is tempting
to try to apply theorems of Gaussian statistics to analyze th
significance of the fit between theory and experiment. How-
ever, the familiar theorems do not apply, because of correla- dp 1
tions between measurement errors. The purpose of this ap- = exd — (m—mg)2/(232)]. (AB)
pendix is to explore this issue. The effect of correlated errors dm 2732
is potentially a source of confusion. .
For simplicity we describe the simplest case: the measureFhe standard deviatioB of m is the rms fluctuation; that is,
ment of a single observable. The arguments can be extended
to cases where multiple quantities are measured, such as the 5 — 5 1 (Cfl)”—
determination of parton distribution functions. > =f (m—m)“dP= D2 ; “EE (A7)
Consider an observabla that is measuredl times. We .
shall refer toN measurements ah as one “experiment.” Let  \where
the true value ofm be my. The measurements are
m¢,M,,Ms, ... ,my. The deviations from the true value are
aq,as,as, ...,ay, Where qj=m;—mg. In general, the D:Ei
measurement errors are correlated, so in the Gaussian ap-
proximation the probability distribution of the fluctuations is ~ The question we wish to answer is thidow much does
Xﬁ(m) increase, when m moves away from the mininatn

N
dP=ANexp — 1 2 «Cjja; dNe. (A1) m) _by_ the amount=2, that correspono!s to one s_tandard
2= deviation of the me@hThe answer to this question is

. (A8)

m| =
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Ax2=32D. (A9) mi=mg+y;+ (A14)

This result follows easily from the definitiofA4), because ~ Where they; are randomly distributed with standard devia-
tion o, and the measurements are systematically off by the

amountB. Suppose thaB has a Gaussian distribution with

X2(m+3)— x2(m)= —222 222 = standard deviatios for replications of the “experiment.” In
this example,
( AL0) is examp
. . = 1 s?

and the linear term is 0 by the definition of. So far the Ci==|d%i——= | (A15)
discussion has been quite general. We will now examine o Ns*+o
some illustrative special cases. _ ) 5

Example 1. Suppose the measurement errors are uncorre- (CH)ij=076+s" (A16)

lated; that is, The variance of the individual measurements)(is

Then the standard deviation of the meanis 3=1/JD.  Therefore, our uncorrelated chi-squared variakﬂ(am), de-
Thus for the uncorrelated case, the increasexﬁ)fcorre- fined by ignoring the correlations, is
sponding to one standard deviation of the meaﬁx’éfl.
.. .. 2
This is the “normal” statistical result: the & range corre- Z m;) (A18)
sponds to an increase gf by 1. Xa(m)= A
An even more special case is when the errors are uncor-
related and ConStarE O' independent Oif whereos is the The m|n|mum Oqu(m) occurs atrn Wh|Ch |S ]ust the aver-
iﬁg?:flrg gewgtm;r; oflrfl{lhgflsecgse:)s,Lljsrel\lir/lsntsan'gh&ecc;rtraeriatlogge of the individual measurements. The va.rlancmpav-
hoE ’ eraged over many replications of the “experiment,” is
dard deviation of the mean %= o/+/N.
The criterion Axy?=1 for one standard deviation of a _ _ o2
measured quantity is a standard result, often used in the 32=(m?)—(m)?=s?+ N (A19)
analysis of precision data. But jf? is defined ignoring the
Zorge_laltlens bletweleg fmeasurem:ant derrors, th\e/c th?"C”te”OPne increase of? asm moves fromm tom=3,, i.e., by one
x“=1is only valid for uncorrelated errors. We will next etandard deviation of the mean, is
consider two examples with correlated errors, to show tha

Ax4 is not 1 for such cases. B g2
Example 2. Suppose measurements 1 and 2 are correlated, Axﬁzxﬁ(er ) —Xﬁ(m) =— (A20)
3 and 4 are correlated, 5 and 6 are correlated, etc. Then the o°ts

correlation matrix is
In the limit s/oc<<1, the error correlations in this model be-

/a2 for i=j, come negligible and y? reduces to the conventional value

of 1. But in the limits/o>1, where the error correlations are

dominant,A x? approaches\.

