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We calculate thd8— r,p transition form factors in the framework of perturbative QCD to leading powers
of 1/Mg, Mg being theB meson mass. We explain the basic principle by discussing the pion electromagnetic
form factor. It is shown that the logarithmic and linear singularities occurring at small momentum fractions of
light meson distribution amplitudes do not exist in a self-consistent perturbative analysis, which ifdcludes
and threshold resummations.
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I. INTRODUCTION the end points, where the above singularities occur, the
double logarithmsaIn?x should be resummed in order to
Branching ratios oB meson two-body nonleptonic de- justify perturbative expansion. The result, called threshold
cays have been measured by the CLEOIII, BELLE, and Baresummatiori13,14), leads to strong Sudakov suppression at
bar Collaboration$1—4]. CP violations in these modes may x— 0 [15]. Therefore, the end-point singularities do not exist
be observed in the near future. Cognizant of this point, wen a self-consistent PQCD analysis.
have presented some theoretical anticipations for Bhe  |n this work, we shall investigate contributions to tBe
—Kar [5], 7, mp [6], andKK [7] decays in the perturbative _, 7 andB— p transition form factors from twist-2 and from
QCD (PQCD framework. In particular, 5-15%P viola-  tyo-parton twist-3 distribution amplitudes, and we will argue
tion is expected in th&— K decays. Th8—,p ransi- ¢ hoth contributions are of leading power iV, Mg
tion form factors are the integral part of two-body nonlep-painq thes meson mass. There exist many other higher-twist

tomc. decay ?jmp“?;]dte?th In tr]l's pafpe'r:, we s?hall lattempt Qources inB meson decays, whose contributions are indeed
convince readers that these form factors in the large recofl /. - by a power of Mg. These sources include th@

region of light mesons are calculable in PQCD. This is where ] _ )
our approach starts to differ from other approaches to excluneson and quark mass differencd =Mg—m;, the light
sive B meson decays. quark masses,, my, andmg, and the light pseudoscalar
According to the PQCD factorization theorem, a form meson masselsl , andMy . Those from three-parton distri-
factor is written as the convolution of a hard amplitude with bution amplitudes are further suppressed by the coupling
initial-state and final-state hadron distribution amplitudesconstanteg. Two-parton twist-4 distribution amplitudes do
¢(x), wherex is the momentum fraction associated with onenot contribute to the heavy-to-light form factof&6]. All
of the partons. It has been pointed out that perturbativéhese subleading contributions will be neglected in the cur-
evaluation of the pion form factor suffers nonperturbativerent formalism.
enhancement from the end-point region with a momentum In Sec. Il, we illustrate the PQCD formalism by studying
fractionx— 0 [8]. If this is true, the hard amplitude is char- the pion electromagnetic form factor. We review the reason-
acterized by a low scale, such that expansion in terms of ing why one might conclude that the form factor is not cal-
large coupling constantg is not reliable. More serious end- culable, and explain why these objections are not justified in
point (logarithmig singularities have been observed in the QCD.
twist-2 (leading-twisj contribution to theB— 7 transition In Secs. Il and 1V, we derive thB meson transition form
form factor[9,10]. The singularities even become linear atfactors. It will be shown that the twist-3 contributions, which
twist 3 (next-to-leading twigt[11]. Because of these singu- seem to be proportional tmy/Mg or M,/Mg, do not van-
larities, it was claimed that thB— 7 form factor is domi- ish in the Mg—< limit. Here m, and M, are the chiral
nated by soft dynamics and not calculable in PQ@R]. We  symmetry breaking scale ane meson mass, respectively.
shall argue that this conclusion is false. We shall show that aiVe record our results of the form factors at large recoil: the
B— m form factor F.~0.3 and theB—p form factor Aq

~0.4.
*Email address: krmt@sci.toyama-u.ac.jp Meson distribution amplitudes are defined and the Suda-
"Email address: hnli@mail.ncku.edu.tw kov factor from threshold resummation is derived in the Ap-
*Email address: sanda@eken.phys.nagoya-u.ac.jp pendixes.
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FIG. 1. Leading-order contribution #_(Q?).

II. PQCD APPROACH TO FORM FACTORS

The suggestion that a hadronic form factor is calculable in
PQCD was first made in Ref§17—21]. The rough idea is
summarized as follows. One expands the bound-state wave
function for a pion in terms of Fock states containing on-
shell partongquarks or gluons[17],

P=1012,0,0,-012)

FIG. 2. Feynman'’s viewpoint of the dominant contribution to
the pion electromagnetic form factor.

_ — — — — ons are soft. PQCD is therefore not applicable. Below we
= +
Vu=y(qa)+¢(qdg) +4(qagg) + ¥(qdqq) + ¥(qqqqg) shall examine this difficulty in more detail. According to Eq.

+eee (1) (4), the first diagram in Fig. 1 gives

Define a soft functionV',(A) at a typical hadronic scal& (m(P2)[3,(0)|7(Py))
as the initial wave function,

Vy(A) =y (g9 + ¢ (qag) + ¢ (qqgg) + ¥ (qqqQ)

+y(qagag) +--- . (2) dz’dZ? dy+d233/l
(27) (27)

= gZCFNCJ’ Xm dX2 dzkll dzkzL

The wave function, can be related t&V,(A) via _ o
xe "2 Y(m(Py)|d,(y)u,(0)|0)

Wy =Wy(A)+G KWy (A), () _

x e 10U, (0)dy(2)|m(P)THE, (5)

whereK is an irreducible kernel an” is the Green func-

tion involving only hard-loop momenta. with the color factorCr=3, the number of colordN.=3,
The pion electromagnetic form factér,(Q?) is then ex-  and the hard amplitude

pressed as a convolution integral,

k=P, ]

VB ad_ bZ22 a
THp. [70’] (kz_kl)Z{‘y (Pl_kz)z 7,41.

