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Heavy-quarkonium hadron cross section in QCD at leading twist
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We compute the total cross section of a heavy quarkonium on a hadron target in leading twist QCD,
including target mass corrections. Our method relies on the analytical continuation of the operator product
expansion of the scattering amplitude, obtained long ago by Bhanot and Peskin. The cross section has a simple
partonic form, which allows us to investigate the phenomenology #fandY dissociation by both pions and
protons.
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[. INTRODUCTION tions are presumably non negligible, but some of them,
namely finite target mass corrections, can be incorporated in
It has been conjectured that in ultrarelativistic collisionsa systematic way.
between heavy ions a quark gluon plas(@GP is formed A second attempt is formulated within a constituent quark
for a very short period of time. Later it disintegrates into themodel. In an early study Martinst al. [5] have calculated a
hadrons which are finally seen in the detectors. It is the chald/ ¢ dissociation cross sectian,, , by 7’'s of up to 7 mb at
lenge of the present experiments at the CERN Super Protofis=4 GeV, i.e., 0.8 GeV abovmeny,+m, . This value has
Synchrotron(SPS and at the BNL Relativistic Heavy lon been reduced to about 1 mb for the same energy in a more
Collider (RHIC) to find observables which unambiguously recent study by Wonget al. [6] who used parameters ad-
signal the formation of the QGP. justed to other elementary reactions.
One of the most promising suggestions advanced so far is A third approach is based on hadronic degrees of freedom.
the suppression of charmonium production in these colliinvoking a local UW4) symmetry and employing
sions. It has been argued by Matsui and Jdifzthat the  pseudoscalar-pseudoscalar-vector coupling, Matinyan and

interaction between a heavy quagk and antiquarkQ is  Miiller [7] investigated the dissociation of thEy by ex-

screened in a QGP, and consequently @@ bound pairs change of & or D meson. Employing vector dominance to
may not survive in this environment. The problem with thisdetermine the coupling constants they arrive @},
signal is that all other possible suppression mechanisms have0.3 mb for \'s=4 GeV. Later, Haglin8] included four
to be well understood. point interactions and a three vector-meson coupling and ob-
Whereas the general features of charmonium productiotained a much larger cross section because the large suppres-
in proton-proton collisions seem to be under control, alreadyion of the cross section due to tBemeson propagator is
in proton-nucleus reactions the suppression is not well unnot present in the contact terms. Recently Lin and [Rp
derstood so far. Only recently, data have been publishethodified the details of this approach and included form fac-
which show a different suppression &fy and ¢’ [2], and  tors. Depending on the form factor assumed they ggt,
hence give the first hints that thE ¢ is formed inside the between 4 and 25 mb afs=4 GeV.
nucleus. The purpose of this article is to extend the work of Ref.
In heavy ion collisions the situation is even more difficult. [4] in three different directions. First of all we include sys-
There many particles are produced which possibly collidgematically the masses of the scattering partners using a
with a charmonium and may cause an observable suppremethod known from deep inelastic scattering studies. This
sion even if a QGP is not formed at all. In order to quantify allows for the calculation of the dissociation cross sections
such a suppression it is necessary to know the strength @lose to threshold where it is most relevant for the question
these interactions. Experimentally the charmonium-hadromt hand. Second the cross section of Réf.is derived in a
dissociation cross sections are not accessible. Therefore odéferent, more direct fashion, again in analogy to the calcu-
has to rely on theoretical estimates. Three kinds of aplation of the forward Compton scattering amplitude in the
proaches have been advanced in the past. operator product expansion. This cross section has a simple
The first approach is based on twist expansion techniquesartonic expression, even when target mass corrections are
well known from deep inelastic scattering studies. It hasincluded. We also explicitly derive how the reaction thresh-
been launched by Bhanot and Pedid] and was explicitly  old is shifted by target mass corrections and how the cross
used in Ref[4] for ¢-p in the approximation of a vanishing section is modified in the vicinity of threshold. Third the
proton mass. The whole approach gives a correct approximaalculation is extended towards other hadrbremd towards
tion of QCD provided that the heavy quark mass is largebottomonium which becomes an observable particle in the
enough. It has thus the very advantage to be a well definedpcoming experiments at the RHIC and at the Large Hadron
approximation scheme of the underlying theory. For realisticCollider (LHC) at CERN.
systems, such as charmonia and bottomonia, power correc- Target mass correction fal/ {s-p cross section has been
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examined in the framework of Bhanot and Peskin in Ref.one-loop computation. In the phenomenological study, we
[10]. These authors obtained their results in the form of sunwill quantify the consequences of this scale uncertainty.
rules. In principle these sum rules contain all of the above The coefficientsl,, correspond to matrix elements of defi-
mentioned aspects but none is made explicit. Further waite operators evaluated in tide state. These are computable
were neither capable to reproduce their exact expressions fam perturbative QCD and have been made explicit in [R&f.
the sum rules nor to find the trend they mention for thefor 1S and 23D states to leading order in the coupling and to
correction. We will clarify in the course of this study where leading order in M., whereN, is the number of colors. For

we disagree. 1S staté they read
Il. DERIVATION 16
dn=——B(n+5/2,5/2,
In this section we generalize the expression obtained by 3N¢

Bhanot and Peskif¢] for the total cross section of a heavy

quarkonium® with a target hadrorh by including finite ~ whereB(u,v) is the Euler beta function. For later conve-
target mass terms. The proposed analysis is close to thaience we remark that, can be expressed as théh mo-
performed in the context of deep inelastic scattefityl2.  ment of a given functiori through

