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Uncertainties of predictions from parton distribution functions.
I. The Lagrange multiplier method
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We apply the Lagrange multiplier method to study the uncertainties of physical predictions due to the
uncertainties of parton distribution functions~PDF’s!, using the cross sectionsW for W production at a hadron
collider as an archetypal example. An effectivex2 function based on the CTEQ global QCD analysis is used
to generate a series of PDF’s, each of which represents the best fit to the global data for some specified value
of sW . By analyzing the likelihood of these ‘‘alterative hypotheses,’’ using available information on errors
from the individual experiments, we estimate that the fractional uncertainty ofsW due to current experimental
input to the PDF analysis is approximately64% at the Fermilab Tevatron, and68 –10% at the CERN Large
Hadron Collider. We give sets of PDF’s corresponding to these up and down variations ofsW . We also present
similar results onZ production at the colliders. Our method can be applied to any combination of physical
variables in precision QCD phenomenology, and it can be used to generate benchmarks for testing the accuracy
of approximate methods based on the error matrix.
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I. INTRODUCTION

All calculations of high-energy processes with initial ha
rons, whether within the standard model~SM! or exploring
new physics, require parton distribution functions~PDF’s! as
an essential input. The reliability of these calculations, wh
underpins both future theoretical and experimental progr
depends on understanding the uncertainties of the PD
The assessment of PDF uncertainties has, therefore, be
an important challenge to high-energy physics in rec
years.

The PDF’s are derived from global analyses of expe
mental data from a wide range of hard processes in
framework of perturbative quantum chromodynam
~PQCD!. Quantifying the uncertainties in a global QC
analysis is far from being a straightforward exercise in s
tistics. There are non-Gaussian sources of uncertainty f
perturbation theory~e.g., higher-order and power-law corre
tions! from choices of parametrization of the nonperturbat
input ~i.e., initial parton distributions at a low energy scal!
from uncertain nuclear corrections to experiments perform
on nuclear targets, and from normal experimental statist
and systematic errors. These sources of error need to be
ied individually, and eventually combined in a systema
way.

We shall be concerned in this paper with uncertainties
PQCD predictions due to uncertainties of PDF’s arising fr
experimental measurement errors. This problem is consi
ably more complicated than it appears on the surface.
reason is that in aglobal analysisthe large number of data
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points (;1300 in our case! do not come from a uniform se
of measurements, but consist of a collection of measu
ments from many experiments (;15) on a variety of physi-
cal processes (;526) with diverse characteristics, prec
sion, and error determination. The difficulty is compound
by a large number of fitting parameters (;16) which are not
uniquely specified by the theory. Several approaches to
problem have been proposed, with rather different empha
on the rigor of the statistical method, scope of experimen
input, and attention to various practical complications@1–7#.
Our group has initiated one of these efforts, with the emp
sis on utilizing the full constraints of the global data@7#. This
work has motivated a closer examination of the stand
techniques of error analysis, and necessary improvem
and extensions to these techniques, as applied to a com
real world problem such as global QCD analysis of PD
@8#.

In this paper we present a detailed analysis of uncert
ties of physical observables due to parton distribution fu
tions, using the Lagrange multiplier method proposed
@7,8#. This method explores the entire multidimensional p
ton parameter space, using an effectivex2 function that con-
veniently combines the global experimental, theoretical, a
phenomenological inputs to give a quantitative measure
the goodness-of-fit for a given set of PDF parameters~cf.
Sec. II!. The method probes directly the variation of the e
fective x2 along a specific direction in the PDF parame
space—that of maximum variation of a specified physi
variable. The result is a robust set ofoptimized sample PDF’s
~or ‘‘alternative hypotheses’’! from which the uncertainty of
©2001 The American Physical Society12-1
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TABLE I. List of data sets used in the global analysis.

Experiment Process Label No. data pts. Refere

BCDMS DIS mp BCDMSp 168 @14#

BCDMS DIS md BCDMSd 156 @14#

H1 DIS ep H1 172 @15#

ZEUS DISep ZEUS 186 @16#

NMC DIS mp NMCp 104 @17#

NMC DIS mp/mn NMCr 123 @17#

NMC DIS mp/mn NMCrx 13 @17#

CCFR DISnp CCFR2 87 @18#

CCFR DISnp CCFR3 87 @18#

E605 DY pp E605 119 @19#

NA51 DY pd/pp NA51 1 @20#

E866 DY pd/pp E866 11 @21#

CDF Wlep2asym. CDFw 11 @22#

D0 p̄p→ jetX D0jet 24 @23#

CDF p̄p→ jetX CDFjet 33 @24#
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the physical variable can be assessed quantitatively with
the approximations inherent in the traditional error mat
approach. For concreteness, we consider the cross se
sW of W boson production at the Tevatron as the archety
example~cf. Sec. III!.

The definition of the effectivex2 function, and the inputs
that go into it, do not permit a direct statistical interpretati
of its numerical value. To obtain meaningful confidence le
els for the optimized sample PDF sets, it is necessary
conduct a series of likelihood analyses of these sam
PDF’s, using all available information on errors for the ind
vidual experiments. The results from these analyses serv
the basis to assign an overall uncertainty range on the ph
cal variable, and a corresponding tolerance measure for
effectivex2 function used in the analysis, that are consist
with the experiments used in the current global QCD ana
sis ~cf. Sec. IV!.

This method can be applied to any physical variable,
combination of physical variables, in precision QCD ph
nomenology. In Sec. V we present results onW production at
the Large Hadron Collider~LHC!, and Z production at the
Fermilab Tevatron and the CERN LHC. We compare
uncertainties obtained in all cases, and comment on prev
estimates in the context of these results. In Sec. VI
present parton distribution sets that are optimized to g
high and low values of theW and Z cross sections, while
remaining consistent with current experiments according
our analysis.

The Lagrange multiplier method provides a useful tool
test the reliability of the more traditional method of err
propagation via the error matrix@1,4,9#, which relies on the
quadratic expansion of thex2 function around its minimum.
In a companion paper@10# we perform an in-depth analysi
of the uncertainties of the PDF’s in the error matrix a
proach, using the much improved numerical method for c
culating the Hessian that was developed in@8#. There we
demonstrate how the more specialized Lagrange multip
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method can set useful benchmarks for the general purp
error matrix approach.

II. THE GLOBAL QCD ANALYSIS

We adopt the same experimental and theoretical inpu
the CTEQ5 analysis@11#: 15 data sets from 11 experimen
on neutral-current and charged-current deep inelas
scattering~DIS!, lepton-pair production@Drell-Yan ~DY!#,
lepton asymmetry inW production, and highpT inclusive jet
production processes are used~cf. Table I!. The total number
of data points isN51295. We denote the experimental da
values by$D%5$DI ;I 51, . . . ,N%. The theory input is next-
leading-order~NLO! PQCD, and the theory value for th
data pointI will be denoted byTI . The theory depends on
set of parameters$a%[$ai ; i 51, . . . ,d%. These parameter
characterize the nonperturbative QCD input to the analy
they determine the initial PDF’s$ f (x,Q0 ;$a%)% defined at a
low-energy scaleQ0, below the energy scale of the dat
which we choose to beQ051 GeV. When we need to em
phasize that the theoretical values depend on the PDF pa
eters, we writeTI(a) to indicate the dependence on$a%.

The parametrization of$ f (x,Q0)% is somewhat arbitrary,
motivated by physics, numerical considerations, a
economy. Another parametrization might be employed, a
differences among the possible parametrizations are, in p
ciple, a source of theoretical uncertainty in their own rig
For most of this study we focus on a single parametrizati
but we comment on the effect of changing the parametr
tion at the end of Sec. IV. The numberd of the parameters$a%
is chosen to be commensurate with current experime
constraints. For this study we used516. The detailed forms
adopted for the initial functions$ f (x,Q0 ;$a%)% are not of
particular concern in this study, since we shall be empha
ing results obtained by ranging over the full parame
2-2
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UNCERTAINTIES OF PREDICTIONS . . . . I. . . . PHYSICAL REVIEW D 65 014012
space.1 The explicit formulas are given in Appendix C
~where relevant PDF’s from the results of our study are p
sented!. The TI($a%) are calculated as convolution integra
of the relevant NLO QCD matrix elements and the univer
parton distributions$ f (x,Q;$a%)% for all Q. The latter are
obtained from the initial functions$ f (x,Q0 ;$a%)% by NLO
QCD evolution.

Theglobal analysisconsists of a systematic way to dete
mine the best values for the$a%, and the associated unce
tainties, by fitting$T(a)% to $D%. Because of the wide rang
of experimental and theoretical sources of uncertainty m
tioned in the Introduction, there are a variety of strategies
deal with the complex issues involved@1–4,7#. In the next
two sections, the primary tool we employ is conventionalx2

analysis. The important task is to define an effectivex2 func-
tion, calledxglobal

2 (a), that conveniently combines the the
retical and global experimental inputs, as well as relev
physics considerations based on prior knowledge, to give
overall measure of the goodness-of-fit for a given set of P
parameters.

Experience in global analysis of PDF’s during the p
two decades has demonstrated that the PDF’s obtained b
minimization of such a suitably chosenxglobal

2 provide very
useful up-to-date hadron structure functions which, althou
not unique, are representative of good fits between the
and experiments. Now we must quantify the uncertainties
the PDF’s and their predictions; i.e., we must expand
scope of the work from merely identifying typical solution
to systematically mapping the PDF parameter space in
neighborhood around the minimum ofx2.

