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Multivariate fitting and the error matrix in global analysis of data

J. Pumplin and D. R. Stump
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824

W. K. Tung
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824
and Theory Division, CERN, CH-1211 Geneva 23, Switzerland
(Received 29 September 2000; published 12 December)2001

When a large body of data from diverse experiments is analyzed using a theoretical model with many
parameters, the standard error-matrix method and the general tools for evaluating errors may become inad-
equate. We present an iterative method that significantly improves the reliability of the error matrix calculation.
To obtain even better estimates of the uncertainties on predictions of physical observables, we also present a
Lagrange multiplier method that explores the entire parameter space and avoids the linear approximations
assumed in conventional error propagation calculations. These methods are illustrated by an example from the
global analysis of parton distribution functions.
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I. INTRODUCTION Of the many issues that confront a global analysis, we
address in this paper two, for which we have been able to
The subject of this paper is a problem that arises when significantly improve on the traditional treatment. The im-
large body of data from diverse experiments is analyzed agrovements allow a more reliable determination of the un-
cording to a theoretical model that has many adjustable pasertainties offa;} and{x(a)} in complex systems for which
rameters. Consider a generic data fitting problem based ogbnventional methods may fail. To define these problems, we
experimental measurement®;, 1=1,... N} with errors  assume the system can be described by a global fitting func-
{o1}. The data are to be compared to predictifng froma on y2  or x2 for short, that characterizes the goodness-

theoretical - model with unknown param_eter$ai, I of-fit for a given set of theory parametefa;}. This x? dis-
tT] éory 'is’nt}o' ?Ofnog?j{zot?];gimgroen fg;f?:ergps;ng data with tills al! available informatiqn on f[he the(_)ry and on the global
experimental data sets, including their errors and correla-
D,—T,\? tions. One finds the minimum valyg of 2, and the best
) , (1)  estimate of the theory parameters are the vala$ that
produce that minimum. The dependenceydfon {a;} near

or a generalization of that formula if correlations between thén€ minimum provides information on the uncertainties in
errors are known in terms of a set of correlation matricesthe{ai}. These are usually characterized by the error matrix
The physics objectives af@ to find the best estimate of the and its inverse, the Hessian matk; , where one assumes
parameterga;} and their uncertainties, arfi) to predict the ~ thatx can be approximated by a quadratic expansm{mp}]
values and uncertainties of physical quantit$(®, « around{a;’}. Once the Hessian is known, one can estimate
=1,2,..} that are functions of théa;}. not only the uncertainties df;}, but also the uncertainty in

If the errors are randomly distributed, and the correlationghe theoretical prediction for any physical quantiy pro-
well determined, then standard statistical methodsydf Vided the dependence #fon{a;} can be approximated by a
minimization[1,2] apply, and established fitting tools like the linear expansion arourfd’}, and is thus characterized by its
CERN Library progranminuiT [3] can be employed. How- gradient afa’} (cf. Sec. I).
ever, real problems are often more complex. This is particu- The first problem we address is a technical one that is
larly true in a “global analysis,” where the large number of important in practice. If the uncertainties are very disparate
data pointdD,} do not come from a uniform set of measure- for different directions in the-dimensional parameter space
ments, but instead consist of a collection of results from{a;}, i.e., if the eigenvalues dfl;; span many orders of mag-
many experiments on a variety of physical processes, witimitude, how can one calculate the matHy with sufficient
diverse characteristics and errors. The difficulties are comaccuracy to obtain reliable predictions for all directions? To
pounded if there are unquantified theoretical uncertainties, i$olve this problem, we have developed an iterative procedure
the number of theoretical parameterss large, or if the best that adapts the step sizes used in the numerical calculation of
parametrization cannot be uniquely defireegriori. All of the Hessian to the uncertainties in each eigenvector direction.
these difficulties arise in the global analysis of hadronic parWe demonstrate the effectiveness of this procedure in our
ton distribution functiongPDF’) [4,5,6], which originally  specific application, where the standard tool fails to yield
motivated this investigation. Several groups have addressaeliable results.
the question of estimating errors for the PDF determinations The second problem we address concerns the reliability of
[7,8,9,10Q. But the problem is clearly more general than thatestimating the uncertaintAX in the prediction for some
application. physical variableX that is a function of thda;}: How can
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one estimaté\ X in a way that takes into account the varia- 1

tion of x? over the entire parameter spaj@g}, without as- inZ vij\/ =% - (6)
suming the quadratic approximation #3 and the linear ap- J €i

proximation toX that are a part of the error-matrix approach?thase parameters have the simple property that

