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Multivariate fitting and the error matrix in global analysis of data
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When a large body of data from diverse experiments is analyzed using a theoretical model with many
parameters, the standard error-matrix method and the general tools for evaluating errors may become inad-
equate. We present an iterative method that significantly improves the reliability of the error matrix calculation.
To obtain even better estimates of the uncertainties on predictions of physical observables, we also present a
Lagrange multiplier method that explores the entire parameter space and avoids the linear approximations
assumed in conventional error propagation calculations. These methods are illustrated by an example from the
global analysis of parton distribution functions.
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I. INTRODUCTION

The subject of this paper is a problem that arises whe
large body of data from diverse experiments is analyzed
cording to a theoretical model that has many adjustable
rameters. Consider a generic data fitting problem based
experimental measurements$DI , I 51, . . . ,N% with errors
$s I%. The data are to be compared to predictions$TI% from a
theoretical model with unknown parameters$ai , i
51, . . . ,n%. A common technique for comparing data wi
theory is to compute thex2 function defined by

x25(
I 51

N S DI2TI

s I
D 2

, ~1!

or a generalization of that formula if correlations between
errors are known in terms of a set of correlation matric
The physics objectives are~i! to find the best estimate of th
parameters$ai% and their uncertainties, and~ii ! to predict the
values and uncertainties of physical quantities$X(a), a
51,2,...% that are functions of the$ai%.

If the errors are randomly distributed, and the correlatio
well determined, then standard statistical methods ofx2

minimization@1,2# apply, and established fitting tools like th
CERN Library programMINUIT @3# can be employed. How
ever, real problems are often more complex. This is part
larly true in a ‘‘global analysis,’’ where the large number
data points$DI% do not come from a uniform set of measur
ments, but instead consist of a collection of results fr
many experiments on a variety of physical processes, w
diverse characteristics and errors. The difficulties are co
pounded if there are unquantified theoretical uncertaintie
the number of theoretical parametersn is large, or if the best
parametrization cannot be uniquely defineda priori. All of
these difficulties arise in the global analysis of hadronic p
ton distribution functions~PDF’s! @4,5,6#, which originally
motivated this investigation. Several groups have addres
the question of estimating errors for the PDF determinati
@7,8,9,10#. But the problem is clearly more general than th
application.
0556-2821/2001/65~1!/014011~7!/$20.00 65 0140
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Of the many issues that confront a global analysis,
address in this paper two, for which we have been able
significantly improve on the traditional treatment. The im
provements allow a more reliable determination of the u
certainties of$ai% and$X(a)% in complex systems for which
conventional methods may fail. To define these problems,
assume the system can be described by a global fitting fu
tion xglobal

2 , or x2 for short, that characterizes the goodne
of-fit for a given set of theory parameters$ai%. This x2 dis-
tills all available information on the theory and on the glob
experimental data sets, including their errors and corre
tions. One finds the minimum valuex0

2 of x2, and the best
estimate of the theory parameters are the values$ai

0% that
produce that minimum. The dependence ofx2 on $ai% near
the minimum provides information on the uncertainties
the $ai%. These are usually characterized by the error ma
and its inverse, the Hessian matrixHi j , where one assume
thatx2 can be approximated by a quadratic expansion in$ai%
around$ai

0%. Once the Hessian is known, one can estim
not only the uncertainties of$ai%, but also the uncertainty in
the theoretical prediction for any physical quantityX, pro-
vided the dependence ofX on $ai% can be approximated by
linear expansion around$ai

0%, and is thus characterized by it
gradient at$ai

0% ~cf. Sec. II!.
The first problem we address is a technical one tha

important in practice. If the uncertainties are very dispar
for different directions in then-dimensional parameter spac
$ai%, i.e., if the eigenvalues ofHi j span many orders of mag
nitude, how can one calculate the matrixHi j with sufficient
accuracy to obtain reliable predictions for all directions?
solve this problem, we have developed an iterative proced
that adapts the step sizes used in the numerical calculatio
the Hessian to the uncertainties in each eigenvector direc
We demonstrate the effectiveness of this procedure in
specific application, where the standard tool fails to yie
reliable results.