0 otherwise, Thus for Example 3—a systematic error with 100% cor-
(A12)  relation between measurements—the increasg pfor a

standard deviation ah is much larger than 1. $ando are
comparable, ther x?2 is of orderN.

If the correlation matrixC;; is known accurately, then the
correlation information can be incorporated into the defini-
tion of the y? function, in the manner of Appendix B. For the

full list of experiments in the global analysis of parton dis-
— i and Ay2=1—c. (A13) tribution functions, however, the correlations of systematic
INV1+c ! errors have not been published, so the fitting func;a@gbaI
only has uncorrelated systematic errors.
The increase oﬁ(ﬁ for one standard deviation of the mean  We described above the measurement of a single quantity.
ranges from 0 to 2, depending @n The criterionAy?=1  The determination of parton distribution functions seeks to
does not apply to this example with correlated errors. A stanmeasuremany quantities, i.e., the 16 parametdm}. The
dard increase of2 may be smaller or larger than 1. above arguments can be extended to measurements of mul-

Example 3. For an even more striking example, suppostiple quantities. If the measurement errors are uncorrelated,
the N measurements that constitute a single “experiment’then the increase o,fu by 1 from the minimum defines a
are, fori=1,2,3. hyperellipse in parameter space—therror ellipse—

C;=1 c/o® for ij=12 or 21, 34 or 43, etc,

where —1<c<1 since the determinant & must be posi-
tive. The inverse matrixC~* can be constructed using the
fact thatC is block diagonal, consisting &i/2 2X 2 blocks.
Then it can be shown that
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corresponding to one standard deviation of linear combina- N K
tions of the parameters. However, if the errors are correlated dP=f IT p(rodr 11 p(ri)dr;
thenA x2=1 is not the correct criterion for a standard devia- =1 =1
tion. N K
The Lagrange multiplier method finds the best fit to the 1] 5( m—t—oiri— >, Biir| dm. (B3)
data, subject to a constrained value of some quaititfhe i=1 =1

prediction ofX is at the absolute minimum Qﬁ Again, if ) _ .
the errors are uncorrelated then one standard deviation of tfiow we will evaluate the integrals over andr; in two
constrained quantity corresponds to an increasg?oby 1 steps. First evaluate the integrals using the delta functions,
from the2 absolute minimum. But if the errors are correlated K
= i i i 2
:jheevri]a%())(ﬁ oflx,ls not the correct criterion for one standard dP=J Hl drj’Cle‘Xl’szm, (B4)
J
One reason for describing this familiar, even elementary,
statistic is to avoid certain misconceptions. Our standardvhereC; is a normalization constant and
PDF setS, is a parametrized fit to 1295 data points with 16
fitting parameters. The minimum value leoba, is approxi- 2 ,
mately 1200. Naively, it seems that an increase(§f. by , mi =t~ : Biit
merely 1, say from 1200 to 1201, could not possibly repre- X1= 2

2

K
+2 12 (BH
=1

sent a standard deviation of the fit. Naively one might sup- =1 7i
pose that a standard deviation v_vould hatrg®~ 1295 Note thaty? is a function ofr}, ... ry. These variables

are uncorrelatedor if the correlations are incorporated into ?rj} could be used as fitting parameters to account for the

. T I ’
¥?) then indeedA y2=1 would represent a standard devia- systematic errors: minimizingy with respect tor; v_vould
tion. But this theorem is irrelevant to our problem, becausd® ©Vide the best model to correct for the systematic error of

. 2 . . . .
the large correlations of systematic errors are not taken intlyP€]- Becausex; is only a quadratic polynomial in the
account iny2 variables, the minimization can be done analytically.
Xglobal'

To continue evaluating EdB3) we now do the integra-

tion over{r{}. We write x2 in the form
APPENDIX B: x? FUNCTION INCLUDING CORRELATED

SYSTEMATIC ERRORS N m—t)2 & K
2 ’ ror
: o . . =2, ———2, 2Bir+ JANT O
The purpose of this appendix is to derive the appropriate X% .21 o? 121 I j,j’2=1 LR
definition of y? for data with correlated systematic errors. (B6)
The defining condition is that? should obey a chi-squared
distribution. whereB; is a vector withK components