We solve this problem by using Lagrange’s method of the

undetermined multiplier to make constrained fits that derive

2 2
the dependence of? on X. Because this method is more AXZ:XZ_XOZZ zi. )
robust, it can be used by itself or to check the reliability of
the Hessian method. In other words,the surfaces of constant? are spheres in

Section Il summarizes the error matrix formalism and eS'{Zi} space with AXZ the Squared distance from the mini-
tablishes our notation. Section Il describes the iterativeqym

method for calculating the Hessian, and demonstrates its SU- The orthonormality ob;; can be used to invert the trans-
periority in a concrete example. Section IV introduces theformation (6):

Lagrange multiplier method and compares its results with the

Hessian approach to the same application. The conclusion is

in Sec. V. zi= \/EEJ: Yiviji €))

Il. ERROR MATRIX AND HESSIAN The Hessian and its inverse, which is the error matrix, are

) _ ) easily expressed in terms of the eigenvalues and eigenvector
First we review the well-known connection between thecomponents:

error matrix and the Hessian matrix of second derivatives.
We emphasize the eigenvector representations of those ma-

trices, which are used extensively later in the paper. Hij :Ek EVikUjk» ©
The basic assumption of the error matrix approach is that
x? can be approximated by a quadratic expansion in the fit 1
parameterda;} near the global minimum. This assumption (H™Y5=2> —vivjk. (10
will be true if the variation of the theory valuds with {a;} K €k
is approximately linear near the minimum. Definigg= a; Now consider any physical quantidy that can be calcu-
—a; as the displacement of parameeifrom its valuea; at  |ated according to the theory as a function of the parameters
the minimum, we have {a;}. The best estimate oX is the value at the minimum

onx(a?). In the neighborhood of the minimum, assuming

?) the first term of the Taylor-series expansionXfgives an
adequate approximation, the deviationXofrom its best es-
timate is given by

X2:Xé+i§j: Hi;viy;

1
Hijzz

3 AX=X-Xg=S V=S X, (11)

0 i 19_)/| i

aY;dy;

where the derivatives are evaluated at the minimum poinjyhere
y;=0 andH;; are the elements of thgessian matrix There
are no linear terms iy; in Eq. (2), because the first deriva- X
tives of y? are zero at the minimum. Xi= 9z,
Being a symmetric matrixH;; has a complete set of
orthonormal eigenvectorg!" =uv,, with eigenvalues, : are the components of tieegradient evaluated at the global
minimum, i.e., at the origin irz space.
Since y? increases uniformly in all directions inspace,
> Hijvj= &k, (4)  the gradient vectoX; gives the direction in which the physi-
! cal observabl& varies fastest with increasing’. The maxi-
mum deviation inX for a given increase iy? is, therefore,
D ViD= Oy (5) obtained by the dot product of the gradient vectgrand a
TR displacement vectoZ; in the same direction with length
! p i g
NIN%2 i.e.,Zi=X; \/AXZ/E,-X]Z. For the square of the devia-
These eigenvectors provide a natural basis to express arltion, we, therefore, obtain the simpler formula
trary variations around the minimum; we replagg} by a

(12

new set of parameteig;} defined by (AX)2=(X-Z)2=AX22 X2. (13
I
We include a factor 1/2 in the definition éf, as is the custom in The traditional formula for the error estimatd X)? in
high-energy physics. terms of the original coordinatdy;} can be derived by sub-
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stituting Xj = 9X/dz;=X;(dXIdy;)(dy;/dz) in Eq. (13) and

using Eqs.(6) and (10). The result is Yi:; uiiti &, (15)
X X hereu;; i th | matrix anft; le fact
(AX)2=A)2S _(H—l)ij__ (149  Whereu;; is an orthogonal matrix anft;} are scale factors.
i 9Yi IY; In the first iteration, these are chosenwgs= 6;; andt; =1,

so that¢; =y, . This makes the first round of iteration similar

This standard result can of course also be derived directly bjo the usual procedure of taking derivatives with respect to
minimizing x? in Eq. (2) with respect to{a;}, subject to a a;. The iterative method is designed such that with succes-
constraint orX. sive iterationsyy;; , t;, and&; converge ta;;, \1/e, andz;