The second problem we address concerns the reliabilit
estimating the uncertaintyDX in the prediction for some
physical variableX that is a function of the$ai%: How can
©2001 The American Physical Society11-1
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one estimateDX in a way that takes into account the vari
tion of x2 over the entire parameter space$ai%, without as-
suming the quadratic approximation tox2 and the linear ap-
proximation toX that are a part of the error-matrix approac
We solve this problem by using Lagrange’s method of
undetermined multiplier to make constrained fits that der
the dependence ofx2 on X. Because this method is mor
robust, it can be used by itself or to check the reliability
the Hessian method.

Section II summarizes the error matrix formalism and
tablishes our notation. Section III describes the iterat
method for calculating the Hessian, and demonstrates its
periority in a concrete example. Section IV introduces
Lagrange multiplier method and compares its results with
Hessian approach to the same application. The conclusio
in Sec. V.

II. ERROR MATRIX AND HESSIAN

First we review the well-known connection between t
error matrix and the Hessian matrix of second derivativ
We emphasize the eigenvector representations of those
trices, which are used extensively later in the paper.

The basic assumption of the error matrix approach is
x2 can be approximated by a quadratic expansion in the
parameters$ai% near the global minimum. This assumptio
will be true if the variation of the theory valuesTI with $ai%
is approximately linear near the minimum. Definingyi5ai

2ai
0 as the displacement of parameterai from its valueai

0 at
the minimum, we have

x25x0
21(

i , j
Hi j yiy j , ~2!

Hi j 5
1

2 S ]2x2

]yi]yj
D

0

, ~3!

where the derivatives are evaluated at the minimum p
yi50 andHi j are the elements of theHessian matrix.1 There
are no linear terms inyi in Eq. ~2!, because the first deriva
tives of x2 are zero at the minimum.

Being a symmetric matrix,Hi j has a complete set ofn
orthonormal eigenvectorsVi

(k)[v ik with eigenvaluesek :

(
j

Hi j v jk5ekv ik , ~4!

(
i

v i j v ik5d jk . ~5!

These eigenvectors provide a natural basis to express
trary variations around the minimum; we replace$yi% by a
new set of parameters$zi% defined by

1We include a factor 1/2 in the definition ofH, as is the custom in
high-energy physics.
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yi5(
j

v i jA1

e j
zj . ~6!

These parameters have the simple property that

Dx25x22x0
25(

i
zi

2. ~7!

In other words,the surfaces of constantx2 are spheres in
$zi% space, with Dx2 the squared distance from the min
mum.

The orthonormality ofv i j can be used to invert the trans
formation ~6!:

zi5Ae i(
j

y jv j i . ~8!

The Hessian and its inverse, which is the error matrix,
easily expressed in terms of the eigenvalues and eigenve
components:

Hi j 5(
k

ekv ikv jk , ~9!

~H21! i j 5(
k

1

ek
v ikv jk . ~10!

Now consider any physical quantityX that can be calcu-
lated according to the theory as a function of the parame
$ai%. The best estimate ofX is the value at the minimum
X05X(ai

0). In the neighborhood of the minimum, assumin
the first term of the Taylor-series expansion ofX gives an
adequate approximation, the deviation ofX from its best es-
timate is given by

DX5X2X0>(
i

]X

]yi
yi5(

i
Xizi , ~11!

where

Xi[
]X

]zi
~12!

are the components of thez gradient evaluated at the globa
minimum, i.e., at the origin inz space.

Sincex2 increases uniformly in all directions inz space,
the gradient vectorXi gives the direction in which the physi
cal observableX varies fastest with increasingx2. The maxi-
mum deviation inX for a given increase inx2 is, therefore,
obtained by the dot product of the gradient vectorXi and a
displacement vectorZi in the same direction with length
ADx2, i.e., Zi5XiADx2/S jXj

2. For the square of the devia
tion, we, therefore, obtain the simpler formula

~DX!25~X•Z!25Dx2(
i

Xi
2. ~13!

The traditional formula for the error estimate (DX)2 in
terms of the original coordinates$yi% can be derived by sub
1-2
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MULTIVARIATE FITTING AND THE ERROR MATRIX . . . PHYSICAL REVIEW D 65 014011
stituting Xi5]X/]zi5( j (]X/]yj )(]yj /]zi) in Eq. ~13! and
using Eqs.~6! and ~10!. The result is

~DX!25Dx2(
i , j

]X

]yi
~H21! i j

]X

]yj
. ~14!