(6)

(@)= [ dx a2y, a2y, (P ko Ko )

Write (Kp—Kq)?~ —x1%,Q%—|Ky, —Kp, |2 If we ignore
|K1, —Ko, |2, it has been shown that the integral in E8)\ is
X yM(Py+ inZ'EZL)"' cos (4) dominated by contributions from the end-point regions with
X1,X,—0. If the pion wave function does not vanishat
with P, being the momentum of the initial-state piapthe ~ — 0, the integral will be even infrared-divergent. If we some-
large momentum transfer, a@f= — g°. Here we have writ- how regulate the infrared singularity by an appropriate
ten the parton momenta associated with the initial state anehoice of the wave function, the running coupling constant
final state as,=(x;Q/2;, ,x,Q/2) andk,=(x,Q/2K,, ,  2s(X1X:Q?) evaluated at the hard gluon momentaix,Q?
—x,Q/2), respectively, in the notatiop”= (p°,p*,p2,p°), is still too large to make sense out of the perturbative expan-
and made explicit the dependence of the two-parton wavgon-

function ¢ (qaq) = ¢*(P;,X;,Ky,) on P, andk, . The first
term in Eq.(4) contains leading contributions, and ellipses
represent those from higher Fock states, which are down by The above end-point singularity corresponds to the pic-
powers of 102 in the light-cone gauge and by powerscaf. ture of the pion form factor Feynman had in mind. In the
The leading diagrams are displayed in Fig. 1. It can beso-called brick-wall frame, the initial-state pion with mo-
shown that the large momentum trans@f flows through ~ mentumP,=(Q/2,0,0Q/2) is struck by a spacelike current
the hard amplitudd, and that all nonperturbative dynam- of momentumg=(0,0,0,-Q), and turns around with mo-
ics goes into wave functions. One can therefore compyte mentumP,=(Q/2,0,0,- Q/2) as shown in Fig. 2. Feynman
perturbatively. pointed out that the major contribution to the form factor
However, it was pointed out that the above argument hasomes from the region where one of the partons carries the
a crucial problem[8]: the diagrams in Fig. 1 may be full pion momentum. The remaining partons, being very
infrared-divergent, because an important contribution to themall, do not know in which direction they are moving. The
form factor comes from the region where the exchanged gluresulting configuration is essentially identical to the initial-

XTy(Py, X1, Ky, ;P1+0,%2,Kz, )

A. Feynman'’s picture of a form factor
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B. Twist-3 contributions

As derived in Appendix A, a light-cone pion distribution
amplitude is written as

.
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FIG. 3. The Sudakov factor ekp S(x,b,P,)]. Note that its value Mol ys(hyh-—1)]5,¢,(X)}, (7)

is very small in the regiod~bpa=1/Aocp, With the QCD scale
A gcp=250 MeV. where P=(P*,0,0,) is the pion momentum, the lightlike

vector z=(0,z7,0,) is the coordinate of thel quark. The
gimensionless vectan, =(1,0,0,) is parallel toP, andn_
=(0,1,0)) is parallel toz. Here a four-vector has been ex-
pressed in terms of light-cone coordinates,

state pion except that the momentum of the fast parton i
reversed. Hence, Feynman claimed that @fedependence
of the pion form factor is related to the probability of finding
a single parton carrying all the pion momentum. Feynman’s
picture is consistent with the statement that the form factor is pr=
dominated by the singular part of E@). Because it is sin-
gular, we cannot compute the form factor.

We argue that Feynman’s picture of the pion form factorThe distribution amplitudep., is twist-2, and¢}, and ¢¥,
is false. Consider a QED example. When an electron undeproportional tomy=M2/(my+m,)~1.4 GeV, wherem, is
goes hard scattering, it cannot help but emit infinitely manythe current quark mass of the quarkare twist-3. The origin
photons in the direction of the electron momentum. As z0f these terms can be simply understood by means of the
consequence, the elastic scattering cross sectiofield-current identity from chiral symmetry,
d/dQ(e*e”—ete) atfinite angle vanishes at high energy, _
implying that the probability for the finaé*e™ state being dysu=imef 7. C)
accompanied by no photons diminishes. In other words, the ) ) o
final state must be accompanied by many photons. In the It is easy to observe that twist-3 contr|.but|ons are sup-
QCD case of the pion form factor, when a quark inside theoressetd by a power ah,/Q. The asymptotic behaviors of
pion gets hit by a current, the final state will contain many®=» ¢, and % are known to be
gluons unless the spectator quark is nearby to shield the
color charge. When one of the quarks carries all the momen- G (X)=xX(1=%), P(x)cl. (10
tum, the rest of the pion cannot shield the color charge of the
fast quark, and many gluons will be emitted in arbitrary di-As the hard amplitude in Eq6) is convoluted with these
rections during the hard scattering. Thus, the final ConfiguradiStfibUtiOl’l amplitudes, we find that the twist-2 contribution
tion ending up as a single pion is extremely unlikely. This isis finite, while the twist-3 ones are logarithmically divergent
the so-called Sudakov suppression on exclusive processesWithout Sudakov suppression. The Sudakov factor then in-
kinematic end points. Therefore, the contribution from Fig. 2troduces an effective cutoff to the integrabat~ A ocp/Q,
is negligible, and the end-point singularity does not exist. and the twist-3 contributions are proportional to

In the above argument, we have ignored the tékpn  (Mo/Q)IN(Q/Aqcp). That is, the power counting is not al-
tered by a logarithmic divergence in the factorization for-

—Ka 12 i -
S E%(LS Itr:) Eﬁe (IE;)r. Sntqrzl;ls(\jeﬁgen:j?gaer?hct;;n tvsvch)a(\:/ZI:r?cr(rae mula. As shown later, the power counting for contributions to
P g the B meson transition form factors is modified by linear

quarks. The color_ charg(_e of t_he quark, V.Vh'Ch IS stryck by thedivergences in the factorization formulas. Therefore, the dif-
current, is not shielded in this larderegion, and will emit

many gluons. The probability for having a single pion in theferent end-point behavior leads to different power counting

final state is then vanishingly small. That is, this configura-rLjIes for the pion form factor and for tfmeson transition

tion cannot contribute to the form factor. Hence, the momenform factors.

tum space withk, —0, where the end-point singularity oc-

curs, is also Sudakov suppresgéad]. The typical behavior Ill. B—m TRANSITION FORM FACTORS
of the Sudakov factor exp-S(x,b,P)], x=1-x,, which is In the B meson rest frame, we define tBemeson mo-
associated with the struck quark, is shown in Fig. 3. We,antum P, and the pion momentur®, in the light-cone
observe that the Sudakov factor decreases fast attefge ., qinates:

x~1 (x;~0), which corresponds precisely to the end-point

region in Eq.(6). In conclusion, the end-point singularity is M M

absent, and the major contribution to Fig. 1 comes from the P,=—2(1,1,0), P,=—2(7,0,0,), (12)
region with hard gluon exchanges. V2 v2