Let {m} be a set of measurements, where
=1,2,3 ... N. Lett; be the true, i.e., theoretical value of the N )
ith measured quantity. Several kinds of measurement errors Bj:izl Bii(m—t)/ a7, (B7)
will contribute to the difference between; andt;. The un- -
correlated error of measuremeints denoted byo;. There

. andAj;. is aKXK matrix
are also correlated errorsK in number, denoted

B1i Bai, - - - Bki- Thus theith measurement can be written N

as A“r:5“r+|§1 ,leﬁ]rllo'lz (BS)
K

mi:ti+error$ti+airi+2 ,Bjifj', (B1) Then the integration oved®r’ is an exercise in Gaussian
i=1 integration, with the result
, . . . 1
wherer; andrj are independently f_Iuctuatlng varlable_s. We _ dP=Cex;{— =2 |dVm, (B9)
assume that each of these fluctuations has a Gaussian distri- 2

bution with width 1, ) o
whereC is a normalization constant and

e—r2/2 N (m t )2 K K
= . B2 i -
i=1 aj j=1jr=1
Note that rj’ is independent ofi; that is, the errors This equation is the appropriate definitionyd for data with
Bj1.Bj2, - - - .Bjn are 100% correlated for aN data points.  correlated systematic errors. The correlated errors are defined
The probability distribution of the measurements is by the coefficientss;; in Eq. (B1), which determine the vec-
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TABLE Il. Table of coefficients. tor B; and matrixA;;, . An interesting relation is that the?
quantlty in EqQ. (BlO) is the minimum of)(1 with respect to
Ao Ay A As As the parameters;, ... rg.
d, 0.5959 0.4942 42785 8.4187 0.7867 Another expression fog?, which may be derived from
u, 0.9783 04942 3.3705 10.0012 0.8571 Eq.(B3) by Gaussian integration, [£]
Sy: g 3.3862 0.2610 3.4795-0.9653 1.0 N N
E/LL 3.05E4 54143 15.0 9.8535 4.3558 2 2 i_ti)(vil)ii’(mi’_ti’)r (B11)
u+d 0.5089 0.0877 7.7482 3.3890 1.0 =11_
s 0.1018 0.0877 7.7482 3.3890 1.0 . . .
d, 0.2891 0.5141 3.8555 10.9580 0.4128 WhereVj; is the variance matrix
0.2184 0.2958 4.6267 35.7229 1.0958 K
u, 1.0142 0.5141 3.3614 9.2995 0.8053 Viir20i25ii/+ E 18“’8“' ) (B12)
0.2979 0.2958 3.3279 32.8453 0.9427 =1
g 4.6245 0.4354 3.4795-0.9728 1.0
Sw.Tev: 1.8080 0.0458 3.4795-0.0519 1.0 It can be shown that the inverse of the variance matrix is
d/u 5.90&4 5.6673 15.0 9.8535 4.7458 K
2044 51506 15.0 9.8535  4.8320 1 i /311/31 a1
— (Vhi=—5— 2 =55 (A ;. (B3
u+d 0.4615 0.0108 6.6145 0.92784 1.0 O'i =1 0- U“
1.2515 0.3338 7.5216-0.0570 1.0
s 0.0923 0.0108 6.6145 0.9278 1.0 Therefore Eqs(B10) and (B11) are equivalent. However,
0.2503 0.3338 7.5216—0.0570 1.0 there is a real computational advantage in the use of Eq.
d, 0.6061 0.5502 4.0017 5.8346 0.5343 (B10) because it does not require the numerical inversion of
0.3427 0.3728 4.5166 19.8510 0.9966 the NX N variance matrix.
u, 12159 0.5502 3.3347 7.3386 0.7711  To check that Eq(B10) makes sense, we can consider a
0.5247 0.3728 3.3905 20.1006 0.9556 special case. Suppose the numKesf systematic errors i,
g 4.4962 0.4321 3.4795-0.9023 1.0 and each systematic error contributes to just one measure-
S7 Tev' 2.3113 0.1032 3.4795-0.6349 1.0 ment. Then the matrix of systematic errors has the form
d/iu 4.32E4 54724 15.0 9.8535 4.6298