The simplest possible choice for thex2 function would be

x2~a!5(
I 51

N
@DI2TI~a!#2

s I
2

, ~1!

wheres I is the error associated with data pointI. Through
TI(a), x2(a) is a function of the theory parameters$a%.
Minimization of x2(a) would identify parameter values fo
which the theory fits the data. However, the simple form~1!
is appropriate only for the ideal case of a uniform data
with uncorrelated errors. For data used in the global analy
most experiments combine various systematic errors into
effective error for each data point, along with the statisti
error. Then, in addition, the fully correlated normalizatio
error of the experiment is usually specified separately.
this reason, it is natural to adopt the following definition f
the effectivex2 ~as done in previous CTEQ analyses!:

xglobal
2 ~a!5(

n
wnxn

2~a!

(n labels the different experiments), ~2!

1In other words, for this paper, the PDF parameters$a% play
mostly the role of ‘‘internal variables.’’ In contrast, they occupy t
center stage in the companion paper@10#.
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2~a!5S 12Nn

sn
N D 2

1(
I

S NnDnI2TnI~a!

snI
D D 2

.

~3!

For the nth experiment,DnI , snI
D , and TnI(a) denote the

data value, measurement uncertainty~statistical and system
atic combined! and theoretical value~dependent on$a%) for
the I th data point,sn

N is the experimental normalization un
certainty, andNn is an overall normalization factor~with
default value 1) for the data of experimentn. The factorwn

is a possible weighting factor~with default value 1) which
may be necessary to take into account prior knowledge ba
on physics considerations or other information. Thea priori
choices represented by thewn values are present, explicitly
or implicitly, in any data analysis. For instance, data inc
sion or omission~choices which vary for different globa
analysis efforts! represent extreme cases, assigning eit
100% or 0% weight to each available experimental data
Similarly, choices of various elements of the analysis pro
dure itself represent subjective input. Subjectivity of th
kind also enters into the analysis of systematic errors in
periments.

The functionxglobal
2 (a) allows the inclusion of all experi-

mental constraints in a uniform manner while allowing fle
ibility for incorporating other relevant physics input. We wi
make use of this function to explore the neighborhood of
best fit, and to generate sample PDF’s pertinent to the un
tainty of the prediction of a specific physical variable of i
terest. However, the numerical value of this effectivex2

function should not be given ana priori statistical interpre-
tation, because correlations between measurement errors
correlated theoretical errors, are not included in its definiti
In particular, the likelihood of a candidate PDF set$a% cannot
be determined by the value of the increaseDxglobal

2 (a) above
the minimum.2 Instead, the evaluation of likelihoods and e
timation of global uncertainty will be carried out in a sep
rate step in Sec. IV, after sets of optimal sample PDF’s
the physical variable of interest have been obtained.

III. THE LAGRANGE MULTIPLIER METHOD

The Lagrange multiplier method is an extension of thex2

minimization procedure, that relates the range of variation
a physical observableX dependent upon the PDF’s, to th
variation of the functionxglobal

2 (a) that is used to judge the
goodness of fit of the PDF’s to the experimental data a
PQCD.

2The often quoted theorem of Gaussian error analysis, tha
increase ofx2 by one unit in a constrained fit to data corresponds
one standard deviation of the constrained variable, is true onl
the absence of correlations. When existing correlations are left
the relevant size ofDx2 can be much larger than 1. Appendix
discusses this point in some detail.
2-3
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FIG. 1. Left: The LM method provides
sample points along a single curveLX in the mul-
tidimensional PDF parameter space, relevant
the observableX. Right: For a given tolerance
Dxglobal

2 , the uncertainty in the calculated valu
of X is 6DX. The solid points correspond to th
sample points on the curveLX in the left plot.
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A. The method

The method has been introduced in@7,8#. The starting
point is to perform a global analysis as described in Sec
by minimizing the functionxglobal

2 (a) defined by Eq.~2!, thus
generating a set of PDF’s that represents the best esti
consistent with current experiment and theory. We call t
set the ‘‘standard set,’’3 denotedS0. The parameter value
that characterize this set will be denoted by$a(0)%[$ai

(0) ; i
51, . . . ,d%, and the absolute minimum ofxglobal

2 will be de-
noted byx0

2 . Now, let X be a particular physical quantity o
interest. It depends on the PDF’s,X5X(a), and the best
estimate~or prediction! of X is X05X(a(0)). We will assess
theuncertaintyof this predicted value by a two-step analys
First, we use the Lagrange multiplier method to determ
how the minimum ofxglobal

2 (a) increases, i.e., how the qua
ity of the fit to the global data set decreases, asX deviates
from the best estimateX0. Second, in Sec. IV, we analyze th
appropriate tolerance ofxglobal

2 .
As explained in@7,8#, the first step is taken by introducin

a Lagrange multiplier variablel, and minimizing the func-
tion

C~l,a!5xglobal
2 ~a!1lX~a! ~4!

with respect to the originald parameters$a% for fixed values
of l. In practice we minimizeC(l,a) for many values of
the Lagrange multiplierl1 ,l2 , . . . ,lM . For each specific
valuela , the minimum ofC(la ,a) yields a set of param
eters$amin(la)%, for which we evaluate the observableX and
the relatedxglobal

2 . We use the shorthand (Xa ,xglobal,a
2 ) for

this pair.xglobal,a
2 represents the lowest achievablexglobal

2 , for
the global data, for whichX has the valueXa , taking into
account all possible PDF’s in thefull d-dimensional param-
eter spaceof points$a%. In other words, the result$amin(la)%
is a constrained fit—with X constrained to beXa . We can
equivalently say thatXa is an extremum ofX if xglobal

2 is
constrained to bexglobal,a

2 . We denote the resulting set o
PDF’s bySa .

We repeat the calculation for many values ofl, following
the chain

3This standard set is very similar to the published CTEQ5M1
@11#.
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la→min@C~la ,a!#→amin~la!→Xa and xglobal,a
2

for a51,2,3, . . . ,M . The result is a parametric relationsh
betweenX and xglobal

2 , through l. We call this function
xglobal

2 (X); so xglobal
2 (Xa)5xglobal,a

2 is the minimum of
xglobal

2 (a) when X is constrained to beXa . The absolute
minimum ofxglobal

2 , which we denotex0
2 , is the minimum of

C(l50,a), occurring at$a%5$a(0)%. Thus the procedure
generates a set of optimized sample PDF’s along the curv
maximum variation of the physical variableX in the
d-dimensional PDF parameter space~with d516 in our
case!. These PDF sets$Sa% are exactly what is needed t
assess the range of variation ofX allowed by the data. In
other words, the Lagrange multiplier method provides op
mal PDF’s tailored to the physics problem at hand, in co
trast to an alternative method@3# that generates a larg
sample of PDF’s by the Monte Carlo method. The underly
ideas of these two complementary approaches are illustr
in the plot on the left side of Fig. 1.

xglobal
2 (X) is the lowest achievable value ofxglobal

2 (a) for
the valueX of the observable, wherexglobal

2 (a) represents our
measure of the goodness-of-fit to the global data. Theref
the allowed range ofX, say fromX02DX to X01DX, cor-
responding to a chosen tolerance of the goodness o
Dxglobal

2 5xglobal
2 2x0

2 , can be determined by examining
graph of xglobal

2 versusX, as illustrated in the plot on the
right-hand side of Fig. 1. This method for calculatingDX
may be more robust and reliable than the traditional er
propagation because it does not approximateX(a) and
xglobal

2 (a) by linear and quadratic dependence on$a%, respec-
tively, around the minimum.

Although the parameters$a% do not appear explicitly in
this analysis, the results do depend, in principle, on
choice of parameter space~including the dimension,d) in
which the minimization takes place. In practice, if the d
grees of freedom represented by the parametrization are
sen to match the constraining power of the global data
used, which must be true for a sensible global analysis,
results are quite stable with respect to changes in the pa
etrization choices. The sensitivity to these choices is tes
as part of the continuing effort to improve the global ana
sis.

The discussion so far has left open this question: Wha
the appropriate toleranceDxglobal

2 to define the ‘‘error’’ of the
predictionX0? This question will be addressed in Sec. IV.
t

2-4
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FIG. 2. Calculated cross section forW6 boson production~multiplied by the branching ratio forW2→en̄) at the Tevatron, for various
current and historical PDF’s. The two plots are from Refs.@13# and @7#, respectively.
th
le
ti-
th
a

nd
in
i
s

e
cu
a

st-
e
s

s
h

ho

s
e

o
.
a

o
in

ts
rve

-
na-

th-
the

rve

oth-
li-
go

orm
ble

ed
te
all
ty

in
tie od.
Our method can obviously be generalized to study
uncertainties of a collection of physical observab
(X1 ,X2 , . . . ,Xs) by introducing a separate Lagrange mul
plier for each observable. Although the principle stays
same, the amount of computational work increases dram
cally with each additional observable.

B. A case study: TheW cross section

In this section we examine the cross sectionsW for inclu-
sive W6 production at the Tevatron (pp̄ collisions atAs
51.8 TeV) to illustrate the method and to lay the grou
work for the quantitative study of uncertainties to be given
Sec. IV. Other examples will be described in Sec. V. Prelim
nary results of this section have been reported previou
@7,8#.