®

V2 V2

p°+p3 po_ps )
Py -
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where the parametar~0.3 comes from the best fit to the
> next-to-leading-logarithm threshold resummation in moment
space. Note that the jet functid® is normalized to unity.
For details of the derivation, refer to Appendix D.
Similarly, the inclusion ok, regulates the end-point sin-
FIG. 4. Soft contribution td=B™. gularities, and large double logarithmgIn?k, are produced
from higher-order corrections. These double logarithms
with the energy fraction; carried by the pion. The spectator should also be organized to all orders, leading toresum-

momentekl on theB meson side anu2 on the pion side are mation [23,24] The resultant Sudakov form faCtOI’, whose
parametrized as explicit expression can be found in our previous works

[25,26), controls the magnitude ok® to be roughly
O(AMg) by suppressing the region witkf ~O(A?). The
coupling constantxs(AMg)/7~0.13 is then small enough
to justify the PQCD evaluation of heavy-to-light form factors
Note that the four components kf should be of the same [5]. We emphasize that the hard scale for heavy-to-light de-
order,O(A), with A=Mg—m,, m, being theb quark mass. ~¢ays must beAMg in order to define a gauge-invariaBt
~0(Mg), the hard amplitudes will not depend on the plusSudakov factor associated with the light spectator quark of

componenk* as explained below. This is the reason we dothe B meson. Whether this factor is essential will be deter-
not showk*lin Eq. (12) explicitly mined by theB meson distribution amplitude. Since tlBe
1 . .

Consider the configuration for the semileptonic de@ay Meson is dominated by soft dynamics witi~O(A/Mg),
a1 depicted in Fig. 4, which corresponds to soft contri- the associated Sudakov effect is minor compared to that from

X - B — the energetic pion.
lbem;gﬂ tc;itrhftlaBbagkftc()) ”Ea]::akctzirtrf erie:—he ;l q/l;ar_:fhzng ter:E We argue that Sudakov resummation of the double loga-
pton p y gy Mele. P rithms is necessary for a PQCD analysis of the heavy-to-light

tator quarkd carries a momentum dd(A). If this configu-  ansition at large recoil. Resummation will be demanded, if
ration is responsible for the decay, it is impossible to com+ne radiative correction satisfies the condition
pute FB™ using PQCD. However, applying an argument

similar to that used for the pion form factor, we know that as ,Mg

theu quark recoiling against the lepton pair is bound to emit —In7—=1 (14)
infinitely many gluons. Thus, Fig. 4 in fact corresponds to

the inclusive decad— Xyl v. The probability that the final where the double logarithms appearingBnmeson decays
state in Fig. 4 contains only a sing_le pion is.suppressed PYave been estimated by MQ/K). If the above correction
the Sudakov form factors. A quantitative estimate of Sudayyere |arger than unity, perturbative expansion would fail. If
kov suppression of the soft contribution && in the QCD it were much smaller than unity, resummation would not be

sum rule formalism will be discussed later. necessary. It is trivial to confirm that favl B//T~ 10 and
. a/m~0.13 stated before, the correction is about 0.7, and
A. Threshold and k resummations that Eq.(14) holds. That is, the resummation effects are cru-

It has been explained that the interbajuark involved in ~ €ial in our PQCD analysis. _
the hard amplitude becomes on-shell as the momentum frac- With the possible order of magnitude kf ~O(AM5), a
tion x of the d quark vanishe§15]. The contributions to the Taylor expansion of the hard gluon propagator near the end
B— m form factorFB™ are then logarithmically divergent at point,
twist 2 and linearly divergent at twist 3. We argue that as the
end-point region is important, the corresponding large double 1 -1 -1
logarithms a5 In?x need to be organized into a jet function
Si(x) as a consequence of threshold resummdtid. This
jet function vanishes as— 0,1, and modifies the end-point _ -,
behavior of meson distribution amplitudes effectively. This n ke — k| 4.
modification provides a plausible explanation for the model (X1 X2 M 'é)Z
of the twist-3 pion distribution amplitude proportional to
X(1—x), which was adopted if5]. Our numerical study s certainly not appropriate. A more reasonable treatment is
shows that the results of tHg— 7 form factor obtained in g keepki in the denominators of internal partide propaga-
this work are almost the same as those obtaing8Jininthe  tors, and to drogk? in the numerators, which are power-

following analysis we shall employ the approximate form suppressed compared to oti@M é) terms. Under this pre-
214290 (3/2+4 ) _scription, thg Sudakov factor from+ rgsummation can be
-7 7 —x)1°, (13)  introduced into the PQCD factorization theorem without
Jal(1+c¢) breaking gauge invariance of the hard amplitudes. For the

1X i 1 X 1y .
1 1 ‘/— 11 2 2 ‘/— 21

(ki—k2)?  2k; k3 + Ky, — Ko, |2 X1X Mg

i (15

Si(x)=

014007-4
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FIG. 5. Leading-order contribution 657,

same reason, the terms proportionakioe- O(X) in the nu-

PHYSICAL REVIEW D 65 014007

(m(P,)[b(0)y,u(0)|B(Py))
dz'd?z, dy d?y,
2m?  (2m)?

IQZCFNCf Xm dX2 dzkll dszL

xe k2 Y(m(Py)|d,(y)us(0)]0)

X &1 %(0[b,(0)ds(2)|B(P1)) T, (20)

merators should be ne_glected. It is then obvious from EdThe pion distribution amplitud(aﬂay(y)uﬁ(O)IO) has been
(15) that the hard amplitudes are independent of the compaosypplied in Eq(7), and theB meson wave function is given
nentk; . Thek; dependence of thB meson wave function by (see Appendix €

can then be integrated o[27], leading to the parameteriza-
tion in Eq. (12).

Note that the mechanism of threshold aadresumma-
tions is similar, with the former responsible for suppression
in the longitudinal direction and the latter for suppression in
the transverse direction. As shown below, both twist-2 and
twist-3 contributions are well-behaved after including thresh-
old andk, resummations. Hence, the contributionsR&™
from Fig. 5 dominate in the large recoil region. In this con-
figuration, thed quark gains a large momentum parallel to
theu quark momentum by exchanging a hard gluon with the

b or U quark.