A. Short review of the framework _ fld—xx”f(x)
Let us first collect the material we need from Régf%4]. " Jox
We want to compute thé-h total cross sectioh.Our start- )
ing point is the expression for the forwadel-h elastic scat- with
tering amplitude Mg, ,. This amplitude depends on energy
and it is convenient to express it in terms of 6° 5o a2
(X)= ——=Xx"9(1-x)
(K+p)2—M?—m? c

2M ' For everyk in Eq. (1) a gluon twist-2 operator evaluated

in the hadronh (spin-averagefstate also appears. Each of
. ) . these matrix elements is a traceless fully symmetric rak 2
andmy, their respective masses. We note thas the hadron tensor built from the hadron momentyprt. It turns out that

energy in the® rest frame. Via the optical theorem, the . C ) :
forward scattering amplitude leads to tdeh total cross Elltﬁnsor having these properties is necessarily proportional to

section

whereK andp are thed andh respective 4-momenta and

2k—j)!
IMMeg n(N). THp)= E( MY ST 2/(2k)'

1
Tph(N)=—=
tbh() \/m

Notice that we use the same definition fot as in Ref[4].
In QCD, in the limit of a large heavy quark mass, the 5> B ko
scattering amplitude has a twist expansion. In therest gD pI - ®p ’

. . S SO R N —
frame the leading twistLT) contribution is[4] ; k-2

(LT)()\) a ESZ d2k662k<h|FOV(iDO)2k72F0|h>. where the tensor in thgth term on the right-hand side is the
! sum of the (X)!/[2)j!(2k—2j)!] distinct tensors one can
(1) construct by multiplying g**'s and (&—2j) p”’s. The ma-
trix element needed in Ed1) is therefore proportional to
ag and e, are, respectively, the Bohr radius and the Rydbergjo---0(p) and writes

energy for theQQ system.

The above formula displays the factorization of the pro- (h(p)|FOV(iDO)Zk*2F2|h(p)>
cess in terms of hard coefficients, and soft matrix ele-
ments. Both should be evaluated at a factorizatiand =A, JJ0 0

o o . 2k (p)

renormalization scale u, to be chosen to minimize the in-
fluence of neglected higher order perturbative corrections. It K
is argued in Ref[3] that u~ €y, though a precise determina- 2 (2k—j)! o L (CmRayinZ-a, @)
tion fulfilling the latter requirement would need a complete Aak j1(2k=2j)! "

Throughout this paper we restrict ourselves sjuin-averaged 2The present consideration applies to 2S state as well but is left
cross sections without further mention. out until Appendix B.
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This set of matrix elements is related to the unpolarizedin X, which areA==m,. The technical reason for the
gluon densityG in the hadron target. One can see this fromgiference is, of course, that, occurs nowhere in Eq3). In
the matrix element definition d6, see, e.g.[13], which in  the twist expansion approach the locations of the singulari-
the light cone gaugd " =0 reads ties of the full scattering amplitude may be affected by
Lt dv higher twist corrections. We verify that this is the case for the
B Y ixptyo . N above reactions by taking into account elastic unitarity cor-
XG(x)= p_+f 5" Y (h(p)[FT(0)F,"(y ) [h(p)). rections for which the thresholds are clearly located at
+m, .2 In the next section we shall see haw,#0 correc-
In the parton model the argument @f i.e., x, is interpreted tions affect the locations of the LT reaction thresholds.
as the fraction of the hadron light cone momentpin car- Since the convergence radius of the power sef@ss
ried by the gluon. Taking thath moment ofG(x), we get nonzero the LT amplitudecan be unambiguously deter-
mined throughout th& complex plane from the sole knowl-
tdx 1 e 4 edge of Eq.(3), using the Mellin transform machinery. We
vas G(x)= (p+)n<h(p)|': (i0")"%F,"|[h(p)). first remark thaM ,=d,A,, being a product of moments one
can express

SinceD*=0" in the A" =0 gauge we recognize

1dx
. M= [ Pon 0, .
(h(p)[F**(iD *)22F *|h(p))=Ax T *(p) o3 M) (4
=Az(p")%, with
ie., h(x)=G&f(x),

1dx and the convolution product defined as
An=J —x"G(x).
G®f(x)=J 7G(y) f(xly).
B. Massless target §

In the present subsection we want to illustrate the generdNoW. plugging Eq.(4) in Eq. (3) for [\ |<eo, freely inter-
method in the case of vanishing target masg=0. Then changing summation with integration and summing the en-

Eq. (2) simplifies to suing geometrical series, one finds
h|FO"(iD%)2%~2F O|h)= A, \ 2K, 1dx x2(\ €g)?
< | ( ) | > 2k M(A)zageéf —h(X) (2_ 0) .
o X 1-x%(N\/€g)

and Eq.(1) thus becomes

The key point is that this integral representation can be ex-
MED(N)=ade2 >, daAo( M ep)k. (3)  tended throughout the entire complex plane except for the
k=1 two branch pointa. = *+ €5. The analytic continuation of Eq.

i . . 3) to energies\ > ¢, is then easily derived
It is useful to study the scattering amplitud®&ly © 9 €o y

throughout the complex plane of the energy. To avoid con- 1 X(\ €g)?
fusion, we will from now on reserve the notatianto real M(A:)\iig)zagegj dx h(x) 0 —,
values and defing as the extension of to complex values. 0 1-x*(Neg)®Fie
Using the d’Alembert criterion one easily checks that the 5
convergence radius of the power ser{8s now considered
with the complex argument, is equal toey. As extensively
discussed in Ref{4], the twist expansion of the scattering 1 -
amplitude provides an expression faM{H(N) in theun-  ImM(\) = =~ [M(A+ie)— M(A—ie)]= =ade2h(ey/N).
physicalregion of energies. Since we are interesteghgsi- 21 2
cal energies we have to perform an analytic continuation OfPutting all things together, one gets
the power series.