This standard result can of course also be derived directly
minimizing x2 in Eq. ~2! with respect to$ai%, subject to a
constraint onX.

Equations~13! and~14! are equivalent if the assumption
of a linear approximation forX and a quadratic approxima
tion for x2 are exact. But in practice, the numerical accura
of the two can differ considerably if these conditions are
well met over the relevant region of parameter space.
calculate the error estimateDX, we prefer to use Eq.~13!
using derivativesXi calculated by finite differences ofX at
the pointszi56 1

2 ADx2 ~with zj50 for j Þ i !. This is gen-
erally more accurate, because it estimates the necessar
rivatives using an appropriate step size, and thus reduce
effect of higher-order terms and numerical noise.

In a complex problem such as a global analysis, the
gion of applicability of the approximations is generally u
known beforehand. A situation of particular concern is wh
the various eigenvalues$e i% have very different orders o
magnitude-signaling that the functionx2 varies slowly in
some directions ofai space, and rapidly in others. The iter
tive method described in the next section is designed to
effectively with this situation.

III. ITERATIVE PROCEDURE

In practical applications, the Hessian matrixHi j is calcu-
lated using finite differences to estimate the second der
tives in Eq.~3!. A balance must be maintained in choosi
the step sizes for this, since higher-order terms will contr
ute if the intervals are too large, while numerical noise w
dominate if the intervals are too small. This noise probl
may arise more often than is generally realized, since
theory values$TI% that enter thex2 calculation may not be
the ideally smooth functions of the fit parameters that o
would associate with analytic formulas. For in complex th
oretical models, the$TI% may be computed from multiple
integrals that have small discontinuities as functions of$ai%
induced by adaptive integration methods. These numer
errors forbid the use of a very small step size in the fin
difference calculations of derivatives. Furthermore, as no
above, the eigenvalues ofHi j may span a wide range, s
excellent accuracy is needed especially to get the sm
ones right.

A. The procedure

We want to evaluateHi j by sampling the values ofx2 in
a region of parameter space where Eq.~2! is a good approxi-
mation. In principle, the parameters$zi% are the natural
choice for exploring this space, but of course they are
known in advance. We, therefore, adopt the following ite
tive procedure:

~1! Define a new set of coordinates$j i% by
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j

ui j t jj j , ~15!

whereui j is an orthogonal matrix and$t i% are scale factors
In the first iteration, these are chosen asui j 5d i j and t i51,
so thatj i5yi . This makes the first round of iteration simila
to the usual procedure of taking derivatives with respec
ai . The iterative method is designed such that with succ
sive iterations,ui j , t i , andj i converge tov i j , A1/e i , andzi ,
respectively.

~2! Calculate the effective second derivative matrixF i j
defined by

x25x0
21(

i j
F i j j ij j , ~16!

F i j 5
1

2

]2x2

]j i]j j
, ~17!

using finite differences of thej i . The step size inj i is cho-
sen to make the increase inx2 due to the diagonal elemen
F i i j i

2 equal to a certain valuedx2. The choice ofdx2 is
determined by the particular physics application at hand.
ively, one might expectdx2.1 to be the right choice. Tha
would indeed be appropriate for ax2 function obeying ideal
statistical requirements. But when the input toxglobal

2 is im-
perfect, a reasonable choice ofdx2 must be based on a phys
ics judgement of the appropriate range of that particularx2

function. We therefore leave the choice ofdx2 open in this
general discussion.2 In any case, if the final results are to b
trustworthy, they must not be sensitive to that choice.

We calculate each off-diagonal second derivative
evaluatingx2 at the four corners of the rectangle (1d i ,
1d j ), (2d i ,2d j ), (1d i ,2d j ), and (2d i ,1d j ), whered i
is the step size. This is a modification of the technique u
in MINUIT @3#. For the sake of efficiency, theMINUIT subrou-
tine HESSEestimates off-diagonal elements using only one
those corners, together with values at (d i ,0) and (0,d j ) that
are already known from calculating the diagonal elements
the Hessian. Our method is slower by a factor of 4, bu
more accurate because it fully or partly cancels some of
contributions from higher derivatives. The first derivativ
]x2/]j i are also calculated at this stage of the iteration a
used to refine the estimate of the location of the minimum

~3! Compute the Hessian according toF i j ,

Hi j 5(
m,n

Fmnuimujn

tmtn
. ~18!