B. Form factors

We compute théB— 7 form factorsF, andF, defined
by the following matrix element:

(m(P,)|b(0)y,u(0)|B(Py))

dZ+d22J_ " o
J We' 1-Z<O|ba(0)d5(z)|8(pl)>
i
= G P Mo vsdolka) s (2D

Employing Eqs(7) and(21), we derive, from Eq(20),

f1=167rM§CFrWJ dx, dxzf b, db; b, db, ¢g(X4,by)

X[ pP(Xp) = b (X2) JE(tM)N(Xy,%5,b1,by), (22
fzzlenMchf dxldxzf b, db; b, db, bg(X;,by)

X

1
[ B (X2) (L +Xa7) + 2rw[(;— x2> B'(X2)

o Mg—M?2
=F (99| (P1+P3),———=—0d,
q — Xy P (X,) }E(t(”)h(xl,xz,bl,bz)
M3—M?2
+Fo(0?) ——7—0,, (16)

a +2r L PRE(tP)h(Xz,X1,b2,b1) | (23
where q=P,— P, is the lepton-pair momentum. Another it the ratior .=m,/Mg and the evolution factor
equivalent definition is ”

E(t)=aq(t)e S8~ SO, (24)

(m(P,)|b(0)y,u(0)|B(P1))="f1(q?)P1,+f2(4?)Ps,,

17

in which the form factorg, andf, are related td-, andF,
by

Fi=3(f1+f,), (18

(19

The factorization formula for thB— 7 form factors is writ-
ten as

In the above formulas, we have dropped the terms propor-

tional to the momentum fractior;~O(A/Mg) as argued
before, which are power-suppressed compared to the leading
terms such as tx,/7 in the form factorf,. The explicit
expressions of the Sudakov exponeggsandS,, are referred

to [25]. The hard function is written as

h(Xq.,X2,01,b2) = Si(%2)Ko( VXX 7Mgby)
X[ 0(by—b)Ko(Vx27Mghy)
X1 o(\X27Mgby)
+6(by—by)Ko(VXa7Mgb,)

X1o(VXa7Mghy)], (25)
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where the factoB, suppresses the end-point behaviors of the
pion distribution amplitudes, especially of the twist-3 ones.
The hard scalesare defined as

t)=max VXomMg,1b4,1hb,),
(26)
(2 =max VX17Mg,1/b4,1hb,).

It is obvious that by turning off threshold akd resumma-
tions with a, fixed, Eqs.(22) and(23) are infrared-divergent.

We argue that the two-parton twist-3 distribution ampli- 5 10 15 20 25‘12
tudes¢>§’;‘, though proportional to the ratim, /My, need to Fo
be taken into account. As stated above, the corresponding 3
convolution integrals for th&— 7 form factor are linearly 25

divergent without including Sudakov effects. ThesE integrals,
regulated in some way with an effective cutaff~A/Mg,
are proportional to the ratiMg/A. Combining the two ra-

tios my/Mg andM /A, the twist-3 contributions are in fact
not down by a power of Mg:

my (1dx,

2
Mg Jx. X5

Mo

, 27 5 10 s 20 759

A

FIG. 6. TheB— 7 form factorsF, and F, as functions of
and should be included in a complete leading-power analyd*(GeV?). PQCD results forwg=0.36, 0.40, and 0.44 GeV are
sis. We emphasize that the presence of linear divergenc&§own as dots. The solid lines correspond to fits to the lattice QCD
modifies the power-counting rules, causing the difference pgesults with errors. The dashed lines come from light-cone sum
tween theB meson transition form factors and the pion form rules.

factor. _ Sudakov factor in this work, such that the end-point contri-
Various computing methods have been proposed for thgytion is not important, perturbative contribution can be-
evaluation of theB— 7 transition form factor=®"(g?) in  come dominant. The Sudakov effect on the soft contribution
the literature, such as the lattice technida@8], light-cone  to FB7(0) has been investigated in the QCD sum-rule for-
QCD sum rule12,29, and PQCD[25,30. Obviously, lat-  malism [32] (without twist expansion for the pion bound
tice calculations become more difficult in the large recoilstatg. In this analysis, the soft contribution without Sudakov
region of the ||ght meson. However, this region is the Onesuppression was estimated to be between Q:mﬁfespond_
where PQCD is reliable, indicating that the PQCD and latticgng to f;~190MeV) and 0.22 (corresponding tofg
approaches complement each other. This complementation {30 Me\). The soft contribution tdgFB™ obtained in31]
will be explicitly exhibited in Fig. 6 below. In light-cone sum s consistent with the above range. It was then shown that the
rules, dynamics of thé8— m form factors have been as- sydakov effect decreases the soft contribution by a factor
sumed to be dominated by the large scal©¢i;). Thisis  0.4-0.7, depending on infrared cutoffs for loop corrections
the reason twist expansion into Fock states in powersmf 1/ to the weak decay vertex. Therefore, the soft contribution
applies to the pion bound state. If this assumption were validyyrns out to be about 0.06—0.15. Compared with the lattice
PQCD should also be applicable to tBe- 7 form factors.  resultsFB7(0)~0.3, it is reasonable to conclude that the soft
Besides, large radiative correction to tBemeson vertex, contribution amounts to about 30%, which is consistent with
which reaches 35% of the full contribution, or about half of the observation made if25]. It is a fair opinion that the
the soft (zeroth-order contribution, has been noticed. This estimate of the soft contribution is more model-dependent
O(as) correction renders the sum rule f6gF®", with f5  than the perturbative one. For example, the perturbative con-
being theB meson decay constant, quite unstable relative tqribution is less sensitive to the pion distribution amplitude or
the variation of input parametef29,31. To stabilize the to other input parameters such as the Borel mass in light-
sum rule, one considers another sum rulefipiat the same  cone sum rulef31]. In the PQCD approach, we calculate the
time, which also receives large radiative correction toBhe perturbative contribution to=®”, which is more model-
meson vertex. The two large vertex corrections then cancehdependent, and show that the result can more or less satu-
in the ratiofgF27/f5. However, the radiative correction to rate the value predicted by the lattice technique.
fg is then large. For the B meson distribution amplitude, we adopt the
A careful look at the light-cone-sum-rule analyses indi- model
cates that the soft contribution is more sensitive to the end-

point (x—0) behavior of the pion distribution amplitude b) = Nx(1— )2 _1[xMg 2_ wgb?
than theO(ay) correction[31]. Hence, if the end-point be- $e(X,b)=NgxX*(1=x)"ex 2\ wg 2 |
havior of the pion distribution amplitude is modified by the (28
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TABLE I. Contributions toF . (g?) from the twist-2 and two-parton twist-3 pion distribution amplitudes.

