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Renormalization-group calculation of the color-Coulomb potential
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We report here on the application of the perturbative renormalization-group to the Coulomb gauge in QCD.
We use it to determine the high-momentum asymptotic form of the instantaneous color-Coulomb potential
V(IZ) and of the vacuum polarizatioﬁ(lz,k4). These quantities are renormalization-group invariants in the
sense that they are independent of the renormalization scheme. A scheme-independent definition of the running
coupling constant is provided B2V(K) =X,g2(K/A cou), and of ag=g2(K/ A cou) /47, wherex,=12N/(1IN
—2Nj), andA ¢y is a finite QCD mass scale. We also show how to calculate the coefficients in the expansion
of the invariantB function B(g)=|K|(dg/d|K|)= — (bog®+b,g%+b,g’+ ...), whereall coefficients are
scheme independent.
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I. INTRODUCTION its linear rise(or noY at largeR may serve as an order pa-
rameter for the confinement of color charge, even when
In QCD the Wilson loop is the basic gauge-invariant ob-V\,(R) is not linearly rising due to vacuum polarization. In
servable. A rectangular Wilson loop of dimensiétxXT  the present article we report on a renormalization-group cal-
has, asymptotically at largeT, the form W(R,T) culation of V(R) in the high-momentum regime, more pre-

~exd —TW(R)]. The Wilson potentiaV\(R) is the total  cisely, a calculation of its Fourier transforw(|k|) at large
energy of the state of lowest energy that contains a pair °|f12|.

infinitely massive external quarks at separafionf dynami- To be sure, confinement manifests itself rather at low mo-

cal quarks are present in the theory, the pair of extemal,enim. For information in this region we have turned to
quarks polarizes the vacuum and extracts a pair of dynam'c‘ﬂumerical study, and in an accompanying articleSii(2)

quarks from it, so thgt, foR not too small,_a pair of mesons lattice gauge theory without quarks], we present a numeri-
is formed at separatioR, each meson being formed of one | determination ofV(|IZ|) and also of the equal-time
&2 q

external quark and one dynamical quark, plus doses of oth ) . .
constituents. In this casé,,(R) represents the total energy WOUId'k:e Physmal 3-d|men5|or?ally transverse gluon propa-
of the pair of mesons at separati® Clearly the Wilson ~ 9ator Djj(k). The reader may find further referenced/1,
potentialV,,(R) is not a color-confining potential, but rather and a confrontation of the confinement scenario in the Cou-
a residual potential that remains after color has been satlomb gauge with the numerical data. This confinement sce-
rated by vacuum polarization. In this respa}(R) should nario is also discussed i?2], and in Sec. Ill of the present
be regarded as a QCD analogue of the van der Waals inte@ticle.
atomic potential. Clearly it is not the van der Waals force that The Coulomb gauge is a “physical gauge” in the sense
holds the atom together, but rather the electrostatic Coulomthat the constraints are solved exactly, including in particular
potential. In the present article we shall be concerned witfGauss’s lawD;E; = pq,, Which is essential for color confine-
the QCD analog of the electrostatic Coulomb potentialment. In a confining theory, all physical states are bound
which we regard as responsible for confinement of colorstates, and the Coulomb gauge is the preferred gauge for
charge. calculations of bound states. Binding is provided by the in-
This quantity is the color-Coulomb potentM(R). Justas stantaneous color-Coulomb potentd(R) that is treated
the electrostatic Coulomb potential is the instantaneous parton-perturbatively, while everything else is regarded as a
of the 44-component of the photon propagator in the Couperturbation[3,4]. However, the Coulomb gauge offers no
lomb gauge, likewisé&/(R) is the instantaneous part of the particular advantage for purely perturbative calculations.
44-component of the gluon propagator in th@nimal) Cou- In the present article we shall apply the perturbative
lomb gauge, defined in Eg3) below. It is not gauge invari- renormalization group in the Coulomb gauge. This presents
ant like the Wilson potentiaV,y(R), but it is a more elemen- new challenges. However, they are amply rewarded by par-
tary quantity, in terms of which one may hope to understandicularly strong results. These are a consequence of the fact
the dynamics of the underlying theory. Indeed we expect thathat in the Coulomb gauge the 4-component of the vector
potential is invariant under renormalizatiQ®:
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where the subscripts 0 andrefer to unrenormalized and p,,(k,k,,g0,A) only through its dependence ogy
renormalized quantities. This is not true in a Lorentz-_
covariant gauge.