28164 5.4540 15.0 9.8535 4.4376 Bji = 9ibi (B14)
u+d 0.4609 0.0103 ~ 6.6671 0.9822 1.0 This situation is equivalent to an additional setusfcorre-
0.9900 02926 83205  2.1648 1.0 lated errors{b;}. The vectorB; is then
s 0.0921 0.0103 6.6671  0.9823 .
0.1980 0.2926 8.3205 2.1648 1.0 b (m;—t;)
d, 0.7326 0.5008 4.6393 10.8532 1.0595 j:% (B15)
0.5671 0.4771 4.2615 8.8355 0.8130 Tj
u, 1.0608 0.5008 3.4023 9.6622 0.8968
0.9142 04771 3.3761 10.9138 0.8809 and the matrixA;;, is
g 22379 0.0733 3.4795-0.9860 1.0 s
Sw,LHe - 2.5021 0.3981 3.4795 1.6229 1.0 _ i
Ju 217€E4 52576 15.0 9.8535 4.4810 Ajjr=8jjr| 1+ =31 (B16)
453E4 54979 15.0 9.8535 4.6585 .
u+d 1.1980 0.2952 6.9475-0.5442 1.0 Substituting these results into E@®10) we find
0.2759 -0.0918 8.2045 6.3950 1.0 5
s 0.2396 0.2952 6.9475-0.5442 1.0 2 mi—t) (B17)
0.0552 —0.0918 8.2045 6.3950 1.0 X i 2+ b2 '
! g;
d, 0.5659 0.4616 4.5297 12.3685 0.9836
0.4585 0.4496 4.2122 10.3850 0.7760 which makes sense; the uncorrelated errors just combine in
u, 0.8344 0.4616 3.3847 12.1129 0.8872 quadrature.
0.7640 0.4496 3.3566 12.8253 0.8701 The statistical quantity? has a chi-squared distribution
g 2.3282 0.0918 3.4795-0.9837 1.0 with N degrees of freedom. Thus this variable may be used to
S7 Lhe! 2.9475 0.4219 3.4795 09447 1.0 set confidence levels of the theory for the given data. But to
d/u 2.42EE4 5.3032 15.0 9.8535 4.5341 use this variable, the measurement err@ysand g3;; , for i
44164 5.4708 15.0 9.8535 4.7925 =1,2,...N andj=1,2,... K, must be known from the
u+d 1.1130 0.2698 6.8490-0.5330 1.0 experiment. A chi-squared distribution with many degrees of
0.2719 —0.0899 81492 6.5300 1.0 freedom is a very narrow distribution, sharply peaked/at
s  0.2226 0.2698 6.8490-0.5330 1.0 =N. Therefore, small inaccuracies in the values of ¢his
0.0544 —0.0899 8.1492 6.5300 1.0 and gji's may translate into a large error on the confidence

levels computed from the chi-squared distribution.
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We use Eq(B10) in Sec. IV to compare the constrained  The functional form of the initial parton distributions and
fits produced by the Lagrange multiplier method to data fronthe definitions of the PDF parameters at the low-energy scale
the H1 and BCDMS experiments. Correlated systematic erQ,=1 GeV are
rors are also used to calculaté for the CDF and DO jet

experiments. f(%,Qf) = Ao X*1(1—x)"2(1+ Ay x*4)
APPENDIX C: PARTON DISTRIBUTION SETS for u,,d, ,g,u+d,s(=s), and for the ratio
We give here the PDF’s described in Sec. ). is the -
standard set, defined by the absolute minimumygfy.. d(x,.Qo) = Ag XP1(1—x) P24 (14 AgX)(1— )M

Sy Tev are fits to the global data sets with extreme values of u(x,Q3)

ow(Tevatron), i.e., the outermost points on Fig. 3, generated

by the Lagrange multiplier methodeTe\,, S\-/:V,LHC' and In Table Il, the coefficients are given. With a program to
S Luc are analogous foZ production andV andZ produc-  solve the PDF evolution equations, the PDF'’s for an arbitrary

tion at the LHC. momentum scal€ can be generated.
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