~4! Find the normalized eigenvectors of the Hessian,
defined by Eqs.~4! and ~5!.

~5! Replaceui j by v i j , t j by A1/e j , and go back to step 1
The steps are repeated typically 10–20 times, until
changes become small andF i j converges tod i j .

2Compare discussion in the following section on a sample pr
lem.
1-3
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This iterative procedure improves the estimate of the H
sian matrix, and hence of the error matrix, because in
later iterations it calculates the Hessian based on points
sample the region whereDx2 has the magnitude of physica
interest.

B. Results from a sample application

As an example, we apply the iterative procedure to
application that motivated this study—the global analysis
PDF’s @7#—and compare the results with those obtain
from MINUIT . The experimental input for this problem con
sists ofN51295 data points from 15 different experimen
data sets involving four distinct physical processes. All
potential complexities mentioned earlier are present in
system. The theory is the quark parton model, based on n
to-leading order perturbative quantum chromodynam
~QCD!. The model containsn516 parametersai that char-
acterize the quark and gluon distributions in the proton
some low-momentum scaleQ0 . From a calculational poin
of view, the theoretical model consists of the numerical in
gration of an integrodifferential equation and multiple co
volution integrals that are evaluated mostly by adaptive
gorithms. The fitting functionxglobal

2 in this case combines
the published statistical and systematic errors of the d
points in quadrature. The only correlated errors incorpora
are the published overall normalization uncertainties of
individual experiments. The fitting program is the same
that used to generate the CTEQ parton distributions@4,6#.
The global x2 minimum for this system defines th
CTEQ5M1 set of PDF’s, for whichx0

2'1200 @6#. We find
that the eigenvalues$e i% of the Hessian for this system rang
over 5–6 orders of magnitude~distributed approximately ex
ponentially!.

The value ofDx2 that corresponds to a given confiden
level is well defined for an ideal experiment: e.g.,Dx2,1
defines the 68% confidence region. But in a real-world g
bal analysis, the experimental and theoretical values in
~1! include systematic errors, and the uncertaintiess I in-
clude subjective estimates of those errors, so the rela
betweenDx2 and confidence level requires further analys
From independent detailed studies of the uncertain
@11,12#, we estimate that an appropriate choice ofdx2 for the
iterative calculation is around 10 in our application, and o
the regionDx2.100 can be ruled out for the final fits.

The error-matrix approach relies on a quadratic appro
mation tox2 in the neighborhood of the minimum. To te
whether that approximation is valid, we plotx2 as a function
of distance along a particular direction in$ai% space, as
shown in Fig. 1. The direction chosen is a typical one
specifically it is the direction of the eigenvector with medi
eigenvalue. The dotted curve in Fig. 1 is the exactx2 and the
solid curve is the quadratic approximation~2!. The approxi-
mation is seen to provide a rather good description of
function. Even at points wherex2 has increased by 50, th
quadratic approximation reproduces the increase to 20%
curacy.

To correctly measure the curvature of the quadratic
proximation, it is important to fit points that are displaced
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an appropriate distance. This can be seen from Fig. 2, wh
shows the difference between the two curves in Fig. 1 in
central region. The difference displays a small cubic con
bution to x2. It also reveals contributions that vary erra
cally with a magnitude on the order of 0.03. These fluctu
tions come from the noise associated with switching
intervals in the adaptive integration routines. Because
fluctuations are small, they do not affect our results in pr
ciple. But they do require care in estimating the derivativ
In particular, they would make finite-difference estimat
based on small intervals extremely unreliable. The iterat
method avoids this problem by choosing a suitable scale
each eigenvector direction when evaluating the Hessian.

FIG. 1. Variation ofx2 with distance along a typical direction in
parameter space. The dotted curve is the exactx2 and the solid
curve is the quadratic approximation based on the Hessian.
quadratic form is seen to be a rather good approximation over
range shown.