Before doing so let us first elaborate on possible differ-
ences betweenM{ ] and the full scattering amplitude

/r\]/l‘b h» Il'e". Inclll,ldlnghhlghher tWISt Iter.ms' It tL::ns .OUt frfom quence of the LT analysis: what we call tte¢al (LT) cross section
the analysis below that the singularitidsranch points o does not in fact include processes such as the elastic one. The word

MG on the boundary of the convergence disk of the powekgiap is thus misleading, at least in the threshold region.

series lie at\ = * ey. This is not what is expected for the  4From now onM always refers to the leading twist part of the
locations of the(first) branch points ofMg, 1y, i.e., the loca-  forward ®-h elastic scattering amplitude and we drop the indices
tions of the thresholds for both reactiods+h— X and ® (LT) and® h for simplicity.

and its imaginary part given by

SLet us note in passing one important phenomenological conse-
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Oy T\ 163f1 (XN €g—1)%2 o 1687 A Bt LE2) (M e )75
m = ——ap€0——5 X)————. a ~ ———3ap€ s €g— .
2 “0%03N2) oo (XM €5)° o Nz o0 T °

(6) (10)

Dividing Eq. (6) by \ (the flux factor wherm,=0) we  For large energies, using

recover the partonic expression of tireh total cross section
B(6+7/2,5/2

as obtained by Bhanot and Peskin within a parton model § z B _ _52
approach, i.e., 2F1<5+6'2'77+ 5:1=Me Bpr152) (M eg) %,
1 one obtains
T h(k)=fodx G(X) 0 g(XN), (7

16° 7

N )
~ 3 —
oo n(N) 7 aOeOAB(5+7/2,5/2(6O) . (1Y

c

with the ®-gluon cross section

167
6N2

(wleg—1)%? The high energy cross section is primarily geometricat
PIPRE O(w—€), (8  memberaie,>agal). In addition to this simple behavior,
@!€o there is a nontrivial energy dependence coming from the
small x behavior of the gluon density.
For phenomenological investigations we shall also use

3
0€o

¢ g(w) =

w corresponding to the gluon energy in tHe rest frame.

A5|d§ from |t33energy (Z:Iependence, thggluon crfosshsegnon slightly more involved forms foG(x) as obtained in parton

is driven byageo> asy, as expected in QCD for the inter- yigtinytion function studies. In this case the connection to

action of a small color singlet dipole of sizg. _ ,F; is lost. One may, however, derive similar asymptotic
In this formulation one important physical aspect is madegypressions by first expanding the gluon distribution either in

transparen{3,4]: the leading twist analysis describes te 4o neighborhood of 1 or 0.

dissociation by gluons into @ and aQ

C. Massive target

P+g—=Q+Q. Having illustrated the method for the casg=0, we now

turn to the general case,# 0. Plugging Eq(2) into Eq.(1)

To be energetically possible the gluon energy has therefore Jads to

be larger than thega Coulomb binding energy,. In view
of the fact that the confinement scale is small as compared to K (2k—j)!
€, the LT analysis then provides a descriptiondofdissocia- M'(N)= agengl M 2"2

— (N gy 2
= i I(2k—2j)!
tion into open channels, e.gQq+Qq. Let us emphasize =0 K D

that this dissociation is precisely the process of interest for mﬁ i
the question ofb suppression in heavy ion collisions. -
An important aspect for the phenomenology of the above 4ep

cross section is its limiting behaviors for both small and large | , )
energy regimes. These are linked to the 1 andx—0 be-  With Max=da Az We thus get an amplitude which may be

haviors of G, respectively. It is then convenient to have in considered as a double power seriea iandm, . The study
mind the simple, yet standard, parametrization of this double series with complex argumemnts-A and
mﬁ/(4e§)ﬂz shows that it is absolutely convergent for

G(X)=A (1—x)"x 2. (9)  [Mel+|z|<1. In this domain, defining’=k—j we may
rewrite the series as

With this ansatz one can write down exact asymptotic for-

mulas either by following the reasoning of R¢#] or by , 3 " (2K )
noticing that thed-h cross section is proportional to a hy- M (}"mh)_aOeOPg},;l (M €)™ Mager +) i1(2k')!
pergeometric function. This is most easily done by changing T .
variablex to t=(x\/eq—1)/(\/ €g— 1) in Eq.(6). Then one m2 |’ s m? |’
i x| ——| +ade Myl ——1| . (12

recognize§14] 22 0€0.2 Mo, 222 (

3

o(N)= 16 T’ageoA B(7+1,5/2) (N eg—1)7* 52 The se(_:ond term on the right-hand siQe corres_ponds to the
N2 power-series expansion of the scattering amplitude of

¢ Sec. Il B evaluated at the complex plane locationim;/2:

X (N €9)® ",F1(8+6,5/2;p+7/2;1— N ep).