Until recently the only method for assessing the unc
tainty of sW due to PDF’s has been to compare the cal
lated values obtained from a number of different PDF’s,
illustrated in Fig. 2, in which the plots are taken from exi
ing literature.4 The PDF’s used in these comparisons are
ther the ‘‘best fits’’ from different global analysis group
@11,12# ~hence are not pertinent to uncertainty studies! or are
chosen by some simple intuitive criteria@13#. The meaning
and reliability of the resulting range ofsW are not at all
clear. Furthermore, these results do not provide any lead
how the uncertainties can be improved in the future. T
Lagrange multiplier technique provides a systematic met
to address and remedy both of these problems.

Let the physical quantityX of the last section be the cros
sectionsW for W6 production at the Tevatron. Applying th
Lagrange method, we obtain the constrained minimum
xglobal

2 as a function ofsW , shown as solid points in Fig. 3
The best estimate value, i.e., the prediction for the stand
set S0, is sW0521.75 nb. The curve is a polynomial fit t
the points to provide a smooth representation of the cont

4These plots show the product ofsW times a leptonic branching
ratio, which is what is measured experimentally. The branch
ratio B has some experimental error. For studying the uncertain
of sW , we will focus onsW itself in the rest of the paper.
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ous functionxglobal
2 (X). We see that all the sample PDF se

obtained by this method lie on a smooth quasiparabolic cu
with the best-fit value at the minimum.

As discussed earlier~in Fig. 1! points on the curve repre
sent our sample of optimal PDF’s relevant to the determi
tion of the uncertainty ofsW . To quantify this uncertainty,
we need to reach beyond the effectivexglobal function, and
establish the confidence levels for these ‘‘alternative hypo
eses’’ with respect to the experimental data sets used in
global analysis.

IV. QUANTIFYING THE UNCERTAINTY

Consider a series of sample PDF sets along the cu
xglobal

2 (X) of Fig. 3 denoted by$Sa ;a50,1, . . . ,M % where
S0 is the standard set. These represent ‘‘alternative hyp
eses’’ for the true PDF’s, and we wish to evaluate the like
hoods associated with these alternatives. To do so, we
back to the individual experiments and, in each case, perf
as detailed a statistical analysis as is permitted with availa
information from that experiment. After we have obtain
meaningful estimates of the ‘‘errors’’ of these candida
PDF’s with respect to the individual experiments, we sh
try to combine this information into a global uncertain
measure in the form ofDX andDxglobal

2 .

g
s

FIG. 3. Minimumxglobal
2 versussW , the inclusiveW6 produc-

tion cross section at the Tevatron (p̄p collisions atAs51.8 TeV) in
nb. The points were obtained by the Lagrange multiplier meth
The curve is a polynomial fit to the points.
2-5
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D. STUMPet al. PHYSICAL REVIEW D 65 014012
The experimental data sets included in our global anal
are listed in Table I. For some of these experiments, in
mation on correlated systematic errors is available~albeit
usually in unpublished form!. For these, statistical inferenc
should be drawn from a more accuratexn

2 function than the
simple formula Eq.~3! used for the global fit. In particular, i
snI is the uncorrelated error and$bkI ;k51,2, . . . ,K% are the
coefficients ofK distinct correlated errors associated with t
data pointI, then an appropriate formula for thexn

2 function
is

xn
25(

I

~DnI2TnI!
2

snI
2

2 (
k51

K

(
k851

K

Bk~A21!kk8Bk8 , ~5!

whereBk is a vector, andAkk8 a matrix, inK dimensions:

Bk5(
I

bkI~DnI2TnI!/snI
2 ;

Akk85dkk81(
I

bkIbk8I /snI
2 . ~6!

~The sum overI here includes only the data from experime
n.! Traditionally,xn

2 is written in other ways, e.g., in terms o
the inverse of the (N3N) variance matrix. For experiment
with many data points, the inversion of such large matri
may lead to numerical instabilities, in addition to being tim
consuming. Our formula~5! has a significant advantage
that all the systematic errors are first combined~‘‘analyti-
cally’’ ! in the definitions ofBk and Akk8 . Equation~5! re-
quires only the inverse of the much smaller (K3K) matrix
Akk8 . (K is the number of distinct systematic errors.! The
derivation of these formulas is given in Appendix B. Equ
tion ~5! reduces to the minimum ofxn

2 in Eq. ~3! with respect
to Nn if the only correlated error is the overall normalizatio
error for the entire data set; in that caseb I52sn

NDnI .
By using Eq.~5! or Eq. ~3! for cases where the correla

tions of systematic errors are unavailable, we obtain the
estimate on the range of uncertainty permitted by availa
information on each individual experiment. We should no
that the experimental data sets are continuously evolv
Some data sets in Table I will soon be updated~Zeus, H1! or
replaced~CCFR!.5 In addition, most information on corre
lated systematic errors is either unpublished or prelimina
The results presented in the following analysis should, the
fore, be considered more as a demonstration of principle—
the first application of our proposed method—rather than
final word on the PDF uncertainty of theW cross section.

A. Uncertainty with respect to individual experiments

As an example, we begin by comparing the$Sa% series
for sW at the Tevatron to the H1 data set@15#. Results on

5Compare talks presented by these collaborations at DIS2
Workshop on Deep Inelastic Scattering and Related Topics, Liver-
pool, England, 2000.
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correlated systematic errors are available for this data s6

and are incorporated in the calculation using Eq.~5!. The
number of data points in this set isNH15172. The calculated
values ofxH1

2 /NH1 are plotted againstsW in Fig. 4. The
curve is a smooth interpolation of the points. The value
xH1

2 /NH1 for the standard setS0 ~indicated by a short arrow
on the plot! is 0.975, and it is 0.970 at the minimum of th
curve. These values are quite normal for data with accura
determined measurement errors. We can, therefore, a
standard statistics to calculate the 90% confidence leve
x2/N for N5172. The result is shown as the dashed horiz
tal line in Fig. 4.

We have similarly calculatedxn
2/Nn including information

on the correlations of systematic errors for the BCDM
data set. The results are similar to the H1 results, except
the absolute values are all larger than 1.12, a large value
N5168 data points. This is a familiar problem in data ana
sis, and it is encountered in several other data sets in
global analysis~cf. below!. Thexn

2/Nn calculation including
correlations of the errors, is also done for the D0 and C
lider Detector at Fermilab~CDF! jet cross sections.7 For
those experiments that have only provided~effective! uncor-
related errors, we must rely on Eq.~3! for our error calcula-
tion, since that represents the best information available.

In order to obtain usable likelihood estimates from all t
data sets, one must address the problem mentioned in
previous paragraph: Even in a ‘‘best fit,’’ the values ofx2 per
data point,xn

2/Nn , for individual experiments vary conside
ably among the established experiments~labeled byn!. Spe-
cifically, xn

2/Nn ranges from 1.521.7 ~for ZEUS and CDF-
jet! on the high end to 0.5–0.7~for someDY experiments!
on the low end in all good fits. Considering the fact th
some of these data sets contain close to 200 points, the r
of variation is huge from the viewpoint of normal statistic

00

6These systematic errors are unpublished results, but are m
available to the public on the H1 Web page. For convenience,
have approximated each of the pair of four nonsymmetrical er
by a single symmetric error. The size of the resulting error onsW ,
inferred from this evaluation, is not affected by that approximati

7The measurement errors of the jet cross sections are domin
by systematic errors, so the error correlation matrices are used
xn

2 of these experiments even inxglobal
2 .

FIG. 4. x2/N of the H1 data, including error correlations, fo
sample PDF’s obtained by the Lagrange multiplier method for c
strained values ofsW at the Tevatron. The arrow indicates the gl
bal minimum.
2-6
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experiments withxn
2 /Nn deviating from 1.0 by a few times

A2/Nn in either direction would have to be ruled out as e
tremely unlikely@25#.

The reasons forxn
2/Nn to deviate from 1.0 in real experi

ments are complex, and vary among experiments. They
almost by definition, not understood, since otherwise the
rors would have been corrected and the resultingx2 would
become consistent with the expected statistical value. Un
these circumstances, a commonly adopted pragmatic
proach is to focus on the relativex2 values with respect to
some appropriate referencex2.8 Accordingly, in the context
of performingglobal QCD analysis, we adopt the followin
procedure. For each experiment~labeled byn):

~i! Let xn,0
2 denote the value ofxn

2 for the standard setS0.
We assumeS0 is a viable reference set. Becausexn,0

2 may be
far from a likely value for random errors, werescale the
values ofxn,a

2 ~for a50,1,2, . . . ,M ) by a factorCn0, calling

the resultx̄n,a
2

xn,a
2 →x̄n,a

2 [Cn0xn,a
2 . ~7!

The constantCn0 is chosen such that, for the standard s
x̄n,0

2 assumes the most probable value for a chi-squared v

able: x̄n,0
2 5j50[ the 50th percentile of the chi-squared d

tribution P(x2,Nn) with Nn degrees of freedom, defined b

E
0

j50
P~x2,Nn!dx250.50. ~8!

~If Nn is large thenj50'Nn .) The rescaling constantCn0 is
thus j50/xn,0

2 . For random errors the probability thatx2

,j50 ~or .j50) is 50%. For those experiments whosexn,0
2

deviates significantly fromj50, this rescaling procedure i
meant to provide a simple~but crude! way to correct for the
unknown correlations or unusual fluctuations.