The Coulomb gauge is traditionally defined by the condi-

=0o(A/Agcp), and similarly for Dr’44(lz,k4,gr,u). The

scale is defined within the particular regularization scheme
. S . - that is used for calculations, for example lattice or dimen-
tion 9;A=0. This is an incomplete gauge fixing becausegjq | regularization. To relate two different scales, one cal-

gauge transformationg(t) that depend ort are not fixed, ¢ ates the same renormalization-group invariant in the two
and consequently in higher-order calculations one encountel§hemes.

singular expressions whose evaluation is ambigu&,8§]. - .
No doubt this has been an obstacle to the use of the Coulomb In the_ Coulomb gaug® ,4(x,t) hgs the decomposition
gauge in QCD. These difficulties are overcome, however, b>'ﬁt° an mstantaneOLis part, proportional dft) and a non-
defining the Coulomb gauge as the limit of the interpolatinginstantaneous paR(x,t) that is less singular at=0,
gauge characterized by the conditi@; + A 4A,=0, where > - -
\ is a real positive parameté¢?]. Calculations are done at Dasx,)=V(x) (1) + P(x.1), &)
finite N, and at the end one takes the limi—0. The inter- - .
polating gauge is a renormalizable gauge that may be treaté’&herev(x) is wh:itt we call the instantaneous color-Coulomb
by standard Becchi-Rouet-Stora-TyutiBRST) methods. ~Potential, andP(xt) is a vacuum polarization ternjSee
The gauge-fixing term breaks Lorentz invariance, but it isEgs. (27)—(29).] We shall see tha¥(x) is anti-screening,
BRST-exact. An extension of the BRST Operator to inClUdQNhereasp()_(),t) is Screening_ In momentum space this de-
infinitesimal Lorentz transformations assures Lorentz invaricomposition reads
ance for BRST-invariant observablgg|. This definition of R R R
the Coulomb gauge is sufficient for the purposes of pertur- D 44k, kq) =V (k) + P(k,ky). 4
bation theory, and for the perturbative renormalization group
that is the subject of the present article. In fact the onlyThe instantaneous part is independent &j. The
calculations that we will do explicitlyin Appendix B are  Ks-independent part is defined, without reference to a dia-
one loop, and for these one may aet0 directly. However ~grammatic expansion, by
in our discussion of the renormalization group we rely on the - . _
existence of the limitn—0 in every order of perturbation V(k)Ek I'”lxD““(k'k“)' ®)
theory. e
_ [Atthe non-perturbative level with, say, lattice regulariza- Here it ijs assumed that the lini) exists and is independent
tIOI_’l, the mtt_arp(_)latmg_ gauge condition is still subject t(_)_theof the sign ofk,. This implies that
Gribov ambiguity. This is resolved by the further specifica-
tion of theminimal Coulomb gauge, whose lattice definition P(K,kz) =D 44(k,kg) — V(K) (6)
is given in[1]. Its continuum analogue would be to first
minimize Fpoa(9)=fd3x 9A? for eacht, with respect to vanishes at largé,,
all local gauge transformatiorgx,t), wherdA =g 1A g . .
+g~ 14,9 is the gauge transform ok, . At the minimlfm, ) “”1 P(k,ks)=0. )
the Coulomb gauge conditiohA;=0 is satisfied for each 4
and the Faddeev-Popo4v Op‘;f_am(_A? =—Di(A)d; is posi- The only tool available to calculate these quantities ana-
tive. NextF er(9)=Jd"x 9A7 is minimized with respect to tically is perturbation theory. Perturbatively, <4 di-
t-dependent gauge transformatioggt). At the minimum  mensions, the separation into instantaneous and vacuum po-
Jd3xA5(x,t)=C, where C is a constant that satisfie§ larization parts may be made diagram by diagram. Each
<2xVIT. HereV is the spatial 3-volume and is the tem-  diagram is either independent kf or satisfies Eq(7). [See
poral extent of the Euclidean 4-volunje. the decompositiorf27)—(29) below] However, ind=4 di-