Equations(13) and(14) are equivalent if the assumptions respectively.
of a linear approximation foX and a quadratic approxima- (2) Calculate the effective second derivative matdiy
tion for y? are exact. But in practice, the numerical accuracydefined by
of the two can differ considerably if these conditions are not
well met over the relevant region of parameter space. To

2_ .2
calculate the error estimat®X, we prefer to use Eq.13) X _X0+% Pijig; (16)
using derivativesX; calculated by finite differences of at
the pointsz;==3Ax? (with z;=0 for j#i). This is gen- 1 9%)2

(17)

erally more accurate, because it estimates the necessary de-
rivatives using an appropriate step size, and thus reduces the

effect of higher-order terms and numerical noise. using finite differences of thé, . The step size ir; is cho-

In a complex problem such as a global analysis, the regen 1o make the increase jif due to the diagonal element

gion of applicability of the approximations is generally un- q)iifiz equal to a certain valudy2. The choice ofsy? is

known peforehand. Asituation of par'ucu!ar concern is Whenyetermined by the particular physics application at hand. Na-
the various _elgenvalue{SEi} have very d|ﬁerent orders_ of ively, one might expecsy?=1 to be the right choice. That
magmtqde-ggnalmg that the funct,o;azlvanes sIowa.m would indeed be appropriate fory& function obeying ideal
some directions O‘.i‘ space, and rapldly_ n <_)thers_. The itera- tatistical requirements. But when the input)(té is im-
tive method described in the next section is designed to deaéerfect A reasonable cHoice@fz St be basec(j)bgln a phys-
effectively with this situation. ics judgement of the appropriate range of that particyfar
function. We therefore leave the choice &2 open in this
Il ITERATIVE PROCEDURE general discussiohin any case, if the final results are to be

In practical applications, the Hessian matH, is calcu- trustworthy, they must not be sensitive to that choice.

lated using finite differences to estimate the second deriva- VIVe t.Calcuzlatf tﬁacfh off-diagonal ¢ stﬁcond tderll\g:ltwe by
tives in Eqg.(3). A balance must be maintained in choosing evaluating x“ at the four corners of the rectangle-

the step sizes for this, since higher-order terms will contrib-" %) (=8, = ), (+6;,=§)), and (= 4, + 5)), wheres,

ute if the intervals are too large, while numerical noise will IS the step size. This is a mod|f|§:a_1t|0n of the technique used
in MINUIT [3]. For the sake of efficiency, theiNuIT subrou-

dominate if the intervals are too small. This noise problem; . ) :

may arise more often than is generally realized, since th ne HESSEestimates off-dla_\gonal elements using only one of

theory valuegT,} that enter they? calculation may not be those corners, together with valyes 51’0). and (0;) that

the ideally smooth functions of the fit parameters that ondi® aIreat_dy known from ca!culatlng the diagonal elements .Of

would associate with analytic formulas. For in complex the-the Hessian. Qur methqd is slower by a factor of 4, but is

oretical models, thgT,} may be computed from multiple more accurate becaL_lse I fully or_partly canc_els some (.)f the
! contributions from higher derivatives. The first derivatives

integrals that have small discontinuities as functiongagf 5 ) . .
induced by adaptive integration methods. These numeric4lX 19¢; are also calcglated at this stage of the |ter§1t|.0n and
used to refine the estimate of the location of the minimum.

errors forbid the use of a very small step size in the finite
difference calculations of derivatives. Furthermore, as noted
above, the eigenvalues &f; may span a wide range, so

ijZEMy

(3) Compute the Hessian accordingdy; ,

. X @, Ui
excellent accuracy is needed especially to get the smaller HijZE M_ (18)
ones right. mn  tmin
(4) Find the normalized eigenvectors of the Hessian, as
A. The procedure defined by Eqs(4) and (5).
We want to evaluatél;; by sampling the values of? in (5) Replaceu;; by vj;, t; by y1/e;, and go back to step 1.