2\

_ T = M(imy/2)
46(2) e

For \ in the neighborhood 0é, i.e., them,=0 threshold, ajes >, My,
the hypergeometric function approaches 1 and we get =1
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From the representatiofb) of the scattering amplitude we

immediately see thad1(im,/2) is well defined and real for oo h()\)_ f dx G(X) o g(X\ ). (15)

every (rea) my. We thus ignore this term in the following

since it does not contribute to the total cross section at lead- ) ) _

ing twist. Some comments are in order. We first stress that, as in the
Let us now concentrate on the first term on the right-handnh=0 case, one arrives at a simple partonic form of the

side of Eq.(12). We use the same reasoning as in Sec. |l BCross section. This means, in particular, that the physical dis-

considering now the double seriés2) with complex argu- ~ cussion we gave after Eq7), based on the subproceds

ments\ andz instead of\ and m?/(4e€3). Expressing first +g—Q+Q, still holds in the massive target case. Apart

M, as then-th moment oh=G® f one can write from the prefactor, the only modification between E5)
and Eq.(7) is the modification of the expression for the
(2k’ + J (2k’ +j)! gluon energy in the partonic cross sectiog ;. The change
2D T oy i1(2K’ )l (_ 2)!= f X m from x\ to x\ . may be given a heuristic interpretation in the

parton context using light cone coordinates the & rest
X (—x2z)l. frame let us choose the third axis along the hadromomen-

tum and formp* = (A + \\2—m?)/{2 andp~=mZ/(2p™*).
In the convergence domain of the double series, the series i the parton picture the gluon causing the dissociation is

j may be summed up. Introducing picked up from the hadroh and has a negligible transverse
(n+j)! momentum, and hence a negligible minus momentum. Its
'"(2)= _J —2)l energy is then easily expressed in termothe light cone
n n+2] | | .
j=0 n: (plus) momentum fraction of the gluon, and reads

=xpT/\2, e, o=x\, .

13 Our understanding of the prefactor is more formal. We
_X (1+x2 Z)n+l' 13 opserve that Eq14) may be rewritten as
we may then follow another time the reasoning of Sec. Il B ImM'(N) dh=ImM(\ ;) dA .,

replacingM,, Eg. (4), by M/(2) as given by Eq(13). We
notice in passing that the modified momehts(z) are ana-
lytic functions of z throughout the complex plane except at
z=-1.

For simplicity we restrict ourselves to physical masses
e., to the positive real axis of where the above integral
representation is well defined. Then, two cases show up d
pending on whethem,<2e, or not. The former case is the
one relevant to phenomenology but we consider both cas

in turn for completeness.
For m,<2e,, we restorez=m?/(4€3) and change the
variable tox’ =x/(1+x?m?2/(4€5)). Then we have

a relation which entails théormal) identity
M~ (z2)=M_,, Vz (16)

Which can also be obtained from a direct comparison be-
Jween Eqs(13) and (4).
Next, we point out that, as expected, timg#0 correc-
% ns are sizeable only for small energies. The first aspect of
ese corrections is that, as above mentioned, the threshold is
now located at

o=t @
0= €0t —
M’ m_ﬁ) _J’[1+mh/(4eo)1 dx’ ax h(x) dey’
n 2] '
4ep 0 X 1-x mh/(4’~‘o) As in the massless case this corresponds to the need to find
ith derstood function of . In this f in h a gluon with an energw= ¢, sufficient to dissociate the
with x understood as a tunction n this form we can With w=x\, andx=<1 this gives a\ , threshold\ , g

easily follow the reasoning of Sec. Il B because the integra-_ e, leading to Eq(17). The second aspect is that the cross
tion range does not play a role until one cuts the amplitude

This cutting imposex’ =¢y/N and thus results in a non- section behavior fon—Xo is given by Eq.(10) with an

L ! argumentA , instead ofA and a prefactor
vanishing imaginary part fok >\ o= o+ m?2/(4eo). Above au ! P
this threshold

2
€0
—mﬁ/<4eo>) '

h(eg/\ ) A2—m?

mM (M_ A€o 1-m2/(4r2)
n N Let us now investigate the,>2¢€, case. One may per-
form the same change of variable in the interf@l®e,/m;]

_ T 35 M h(eg/N ), (14) and[2e,/m,,1] leading to

aOEO—
S 2700 N2

where\ , = (A +JA2—m?)/2. Dividing Eq.(14) by the flux Such a connection between light cone variables mpé 0 cor-
factor we obtain for the total cross section rection is discussed for deep inelastic scatterinfLB.
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A, co/mdx’ h(x) This gives for charm and bottom respectivebet (i)]
M, (mc/(4e5))= —X'"N
TR 0 X' 1-x2m2/(4€2)
LA €0.=0.78 GeV, m.,=1.94 GeV,
+f60/mh dx" h(x)
— X" .
[1+mﬁ/(4e(2))]_l X/ szﬁ/(4€(2))—1 60b=0.75 GeV, mb=5.10 GeV.
The threshold becomes,=m;, and one finds One way of estimating the applicability of the heavy

quark analysis to charmonia and bottomonia is to compare
the size of each Coulomb-state to typical confining distances.

MM’ (A) = T 22 h(eg/N+) N h(eo/N-) One may first evaluate the Bohr radiag=1/yegmq, this
2 “0%0 1-mZa\2  mZa2-1)’ givesay.=0.16 fm for charm andiy,=0.10 fm for bot-

(18) tom. Recalling that the 1S-state root mean square is given by
r(1S) =3 a, one finds that the 1S-state size remains some-

with X . = (A = AZ—m?)/2. We notice that the first contri- What below typical confining distances. We then consider
bution is the one already obtained in the case<2e,. The that the LT analysis may be at least !ndlcatlve_of the behavior
second term is new but contributes only in the ramge of 1S-state cross section. Computing the size of 2S-states
<\<ept mﬁ/(4eo). We further point out that the relevant with r(2S) = \/30a,, one sees that the situation i_s much less
energy variable is now half the difference between energy@vorable for 2S-states, espec,u'?mlly for charmonium. The ap-
and momenta, instead of half the sum for the first term, andlication of the framework t&" is given in Appendix B.
that the present result EL8) is again consistent with the [N &ddition to the question of the validity of the compu-