An immediate consequence of E(l) is that the 44- mensions, individual vacuum polarization diagrams contain
component of the gluon propagator is also invariant undepowers of In(\k,) associated with divergences, and the limit

renormalization. This gives the relations (5) does not exist in any finite order of perturbation theory.
~ _ _ As a result there is an ambiguity in the separation of the
Daak.ks,Aqep) =Doad kKai90,A) =Dy adkKs,9r ). instantaneous and vacuum polarization parts in any finite or-

der of perturbation theoryThis may be regarded as a mix-

(We use the same symbol to designate a quantity and it&9 Of V and P due to renormalizatiop.However, because
Fourier transform, but distinguish them by their argurment Dyisa renormallzatlon-group |nvarLant, it follows from the
or k) Here Agcp is a finite QCD scale) is the ultraviolet ~above definition thatV(k) and P(k,k,) are separately
cutoff, andu is the renormalization mass. We have written rénormalization-group invariants. This will allow us to re-
the finite quantityD44(I2,k4,AQCD) without a subscript 0 or solve the ambiguity by use of the perturbative rencirmallza—
r because it is a renormalization-group invariant in the senséon group. We shall then find the asymptotic formw) at
that it is independent oA and u and of the regularization large|k| and of P(k,k,) at largek,.

and renormalization schemes. The finite sc®ig.p, for ex- As a result of a renormalization-group calculation, we
ample Agcp=Ar Of  Agcp=Ans, appears in find that in anSU(N) gauge theory witiN; quarks in the
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fundamental representation, the instantaneous color- Do, (X—y) 8%P=g3(A2(x)Al(y))
Coulomb potential is given by ” a
o - ., O oz
K2V (K) =x0g(|K|/ A cou). ) =- (15

where

12N

T1IN—2N;’ ©

Xo
and A ¢, is a finite QCD mass scale specified below. The
running coupling constarg(|k|/A coy) is found as the solu-
tion of the renormalization-group equation
a9 _
9|K]

_)|

[k (10

B(9),

where theB function has the weak-coupling expansion
B(9)=—(bog®+b1g°>+bg’+ ...), 11

whereall coefficientsh,, are scheme independent, not jbgt

S S|
SIL(X) 83 | ,_,

(We shall frequently suppress color indigeBhe subscripG

on the integral refers to the fact that the integral oris
restricted to within the Gribov region. This has very impor-
tant dynamical consequences at long range that have been
proposed as a mechanism for the confinement of color
charge[8,9], and which are substantiated by numerical stud-
ies of the Coulomb gaudé]. However, in the present article

we are interested in the asymptotically high-momentum re-
gion where asymptotic freedom reigns, and we need not
specify the Gribov regioit.

The partition function may also be expressed in terms of
the first order or phase-space functional integral, by introduc-
ing a Gaussian integral over an independent color-electric
field E?. This is done in Appendix A, with the result that in
the minimal Coulomb gauge the partition function may be

andb,. The coefficientsd, andb, are also gauge invariant expressed as an integral over the physical, canonical degrees
. t oy : ;
and have their standard values. We shall show how to calcys freedomA!" and E with the canonical action

late the remaining coefficients perturbatively in the Coulomb

gauge. This allows a calculation M(IZ) to arbitrary accu-

racy in the high-momentum region. Its leading asymptotic

behavior is given by

Xo

K2V([K[)~ =
2bg In([K|/A o

12

Z2(3,3,)= deA"d EY expf d*x(IEVAI—H—igeJiAl").
(16)
Here

H=(1/2)(E?+B?) (17)