q? (GeV?) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
twist 2 0.120 0.128 0.138 0.148 0.159 0.172 0.188 0.204 0.223 0.243 0.270
twist 3 0.177 0.193 0.210 0.230 0.253 0.279 0.308 0.344 0.385 0.432 0.487

total 0.297 0.321 0.348 0.378 0.412 0.451 0.496 0.548 0.608 0.675 0.757

with the shape parametaiz=0.4 GeV[5]. The normaliza-
tion constantNg is related to the decay constari
=190 MeV through the relation

fg
272N,

It is easy to find that Eq(28) has a maximum aix
~A/Mg. We employ the models for the pidB3],

f Xm ¢B(X170): (29)

3f,
b (X)= x(1—x)[1+0.44C32(2x—1)

V2N,

+0.25C3%(2x— 1)1, (30)

[1+0.43C3%(2x—1)+0.09

fr
p =
¢7T(X) 2\/2_NC

X CyA2x—1)], (3D

L (x)= 2\/_(1 2x)[1+0.5510x*>—10x+1)],

(32

with the pion decay constaiit.=130 MeV. The Gegenbauer
polynomials are defined by
CAt=3(3t°-1),

CIAt)=35(35t*— 30t + 3),

(33

CIAt)=3(5t2~1), CJAt)=T(2n*~142+1),

whose coefficients correspond ng)=1.4 GeV.

We first investigate the relative importance of the twist-2

and twist-3 contributions td=_,(g?), and the results are

F(0)~0.3 obtained in[29,34. We shall adopt the same
range ofwg in the evaluation of thd8—p transition form
factors below. We also examine the uncertainty of our pre-
dictions from the parametrization of the jet function in Eq.
(13). The values of , (q%) vary about 15% for the choices
of c=0.2 and 0.4 as shown in Table Ill. The variation for
Fo(g?) is similar. In a future work we shall incorporate the
exact jet function into a convolution integrand in moment
space.

IV. B—p TRANSITION FORM FACTORS

Consider the semileptonic decBy-pl v in the fast recoil
region of thep meson[36]. We define theB meson momen-
tum P4 as in Eqg.(11), the momentunP, and the polariza-
tion vectorse of the p meson in light-cone coordinates as

Mg
Po=——(7%r5,0,),
2 ‘/277(77 prYL

(34)
€r=(0,0,1,0 or (0,0,0,3,

EL: (nzi_riioj_)l

V2rom
with the ratior ,=M ,/Mg, and the energy fraction carried
by the p meson We first keep the? dependence of the
kinematic variables in Eq34), and extract the twist-3 terms
proportional tor ,. The parametrization o, and € is cho-
sen to make this extraction straightforward.

The B— p form factors are defined through the following
decompositions of hadronic matrix elements:

(p(P,,€*)|b(0)y*u(0)|B(Py))

~2iV(g)) (35

T MM, € €,P2,P1,,

listed in Table I. It is observed that the latter are in fact larger
than the former, consistent with the argument that the twist-3
contributions are not power-suppressed. The light-cone sum
rules also give approximately equal weights to the twist-2
and higher-twist contributions t6, [31]. We then compare
our results ofF , (q2) andFq(g?) for g?=0-10 Ge\f with
those derived from lattice QCIP34] and from light-cone
sum rules[29] in Fig. 6, where lattice results have been
extrapolated to the smat|? region. Different extrapolation X
methods cause uncertainty only of about B3%5]. The good
agreement among these different approaches at large recaoil is
explicit. The fast rise of the PQCD results at slow recaoil
indicates that the perturbative calculation gradually becomes
unreliable. The values d¢f  (0)=F4(0)=F(0) from PQCD To calculate the form factorg¢, Ay, A;, andA,, we adopt

for the parametewg=0.40+£0.04 GeV are listed in Table Il. the following procedures. First, only the transverse polariza-
The resultant range . (0)=0.30+0.04 is in agreement with tion vectorset are involved in Eq(35) and associated with

(p(P,,€*)[b(0)y*ysu(0)|B(Py))

€q
=2M,Aq(9?) P

g“+(Mg+ Mp)Al(qz)

ou_ €0
e — q q#

€ -q

SRl vaenvy
p

2_ a2
> pﬂ_,_pﬂ_u n (36)
172 9 ar|.
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TABLE IlI. Values of F (0)=Fg(
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0)=F(0) for given wg .

wg (GeV) 0.36 0.37 0.38 0.39

0.40 0.41 0.42 0.43

F(0) 0.345 0.334 0.321 0.309

0.297 0.287 0.277 0.268

the definition ofA; in Eq. (36), through which we evaluate
the form factorsv andA;, respectively. Both the structures
associated wittA; and A, are orthogonal to the lepton pair
momentumg. Contracting Eq(36) with g,,, we have

(p(P2,€*)|b(0)dysu(0)|B(P1))=2M Ax(q?)€*q,

37)

which implies that only the form factoA, is relevant in
two-body nonleptonic decays suchBs- p(K). We calcu-
late Ay from Eq.(37) using the distribution amplitudes asso-
ciated with a longitudinally polarized meson.

For the longitudinal polarization vectet , the structures
of A; andA, are in fact proportional to each other:

€ g 5= M7

R K M M

Mg+ M, PI+P5 7 q
_ (€ QAME-MF-a®) [ eg
T MM 2+ q?l € TF TP

which can be easily derived via the relation

Mg—M2-q? ME—M2+(e*-q)?
— * | * P
Pi+P; T qe + - qlrqgg ¥
(39
Contracting Eq(36) with €}, — €* -qu/qz, we obtain
*\ [ * E*.q
(p(Py,e*)|b(0)| & —?—q ysu(0)|B(P1))
_ 2Pyq (e*-q)z[A (Mg+M,)?
~ Mgt+M, ¢ 2 2P,q
2
X1+ W)Al}’ (40)

from which the form factoA, can be computed. It turns out

We derive the leading-power factorization formulas,

VZSWMECFI Xmdxzf bl dbl b2db2 ¢B(Xllb1)

X1 r(x2)+1, B3(x2)

2+
—+X
PR

—Xo$% (%) |t E(tM)h(X1,%;,b1,b))

+1 [0 (%) + B5(X2) JE(t?)h(Xz,X1,b1,by) ),

(41)

AOZSWMECFJ' Xm dXZJ bldbl b2db2 ¢B(X1,b1)

X

| (1+ 7X2) p(X) + 1, (1— 2X2)¢tp(X2)

+

2
o 1- 2X2) b5(X2) ] E(t™)h(x1,xz,b1,bp)

+2rp¢;s)(x2)E(t(2))h(X21X11b21b1))1 (42)

A1:8’7TM éCan Xm dXZJ' bldbl b2db2 ¢B(X1,b1)

X

[50af
= o 00

| by (X2) 1,

—X205(X2) | | E(tM)h(xq,%7,by,by)

+1 [ hh(X2) + Pi(x2) JE(t?)h(Xz,X1,b5,b1) |,
(43

A
A2:_1,

(44)
7

that A; and A, have a simple relation, since the left-hand with the evolution factoiE(t) the same as in Eq24). Tak-

side of Eq.(40) is power-suppressed.