~ii ! We then examine the values ofx̄n,a
2 for the alternative

setsSa with a51,2, . . . ,M , usingx̄n,a
2 2x̄n,0

2 to compute the
statistical likelihood of the alternative hypothesisSa with
respect to the data setn, based on the chi-squared distrib
tion with Nn data points.

This procedure does not affect the results presented ea
for the H1 experiment, sincexn,0

2 /Nn is already very close to
1 for that experiment.

Before presenting the results of the likelihood calculatio
it is interesting to examine, in Fig. 5, the differencesDxn,a

2

5xn,a
2 2xn,0

2 ~before rescaling! versussW for the 15 data sets
~N.B. The vertical scales of the various plots are not

8The alternative is to take theabsolutevalues ofxn
2 seriously, and

hence only work with alternative hypotheses and experiments
are both self-consistent~i.e., haveuxn

2/Nn21u&A2/Nn) and mutu-
ally compatible in the strict statistical sense~i.e., have overlapping
likelihood functions!. Since few of the precision DIS experimen
are compatible in this sense, one must then abandon global ana
and work instead with several distinct~and mutually exclusive!
analyses based on different experiments.
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same, due to the large variations in the value ofDxn,a
2 for

different experiments.! The ordering of the experiments i
Fig. 5 is the same as in Table I, with experiments ordered
process~DIS, DY, W, and jet production!. It is clear from
these graphs that the DIS experiments place the stron
constraints onsW , because they have the largestDxn

2 for the
sameDsW . This is to be expected since quark-antiqua
annihilation makes the dominant contribution tosW . We
also observe that most experiments place some constrain
sW on both sides, but a few bound it on one side on
Globally, as shown in Fig. 3, the combined constraints g
rise to a classic parabolic behavior forxglobal

2 (sW).
To estimate the statistical significance of the individualxn

2

increases, we assume that the rescaled variablex̄n
2 obeys a

chi-squared distributionP(x2,Nn) for Nn data points.
Thereby, we estimate the value ofx̄n

2 that corresponds to the
90% confidence level~C.L.! uncertainty forsW ~with respect
to experimentn) from the formulax̄n

25j90, wherej90 is the
90th percentile defined by

E
0

j90
P~x2,Nn!dx250.90. ~9!

For example, Fig. 6 shows the chi-squared distribut
P(x2,Nn) for Nn5172, the number of data points in the H
data set. The 50th and 90th percentiles are indicated.
choose a conservative 90% C.L. because there are other
oretical and phenomenological uncertainties not taken
account by this analysis.

at

sis,

FIG. 5. The abscissa issW in nb, at the Tevatron. The ordinat
is xn

22xn,0
2 . The number in parentheses is the number of d

points. The horizontal lines are explained in the text.
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To summarize our procedure, an alternative PDF setSa

lies within the 90% C.L. for experimentn if it has x̄n,a
2

,j90; that is, if

xn,a
2

xn,0
2

,
j90

j50
. ~10!

We judge the likelihood ofSa from the ratio of xn,a
2 to the

reference valuexn,0
2 , rather than from the absolute magn

tude. The horizontal lines in Fig. 5 correspond to the val
of Dxn

2 obtained in this way. Finally, from the intercepts
the line with the interpolating curve in each plot in Fig. 5, w
obtain an estimated uncertainty range ofsW from each indi-
vidual experiment. The results are presented collectively
Fig. 7, where, for each experiment, the point (d) is the value
of sW for which xn

2 is minimum, and the error bar extend
across the 90% C.L. based on that data set.

The uncertainty ranges shown in Fig. 7 with respect
individual experiments represent the most definitive res
of our study, in the sense that the input and the assumpt
can be stated clearly and the analysis is quantitative wi
the stated framework. It is natural to proceed further a
estimate a global measure ofDsW and the corresponding
Dxglobal

2 . This last step is, however, less well defined a
requires some subjective judgment.

B. The global uncertainty

It should be emphasized that the ranges shown by
error bars in Fig. 7 are not errors determined independe

FIG. 6. The chi-square distributionP(x2,Nn) for Nn5172 data
points. The dashed lines indicate the 50th and 90th percentiles

FIG. 7. Ranges ofsW within the 90% C.L. for the individual

experiments. The ordinate issW for the Tevatron processpp̄
→W6X. The solid line is the best estimate according to the st
dard PDF setS0. The dashed lines are the bounds described in S
IV B.
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by each experiment; rather they represent the ranges allo
by the experiments for alternativeglobal fits $Sa%. For this
reason, and others related to the rescaling ofx2 mentioned
earlier, as well as approximations inherent in many of
original published errors,9 it is not obvious how tocombine
these errors. We refer to the ranges in Fig. 7 by the gen
term local ~i.e., single-experiment! uncertainties. On a quali-
tative level, Fig. 7 exhibits the same features seen earlie
Fig. 5: ~i! the quark dominated DIS experiments give t
smallest error bars, and~ii ! a few experiments only se
bounds on one side, while the rest limit the range in b
directions. In addition, Fig. 7 gives us an overall view whi
clearly shows thatsW is well constrained in the global analy
sis, and the experimental bounds are consistent with e
other.

The important question is how to provide a sensible m
sure of the overall uncertainty in view of the complexity
the problem already described. The situation here is not
like the problem of assigning an overall systematic error
an experimental measurement. Figure 7 shows a set of 9
C.L. ranges forsW from different sources, but these rang
are highly correlated, because the alternative hypotheses
ing tested come from global fits. The final uncertainty mu
be a reasonable intersection of these ranges.

We will state an algorithm for obtaining the final unce
tainty measure ofsW based on Fig. 7. The same algorith
can be applied in the future for predictions of other obse
ables. It has the following two parts:~1! determine the cen-
tral value using all the experiments, that is the solid line
Fig. 7; ~2! take theintersectionof the error ranges as th
combined uncertainty. But in calculating the intersection,
periments below the mean are used only for setting the lo
bound, and experiments above the mean are used only
setting the upper bound. With this algorithm, experime
that permit a large range ofsW , i.e., that depend on aspec
of the PDF’s that are not sensitive to the value ofsW , will
not affect the final uncertainty measure~as they should not!.
According to this algorithm, the result for the uncertainty
sW is 20.9 nb,sW,22.6 nb. These bounds are approx
mately64% deviations from the prediction~21.75 nb! and
so we quote a64% uncertainty insW due to PDF’s.

Now we may determine the increase inxglobal
2 that corre-

sponds to our estimated uncertaintyDsW in the sW predic-
tion. Referring to Fig. 3, a deviation ofsW by 64% from
the minimum corresponds to an increaseDxglobal

2 '180. That
is, Dxglobal

2 in Fig. 1 is 180. In other words, along the dire
tion of maximum variation ofsW a PDF set withDxglobal

2

*180 is found to violate some experimental constraints
this analysis.

C. Comments

We should point out that the above uncertainty estima
DsW /sW;4%, represents only a lower bound on the tr

9For instance, the single uncorrelated systematic error assoc
with each data point, which is the only systematic error given
most experimental data sets, is clearly only an ‘‘effective uncor
lated error’’ which qualitatively represents the effects of the ma
sources of systematic error, some of which are really correlate

-
c.
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uncertainty, since many other sources of error have not
been included in the analysis, theoretical ones such as Q
higher-order and resummation effects, power-law corr
tions, and nuclear corrections. These need to be taken
consideration in a full investigation of the uncertainties, b
that goes beyond the scope of this paper.10 We shall add only
two remarks which are more directly related to our analy

The first concerns a technical detail. In the results
ported so far, we have fixed the normalization factors$Nn%
in the definition ofxglobal

2 @Eq. ~2!# at their values determine
in the standard fitS0. If we let these factors float when w
perform the Lagrange multiplier analysis,DsW will increase
noticeably compared to Fig. 3 for the sameDxglobal

2 . How-
ever, upon closer examination, this behavior can be ea
understood and it does not imply a real increase in the
certainty ofsW . The key observation is that the addition
increase~or decrease! in sW is entirely due to auniform
increase~or decrease! of $Nn% for all the DIS experiments
There is a simple reason for this: The values of theq and q̄
distributions in the relevantx range ~which determine the
value of sW) are approximately proportional to$Nn%DIS .
Although every experiment does have a normalization un
tainty, the probability that the normalization factors of all t
independentDIS experiments would shift in thesamedirec-
tion by the sameamount is certainly unlikely. Hence w
avoid this artificial effect by fixing$Nn% at their ‘‘best val-
ues’’ for our study. Allowing the factors$Nn% to vary ran-
domly ~within the published experimental normalization u
certainties! would not change our estimated value ofDsW
significantly.

The second remark concerns the choice of parametr
tion. We have mentioned that even the robust Lagrange m
tiplier method depends in principle on the choice of the p
ton parameter space, i.e., on the choice of the functio
forms used for the nonperturbative PDF’s at the lo
momentum scaleQ0. To check how our answers depend
the choice of parametrization in practice, we have done m
similar calculations, using different numbers of free para
eters within the same functional form~cf. Appendix C! and
using different functional forms for the factor multiplyin
xa(12x)b. We have not seen any dependence of the un
tainty estimates on these changes. Although more rad
ways of parametrizing the nonperturbative PDF’s might
fect the result more, there is no known example of suc
parametrization, which at the same time still provides
equally good fit to the full data set.