We suppose that asymptotic freedom holds, which requires

that by, given explicitly below, be positiveby>0. This is
equivalent to 1N—2N;>0. We observe that,>0, and in
fact xo>1.

is the classical Hamiltonian densityB;=d,A3— d3A,
+goA, XAz, etc., where A2=Al" (XX Y)3=fabexbye,
and the color-electric fieldE; is expressed in terms of the

We have also found the leading asymptotic behavior oftanonical variables by solving Gauss's law,

the vacuum polarization terrﬁ(E,k4) at largek, namely, D\E,=goJs (19)
I=1 ’

Yo

k2P|K|,kg,90,A) ~ ——————,
2bg In(K4 /A Gou)

(13)  whereD;=4;+goA; X is the gauge-covariant derivative.
Gauss’s law is solved by separating the transverse and

. o longitudinal components d&; according to
where A, is another finite QCD mass scale, apg=1

—Xo=—(N+2N;)/(1IN—-2Ns)<0. The negative sign of

Yo shows that the vacuum polarization term is indeed a

screening term. Here ¢ is the color-Coulomb potential in terms of which
Gauss's law reads D;d; ¢+ goA X E'=gyJ,, or

M(A") = pcourt 9oda.

where M(A")=—D,(A") ¢, is the 3-dimensional Faddeev-
Popov operator, angdco,,=—goA'X E!" is the color-charge
density of the dynamical degrees of freedom. If we had in-
cluded dynamical quarks then, in addition to a Dirac term
d(y;D;+m)q in the Hamiltonian density, there would also
be a quark contribution to the color-charge density

Ei=E'—0,¢. (19

Il. FORMULA FOR Dy4 IN THE COULOMB GAUGE 20

In the minimal Coulomb gauge, the Euclidean partition
function is given by the familiar Faddeev-Popov formula

Z(3,3y)= de“A 8(a;A)det( —D;d;)

xexpf d*x[— (LAF2,—igod ,A)] (19

where F,, is the Yang-Mills field. We have introduced Jof2PeAIPENC+ gogyoetia.  (21)

sources],,, in terms of which the gluon propagator is given
by

p?:ouI: Pg|+ pgu
The solution of Gauss's law is given by
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R .. . also a positive operator. ThB, term represents ordinary

¢>(X-X4)=J d®y M7YX,Y,A"(X4) 1(pcourt Goda) (Y. Xa). vacuum polarization that also occurs in QED. The minus
(22) sign that appears in front &, indicates that it corresponds

to screening. In QED, the color-Coulomb potential energy

BecauseM (A") involves only spatial derivatives, the inverse fnctional (x,y,A") would be replaced by the electrostatic
operatorM " *(A") acts instantaneously in time. The Hamil- Coulomb potential (4r|>2—37|)‘1. In [1] we argued that

tonian is given by V(A" is long-range for a typical configuratioA", and we
presented numerical evidence that this is true.
HIJ dx H=(1/2)f d*x(EZ+BY) According to the confinement scenario in the minimal
Coulomb gauge)(A") is predominantly long range because
_ 3urtr2 2, o2 M ~1(A" is long range. This happens because the Gribov
_(l/Z)J d*X[E{"+(di¢)"+ Bi] (23 region is bounded by (A")=0, and entropy favors dense
population close to the boundary. The boundary occurs
_ 3o, 2 | o2 N whereM (A") has a zero eigenvalue, so it has a small eigen-
_(1/2)J d°x(E{“+Bj )+(1/2)J d°x d°y(pcourt 9oJa) value close to the boundary. As a resMt 1(A") is en-

hanced close to the boundary where the population is dense.

><(>Z)V(>Z,)7;A“)(pc[,u,+ goJ4)(§). (29 The same color-Coulomb potential energy functiongA")
appears in both the instantaneous térmand the vacuum
Here polarization termP,, so both are long range.