FIG. 2. Difference betweenx2 and its quadratic approximation
~2!, both of which are shown in Fig. 1. A cubic contribution can
seen, along with a noticeable amount of numerical noise. The
structure revealed here is small compared to the main variatio
x2 itself, which rises by 20 over the region shown, as can be see
Fig. 1.
1-4
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Figures 1 and 2 show the behavior ofx2 along a single
typical direction in the 16-dimensional parameter space. F
ure 3 shows a complementary test of the iterative method
all possible directions. We have chosen 1000 directions
random in$zi% space. We displace the parameters away fr
the minimum in each of these directions by a distance
makesDx255. We then compute the value ofDx2 predicted
by the quadratic approximation~2!, using the Hessian calcu
lated by the iterative method and, for comparison, by
routine HESSE within the MINUIT package. The results ar
displayed in Fig. 3 as histograms, withDx2 on the horizontal
axis and the number of counts on the vertical axis. Ifx2 were
quadratic in $ai%, then a perfect computational metho
would yield a delta function atDx255. Figure 3 shows that

For the solid histogram—the result of the iterative
procedure—the quadratic approximation is close to the e
result in all directions, and hence Eq.~2! is a pretty good
representation ofx2. Quantitatively, the middle 68% of th
distribution is contained in the region 5.460.6.

For thedotted histogram—based on the general purpo
programMINUIT —the distribution is also spread around t
expected value of 5, but it is very broadly distributed. Th
estimate of the Hessian is, therefore, unsatisfactory, bec
we might be interested in a quantity whose gradient direc
is one for which the Hessian computed byMINUIT is widely
off the mark. A major source of this problem is the numeric
noise visible in Fig. 2;MINUIT uses a small step size to ca
culate the derivatives, and gets misled by the small-sc
discontinuities inx2. For some directions,Dx2 even be-
comes negative because the errors in one or more of
small eigenvalues are big enough to allow their calcula
values to become negative.~Within MINUIT , this circum-
stance elicits a warning message, and a constant is add
all the eigenvalues, which in the context of Fig. 3 cor
sponds to shifting the dotted distribution to the right.!

Figure 4 shows the results of a similar study, in which t
100 random directions are chosen only from the subspac

FIG. 3. Frequency distribution ofDx2 according to the Hessian
approximation~2! for displacements in random directions for whic
the true value isDx255.0. Solid histogram: using Hessian calcu
lated by iterative method of Sec. III;dotted histogram: using Hes-
sian calculated byMINUIT .
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$zi% that is spanned by the 10 directions with the larg
eigenvaluese i . The larger eigenvalues correspond to dire
tions in whichx2 rises most rapidly, or in other words, d
rections in which the parameters are more strongly c
strained by data. Because the distance moved away from
minimum in $ai%, space is smaller in this case, the quadra
approximation is generally better, so it is not surprising th
the histograms are more sharply peaked than in Fig. 3.
the advantage of the iterative method remains apparent.

C. Comment

Information from the iteratively improved Hessian pr
vides a useful tool for refining the choice of functional form
used to parametrize a continuous degree of freedom in
theoretical model. Explicitly, the relevant formulas are
follows.

The length squared of the displacement vector in
space of fit parameters is

(
i

~ai2ai
0!25(

i
yi

25(
i

zi
2

e i
, ~19!

while Dx25S izi
2 by Eq. ~7!. Hence the directions in which

the parameters are well determined~the steep directions! cor-
respond to eigenvectors of the Hessian with large eigen
ues, while the shallow directions in which they are weak
determined correspond to small eigenvalues.

The extreme values for any particularai are

ai5ai
06Dai , ~20!

where

~Dai !
25Dx2(

j

v i j
2

e j
. ~21!

Equation~21! can be used to see if each parameter is app
priately well constrained. Furthermore, the individual term
in the sum show the contributions toDai from the various

FIG. 4. Same as Fig. 3, except that the displacements are
stricted to the parameter subspace spanned by the 10 steepest
tions.
1-5
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eigenvectors, so if a parametrization leads to a poorly
fined minimum because it allows too much freedom—wh
is indicated by a failure of the iteration to converge for t
smallest eigenvalues of the Hessian—it is easy to see w
of the parameters are most responsible for the too-sha
directions.