a region of parameter space where Bj.is a good approxi- The steps are repeated typically 10—-20 times, until the

mation. In principle, the parametefg;} are the natural changes become small adg; converges ta5; .

choice for exploring this space, but of course they are not

known in advance. We, therefore, adopt the following itera-

tive procedure: 2Compare discussion in the following section on a sample prob-
(1) Define a new set of coordinat¢s;} by lem.
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This iterative procedure improves the estimate of the Hes- 1260
sian matrix, and hence of the error matrix, because in the
later iterations it calculates the Hessian based on points that
sample the region wherk)y? has the magnitude of physical
interest.

1240

XZ

B. Results from a sample application

As an example, we apply the iterative procedure to the 1220

application that motivated this study—the global analysis of
PDF's [7]—and compare the results with those obtained
from MINUIT. The experimental input for this problem con-
sists ofN=1295 data points from 15 different experimental
data sets involving four distinct physical processes. All the
potential complexities mentioned earlier are present in this
system. The theory is the quark parton model, based on next- Distance
to-leading order perturbative quantum chromodynamics
(QCD). The model containe= 16 parameters; that char-

acterize the quark and gluon distributions in the proton aEc)urve is the quadratic approximation based on the Hessian. The

So”?e Iow-momentgm scalg, . From a CaICUIatlonal, pOI!’lt guadratic form is seen to be a rather good approximation over the
of view, the theoretical model consists of the numerical inte-

) : ) . . ; range shown.
gration of an integrodifferential equation and multiple con-
volution integrals that are evaluated mostly by adaptive al- ) _ ) ) _
gorithms. The fitting funCtion’(SIobal in this case combines an approprlgte distance. This can be seen from Flg. 2, _Wh|ch
the published statistical and systematic errors of the dat@hows the difference between the two curves in Fig. 1 in the
points in quadrature. The only correlated errors incorporategentral region. The difference displays a small cubic contri-
are the published overall normalization uncertainties of thdution to x°. It also reveals contributions that vary errati-
individual experiments. The fitting program is the same ag@lly with a magnitude on the order of 0.03. These fluctua-
that used to generate the CTEQ parton distributiphg]. ~ tons come from the noise associated with switching of
The global x?> minimum for this system defines the mterval_s in the adaptive integration routines. Becayse .the
CTEQ5M1 set of PDF’s, for which2~1200[6]. We find flyctuatlons are small, 'Fhey do not affect our results.m prin-
that the eigenvaluels,} of the Hessian for this system range ciple. But they do require care in estimating the derivatives.

over 5—6 orders of magnituddistributed approximately ex- In particular, the_y would make f|n|te-d|fference estimates
ponentially. based on small intervals extremely unreliable. The iterative

The value ofA x2 that corresponds to a given Confidencemethod avoids this problem by choosing a suitable scale for
level is well defined for an ideal experiment: e.§x?<1 each eigenvector direction when evaluating the Hessian.

defines the 68% confidence region. But in a real-world glo-

1200

-50 -25 0.0 2.5 5.0

FIG. 1. Variation ofy? with distance along a typical direction in
arameter space. The dotted curve is the ex&cand the solid

bal analysis, the experimental and theoretical values in Eq. (0 Rt I I LN UL IR
(1) include systematic errors, and the uncertainigsin- r ]
clude subjective estimates of those errors, so the relation . 03| -
betweenA y? and confidence level requires further analysis. b= C ]
From independent detailed studies of the uncertainties o oz2F -
[11,12, we estimate that an appropriate choiceSgf for the ‘é . ]
iterative calculation is around 10 in our application, and only 9 o[ 3
the regionA xy2>100 can be ruled out for the final fits. &
The error-matrix approach relies on a quadratic approxi- ~ ook TN ]
mation to x? in the neighborhood of the minimum. To test : Tt pNC e ]
whether that approximation is valid, we plpt as a function o o1 = ) E
of distance along a particular direction {@®;} space, as r ]
shown in Fig. 1. The direction chosen is a typical one— SN N g
specifically it is the direction of the eigenvector with median '0'2_3 2 -1 0 1 2 3
eigenvalue. The dotted curve in Fig. 1 is the exgcand the .
solid curve is the quadratic approximati2). The approxi- Distance

mation is seen to provide a rather good description of the giG. 2. Difference betweeg? and its quadratic approximation
function. Even at points wherg? has increased by 50, the (), both of which are shown in Fig. 1. A cubic contribution can be
quadratic approximation reproduces the increase to 20% ageen, along with a noticeable amount of numerical noise. The fine
curacy. structure revealed here is small compared to the main variation of

To correctly measure the curvature of the quadratic apy? itself, which rises by 20 over the region shown, as can be seen in
proximation, it is important to fit points that are displaced byFig. 1.