The instantaneous terky, is responsible for confinement,
whereas the vacuum polarization tefg causes screening.

i lor- lom ntial-enerav functional th ngdn any physical process both, ano_IPo contribufce of course,
s a color-Coulomb potential-energy functional that depe déand one or the other may dominate. Consider the Wilson

tr H H

22| (ﬁ c.:hlérggtisn érlwus c;?r? éa?nect)# es l;))lr ezgﬂt chipele; euglc\)/ﬂircs;!y toloop which is a model of a pair of infinitely hefavy external_
physical significance v,viII be discussed in t,he next section. guark_s. In & theory of pure glue W'th.OUt Qynamlcgl _quarks, I
We now come to the important point. We W&érom Eq. is belleved_that at Ipng range there is a_lmearly rising poten-

(16) andH from Eq. (24), and obtain tial V\y(R) in the Wilson loop, characterized by a string ten-
' sion. In this case, according to the confinement scenario in

57 o the Coulomb gauge, the instantaneous t&fgndominates.

Z_léJa—x): _gof d*z(V2%(x,z;A") However, if dynamical quarks are present then it is believed
a( that the string “breaks” at some distance because it is ener-

c (3 c/3 getically favorable to produce pairs of dynamical quarks
X[pcaf2Xa) ¥ Goda(zXa)]). (26 from the vacuum. In this case the vacuum polarization term

To calculateD 4{x—y) we apply 8/ 83%(y) and we obtain Po dominates. However, in both cases color charge itself is

VXY, AN=[M(AD Y —)M(A") ;5 (25

two terms, confined. According to the confinement scenario in the Cou-
lomb gauge, that is because the instantaneous g(IR) is
Do 4dX—Y)=Vo(X—y)+ Po(x—y). (27 long range and presumably linearly rising even whgi{R)
_ is not. Indeed it is precisely the long range \¢§(R) that

The first, makes it energetically favorable to produce dynamical quark

b 2/ sabre = atr pairs from the vacuum, thereby causing color confinement.
Vo(x=y) 8=g5(V*Ix.y;A" (X)) 8(Xa=Ya), (28 Thys in the Coulomb gauge the instantaneous part provides
o L an order-parameter for the confinement of color charge even
comes fr_om thg]4(z,x4) that appears explicitly in Eq26).  \yhen dynamical quarks are present.
It is manifestly instantaneous. The second term, As noted, the termV/, is instantaneous. It is easy to see
_ b 2 a b that in each order of perturbation thedry(x—y) is the sum
Po(x=Y) 8= =go((Vpcow *(X) (Vocow(¥)). (29 of diagrams in which the pointg andy are continuously
aron a> connected by instantaneous free gluon propagators, as illus-
wherae A . Ve)*(X)=(Vp)*(X:Xa)  rated in Fig. 1a). We now show that the diagrams contrib-
=Jd°zV*[x,Z;A"(X4) 1p"(z,X,4) represents polarization of yting to Py(x—y) have no instantaneous parts. Indeed the

the vacuum. The expansion v, and P, up to one loop is  free propagators oA andE" are given by
given in Appendix B. The significance of these two terms for

confinement is discussed in the next section. - C
(ATA) o= Pij(K)/(K*+Kj)
Ill. PHYSICAL INTERPRETATION

We comment briefly on the physical meaning of the de- (E'EYo= (k25 —kikj)/(k®+k3) (30)
composition(27)—(29). We showed ir{1] that the Faddeev-
Popov operatoM (A") is a positive operator in the minimal oatr R .
Coulomb gauge. It follows that(A")=M ~1(—d*)M 1 is (Ei'A)o=Pij(K)ka /(k*+Kj),
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(a) Po(|K|.ks,90.A) is relatively complicated; however, it sim-
plifies considerably fok4>|I2|, as discussed in Appendix B,
and one obtains to one-loop order BUJ(N) gauge theory,

k2Vo(|K|, g0, A)=0g3+golvsIN(A/[K)+vil (33

k2Po(|Kl,Ka,G0,A)=0gg[ p11IN(A/K,) + 1o+ O(|K|7k,)T,
(b) (34)

where A is an ultra-violet cutoff, lim_ ,0(x)=0, andv
and p,, are constants, with