V. FURTHER EXAMPLES

A. WÁ production at the LHC

A study similar to the last section has been carried out
inclusiveW6 production at the LHC. Figure 8 showsxglobal

2

versus sW for the processpp→W6X at As514 TeV,

10Because there are these additional sources of uncertainty
have used 90% C.L.’s, rather than 68% C.L.’s, to calculate
error.
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summed over the two final states. The curve is a smo
interpolation of a series of PDF sets$Sa% generated by the
Lagrange multiplier method. The best estimate value of
LHC cross section issW5189.7 nb.

Comparing Figs. 3 and 8, one immediately notices t
the uncertainty of sW(LHC) is greater than that o
sW(Tevatron) for the sameDxglobal

2 . This indicates that be-

causeW production in pp collisions at the LHC andp̄p
collisions at the Tevatron involve different mixtures of pa
ton subprocesses as well as different kinematic ranges,
constraints imposed by current experiments included in
global analysis are also different for the two cases. Referr
to the map of thed-dimensional PDF parameter space on t
left-hand side of Fig. 1, we are generating sample PD
along different directionsLX in the two cases. Therefore, it i
not surprising that the rate of variation ofxglobal

2 is also dif-
ferent.

To demonstrate this point, and to quantify the uncertai
on the LHC prediction, we have carried out the same er
analysis as in Sec. IV, i.e., comparing the alternative PD
to the individual experiments. Figure 9 gives the final ov
view of the 90% C.L. ranges ofsW obtained from these
comparisons, analogous to Fig. 7 for the Tevatron cross
tion. There are some differences compared to the Teva
case. The LHC prediction is more tightly constrained by e
periments that are sensitive to PDF’s at smallx. This makes
sense, becauseW production at the LHC is not dominated b
valenceqq̄ interactions. We note in particular that the tw

we
e

FIG. 8. Minimum xglobal
2 versussW in nb, for inclusiveW6

production at the LHC.~Cf. Fig. 3.! The prediction is 189.7 nb. The
points are the results of LM calculations. The curve is a polynom
fit to the points.

FIG. 9. The same as Fig. 7, except for the LHC case.
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FIG. 10. Minimumxglobal
2 ver-

sus sZ for ~a! the Tevatron, and
~b! the LHC.~Cf. Fig. 3.! The pre-
dictions are 6.55 nb at the Teva
tron and 58.0 nb at the LHC. The
points are results of LM calcula
tions. The curves are polynomia
fits to the points.
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inclusive jet production experiments place significant co
straints onsW at the LHC.

We can combine the individual error bars in Fig. 9 acco
ing to the algorithm proposed in Sec. IV to produce a glo
uncertainty measure forsW at the LHC. The lower bound on
sW(LHC) obtained by the intersections of the individu
ranges is sW5175.3 nb; the upper bound issW
5204.6 nb. These bounds, shown as the dashed lines in
9, correspond to68% deviations from the prediction~189.7
nb!. The global uncertainty onsW(LHC) is thus significantly
larger than that onsW(Tevatron). Reinforcing this conclu
sion is the fact that the scatter of the points in Fig. 9 is lar
than in Fig. 7.

We can again inspect the increase inxglobal
2 from the

quoted range of alternative fits. A68% deviation from the
minimum, symmetrized for simplicity, corresponds to the
creaseDxglobal

2 '200. This number is similar to the increas
in xglobal

2 for our estimated uncertainty ofsW at the Tevatron.
In the companion paper@10#, we make some process

independent estimates ofDxglobal
2 based on completely dif

ferent considerations. Those arguments also yield the s
order-of-magnitude estimates ofDxglobal

2 ~in the range from
100 to 200! for acceptable PDF’s around the global min
mum. Since the effectivexglobal

2 , as a measure of goodnes
of-fit, does not have a normal statistical implication, poin
on a constantxglobal

2 surface in the PDF parameter space
not necessarily correspond to a constant likelihood. So
variation with the direction in the multidimensional space
to be expected.

B. Uncertainties onZ0 production

We conclude this section by presenting results from
plying the Lagrange multiplier method toZ0 production at
the Tevatron and the LHC.

Figure 10~a! shows the minimumxglobal
2 as a function of

sZ at the Tevatron. The global prediction issZ56.55 nb.
The experimental measurement by the D0 Collaboration
sZB50.22160.00360.011 nb; the result from CDF~all
data from Run I! is sZB50.25060.00460.010 nb.@HereB

is the branching ratio forZ0→eē, which is (3.36760.005)
31022.# The comparison of the prediction to Tevatron da
is discussed below. Analyzing the localxn

2 in the manner of
Sec. IV, in order to quantify the uncertainty of the predictio
we find that the uncertainty ofsZ(Tevatron) due to PDF’s is
63% of the prediction. The corresponding increase
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xglobal
2 , symmetrized for simplicity, is approximately 130.

For the LHC processpp→Z0X, Fig. 10~b! shows the
minimum xglobal

2 as a function ofsZ . The dependence o
xglobal

2 on sW/Z(LHC) exhibits a behavior departing from
quadratic over the full range ofsW/Z under study. This is
evidence that the Lagrange multiplier method can go bey
the traditional error matrix approach~which depends on the
quadratic approximation! in exploring the neighborhood o
the minimum.

The global prediction issZ558.0 nb. Analyzing the lo-
cal xn

2 as in the other cases, we find that the uncertainty
sZ~LHC! due to PDF’s is approximately610%. As in the
case ofW6 production, the PDF uncertainty forZ0 produc-
tion at the LHC is significantly larger than that at the Tev
tron. Measurement ofW6 and Z0 production at the LHC
will, therefore, provide significant information on PDF’s.

C. Comparison with existing data

For W andZ production at the Tevatron, we can compa
our calculated cross sectionssW and sZ , with their ranges
of uncertainty64% and63% respectively, to the measure
ments of CDF and D0 from Run I@26#. The comparison is
shown in Fig. 11. The two experiments do not measuresW
andsZ per se, but rathersWBW andsZBZ , whereBW is the
branching ratio forW2→en̄ and BZ is the branching ratio
for Z0→eē. We have used the valuesBW50.106 andBZ
50.0337 for the calculations@27#. The bands in Fig. 11 show
the ranges ofsWBW and sZBZ from our PDF uncertainty
study ~but no uncertainty included fromBW and BZ). The
two measurements ofsWBW are consistent with the uncer
tainty range. The two measurements ofsZBZ are not.

It should be noted that CDF and D0 use different norm
izations for their luminosity determinations. The CDF Co
laboration bases its luminosity purely on its own measu

FIG. 11. Experimental measurements ofsWBW andsZBZ at the
Tevatron, compared to the PDF uncertainty band of the theore
prediction. On the data points, the short error bar is the statis
error, and the long error bar is the combined statistical and syst
atic error.
2-10
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ment of the inelasticp̄p cross section@28,29#, while D0 uses
the world average for this cross section. Thus current lu
nosities quoted by CDF are 6.2% lower than those quoted
D0. Consequently, all CDF cross section measurements
ab initio 6.2% higher than those of D0. If the CDF/D0 me
surements ofsWBW and sZBZ are rescaled by 6.2% with
respect to each other, they are in excellent agreement.

Because of the uncertainty in the inelasticp̄p cross sec-
tion, it has been proposed to normalize future Tevatron~and
LHC! physics cross sections to the measuredW cross section
~or rathersWBW). This makes the determination of the u
certainty ofsW due to PDF’s even more important.

D. Comparison with previous uncertainty estimates

It is interesting to contrast our results to existing estima
of the uncertainties ofsW andsZ at the Tevatron and LHC
colliders based on the traditional method of comparing
sults obtained from somewhatad hocPDF’s. Some of these
previous comparisons forsW(Tevatron) between historica
PDF’s as well as various trial up or down sets obtained
the CTEQ and Martin-Roberts-Sterling-Thorne~MRST!
groups, were shown in Fig. 2. We will briefly comment o
the results of@13# in the context of this paper.

Reference@13# constructs an extended set of MRS
PDF’s, of which the most important forsW andsZ are the
standard set MRST99 and three pairs of up and down
designated

$aS↑,aS↓%, $g↑,g↓%, $q↑,q↓%

in which some aspect of the parton distributions is eit
raised (↑) or lowered (↓) by an amount that represents a
educated guess of a ‘‘standard deviation.’’ The predictions
sW andsZ are then compared for these alternative PDF s
to get an idea of the uncertainty due to PDF’s.

In the case of the Tevatron processes, the deviation
sW or sZ from the value for MRST99 for sets$aS↑,aS↓%,
$g↑,g↓%, and$q↑,q↓% were found to be62%, 61%, and
63%, respectively. From these results, the authors of@13#
concluded that the uncertainties ofsW and sZ at the Teva-
tron are no more than about64%, and mainly attributable to
the normalization uncertainty in the inputu and d distribu-
tions. This conclusion appears to be quite consistent with
results of the previous sections based on exploring the va
tion of the cross section over the entire PDF parameter sp
~This range of uncertainty also happens to coincide w
what one would get by comparing historical PDF sets,
shown in the right-hand plot of Fig. 2.!