TABLE IlI. Values of F, (g?) for c=0.2, 0.3, and 0.4.

0.44
0.259

ing the fast recoil limit with —1 and assuming the

q? (GeV?) 0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
c=0.2 0.347 0.376 0.406 0.442 0.482 0.527 0.580 0.639 0.709 0.790 0.886
c=0.3 0.297 0.321 0.348 0.378 0.412 0.451 0.496 0.548 0.608 0.675 0.757
c=04 0.260 0.280 0.303 0.330 0.359 0.392 0.432 0.475 0.527 0.588 0.659
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We adopt thep meson distribution amplitudes given in
Appendix B[38],

15

20

& (X)= 31, X(1—x)[1+0.18C322x—1)] (46)
N o ’
fT
P
<f>L(><)=NZ—I\IC{S(ZX—l)2
257 +0.32x—1)2[5(2x—1)2—3]
+0.213—30(2x—1)%435(2x—1)*]}, 47
S(x)= 3t 1-2x)[1+0.7610x>— 10x+ 1
¢p(x)_2\/2—NC( X)[ . a )]1
(49)
dl(x)= 3, X(1—x)[1+0.2C3%(2x—1)] (49
P ) ’
_a V2N,
¢U(X)= L, {3[1+(2x—1)?]+0.243(2x—1)%>—1]
" 2\N '
+0.173-30(2x—1)%+35(2x—1)*]}, (50)

3f,
P5(x) = —==(1-2x)[1+0.93 10x*~ 10x+1)],

125

0.75
05
025

20

442N,
(51)
5592 with the decay constantf,=200 MeV andfl= 160 MeV.

Theq? dependence of the form factovsandAg ; », with the
sameB meson distribution amplitude in E¢28) and M,
=0.77 GeV employed, is displayed in Fig. 7. Our results are
consistent with those from light-cone QCD sum rula9] at
small g°.

It is found that the symmetry relatioi=A; in Eq. (45)
holds very well: A; is larger tharV only by 2% in the large
recoil region, even after considering the preasymptotic forms
of ¢, and ¢‘;‘ in Egs.(50) and(51), respectively. To compare
our results with the second symmetry relation, we include
next-to-leading power terms in E¢40), obtaining

5

10

15

20

2
257

FIG. 7. TheB—p form factorsV, A, A;, andA, as functions 1+ 2rp ) 2rp
of g%. PQCD results are given as dots. The solid lines come from A= 7 A;—87M BCFT dxy dx;

light-cone sum rules.

asymptotic behaviomﬁ,ﬁ=¢;’;‘, the above form factors are
found to obey the symmetry relatioh%1,37

where the term-2r A,, being higher power, does not ap-
pear in Eq.(44). Note that the form factors, treated as non-

V:Al,

A2=A1—2rpAo,

[ by oy b db, g, b)

X (1+ 77X) ¢p(x2)+rp ¢tp(x2)

(45) 27 L

+(1—2%)) (%)

] E(t™)h(xq,%,,by,b,)

perturbative objects, are not calculated[id]. Instead, the
diagrams we have calculated above are regarded as perturba- 121 S(x-)E(t?)h ) 2
tive corrections to the relations in EGI5). (X2 BTNz X1.b2,by) | (62

014007-9
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Because of the cancellation of the term,2,/» and the APPENDIX A: PION DISTRIBUTION AMPLITUDES

S?CO”" terr_n in the above _expression, the valugszoﬂ)nly It has been showf27] that the factorization in fermion
slightly deviate from those in Eq44). The numerical study g0, petween the pion distribution amplitude and the hard

shows thatA; is larger thanA,—2r A, by about 40%, ampiitude is achieved by inserting the Fierz identity,
which can be regarded as the estimate of the symmetry-

breaking effect. Lijhie= i + 2(v)i(vs) i + 2 (v )i ¥
+3(vs Y ik( Yy +5(0 ) i(a*)j . (AL
V. CONCLUSION into the quark and antiquark lines of the pion, whenmep-

) . resents the identity matrix, and*” is defined byo*”
In this paper, we have presented a complete leading=ru,v— ,vy4]/2 The insertion of Eq(A1) then leads to
power and leading-order PQCD evaluation of 8e-7,p  yarious nonlocal matrix elements,

transition form factors in the large recoil region. It has been - -

shown that under Sudakov suppression arising fkonand (0[u(0) ysy,d(2)[7~(P)), (O[u(0)ysd(2)|m™(P)),

threshold resummations, the end-point singularitiegarith- — _

mic at twist 2 and linear at twist)pado notgexist. I?Iighe soft <0|u(0)750“”d(2)|77 (P)),... (A2)

contribution to the form factors, being Sudakov-suppressecsach of which is characterized by different twists. The light-

becomes smaller than the perturbative contribution. Thdike vectorz=(0,z",0,) is the coordinate of thd quark, and

physical picture for the mechanism of Sudakov suppressioP=(P*,0,0,) is the pion momentum.

has been discussed. We have emphasized that the twist-3 The general expressions of the relevant matrix elements

contributions are in fact not power-suppressed in g  are, quoted fron33],

—oo [imit. The treatment of the parton transverse momenta £ 1

k, and the light spectator momentuky in the B meson in <0|U(0)fy'u—ysd(z)|ﬂ-*(|3)>:i N_WPIJ dx & %P2¢ (x)

the computation of the hard amplitudes has been clearly ex- c 0

plained: the hard amplitudes should not be expanded in pow- i f

ers ofkf as the end-point region is important. Using the light +-M2E

meson distribution amplitudes derived from QCD sum rules,

and choosing an appropriaBemeson distribution amplitude, 1 P

we have derived reasonable results for Bes,p form Xfo dxe 9x(x),

factors, which are in agreement with those from light-cone

QCD sum rules and from lattice calculations. Our study in- (A3)

dicates that in a self-consistent perturbative analysis, the

heavy-to-light form factors are calculable. (0[u(0) ysd(2)| 7 (P))= i
The jet function from threshold resummation needs more

thorough exploration. We shall investigate the relevant sub- 1 ,

jects, such as factorization theorem in moment space, thresh- XJ dx e *P 2 (x),

old resummation up to next-to-leading logarithms, applica- 0

tion to nonleptonicB meson decay$16], and numerical (A4)

effects elsewhere. Note that if considering okjyresumma- it M2

tion [40], twist-3 contributions, though infrared-finite, are — - _ 7 o

still t[oo]large to give reasonable hgavy-to—light transition <O|U(O)'y50m,d(z)|7'r (P))= 6 N, mo(l mg)

form factors, because the large double logarithmsn?x

have not yet been organized.

m

m
N, °

x(P,z,—P,z,)

1
xf dx e *P2¢ (x),
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tor,=my/Mg, are twist 3. We shall neglect the twist-4

terms and the term\( ./m)? in Eq. (A5).