014011-4



MULTIVARIATE FITTING AND THE ERROR MATRIX . .. PHYSICAL REVIEW D 65 014011

150 — ] 300 - [ _
g 100 n g8 200 —
° L 0 L _
3 3
o o
Q [
= £
50— - 100 —
PP TS 0L [ L[ Ili W
-5 0 5 10 15 -5 0 5 10 15
Ax? Ax ®
FIG. 3. Frequency distribution af x? according to the Hessian FIG. 4. Same as Fig. 3, except that the displacements are re-

approximation(2) for displacements in random directions for which stricted to the parameter subspace spanned by the 10 steepest direc-
the true value isA y?=5.0. Solid histogramusing Hessian calcu- tions.

lated by iterative method of Sec. lltfotted histogramusing Hes-

sian calculated byNuIT. {z;} that is spanned by the 10 directions with the largest
eigenvalues; . The larger eigenvalues correspond to direc-
tions in which x? rises most rapidly, or in other words, di-

typical direction in the 16-dimensional parameter space. Fig[ectlonS in which the parameters are more strongly con-

ure 3 shows a complementary test of the iterative method fo?tra_med b_y data. Becau_se the d|st_anc¢ moved away from _the
all possible directions. We have chosen 1000 directions gpmimum m_{ai}_, space is smaller in th|s_ case, the qqadratlc
random in{z} space. We displace the parameters away fronfiPProximation is generally better, so it is not surprising that
the minimum in each of these directions by a distance thaTtEe histograms are more s.harply peaked th.an in Fig. 3. But
makesA y2=5. We then compute the value afy? predicted the advantage of the iterative method remains apparent.
by the quadratic approximatigi2), using the Hessian calcu-
lated by the iterative method and, for comparison, by the
routine HESSE within the mINUIT package. The results are Information from the iteratively improved Hessian pro-
displayed in Fig. 3 as histograms, witfy? on the horizontal  vides a useful tool for refining the choice of functional forms
axis and the number of counts on the vertical axiglfvere  used to parametrize a continuous degree of freedom in the
quadratic in{a;}, then a perfect computational method theoretical model. Explicitly, the relevant formulas are as
would yield a delta function ak y?>=5. Figure 3 shows that: follows.
For the solid histogram—the result of the iterative The length squared of the displacement vector in the
procedure—the quadratic approximation is close to the exagpace of fit parameters is
result in all directions, and hence E@) is a pretty good
representation of?. Quantitatively, the middle 68% of the 0.2 2 Zi2
distribution is contained in the region 5:4.6. Z (ai—ay) :Ei Yi :Zi P
For thedotted histogram-based on the general purpose
programmINUIT—the distribution is also spread around the while AX2:zizi2 by Eq. (7). Hence the directions in which
expected value of 5, but it is very broadly distributed. ThiSthe parameters are well determingide steep directionsor-
estimate of the Hessian is, therefore, unsatisfactory, becauggspond to eigenvectors of the Hessian with large eigenval-
we might be interested in a quantity whose gradient directionyes, while the shallow directions in which they are weakly
is one for which the Hessian computed taywuIT is widely determined correspond to small eigenvalues.
off the mark. A major source of this problem is the numerical  The extreme values for any particular are
noise visible in Fig. 2MINUIT uses a small step size to cal-
culate the derivatives, and gets misled by the small-scale ai=ai°i Aa;, (20
discontinuities iny?. For some directionsAx? even be-
comes negative because the errors in one or more of th&here
small eigenvalues are big enough to allow their calculated )
values to become negativéWithin MINUIT, this circum- (Aa)?=Ay2S Yij 21)
stance elicits a warning message, and a constant is added to ! X T o€
all the eigenvalues, which in the context of Fig. 3 corre-
sponds to shifting the dotted distribution to the right. Equation(21) can be used to see if each parameter is appro-
Figure 4 shows the results of a similar study, in which thepriately well constrained. Furthermore, the individual terms
100 random directions are chosen only from the subspace @f the sum show the contributions tba; from the various