M _, sum rule(16). Finally, in the neighborhood of threshold tation of 2S-state cross section within the LT analysis this
the_lcross section now arT’10unts to also led us to reconsider the above choice of parameters. For

this we drop Eq(20) and propose to fix the Rydberg energy
to the energy gap between the 1S state and the open flavor
3 h(2eo/my) production. With Eq.(21) this is equivalent to puttingn,

w

Ton(M)~ 2(\2/m2—1) 2 &o€o My/2€, (19) =mp fo'r charm andnbz mg for bottom. We then have the
alternative sefset (ii)]
lIl. PHENOMENOLOGY €0.=0.62 GeV, m.=1.86 GeV,

A. Choice of parameters €p=1.10 GeV, m,=5.28 GeV.

In view to give numerical values fob-h leading twist

total cross sections and thresholds, it is necessary to fix, ofAs we shall see, the cross section is only sizeable at large

the one hand, the heavy quark masg and the quarkonium €nergy. In this region the magnitude of the cross section is

Rydberg energy,, and, on the other hand, the gluon densitydriven by the factOIaSe():l/\/ng €o [see Eq.(11)]. Taking

in the target. set (ii) instead of sefi) results in a 20% cross section in-

crease for charm and in a 22% cross section decrease for

1. Quarkonium sector bottom. It turns out that this uncertainty is smaller than the

one coming from scale fixing discussed in the next section.

We will therefore limit our further considerations to cross

sections obtained using s@}.

The above described QCD analysis assumes tha@tﬁe
binding potential is well approximated by the Coulomb part
of the QCD potential3]. Treating the 1S and 2S heavy

guarkonia as Coulombic states leads to 2 Gluon distributions

The other important input for the computation is the gluon

Mqq(1S)=2mq— e, (200 gensity G, in the hadronh considered. At this point one
should remember that this density depends on the factoriza-
€ tion scaleu [see paragraph following Eq1)]. In the ®-h
Moo(2S)=2mg— 7 (21)  cross section, not onlg, is a function ofu, but alsooy, 4
Part of the dependence stands in the explicit coupling of the
that is gluon with thed constituents, corresponding to the facigy

in a3eyx a3, though the knowledge of the full dependence
L requires a complete one-loop calculation. Lacking such an
_ _ M — analysis led us first to restrict ourselves to the so-called lead-
M= 6[4 Mqq(28) ~Mqqo(19)], ing order(LO) gluon distributions(i.e., their evolutions are
computed to one-logpand correspondingly to the LO run-
4 ning coupling. Second, we investigated with some care the
— T ITMA=(2S) = M~=(1S)1. variation of our results with the choice of different factoriza-
€0= 3[Ma(25)~Mqq(19)] tion scales.
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~
EN

We started this analysis with the prescription suggested in
Ref.[3] that u~ €,. For such a low scale the only available
parametrization for the proton is the ®kiReya-Vogt[16],
(GRV94) leading ordefLO) parametrizatioR.These authors
have proposed a parametrization for the pion|tbg. Con-
cerning thex dependence of the various gluon densities, one
should notice that the intermediateregion is rather well i
monitored, while the smalt- region is poorly understood, 08 /

o¢h(h,mh) / o¢h(x,())

especially for the pion case. Thanks to the DES¥collider

HERA measurements the situation for the proton is much 06 :
better. Including these data GkrReya-Vogt have provided /
a new parametrizatiofil8] but its lower scale is larger than e
that needed for this study. However we checked that at a 04 / S Tm

b dile? (o
prike-G €y

------ ‘plike’ G, ¢,

scale large enough for both to be compared the difference i
between the gluon distribution of Rdfl8] and that of Ref. 0.2 /

[16] is not significant.
We also examined, at a larger factorization scale, the con- o L
sequences of different parametrizations of the gluon distribu- 1 10
tion in the proton, considering in turn 1998 Martin-Roberts-
Stirling-Thorne(MRST98 LO [19] and CTEQS5L|20].

Ale,

FIG. 1. Ratio of the correctefiog h(A,my)] over the uncor-
rected[ o H(\,0)] cross sections as a function Bfe,. Calcula-
tions are performed for hadron masses= €y/5, €, andmy= ¢g,
3¢, using the gluon densit®,(x,©=0.75 GeV) in the piori17]
and in the protoni16], respectively(see text

As we shall see in the next section, the cross section at a
given energy depends on the choice of parameters. Its gefle * solid). This ratio is plotted as a function af e, and is
eral trend, however, is rather independent of a specifi¢hen identical for charm and bottom mesons.
choice. We therefore begin our phenomenological study by |y addition to the shift of the threshold E(L7), we ob-
discussing in this section those aspects that only weakly deserve that the inclusion of finite mass correction reduces the
pend on the quarkonium parameters and gluon distributiongoss section close to threshold. This result is opposite to

In Sec. Il we have seen that one can distinguish two exyhat is found in Ref[10],” where it is argued that the target
treme energy regimes in the-h cross section: a threshold mass correction tends to increase thej-p cross section
region and a high energy regime. The high-energy cross segear threshold. We notice that the mass correction is impor-
tion is independent of the target mass and is given by tant only for \ <2-3e,. This implies that it is of limited

(N~ \)=C (M €g)® phenomenological interest since, as we have seen above, the
a 0 cross section is very small in this low energy region.
In Sec. Il C we identified a different behavior in the case

of heavy targetsr,>2¢;). Figure 1 shows mass correction

. . 1+6

for gluon densitied3(x) _const.k at smallx: The con for a hadron with mass,= 3 €, and a gluon distributio®

stantC depends on details of the gluon density and on the . : P
_ . given by Ref[16] (dash-dottedl The cross section diverges

parameters describing the charmonium sefsee, e.g., Eq.