IV. LAGRANGE MULTIPLIER METHOD

The Hessian,via its inverse, which is the error matrix
provides a general way to propagate the uncertainties of
perimental and theoretical input to the fit parameters$ai%,
and thence on to a measurable quantityX($ai%) by Eq. ~13!
or Eq. ~14!. But these equations are based on assuming
x2 andX can be treated as quadratic and linear functions
$ai%, respectively. In this section we describe a different
proach, based on the mathematical method of theLagrange
undetermined multiplier, which avoids those assumptions.

A. The procedure

Let X0 be the value ofX at thex2 minimum, which is the
best estimate ofX. For a fixed value ofl, called the
Lagrange multiplier, one performs a new minimization w
respect to the fit parameters$ai%, this time on the quantity

F5x21l~X2X0!, ~22!

to obtain a pair of values@x2(l),X(l)#. ~The constant term
2lX0 here is not necessary, because it does not affect
minimization, but it makes the minimum value ofF easier to
interpret.! At this new minimum,x2(l) is the lowest pos-
sible x2 for the corresponding valueX(l) of the physical
variableX. Thus one achieves aconstrained fitin whichx2 is
minimized for a particular value ofX.

By repeating the minimization for many values ofl, one
maps out the parametrically defined curve@x2(l),X(l)#.
Sincel is just the parameter for this curve, its value is of
particular physical significance. The relevant range forl can
be found by trial-and-error, or it can be estimat
using the Hessian approximation, which predicts thatl
'22Dx2/DX. In that approximation,F goes down by the
same amount thatx2 goes up.

One way to understand the Lagrange multiplier metho
to imagine that the quantityX is simply one of the fitting
parameters, saya1 . The variation ofx2 with a1 could be
mapped out by minimizingx2 with respect to$a2 , . . . ,an%
for a sequence of values ofa1 . ~That operation is indeed s
useful thatMINUIT provides a procedureMINOS to carry it
out.! In the more general case thatX is a function of all$ai%,
one wants to similarly minimizex2 for fixed values ofX.
That is exactly what the Lagrange multiplier method do
since including the undetermined multiplier term in Eq.~22!
renders the$ai% independent in spite of the constraint onX.

A more phenomenological way to understand t
Lagrange multiplier method is to imagine thatX has just
been measured, with resultXnew6snew. To decide whether
this hypothetical new measurement is consistent with the
body of data, one would add a term@(Xnew2X)/snew#2 to
xglobal

2 of Eq. ~1! and redo the minimization. The added co
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tribution tox2 consists of a constant, a linear term inX, and
a quadratic term inX. This is equivalent to Eq.~22!, because
a constraint onX2 is equivalent to a constraint onX itself.

The essential feature of the Lagrange multiplier method
that, for a givenDx2, it finds the largest range ofX allowed
by the global data set and the theoretical model, indepen
of any approximations. The full parameter space$ai% is ex-
plored in the minimization procedure, not just the immedia
neighborhood of the originalx2 minimum as in the Hessian
method, and no approximations based on a small devia
from the original minimum are needed.

The only drawback to the Lagrange multiplier method
that it can be slow computationally, since it requires a se
rate series of minimizations for each observableX that is of
interest.

B. Example

We now look at an example of the Lagrange multipli
method from our application, the uncertainty of parton d
tribution functions. For the physical quantityX, we consider
the cross sectionsW for W6 production inpp̄ collisions at
the energyAs51.8 TeV of the Tevatron collider at Fermilab
We want to estimatesW and the uncertainty on that estimat
based on the global analysis of parton distributions.

The points in Fig. 5 showxglobal
2 as a function ofsWB in

nanobarns, whereB50.106 is the branching ratio assume
for W→en. These points are obtained by the Lagrange m
tiplier method usingl50, 61000, 62000, 63000, and
64000. They are thus discrete cases ofxglobal

2 versussW ,
without approximations.