For the LHC, the MRST study found that the uncertain
of sW andsZ at the LHC is only slightly larger than at th
Tevatron; the uncertainty was estimated to be65%. The
largest observed variations came from the setsaS↑ andaS↓,
differing from the standard prediction by64 –5 %. This es-
timate isconsiderably lowerthan the68 –10 % result ob-
tained by the detailed analysis of the previous sections.
have verified that the PDF sets that give68 –10 % devia-
tions of sW(LHC) andsZ(LHC) from the standard predic
tion ~represented by the points at the outer edges of the
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responding plots in Figs. 8 and 10! provide equally good or
better fits to the global data sets compared to the fits
$aS↑,aS↓%.11,12 Thus, it is clear that the Lagrange multiplie
method can generateoptimal PDF’s, i.e., having thelargest
excursion of the variableX of interest, which are difficult to
discover byad hoctrial-and-error methods used in the pa

VI. PDF SETS FOR EXPLORING W AND Z PHYSICS

The parton distribution sets used in the above calculati
are useful for exploring some aspects ofW andZ physics at
the Tevatron and LHC, since they provide much more re
able estimates on the PDF uncertainties than existing one
the literature, which are not designed to probe the full ran
of possibilities in the parton parameter space. With this
mind, we present in this section some representative P
sets for applications to the rate ofW andZ production at the
Tevatron and LHC. These PDF’s are relevant to the to
cross sectionssW and sZ , and each corresponds to a pa
ticular direction (LX) in the PDF parameter space~see Fig.
1!. Therefore they are not suitable for estimating the P
uncertainties of other observables that are sensitive to o
aspects of the PDF’s. Other PDF sets can be obtained, u
the method introduced in this paper, to probe the range
other variables, such as rapidity~y! or transverse momentum
(pT) distributions~hence relevant to the measurement ofW
mass!. These will be investigated in subsequent work. Als
the companion paper@10# supplies information from the
Hessian method that can be used to construct the opt
PDF’s for any observableX.

The PDF set that yields the ‘‘best estimate’’ for all of th
physical cross sections covered in this paper is our stan
setS0. The parametrization of the initial distribution is give
in Appendix C. In the following, we present two sets
PDF’s that bound the likely range for each of the cross s
tions.

To exemplify the PDF’s that characterize the range
uncertainty ofW production at the Tevatron, we use tw
representative sets, labeledSW,TeV

6 , which correspond tosW

5sW(S0)6DsW ~with DsW /sW;0.04), respectively.
These two sets are extreme fits obtained by the Lagra
multiplier method. The parameters$a% for these sets are
given in Appendix C. We now compare some of the part
distributions from the three sets (SW,TeV

2 ,S0,SW,TeV
1 ), to exam-

ine the ranges of variation of the PDF’s themselves.

11The values ofxglobal
2 for $aS↑,aS↓% are $1531,1356% compared

to ;1400 for the outermost LHC sets shown in Figs. 8 and 10 a
presented in the next section.

12The global fits used at first in our exploration of PDF unce
tainty were conducted with fixedas . To make sure that this restric
tion does not result in an underestimate of the uncertainties ofsW

andsZ , we have examined the effect of freeingas in the analysis
~but imposing the known constraints from the world average ofas).
The results on the size of the uncertainties are not changed no
ably. This is because the full variations in the PDF’s~particularly
the gluon! allowed in the Lagrange approach, can absorb the ad
degree of freedom.
2-11
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Figure 12~a! shows u(x,Q), d(x,Q) and g(x,Q) for
SW,TeV

6 , compared to the standard setS0 at Q580 GeV. The
function xD f (x) is plotted for each parton flavor, whereD f
is f 2 f 0. The gluon function has been divided by 10 to fit o
the same graph. The solid curves (Du1 , Dd1 , Dg1! corre-
spond to SW,TeV

1 , and the dashed curves toSW,TeV
2 . For

SW,TeV
1 , requiringsW to be larger thansW

(0) , makes theu and
d distributions larger than for the standard fit (u0 andd0) so
Du1 andDd1 are positive. Then the gluon distribution mu
be smaller than the standard because of the momentum
rule. In the case ofSW,TeV

2 , the reverse is true, resulting i
almost a mirror behavior. At the Tevatron, a typicalx for the
parton-level processq1q̄2→W6 is MW /As50.04. The dif-
ferencesDu and Dd are significant in the range 0.01<x
<0.04. The magnitude ofD f (x) in this range is a few per
cent of the standardf 0(x), which makes sense sinceDsW is
a 4% shift ofsW for these PDF sets.

We can carry out the same comparison forW production
at the LHC. The PDF’s that bound the range of uncertai
are designated asSW,LHC

6 , which correspond tosW

5sW(S0)6DsW with DsW /sW;0.08. The PDF param
eters are given in Appendix C. Figure 12~b! shows parton
distributions fromSW,LHC

6 . ~Again, the gluon has been d
vided by 10.! In the LHC case, the typicalx for the process
q1q̄2→W6 is MW /As50.006. The region whereDu andDd
are significant is seen accordingly lower inx than for the
Tevatron case.

In Appendix C we also present PDF setsSZ,TeV
6 and

SZ,LHC
6 that characterize the range of uncertainties ofZ pro-

FIG. 12. Comparison of PDF setsSW
6 to the standard setS0 for

the Tevatron~upper! and LHC ~lower! cases, respectively.Du6 is
the difference betweenu(x) with sW5sW06DsW and u(x) with
sW5sW0 ; Q580 GeV. The solid curves arexD f 1(x) and the
dashed curves arexD f 2(x). The abscissa is log10x.
01401
um

y

duction at the Tevatron and LHC. These correspond to
outlying points on Figs. 10~a! and 10~b!. They are similar to
SW,TeV

6 and SW,LHC
6 , with small differences in the flavor de

pendence.

VII. SUMMARY

We have developed the Lagrange multiplier method
calculate uncertainties of physical observables due to PD
and we have used the method to determine the uncertain
the total cross sections forW6 production andZ0 production
at the Tevatron and LHC. The method is more reliable th
past estimates because~i! it explores all the possibilities in
the parameter space of the input PDF’s, independent of o
assumptions, and~ii ! it produces the maximum allowe
range for the specified physical variables. This is in contr
to previous attempts which relied on varying certain featu
of the parton distributions chosen in somead hocway.

From this analysis, we find that the uncertainty of t
prediction forsW or sZ at the Tevatron with current exper
mental constraints is approximately63 –4 %, and at the
LHC the uncertainties are approximately68 –10 %. These
numbers do not include other uncertainties associated
theoretical approximations, nuclear corrections, and ot
unexpected sources. We have explored, to some extent
possible effects due to the choice of parametrization of
nonperturbative input PDF’s, and found them to be sm
The current work should be considered exploratory in natu
as a first application of this improved approach to error e
mates. A more comprehensive study, based on soon to
improved data sets, and including other sources of uncert
ties, will produce better overall estimates of the physical p
dictions.

This study should be regarded as the precursor for m
interesting applications to come, on physical processes
interest to the precision study of the SM, and on predictio
for new physics at future colliders. Some examples are
pidity distributions ofW6 andZ0 production, which contain
a wealth of information on parton structure of the nucleo
the W mass measurement, top and Higgs cross sections,

There are other approaches to error estimates in glo
QCD analysis@1–4#. In general, if greater emphasis is plac
on the ‘‘rigor’’ of the statistical method, then the range
experiments that can be included in the analysis is narrow
We have chosen to emphasize the inclusion of the full ra
of experimental constraints, and adapt the statistical anal
to deal with the practical problems that one faces in suc
system. Within our general framework, there is an alter
tive, complementary approach based on the conventiona
ror matrix method@8#. We explore this latter method, as a
plied to global QCD analysis of PDF’s, in a companion pap
@10#. We mention briefly the contrasting features and relat
merits of the two approaches here.

The Lagrange multiplier method focuses on a giv
physical observableX ~or a set of observables$Xk%) and
determines the uncertaintyDX allowed by the global data se
within a specified tolerance for the global fit. The error m
trix approach, using the Hessian matrix, focuses instead
the uncertainties of the PDF’s as represented by the par
2-12
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eters$ai ; i 51, . . . ,d%. It is, in principle, universal because
once determined, these errors can be propagated toany
physical variableX. However, the results are reliable only
the functionxglobal

2 (a) and the observableX(a) can be ap-
proximated by lowest-order expansions in the parame
$a%, and if the numerical computation of the derivatives~the
Hessian matrix! is under control. The latter problem is su
prisingly difficult for global QCD analysis, because the e
genvalues of the error matrix vary by many orders of m
nitude. This problem has been solved@8#, and the error
matrix results are consistent with the constrained fitting
sults@10#. Thus, at present, both methods appear to be ap
cable to the study of uncertainties in global QCD analysi

In Figs. 8 and 10~b! there is a significant cubic term in th
dependence ofxglobal

2 on sW(LHC) and sZ(LHC), respec-
tively. To calculatexglobal

2 versusX accurately in such cases
the Lagrange multiplier method is necessary. Traditional
ear error analysis based on the Hessian matrix can only
duce a quadratic approximation to the dependence.

When both methods are applicable, the Hessian metho
more flexible and easier to apply computationally. But ge
erally the Lagrange method is more robust and reliable.
we expand the investigation to other physical processe
interest, we will continue to test the efficacy of both metho
and cross check the results.
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APPENDIX A: THE EFFECT OF CORRELATED ERRORS
ON Dx2

The global fitting functionxglobal
2 defined in Eq.~2! re-

sembles the standard statistical variablex2, so it is tempting
to try to apply theorems of Gaussian statistics to analyze
significance of the fit between theory and experiment. Ho
ever, the familiar theorems do not apply, because of corr
tions between measurement errors. The purpose of this
pendix is to explore this issue. The effect of correlated err
is potentially a source of confusion.