(1D)]. In every case discussed in Sec. Il A the relative dif- & threshold £/ €o=mn/€o=3), as can be seen in E((j.Q).
ference between this asymptotic cross sectiggand the ful The window for which the cross section gets sizeable is very
result is less than 25% for>30e,. For J/y this translates narrow, however. Thus this threshold behavior has probably

roughly into \s>13 GeV and forY into ys>23 GeV. very little phenomenological implications.

For m,=0 the cross section is very small in the threshold
region. We found that it is less than 10% eof, for A C. ®-h absolute cross sections
<2-3e, i.e.,\/s<5 GeV forJ/y and 12 GeV forY.

Let us now investigate the effect of a finite, . Figure 1
shows the ratio ofrg ,(\,m;,) andoq n(\,0) for two hypo- Before addressing in the next section the magnitude of the
thetical hadron masses such thak,<2e, namely m, cross sections, the influence of the factorization scale is
= €,/5 (“pion-like,” dotted andm, = €,. The latter case has quantitatively investigated. More specifically the three
been computed for a pion gluon distributigtrho-like,”  choices:u®= €5, 2€5, and 45 were considered.
dashed as well as for a proton gluon distributigfyproton- We made this investigation for the bottom channel with

the parameter sdt). In addition to the heavy quark mass,

B. Cross section variation with energy including target mass
corrections

1. Factorization scale dependence

81t should be borne in mind that at such a low normalization scale
the gluon distribution is less constrained by experimental data than "We give ample details on the comparison between the present
by model assumptions. approach and that of Rdf10] in Appendix A.
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CFEQSE:
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Al I 10 10 100 e,
FIG. 2. Absoluteagf‘pz) cross section as a function af e, for FIG. 3. Absolutesy,, cross section as a function afe, using
different factorization scalex?= €2 (solid), %= 2¢Z (dashed, and ~ GRV94 LO (solid), MRST98 LO (dashed, and CTEQS5L(dotted
w?=4€Z (dotted. The gluon distribution used is GRV94 LO. glgon dzistribution. The scale has been fixed for all distributions to
n=4eg.

this choice benefits from the numerical coincidence®that
phenomenology. We also notice that the runningxgfand
_ [€op 2 2 2 that of G, tends to somewhat compensate each other for the
op€op= "\ 1~ g as(m= €b): cross section at high energy.

We also investigated the consequences of changing the
as expected for a large enoughif the factorization scale is parameterization of the gluon distributions. Three leading or-
w?=éed. der sets exist which may be evaluated at the spile 4¢3

Let us first define th&’-p cross sectiona%:sg), com- Figure 3 c_iisplays the energy dependgnce of the absolute
ith the prescrintiom2= €2 to be that given by Eq. 0SS sectionry , using GRV94 LO(SO|Id).,. MRST98 LO
puteq wit P pliop 0 9 Yy Eq (dashed and CTEQS5L(dotted gluon densities. The energy
(7) with _the_ pa_rameter sdf) for the b°“°m°”"2‘m and the dependence proves to be rather independent of a specific
proton distribution GRV94 LO evaluated af = ;. We next choice for energied <300¢,. At larger energies there is a

. 2 .
define o{#,) at another scale to be that computed withrather strong dependence which leads to an uncertainty on

GRV94 LO evaluated agt® and multiplied by the factor the cross section comparable to that due to the scale variation
5 5 (compare Figs. 2 and)3The origin of this uncertainty is the
as(p’) ag(€p), poor knowledge of the gluon distribution at very low

which takes into account the change of the coupling of the
gluon to thed® constituents, and decreases down to 63% for
M2=4€S- We now turn to the discussion of the magnitude of the
On Fig. 2 is shown the energy dependence of Yh@ cross section. Thé/ s andY cross sections are displayed on
cross sections evaluated with the GRV94 LO gluon distribuFig. 4. They have been computed using the paramete)set
tion at scaleg?= eg (solid), 26(2) (dashed, and 463 (dotteg.  With the GRV gluon deznsny for the protdi6] and the pion
To bypass the question of the scale dependence,ofie  [17] evaluated ap’= €.
restricted our study to the massless target case and studied These cross sectiomsy,, (Ieft) andoy, (right) are found
the cross section as a function Xfe. to strongly increase up to about 1 mb and 0.2 mb, respec-
We first remark that the higher the scalé, the larger tively. The transition between low and high energy is situated
(respectively smallgrthe cross section at highespectively — around ysy,,=8 GeV and \sy,=15 GeV, respectively.
low) incident energy. At high energy\(e,~ 10%) the uncer-  We also notice that, depending on the set of parameters cho-
tainty may be as high as a 100%. The situation is much bettegen [respectively(i) and (ii)], the ratio o,/ oyy at high
in the range\/e,~20-100 that is particularly relevant for €energy lies in the range 4-6, i.e., roughly the charm to bot-
tom ratio ofa3eo.
The energy dependence of;,, turns out to be remark-
8For consistency we use here and in the following the one-loog@bly similar to the one in the proton channel, with a slightly
running coupling withn;=3 and with the QCD scale determined smaller magnitude. This similarity is intimately related to the
by Refs.[16,17: A®®=232 MeV. analogy that exists between the proton and the pion distribu-