Figures 1 and 2 show the behavior pf along a single

C. Comment

(19
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eigenvectors, so if a parametrization leads to a poorly de- 1450 P
fined minimum because it allows too much freedom—uwhich [
is indicated by a failure of the iteration to converge for the 1400 |

smallest eigenvalues of the Hessian—it is easy to see which
of the parameters are most responsible for the too-shallow

directions. 13507

IV. LAGRANGE MULTIPLIER METHOD > 1300:

The Hessianyia its inverse, which is the error matrix,
provides a general way to propagate the uncertainties of ex-
perimental and theoretical input to the fit parametgag, i
and thence on to a measurable quantifya;}) by Eq. (13 1200 [
or Eq.(14). But these equations are based on assuming that IS SRR AP AP I

2 . . . 2.20 2.25 2.30 2.356 2.40 .45
x° andX can be treated as quadratic and linear functions of oy [nb]
{a;}, respectively. In this section we describe a different ap- v
proach, based on the mathematical method oflLihgrange FIG. 5. Minimum? as a function of the predicted cross section
undetermined multiplierwhich avoids those assumptions.  for W* production inpp collisions. Theparabolic curveis the
prediction of the iteratively improved Hessian method. Poénts
A. The procedure are from the Lagrange multiplier method.

1250

Let X, be the value oK at thex? minimum, which is the ’ , .
best estimate ofX. For a fixed value of\, called the tribution to y“ consists of a constant, a linear termXpand
Lagrange multiplier, one performs a new minimization with & quadratic term ixX. This is equivalent to E¢22), because

respect to the fit paramete{'ai}, this time on the quantity a constraint 00(2 is equivalent to a Constraint CXI itself. )
The essential feature of the Lagrange multiplier method is

F=x?+N(X—Xo), (22)  that, for a givemA x?, it finds the largest range of allowed
by the global data set and the theoretical model, independent
to obtain a pair of valuefy(\),X(\)]. (The constant term  of any approximations. The full parameter spdag is ex-
—\X, here is not necessary, because it does not affect th§lored in the minimization procedure, not just the immediate
minimization, but it makes the minimum value Bfeasier to neighborhood of the Originakz minimum as in the Hessian
interpret) At this new minimum,x*(\) is the lowest pos- method, and no approximations based on a small deviation
sible x? for the corresponding valu¥(\) of the physical from the original minimum are needed.
variableX. Thus one achievesanstrained fiin which X2 is The only drawback to the Lagrange multiplier method is
minimized for a particular value of. that it can be slow computationally, since it requires a sepa-
By repeating the minimization for many values)Xfone rate series of minimizations for each observaXlthat is of
maps out the parametrically defined curvg?(\),X(\)]. interest.
Since\ is just the parameter for this curve, its value is of no
particular physical significance. The relevant rangeNaan

. . . B. Example
be found by trial-and-error, or it can be estimated
using the Hessian approximation, which predicts that We now look at an example of the Lagrange multiplier
~—2Ax?/AX. In that approximationF goes down by the method from our application, the uncertainty of parton dis-
same amount tha¢? goes up. tribution functions. For the physical quanti¥; we consider