It is straightforward to read off the pseudovector and
pseudoscalar structures of the pion distribution amplitudes
from Eqgs.(A3) and (A4). To derive the pseudotensor struc-

PHYSICAL REVIEW D 65 014007

(= (P7)|d(2)0,,75u(0)|0)

__ 1 MY 1d éX”d Al12
__6_Ncm° T GML X &%(X)-( )

ture from Eq.(A5), we need more effort. Using integration |t js observed that the pseudotensor structure in (B42)

by parts, Eq(A5) is rewritten as

(0[u(0) ys0,,d(2)| 7 (P))
M2 1 d

(AB)

1, |,

with the antisymmetric tensay,, ,, et"=1.The tensok,,,
in Eg. (A6) contracts to the spin structue"”ys/2 in the

evaluation of the corresponding hard amplitude. The factor
1 comes from the extra factdrassociated with the pseudo-

tensor structure compared to other structures in(&ij). We
have

1 y1a% I + .- — At H
2 €,,0 75=—§(7 Y =y vy )ys=—i(h_h —1)ys.
(A7)

Therefore, up to twist-3, the initial-state” meson distribu-
tion amplitudes are written as

(0[u(0);d(2),| 7 (P))

R
_ \/ZITJOdxe_'xp'z{[va]u(i’w(X)

+ [ yslijMod?(x) + Mol ys(h_th, — 1)1 di(X)},

(A8)
with
__fa by T
¢7T(X)_ 2\/2—Nc¢v(x)v ¢77(X)_ 2\/Z—Nc¢p(x):
P (x)= ——= id) (X) (A9)
i 12y2N, dx "7

For the final-stater™ meson, we consider the adjoints of

Egs.(A3), (A4), and(A5):

(m(P)|d(2)y,,y5u(0)|0)

. fﬂ' 1 i
:_IN_P“,IO dx éXP'Z¢U(X), (Alo)

(7 (P)|d(2) y5u(0)|0)
_ ,f\l_wmojoldxéxp.zd)p(x)’ (A11)

acquires an extra minus sign, compared to the other two
structures. The pseudotensor structure is then given by
—vys(h_th, —1)=7ys(h,A_—1). Therefore, up to twist 3,
we have Eq(7) for the final-stater™ meson. Note that there

is an extra term in the definition ap' , which contains a
differential operator applying to hard amplitudekl]. This
term, being power-suppressed, is negligible here. The distri-

bution amplitudess,. and ¢° are normalized according to

1 f 1
= ™ p = il
Jodxm(x) S jodxm(x) T
(A13)

The tensor distribution amplitude is normalized to zero, be-
cause of

1 d
jdxd?‘ﬁo(x):%(l)—%(m:o, (A14)
0

if ¢, vanishes at the end points of the momentum fraction.

APPENDIX B: p MESON DISTRIBUTION AMPLITUDES

We choose thep meson momentunP with P2=M§,
which is mainly in the plus direction. The polarization vec-
tors €, satisfyingP-e=0, represent one longitudinal polar-
ization vectore; and two transverse polarization vectexs
Their explicit expressions in light-cone coordinates have
been given in Eq(34). To arrive at the factorization in fer-
mion flow, we insert the Fierz identity into the quark and
antiquark lines of thep meson. The spin structures in Eq.
(Al) lead to the following nonlocal matrix elements:

(p~(P,e)|d(2)y,u(0)|0), (p~(P,e)[d(2)c,,u(0)0),
_ _ (B1)
(p~(P,&)|d(2)1u(0)|0), (p~(P,€)|d(2)y,¥5u(0)|0),

characterized by different twists. The definition ofs the
same as that for the pion distribution amplitudes in the pre-
ceding Appendix.

The general expressions of the above matrix elements are,
quoted from[38],

(p~(P,e)[d(2)y,u(0)|0)
f .z (1 )
= N_;; Mp’ Pu% fo dx €*P 2, (x)

1 : €7
+ GT’ufo dx e'xp'zg(T”)(x)— %Z’U“(P—Z)Z Mi

1 .
Xf dx éxp'z[%(x)—(ﬁu(x)]], (B2)
0
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(p~(P,©)|d(2)5,,u(0)|0) (p~(P,en)[d(2);u(0),|0)
— f; 1 ! jxP-z u
=—i N, (er,P,—€r,P,) = f_ZNCfo dx e M Lér]ij#,(X)
% [ “ax &P 2 (x)+ (P2, Prz,) ey M2 T4 e |
0 X ¢T(X) ( ,u,ZV VZ/,L) (PZ) p +[£TP]|J ¢p(X)+ ﬁ| GMVPO'
1 : M?2 X K1 €2 PPNY b ]
XJO dx P 2hiV(x) + 3 (er,z,— ETVZM)F,—.’JZ Lysy"lyerPin=ap(9]. (B7)
. for longitudinal polarization and transverse polarization, re-
< | “dx é*P7h _ , B3 spectively. We have dropped the terms proportionarﬁto
fo X [hs(x) ¢T(X)]] B3 (twist-4) and the termsr,+mg)/M , in Egs.(B4) and(B5).
The definitions of the above distribution amplitudes are
(p~(P,e)[d(2)1u(0)[0) f T T
. - P , t_ p h(t), S:_”_h(s)’
SN S Y S TN e o
2Ng\ P P M, 4 (B8)
1 . T
Xf dx &P 7h(9(x), oT= fo & B! = fo g\
0 PoaN, T TP 2N,
1 m,+my\ €-z 1 A d
_ T u d 2 P.z (s) f d
= - —M dx X7 2—hi¥(x), a___ P~ 4@ B9
2NC( PP M, |P-z Pfo dx ! b, w9 (B9)
82N, dX
(B4) ¢
3 — APPENDIX C: B MESON DISTRIBUTION AMPLITUDES
(p~(P,€)|d(2) y57,u(0)|0) _ , _
According to[41], the nonlocal matrix element associated
__ 1 — my+mgy with the B meson is written as
4N\ P P M, 4
ya R J—
ik-z
1 - J (277_)4e 1 <O|ba(o)dé(z)|B(Pl)>
X MPEIVLQBGTVPZLYZ,BJO dx éXP-zgfl_a)(X), : . "
= P1+Mg)ys| — o (ky) + — g (Ky)
. \/2_Nc|( 1 B) Vs o &g (Kq Vid)B( 1 .
i TMy+mg) M, “«
=- - —€ erPPn?
4N\ 7 P M, [P.n_ K7 ™o i
== (P1+Mg)ys| pa(ky)
— =
xf dx éx"'z&g(ﬁ)(x), (B5) 2Ne
° ho—h —
. . - ¢s(ka) : (CD
wheref, andf , are the decay constants of theneson with V2 Sa