2. Cross sections using GRV gluon distributions

014005-8



HEAVY-QUARKONIUM HADRON CROSS SECTION IN . .. PHYSICAL REVIEW D55 014005

FIG. 4. Absolute cross sectionsg, as a
function of the incident energy fal/ s (left) and
Y (right) with proton (solid), and 7 (dashedl.
The gluon distributionsG,(x) and G.(x) used
come from Ref[16] and Ref.[17], respectively,
evaluated aj?= e3.

tions in the GRV approach. Needless to say that lackingapproach. Theb’ cross section have also been investigated,
small x experiments for the pion it has not been possible taalthough the relevance of a perturbative approach is not fully
verify this analogy so far. With GRV distributions and at high satisfied for 2S states.

energy (\/Qz 200 GeV) the ratioog,,/0¢p~0.6, inde- In addition to the hadron mass corrections considered here
pendent of the quarkonium considered. and beyond perturbative corrections, higher twist corrections
may also lead to substantial modification for a not so heavy

IV. CONCLUSION quark such as the charm. Indeed we noticed in Sec. Il B that

. . .. the threshold location may vary when one incorporates
The operator product expansion analysis has been wide Xigher twist correction, making finite a cross section which is
used in the analysis of deep inelastic scattering. Subserd ; C Ing fin .
guently, these very techniques proved useful to investigatéero ?t leading tW'?‘- Considerations of this type of correc-
heavy quark systemk.4] allowing the calculation of the tions is clearly outside the scope_of the present study. F_’art of
Jly-p cross section within perturbative QCD. Such a crosdNese corrections may be associated todheector and in
section is of seminal importance in the context of heavy jorParticular to the confining part of the heavy quark potential.
collisions. Other corrections involving higher twist operators in the had-
The present study is a continuation of the work of Bhanoton target have presumably their counterparts in deep inelas-
and Peskin and of a more recent paper by Kharzeev anic scattering.
collaboratord10]. Let us gather what have been carried out As compared to the other approaches mentioned in the
here. introduction theJ/-m cross section is very tiny at/s
First, the leading twist forward scattering amplitude has=4 GeV. In the 4—7 GeV energy range it strongly increases
been given a simple integral expression, entailing a partonidriven by the intermediate region in the gluon distribution.
representation for the total cross section. Such a descriptioThis x region is fairly under control thanks to the momentum
had been found in a different way in R¢#] in the case of sum rule and consequently the prediction, within the present
massless targets. approach, of cross section smaller than 1 mb below 7 GeV is
Secondly, finite target mass corrections have been systemsiher robust.
atically incorporated. We showed that the cross section still A consequence of such a small cross section at small rela-
assumes a partonic form though in terms of a modified engjye energies is that destruction dfy’'s by comovers be-
ergy variable. In addition to a shift of the reaction threshold,;gme very unlikely. We are presently studying whether our
finite mass corrections add to the suppression of the crosgsyits allows already for an answer to the question whether
section at low relative energy but become insignificant fary quark gluon plasma is formed in ultra-relativistic heavy ion
above threshold. In the case of heavy targets, however, Wactions. Our present approach is, however, limited to the
noticed that the cross section becomes large just at@e 3/, cross section, since for the excited states the binding

even diverges athreshold. energy is not large as compared to the confining scale.
Last, the energy dependence ®f;,, and oy, has been

investigated for several targets. We found thgt, andog,

are strongly suppressed in the v_|cm|ty of tlhe threshold. At APPENDIX A: SUM RULES FOR o,
large energy, the cross section is proportionalsfofor a
target with G(x)~ constk!*? at smallx. With GRV gluon In this first appendix, we establish the sum rules satisfied

distributions this leads to slowly rising cross sections forby the leading twist total cross sectioty,;,. This allows us
both ®-7 and®-p. However, we should emphasize that theto make contact with a similar derivation done in the case
smallx gluon distribution are not much constrained, espeim,=0 [4] andm,# 0 [10]. The starting point is the expres-
cially that of the pion. Indeed the weak control we have onsion for the leading twist amplitud€l2). ExpressingM,

the gluon distribution, because of both the just mentioned=d,A, and recalling tha#, is then-th moment of the gluon
poor smallx knowledge and the sizeable scale dependencalensity in the hadron targéee Sec. Il A we may write the
turned out to be the main source of uncertainty in the preserderies as
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30 e (1A% o around a counterclockwise contour enclosing the origin gives
M’ (N, mp) =ageq E (M eo) f X GX) the coefficient ofA? in the amplitude(A2). Wrapping the
k=1 contour around thel and sn%hannel cuts, the contour at in-
P 2 i finity giving no contributior,
—(Zk ) 2Kk! +2 —m_XZ
=0 ji(2k")! '\ 4

2 [+ -
—f dA A2 HmM (N, my) =adeldyA(2]) e
My

m2 ] T
+a§eof —G(X) 2 (——hxz) :
=1 4‘50 We putm;, as a lower bound of the integral but this does not
(A1) presume of the exact location of the threshwpld(necessar-
ily greater than or equal t,)) implicitly contained in the set
Using the identitie$14] of sum rules(see below Using the optical theorem one
finally gets the sum rules for th@-h cross section