For simplicity we describe the simplest case: the meas
ment of a single observable. The arguments can be exte
to cases where multiple quantities are measured, such a
determination of parton distribution functions.

Consider an observablem that is measuredN times. We
shall refer toN measurements ofm as one ‘‘experiment.’’ Let
the true value of m be m0. The measurements ar
m1 ,m2 ,m3 , . . . ,mN . The deviations from the true value a
a1 ,a2 ,a3 , . . . ,aN , where a i5mi2m0. In general, the
measurement errors are correlated, so in the Gaussian
proximation the probability distribution of the fluctuations

dP5N expH 2
1

2 (
i , j 51

N

a iCi j a j J dNa. ~A1!
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Here Ci j is a real symmetric matrix, andN
5ADetC/(2p)N/2 ensures the normalization conditio
*dP51.

We will need the variance matrix̂a ia j&, where the nota-
tion ^Q& means the average ofQ in the probability distribu-
tion ~A1!. For this Gaussian distribution,

^a ia j&5~C21! i j . ~A2!

The mean-square fluctuationEi of the i th measurementmi is

Ei[^a i
2&5~C21! i i . ~A3!

To find the best estimate of the value ofm from theseN
measurements,ignoring the correlations in the measureme
errors, we define a chi-squared functionxu

2(m) by

xu
2~m!5(

i 51

N
~mi2m!2

Ei
. ~A4!

The value ofm that minimizesxu
2(m), call it m̄, is then the

best estimate ofm0 based on this information. The functio
xu

2(m) is analogous to the fitting functionxglobal
2 in the

CTEQ program, in the sense that it does not include inf
mation about the correlations between errors. The minim
of xu

2(m) occurs at a weighted average of the measureme

m̄5

(
i 51

N

mi /Ei

(
i 51

N

1/Ei

. ~A5!

If all the Ei ’s are equal thenm̄ is just the average of the
measurements.

Now, what are the fluctuations of the meanm̄? That is, if
the ‘‘experiment’’ consisting ofN measurements could b
replicated many times, what would be the distribution ofm̄’s
obtained in those many trials? It turns out thatm̄ has a
Gaussian distribution

dP

dm̄
5

1

A2pS2
exp@2~m̄2m0!2/~2S2!#. ~A6!

The standard deviationS of m̄ is the rms fluctuation; that is

S25E ~m̄2m!2dP5
1

D2 (
i j

~C21! i j

EiEj
, ~A7!

where

D5(
i

1

Ei
. ~A8!

The question we wish to answer is this:How much does
xu

2(m) increase, when m moves away from the minimum~at

m̄) by the amount6S that corresponds to one standar
deviation of the mean? The answer to this question is
2-13
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Dxu
25S2D. ~A9!

This result follows easily from the definition~A4!, because

xu
2~m̄1S!2xu

2~m̄!522S(
i

mi2m̄

Ei
1S2(

i

1

Ei
,

~A10!

and the linear term is 0 by the definition ofm̄. So far the
discussion has been quite general. We will now exam
some illustrative special cases.

Example 1. Suppose the measurement errors are unc
lated; that is,

Ci j 5d i j /Ei . ~A11!

Then the standard deviation of the meanm̄ is S51/AD.
Thus for the uncorrelated case, the increase ofxu

2 corre-
sponding to one standard deviation of the mean isDxu

251.
This is the ‘‘normal’’ statistical result: the 1s range corre-
sponds to an increase ofx2 by 1.

An even more special case is when the errors are un
related and constant:Ei5s2 independent ofi, wheres is the
standard deviation of single measurements. The correla
matrix is Ci j 5d i j /s2. In this caseD is N/s2, and the stan-
dard deviation of the mean isS5s/AN.

The criterion Dx251 for one standard deviation of
measured quantity is a standard result, often used in
analysis of precision data. But ifx2 is defined ignoring the
correlations between measurement errors, then the crite
Dx251 is only valid for uncorrelated errors. We will nex
consider two examples with correlated errors, to show t
Dxu

2 is not 1 for such cases.
Example 2. Suppose measurements 1 and 2 are correl

3 and 4 are correlated, 5 and 6 are correlated, etc. Then
correlation matrix is

Ci j 5H 1/s2 for i 5 j ,

c/s2 for i j 512 or 21, 34 or 43, etc.,

0 otherwise,
~A12!

where21,c,1 since the determinant ofC must be posi-
tive. The inverse matrixC21 can be constructed using th
fact thatC is block diagonal, consisting ofN/2 232 blocks.
Then it can be shown that

S5
s

ANA11c
and Dxu

2512c. ~A13!

The increase ofxu
2 for one standard deviation of the mea

ranges from 0 to 2, depending onc. The criterionDx251
does not apply to this example with correlated errors. A st
dard increase ofxu

2 may be smaller or larger than 1.
Example 3. For an even more striking example, supp

the N measurements that constitute a single ‘‘experime
are, for i 51,2,3, . . . ,N,
01401
e
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mi5m01yi1b ~A14!

where theyi are randomly distributed with standard devi
tion s, and the measurements are systematically off by
amountb. Suppose thatb has a Gaussian distribution wit
standard deviations for replications of the ‘‘experiment.’’ In
this example,

Ci j 5
1

s2 S d i j 2
s2

Ns21s2D , ~A15!

~C21! i j 5s2d i j 1s2. ~A16!

The variance of the individual measurements (mi) is

^m2&2^m&25s21s2. ~A17!

Therefore, our uncorrelated chi-squared variablexu
2(m), de-

fined by ignoring the correlations, is

xu
2~m!5(

i 51

N
~m2mi !

2

s21s2
. ~A18!

The minimum ofxu
2(m) occurs atm̄, which is just the aver-

age of the individual measurements. The variance ofm̄, av-
eraged over many replications of the ‘‘experiment,’’ is

S25^m̄2&2^m̄&25s21
s2

N
. ~A19!

The increase ofxu
2 asm moves fromm̄ to m̄6S, i.e., by one

standard deviation of the mean, is

Dxu
2[xu

2~m̄1S!2xu
2~m̄!5

s21Ns2

s21s2
. ~A20!

In the limit s/s!1, the error correlations in this model be
come negligible andDx2 reduces to the conventional valu
of 1. But in the limits/s@1, where the error correlations ar
dominant,Dx2 approachesN.

Thus for Example 3—a systematic error with 100% co
relation between measurements—the increase ofxu

2 for a

standard deviation ofm̄ is much larger than 1. Ifs ands are
comparable, thenDxu

2 is of orderN.
If the correlation matrixCi j is known accurately, then the

correlation information can be incorporated into the defi
tion of thex2 function, in the manner of Appendix B. For th
full list of experiments in the global analysis of parton di
tribution functions, however, the correlations of systema
errors have not been published, so the fitting functionxglobal

2

only has uncorrelated systematic errors.
We described above the measurement of a single quan

The determination of parton distribution functions seeks
measuremany quantities, i.e., the 16 parameters$a%. The
above arguments can be extended to measurements of
tiple quantities. If the measurement errors are uncorrela
then the increase ofxu

2 by 1 from the minimum defines a
hyperellipse in parameter space—theerror ellipse—
2-14
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corresponding to one standard deviation of linear comb
tions of the parameters. However, if the errors are correla
thenDxu

251 is not the correct criterion for a standard dev
tion.

The Lagrange multiplier method finds the best fit to t
data, subject to a constrained value of some quantityX. The
prediction ofX is at the absolute minimum ofxu

2 . Again, if
the errors are uncorrelated then one standard deviation o
constrained quantity corresponds to an increase ofx2 by 1
from the absolute minimum. But if the errors are correla
then Dxu

251 is not the correct criterion for one standa
deviation ofX.

One reason for describing this familiar, even elementa
statistic is to avoid certain misconceptions. Our stand
PDF setS0 is a parametrized fit to 1295 data points with
fitting parameters. The minimum value ofxglobal

2 is approxi-
mately 1200. Naively, it seems that an increase ofxglobal

2 by
merely 1, say from 1200 to 1201, could not possibly rep
sent a standard deviation of the fit. Naively one might s
pose that a standard deviation would haveDx2;A1295
rather than 1. However, this is a misconception. If the err
are uncorrelated~or if the correlations are incorporated in
x2) then indeedDx251 would represent a standard devi
tion. But this theorem is irrelevant to our problem, becau
the large correlations of systematic errors are not taken
account inxglobal

2 .

APPENDIX B: x2 FUNCTION INCLUDING CORRELATED
SYSTEMATIC ERRORS

The purpose of this appendix is to derive the appropr
definition of x2 for data with correlated systematic error
The defining condition is thatx2 should obey a chi-square
distribution.

Let $mi% be a set of measurements, wherei
51,2,3, . . . ,N. Let t i be the true, i.e., theoretical value of th
i th measured quantity. Several kinds of measurement er
will contribute to the difference betweenmi and t i . The un-
correlated error of measurementi is denoted bys i . There
are also correlated errors,K in number, denoted
b1i ,b2i , . . . ,bKi . Thus thei th measurement can be writte
as

mi5t i1errors5t i1s i r i1(
j 51

K

b j i r j8 , ~B1!

wherer i and r j8 are independently fluctuating variables. W
assume that each of these fluctuations has a Gaussian d
bution with width 1,

p~r !5
e2r 2/2

A2p
. ~B2!