One way to understand the Lagrange multiplier method ighe cross sectiomr,, for W= production inpp collisions at
to imagine that the quantitX is simply one of the fitting the energy/s= 1.8 TeV of the Tevatron collider at Fermilab.
parameters, sag,. The variation ofy? with a; could be = We want to estimatey, and the uncertainty on that estimate,
mapped out by minimizing? with respect to{a,, . . . ,a,} based on the global analysis of parton distributions.
for a sequence of values af . (That operation is indeed so  The points in Fig. 5 ShOV}(éloba. as a function ofrB in
useful thatmINUIT provides a procedur®iNOs to carry it  nanobarns, wher8=0.106 is the branching ratio assumed
out) In the more general case théis a function of al{a;}, for W—ew. These points are obtained by the Lagrange mul-
one wants to similarly minimize/? for fixed values ofX.  tiplier method using\=0, =1000, +2000, =3000, and
That is exactly what the Lagrange multiplier method does=4000. They are thus discrete casesxéfoba, Versusoyy,
since including the undetermined multiplier term in E22)  without approximations.
renders thda;} independent in spite of the constraint ¥n The smooth curve in Fig. 5 is the parabola given in Eqg.
A more phenomenological way to understand the(14), using the Hessian computed by the iterative method
Lagrange multiplier method is to imagine th&thas just and treatingryy in the linear approximation. The comparison
been measured, with resfi,.,* onew. TO decide whether between this curve and the discrete points from the Lagrange
this hypothetical new measurement is consistent with the oldnultiplier calculation tests the quality of the quadratic and
body of data, one would add a tefX,.,— X)/onew]? 10 linear approximations and the reliability of the iterative cal-
Xélobal of Eqg. (1) and redo the minimization. The added con- culation of H;; . For this application, we conclude that the

014011-6



MULTIVARIATE FITTING AND THE ERROR MATRIX . .. PHYSICAL REVIEW D 65 014011

improved Hessian method works very well, since the differ-culates the uncertainty on a given physical observable di-
ence between the points and the curve is small, and indicatesctly, without going through the error matrix. It thus avoids
only a small cubic contribution. If the two results did not the assumption that the theoretical quantities can be approxi-
agree, the correct result would be the one given by thenated by linear functions of the search parameters, which is
Lagrange multiplier method. intrinsic to the Hessian approach.

To estimateA X, the uncertainty o consistent with the For simplicity, we have discussed only the problem of
global analysis of existing data, one needs to specify whabbtaining error estimates on a single quantyt is straight-
range ofA Xéloba, is allowed. As discussed earlier, the accept-forward to generalize our methods to find the region allowed
able limit of XS,Oba, depends on the nature of the original simultaneously for two or more variables by a giva?.
definition of this fitting function, in the context of the spe- For example, in the case of two variabls) andX@, the
cific system under study. For the caseoqf, Ref.[12] esti-  allowed region according to the Hessian method is the inte-
mates Axémbaﬁ 100, which translates intoAoy /oy rior of an ellipse. The Lagrange multiplier method can be

~+ 3% according to Fig. 5. gener?zli)zed f;)r this case by addirgvo terms, \; X
+)\2X y to X -
V. CONCLUSION Although the Lagrange multiplier procedure is conceptu-

_ ally simple and straightforward to implement, it is slow com-

‘We have addressed some computational problems thgiutationally because it requires many full minimizations to
arise in a global phenomenological analysis, in which a commap outy? as a function ofX, and this must be done sepa-
plex theory with many parameters confronts a large numbefately for each quantitX whose error limits are of interest.
of data points from diverse experiments. In contrast, once the Hessian has been determined from the

The traditional error-matrix analysis is based on a quaglobal analysis, it can be applied to any physical observable.
dratic approximation to the functiog? that measures the One needs only to compute the gradiéi/da; of the ob-
quality of the fit, in the neighborhood of the minimum that servableX and substitute into Eq14), or better, to compute
defines the best fit. The iterative method proposed in Sec. l{he gradientX;=dX/dz and substitute into Eq(13). For
improves the calculation of the Hessian matrix, which ex-computational efficiency, the iteratively calculated Hessian
presses that quadratic approximation, for a complex systef, therefore, the method of choice, provided its linear ap-
in which general-purpose programs may fall short. The inproximations are sufficiently accurate. Whether or not that is
verse of this improved version of the Hessian matrix is anhe case can be determined by comparing Hessian and
improved version of the error matrix. It can be used to esti'i_agrange mu|t|p||er results. We use both methods in a de-
mate the uncertainty of predictions using standard errortajled study of the uncertainties in the CTEQ5 parton distri-

matrix formulas. _ ~bution functions[7,11,19 that is based on the work pre-
Our iterative procedure for calculating the Hessian issented here.

implemented as an extension to the widely-used CERN

FORTRAN library routineminuIT [3]. The code is available

from http://www.pa.msu.eda/pumplin/iterate/ or it can be ACKNOWLEDGMENTS
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