E(n-i-j)!B( +2+5 5)J. N
=0 j'n! T2 . d\ N2 I NN —mEogn(N) = aoeod2|A(2I)eO ,
h
55 (A3)
=B| n+ E,E
which is what Bhanot and Peskin fouflg. (3.10 in Ref.
% .F §+ n Z+ n 1t _§+ 3+ n [4]] in the limit of massless target. In order to compare these
2| g Ty Tyt Ty T 59T 5sZ) results with[10], we introduce the variablg=m,/\ to get
95 1 m,| 21 ~
B(2j+§,§)zi J’Odyy2|72\/1_y U@h(mh/)’):<6—0 1(2DA(21),
=0 (Ad)
95 e with
B(Z 2 X3F2( ,Z,Z,§,4,Z>,
_T.s
the sums ovey in Eg. (Al) leads to I(n)= anfod”'

as introduced ih10]. The relation(A4) gives the set of sum
rules that should replace that given by Et6) of Ref.[10],
where the prefactormf,/eg)? ~* is missing.
30 2 In order to verify that the sum-rule formalism leads to the
~ 0| dzfo dx xG(x) same result as we obtained in the present study we need to
€0 solve Eq.(A4) for o¢pn. This may be done using Laplace

M (N, mp)=ades 2 daA(2K ) (M eg)
k'=1

9 117 mﬁ , transform techniques. EquatidA4) writes
X 3F; 174.7;5,4, — X7, (A2) )
jo dy Yy 2V1-y?oen(my/y)=g(n), n=24,...,
where
with
ldx 5 n7 n _
A(n)= foyx G(x) X 3F; 27527 §,1+n,§+ 5,3

mp n-1 ~
g(n)=<6—0) L(n)A(n).

Definingx=—Iny andn’=n—1, we get the relation

We point out that Eq(A2) is equivalent to the equatidi5)
of [10] with slightly different notations.

As noted in[4], performing the integral 9Both the singularity pattern and asymptotic behavior of the scat-

tering amplitude, which are necessary for the present construction
to hold, are best studied within the approach of Sec. Il. In RHf.

jg dA ALy (\,mp) these properties where assumed from general properties of the elas-
2im tic scattering amplitude.
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T , \/7 result is compatible with zero below this threshidpoint
o dx exp(—n'x) V1 —exp(—2x) 0oy (myexp(x)) which is far from evident when one looks at E4#6) or
e (A3)].

APPENDIX B: 2S STATES
=g(n'+1), n'=1,3,---, ) . ) )
8 ) In this appendix, calculations of the cross sections are

extended to the 2S statds’. The modification amounts to
that isg(n’ +1) is the Laplace transform df(x). replacing the 1S coefficiend#s) (denotedd,, so fap by the
The above relation can be uniquely extended to a compleRS coefficientd 3]
argumentr (at least for Re/> &, see belowinstead of the 16® I'(n+5/2)T(5/2)

listedn’. We can then obtaif(x) by inverting the Laplace dffs)=—2 —————————(16n°+56n+75).
transform aNg  T(n+7)
f(x)= % Véfiwduexp( vx)g(v+1), (A5)  Expressingd?® as a function of the 1S coefficients
vo—i®

— _— oFS = 47419 240015 + 364415,
where v} is an arbitrary real chosen so that the integration

contour is located “at the right” of all singularities @(»  allows one to get an integral representation for the 2S coef-
+1). For gluon distribution behaving as **9 for x—0, ficients

integrals of the typdédx X'G(x) 3F, are well behaved pro- 1dx

vided Rev> 6. As a consequence we performed the inverse dffs)=4”f —x"f(9(x), (B1)
Laplace transform choosing)> §. 0 X

Setting v= vy +iu=vy—1+iu, and then\ =mjy exp{),

with
we thus obtain 5
V1—exp(—2x)oen(mpexp(x)) £29)(x) = £X5/2(1— x)¥3(2—6x)2,
L e 3N2
=_— —1+i +i
wa_x duexil (vo—1+iu)x]g(vo+iu), which is the ingredient needed to carry out the procedure
outlined in Sec. Il. The changes are that the functidgras to
and then be replaced bn®=G® (9 and that it is now evaluated
A o \ | Yo~ 1+iu ate/\, e/\., ore/\_ instead ofeg/N, €g/N,, OF €g/\ _
ey =—J du(—) votiu where e= €y/4 is the binding energy of the 2S state. The
q h( ) 277\/)\2me _m mh, g( 0 ) 0 g aqy

partonic expression is thus similar with

16°7 (wle—1)%wle—3)?
O'q)rg(w)zle 2 agfo

)N +o Y vo—1+iu
a1l g 6N? (ol o)

L= . The energy dependenes;, ,(s) has been computed us-
H(votiw)Alrotiu), (A6) ing the parameter séif). The crgss section diverges at thresh-
for every vo>1+ 5. Let us remark that the, energy scale 0ld (Vs~11 GeV) and decreases to a minimum of about 4
appearing in the first factor of the integrand woulding ~ Mb at a center of mass energy 0.6 GeV above threshold.
with the sum rules proposed [a0]. The difference between Then the cross section increases smoofhiy (s)s’]
these two results is important when one considersrthe ~and reaches 30 mb bys~200 GeV. We notice that at high
—0 limit, in which case the latter expression is ill-defined energy the ratiosgn/oen~20 for all incident hadrons.
contrarily to ours, given in EQ(A6). Sincer (2S) = \/1—0r(18), this result lies somewhat above the
We carried out a numerical evaluation and found out thageometrical expectatior?(2S)/r?(1S).
it reproduces the results obtained in the main body of the We have already insisted on the fact that the LT perturba-
paper. One critical point in the comparison between the twdive analysis is most likely not adequate to describe e
approaches is the verification that the threshold is located athannel. In this case, the cross section amounts to
the predicted value, that is, in particular, that the numericabry,(1/s)=30 mb at\s=10 GeV.

O(w—e).
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