Note that r j8 is independent ofi; that is, the errors
b j 1 ,b j 2 , . . . ,b jN are 100% correlated for allN data points.

The probability distribution of the measurements is
01401
-
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dP5E )
i 51

N

p~r i !dri)
j 51

K

p~r j8!dr j8

3)
i 51

N

dS mi2t i2s i r i2(
j 51

K

b j i r j8D dNm. ~B3!

Now we will evaluate the integrals overr i and r j8 in two
steps. First evaluate ther i integrals using the delta functions

dP5E )
j 51

K

dr j8C 1e2x1
2/2dNm, ~B4!

whereC1 is a normalization constant and

x1
25(

i 51

N S mi2t i2(
j

b j i r j8

s i

D 2

1(
j 51

K

r j8
2. ~B5!

Note thatx1
2 is a function of r 18 , . . . ,r K8 . These variables

$r j8% could be used as fitting parameters to account for
systematic errors: minimizingx1

2 with respect tor j8 would
provide the best model to correct for the systematic erro
type j. Becausex1

2 is only a quadratic polynomial in ther j8
variables, the minimization can be done analytically.

To continue evaluating Eq.~B3! we now do the integra-
tion over$r j8%. We writex1

2 in the form

x1
25(

i 51

N
~mi2t i !

2

s i
2

2(
j 51

K

2Bjr j81 (
j , j 851

K

Aj j 8r j8r j 8
8 ,

~B6!

whereBj is a vector withK components

Bj5(
i 51

N

b j i ~mi2t i !/s i
2 , ~B7!

andAj j 8 is a K3K matrix

Aj j 85d j j 81(
i 51

N

b j i b j 8 i /s i
2 . ~B8!

Then the integration overdKr 8 is an exercise in Gaussia
integration, with the result

dP5C expF2
1

2
x2GdNm, ~B9!

whereC is a normalization constant and

x25(
i 51

N
~mi2t i !

2

s i
2

2(
j 51

K

(
j 851

K

Bj~A21! j j 8Bj 8 . ~B10!

This equation is the appropriate definition ofx2 for data with
correlated systematic errors. The correlated errors are defi
by the coefficientsb j i in Eq. ~B1!, which determine the vec
2-15
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TABLE II. Table of coefficients.

A0 A1 A2 A3 A4

dv 0.5959 0.4942 4.2785 8.4187 0.786
uv 0.9783 0.4942 3.3705 10.0012 0.857

S0 : g 3.3862 0.2610 3.479520.9653 1.0

d̄/ū 3.051E4 5.4143 15.0 9.8535 4.355

ū1d̄ 0.5089 0.0877 7.7482 3.3890 1.0

s 0.1018 0.0877 7.7482 3.3890 1.0
dv 0.2891 0.5141 3.8555 10.9580 0.412

0.2184 0.2958 4.6267 35.7229 1.095
uv 1.0142 0.5141 3.3614 9.2995 0.805

0.2979 0.2958 3.3279 32.8453 0.942
g 4.6245 0.4354 3.479520.9728 1.0

SW,TeV
6 : 1.8080 0.0458 3.479520.0519 1.0

d̄/ū 5.908E4 5.6673 15.0 9.8535 4.745

2.041E4 5.1506 15.0 9.8535 4.832

ū1d̄ 0.4615 0.0108 6.6145 0.92784 1.0

1.2515 0.3338 7.521620.0570 1.0
s 0.0923 0.0108 6.6145 0.9278 1.0

0.2503 0.3338 7.521620.0570 1.0
dv 0.6061 0.5502 4.0017 5.8346 0.534

0.3427 0.3728 4.5166 19.8510 0.996
uv 1.2159 0.5502 3.3347 7.3386 0.771

0.5247 0.3728 3.3905 20.1006 0.955
g 4.4962 0.4321 3.479520.9023 1.0

SZ,TeV
6 : 2.3113 0.1032 3.479520.6349 1.0

d̄/ū 4.321E4 5.4724 15.0 9.8535 4.629

2.818E4 5.4540 15.0 9.8535 4.437

ū1d̄ 0.4609 0.0103 6.6671 0.9822 1.0

0.9900 0.2926 8.3205 2.1648 1.0
s 0.0921 0.0103 6.6671 0.9823 1.0

0.1980 0.2926 8.3205 2.1648 1.0
dv 0.7326 0.5008 4.6393 10.8532 1.059

0.5671 0.4771 4.2615 8.8355 0.813
uv 1.0608 0.5008 3.4023 9.6622 0.896

0.9142 0.4771 3.3761 10.9138 0.880
g 2.2379 0.0733 3.479520.9860 1.0

SW,LHC
6 : 2.5021 0.3981 3.4795 1.6229 1.0

d̄/ū 2.178E4 5.2576 15.0 9.8535 4.481

4.531E4 5.4979 15.0 9.8535 4.658

ū1d̄ 1.1980 0.2952 6.947520.5442 1.0

0.2759 20.0918 8.2045 6.3950 1.0
s 0.2396 0.2952 6.947520.5442 1.0

0.0552 20.0918 8.2045 6.3950 1.0
dv 0.5659 0.4616 4.5297 12.3685 0.983

0.4585 0.4496 4.2122 10.3850 0.776
uv 0.8344 0.4616 3.3847 12.1129 0.887

0.7640 0.4496 3.3566 12.8253 0.870
g 2.3282 0.0918 3.479520.9837 1.0

SZ,LHC
6 : 2.9475 0.4219 3.4795 0.9447 1.0

d̄/ū 2.421E4 5.3032 15.0 9.8535 4.534

4.416E4 5.4708 15.0 9.8535 4.792

ū1d̄ 1.1130 0.2698 6.849020.5330 1.0

0.2719 20.0899 8.1492 6.5300 1.0
s 0.2226 0.2698 6.849020.5330 1.0

0.0544 20.0899 8.1492 6.5300 1.0
01401
tor Bj and matrixAj j 8 . An interesting relation is that thex2

quantity in Eq.~B10! is the minimum ofx1
2 with respect to

the parametersr 18 , . . . ,r K8 .
Another expression forx2, which may be derived from

Eq. ~B3! by Gaussian integration, is@2#

x25(
i 51

N

(
i 851

N

~mi2t i !~V21! i i 8~mi 82t i 8!, ~B11!

whereVi j is the variance matrix

Vii 85s i
2d i i 81(

j 51

K

b j i b j i 8 . ~B12!

It can be shown that the inverse of the variance matrix is

~V21! i i 85
d i i 8

s i
2

2 (
j , j 851

K
b j i b j 8 i 8

s i
2s i 8

2 ~A21! j j 8 . ~B13!

Therefore Eqs.~B10! and ~B11! are equivalent. However
there is a real computational advantage in the use of
~B10! because it does not require the numerical inversion
the N3N variance matrix.

To check that Eq.~B10! makes sense, we can consider
special case. Suppose the numberK of systematic errors isN,
and each systematic error contributes to just one meas
ment. Then the matrix of systematic errors has the form

b j i 5d j i bi . ~B14!

This situation is equivalent to an additional set ofuncorre-
lated errors$bi%. The vectorBj is then

Bj5
bj~mj2t j !

s j
2

~B15!

and the matrixAj j 8 is

Aj j 85d j j 8F11
bj

2

s j
2G . ~B16!

Substituting these results into Eq.~B10! we find

x25(
i

~mi2t i !
2

s i
21bi

2
, ~B17!

which makes sense; the uncorrelated errors just combin
quadrature.

The statistical quantityx2 has a chi-squared distributio
with N degrees of freedom. Thus this variable may be use
set confidence levels of the theory for the given data. Bu
use this variable, the measurement errorss i and b j i , for i
51,2, . . . ,N and j 51,2, . . . ,K, must be known from the
experiment. A chi-squared distribution with many degrees
freedom is a very narrow distribution, sharply peaked atx2

5N. Therefore, small inaccuracies in the values of thes i ’s
and b j i ’s may translate into a large error on the confiden
levels computed from the chi-squared distribution.
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We use Eq.~B10! in Sec. IV to compare the constraine
fits produced by the Lagrange multiplier method to data fr
the H1 and BCDMS experiments. Correlated systematic
rors are also used to calculatex2 for the CDF and D0 jet
experiments.

APPENDIX C: PARTON DISTRIBUTION SETS

We give here the PDF’s described in Sec. VI.S0 is the
standard set, defined by the absolute minimum ofxglobal

2 .
SW,Tev

6 are fits to the global data sets with extreme values
sW(Tevatron), i.e., the outermost points on Fig. 3, genera
by the Lagrange multiplier method.SZ,Tev

6 , SW,LHC
6 , and

SZ,LHC
6 are analogous forZ production andW andZ produc-

tion at the LHC.
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The functional form of the initial parton distributions an
the definitions of the PDF parameters at the low-energy s
Q051 GeV are

f ~x,Q0
2!5A0 xA1~12x!A2~11A3 xA4!

for uv ,dv ,g,ū1d̄,s(5 s̄), and for the ratio

d̄~x,Q0
2!

ū~x,Q0
2!

5A0 xA1~12x!A21~11A3 x!~12x!A4.

In Table II, the coefficients are given. With a program
solve the PDF evolution equations, the PDF’s for an arbitr
momentum scaleQ can be generated.
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