The smooth curve in Fig. 5 is the parabola given in E
~14!, using the Hessian computed by the iterative meth
and treatingsW in the linear approximation. The compariso
between this curve and the discrete points from the Lagra
multiplier calculation tests the quality of the quadratic a
linear approximations and the reliability of the iterative ca
culation of Hi j . For this application, we conclude that th

FIG. 5. Minimumx2 as a function of the predicted cross secti
for W6 production in pp̄ collisions. Theparabolic curve is the
prediction of the iteratively improved Hessian method. Thepoints
are from the Lagrange multiplier method.
1-6



er
a
ot
th

h
pt
al
-

th
m
b

ua

at
.
x
te
in
a
st
ro

i
R

e
th

re

al

di-
ds
oxi-
h is

of

ed

te-
be

tu-
-

to
-

.
the

ble.

ian
p-

t is
and
de-
tri-
-

for
nc-
ion
SF

MULTIVARIATE FITTING AND THE ERROR MATRIX . . . PHYSICAL REVIEW D 65 014011
improved Hessian method works very well, since the diff
ence between the points and the curve is small, and indic
only a small cubic contribution. If the two results did n
agree, the correct result would be the one given by
Lagrange multiplier method.

To estimateDX, the uncertainty ofX consistent with the
global analysis of existing data, one needs to specify w
range ofDxglobal

2 is allowed. As discussed earlier, the acce
able limit of xglobal

2 depends on the nature of the origin
definition of this fitting function, in the context of the spe
cific system under study. For the case ofsW , Ref. @12# esti-
mates Dxglobal

2 '100, which translates intoDsW /sW

'63% according to Fig. 5.

V. CONCLUSION

We have addressed some computational problems
arise in a global phenomenological analysis, in which a co
plex theory with many parameters confronts a large num
of data points from diverse experiments.

The traditional error-matrix analysis is based on a q
dratic approximation to the functionx2 that measures the
quality of the fit, in the neighborhood of the minimum th
defines the best fit. The iterative method proposed in Sec
improves the calculation of the Hessian matrix, which e
presses that quadratic approximation, for a complex sys
in which general-purpose programs may fall short. The
verse of this improved version of the Hessian matrix is
improved version of the error matrix. It can be used to e
mate the uncertainty of predictions using standard er
matrix formulas.

Our iterative procedure for calculating the Hessian
implemented as an extension to the widely-used CE
FORTRAN library routine MINUIT @3#. The code is available
from http://www.pa.msu.edu/;pumplin/iterate/ or it can be
requested by email from pumplin@pa.msu.edu. Includ
with this code is a test example which demonstrates that
iterative method is superior to standardMINUIT even for ax2

function that has no numerical noise of the type encounte
in Fig. 2.

The Lagrange multiplier method proposed in Sec. IV c
o
,
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r-
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N

d
e

d

-

culates the uncertainty on a given physical observable
rectly, without going through the error matrix. It thus avoi
the assumption that the theoretical quantities can be appr
mated by linear functions of the search parameters, whic
intrinsic to the Hessian approach.

For simplicity, we have discussed only the problem
obtaining error estimates on a single quantityX. It is straight-
forward to generalize our methods to find the region allow
simultaneously for two or more variables by a givenDx2.
For example, in the case of two variablesX(1) andX(2), the
allowed region according to the Hessian method is the in
rior of an ellipse. The Lagrange multiplier method can
generalized for this case by addingtwo terms, l1X(1)

1l2X(2), to x2.
Although the Lagrange multiplier procedure is concep

ally simple and straightforward to implement, it is slow com
putationally because it requires many full minimizations
map outx2 as a function ofX, and this must be done sepa
rately for each quantityX whose error limits are of interest
In contrast, once the Hessian has been determined from
global analysis, it can be applied to any physical observa
One needs only to compute the gradient]X/]ai of the ob-
servableX and substitute into Eq.~14!, or better, to compute
the gradientXi5]X/]zi and substitute into Eq.~13!. For
computational efficiency, the iteratively calculated Hess
is, therefore, the method of choice, provided its linear a
proximations are sufficiently accurate. Whether or not tha
the case can be determined by comparing Hessian
Lagrange multiplier results. We use both methods in a
tailed study of the uncertainties in the CTEQ5 parton dis
bution functions@7,11,12# that is based on the work pre
sented here.
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