longitudinal and transverse polarizations, respectively,>and .
is the momentum fraction associated with dheuark. We  with the wave functions
adopt the conventiore®'?>=1 for the Levi-Civita tensor

€*?*8_ The distribution amplitudes, g, andh are normal- be=3(ds+d5), Ps=3(dg—dp). (C2

ized to unity. . .
Following similar procedures, we derive tpeneson dis- Because the light meson momenta have been chosen in the
tribution amplitudes up to twist 3, plus .d_lrectlon, the hard a.lmplltudes for the heavy-to-light
transition form factors are independent of the compohégnt
_ — as explained in Sec. Ill. We construct tBemeson distribu-
<P (P,GL)|d(Z)JU(O)||O> tion alra‘np"tude,
1 ! ixP-z -
"N JO dx &AM €] 4,0 b(x1,b) = f dk; d%k,, ek Pg(ky),  (CY)
+[£LP]Ij¢}J(X)+Mp[l]lj¢2(x)}! (B6)  with x,=k; /P .
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The two B meson distribution amplitudesgg (X)
= ¢g (x,0) andeg (X) = ¢ (x,0) are related by the equation
of motion[41]

d
bg (X)=—X g $5(X). (C4

Assuming thatpg vanishes at both ends of the momentum
fraction,x—0 andx—1, we derive

[ionsi- foxsim- .2
. X g (X)= . X¢B(X)_2\/2—NC;
B (C5)
fld : >—2f1d S0~ e
. X X¢g (X)= . X X¢pg (X MBZ\/Z_NC'

Therefore,gB is normalized to zero.

We shall argue that the contribution from the distribution
amplitude g is negligible compared to that fromhg. Con-
sider the reasonable parametrizations,

s[5 K) A 5,( x)
X) = X——|— X— ——
° 22N, Mg/ 2Mg Mg
A2
+0 Mg) s
_ _ _(ce

()= 2 [ A 5/( Ao Az”

X)=——| — 57 0 | X— 17— — 11,
BT aN.| 2Mg Mg VE

whose moments satisfy EQC5). As shown in Sec. lll, the
hard amplitudes are approximated by Ix¢)/at smallx;. A
simple estimation indicates that the contribution frafg,

proportional to InMB/K), is numerically larger than that

from ¢g, proportional to a constant. Hence, after taking into
account Eq(C4), we consider only a singlB meson distri-
bution amplitude in this work.

APPENDIX D: THRESHOLD RESUMMATION

In this appendix, we supply details of the derivation of the
Sudakov factor in Eq(13). Threshold resummation intro-
duces a jet functiois(x) into the PQCD factorization of the
B— & form factors near the end point$5],

a+iocﬂ Si(N)

s00-= |

(1=x)7",

N (D1)

—jo 2mi

wherea is an arbitrary real constant larger than all the real

parts of poles involved in the integrand. The factoN 1/
comes from Mellin transformation of the initial condition

709 =1,

fldx(l—x)N—lsg‘”(x): i, (D2)
0 N
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The Sudakov facto®(N) in the momentN) space has been
derived explicitly to the accuracy of leading logarithfht )
[15],

(LL

k- In”NJ,

SN =exd — 1y (D3)
with the anomalous dimensiopl-") = aCr /7. The contour

integral in Eq.(D1) leads to

* _(1_X)exnt)

T dt
S (x) = —ex;{ZaSCF) f_w p

X sin( L aCrt)exy — -2 Cpt? (D4)
2 s F 477 F ’

which vanishes ax—0 since the integrand is an odd func-
tion int, and atx— 1 due to the factor (& x)®®0.

In this paper we consider threshold resummation up to
next-to-leading logarithms. At this level of accuracy, the
anomalous dimensioryk contains two-loop contributions,
and the coupling constamt is running. The Sudakov factor
S(N) is then given by

N = 1J'1—1/N dz J(1—z)2d)\ AM2/2
Si(N)=exp 5 o 1-2J)uy T?’K[as( 82|,
(D5)
with
_as ag\? 67 w? 5
’yK—?CF+ ? CF CA 3_6_E _1_8nf 1] (D6)

n¢ being the number of quark flavors af@},=3 is a color
factor. The anomalous dimensian is the same as that for
kt resummatiorj42].

It can be shown tha(x) still vanishes at the end points
x—0 andx—1. To simplify the analysis, we propose the
parametrization

2172°1(3/2+¢)
Vm(1+c)
whose end-point behavior satisfies the above requirement. In

the as—0 (c—0) limit, i.e., without QCD effects, Eq.D7)
approaches unity. Mellin transformation 8f(x) gives

Si(x)= [x(1—x)], (D7)

0.02
0.01
= QEO:{
// § ~~. N
NN ¢=0.3
-0.01\: Tt
~ c=0.2 T~
-0.02

FIG. 8. Difference between the jet function and its parametriza-
tion in the moment space.
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S{it(N) 21201 (3/2+ ¢) constanta M3/(2N?)] in Eq. (D5). Performing the best fit
N B(c+1c+N). (D8)  of Eq. (D8) to S;(N)/N for 3<N<7, we determine the pa-
JaT'(1+c) rameter c=0.3. The difference S(N)/N—S{(N)/N is

shown in Fig. 8 forc=0.2, 0.3, and 0.4. EquatiaiD7) im-
The variableN should be large enough to justify threshold plies that threshold resummation modifies the end-point be-
resummation up to the next-to-leading logarithiaagln N, havior of the meson distribution amplitudes, causing them to
and small enough to avoid the divergent running couplingvanish faster ax— 0.
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