8N
VU= (G2 (35
2 1 2
pllz_—(4ﬂ_)2(§N+ §Nf). (36)

Here we have included the vacuum polarization contribution

FIG. 1. Horizontal lines correspond to instantaneous propagaQf Ny flavors of quark in the fundamental representation

tors 1k2. Curved lines correspond to non-instantaneous propagatorvthICh’ to this order, is gauge independent. These coefficients

. are also found in a Hamiltonian formalisihO].
(k> + kﬁ). (a) is a contribution toV,,. (b) is a contribution toP,. . . - i10] as
We obtain asymptotically fork,>|k|, for D§%,=Vo
N ~~ A as
whereP;; (k) = (6;; —kik;) is the 3-dimensionally transverse +Po’
projector. These propagators vanish in the likgit-~, as do > as 10 oy -
the quark free propagators. From the structure of the vacuum k*DodKl.KaGo,A)=go+dolvaa IN(A/[K])

polarization term(29), as illustrated in Fig. (b), one sees +p11IN(ATK) + 10+ Pl

that the diagrams contributing to it must somewhere be con-

nected by the dynamical propagatd®), so P, has no in- (37)
stantaneous pattThis is apparent in the one-loop calcula- _ .

tion presented in Appendix B. Observe thap;, contributes a X2 term to Dy 44. Conse-

quently we cannot assert that the instantaneous pdbif,

in d=4 dimensions, namely the color-Coulomb potential

is given by the sum of instantaneous diagrams, as it i in
In Eq. (5) we have given a definition of the color- <4 dimensions,

Coulomb potential which is independent of perturbation

IV. A TECHNICAL DIFFICULTY

theory. However, since its defining property is false in any V(||2|,AQCD)¢V0(|Z,90,A)- (39
finite order or perturbation theory, we must address the prob-
lem of how to calculate it. We shall see thatV, and P, separately are not

The perturbative expansion By 44=Vo+ Pg begins with  renormalization-group invariants, and this will be the key to
an unambiguous separation of the instantaneous\pdrhis

Vo(lk|,g0,A)=03(k?) ~1+0(gg) (31)  implies that the coefficients that appeaMp andP, may be
scheme dependent. In particulagy andp,o are scheme de-
Po(IKl.ka,80,4)=0(g}). (32  pendent

Another way to see that the separation cannot be made

The Feynman integrals for these quantities are derived t§i2gram by diagram is to recall that in higher order, calcula-

one-loop order in Appendix B. The integral for tions must be done in the interpolating gauge, with gauge
conditiong;A;+\d4A,=0. For finiteA no diagram is instan-
taneous, and a separation criterion is required for the limiting

11t is essential to use the phase-space integral with first-order ag&Xpression _al& =0. .

tion to separate out the instantaneous diagrams in this way. For one AS @ first step we note that in one-loop order
could also integrate ouA, in the second-order Lagrangian formal- D8f44(|k|,k4,go,/\) at largek, conveniently separates into a
ism. However if one did that, theA!" would appear at vertices sum of terms that depend, respectively,|hand onk,. To
instead of the independent field variati¢ . The free propagator get the instantaneous part, namely the part that is indepen-
(ATAN o= P;; (k)k/ (k?+k3) does not vanish in the limk,—,  dent ofk,, we simply delete the term that depends lon

but rather has the limi{AA")o— P;;(k) which has an instanta- namelypy; In(A/k,). However, the separation of the constant
neous non-local part. term is ambiguous, as it is in each order. We conclude that to
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one-loop  order, the ky-independent part of The B function has the expansion
D k|,k4,90,A) is given b
o4d|Kl-ke G0, A) IS 9 Y Bo(9o) =~ (bo@3+b1g5+bogg+ . . .). (45

In general, the coefficients, are both scheme and gauge
dependent, except fdy, andb, that are scheme and gauge
independent. Similarly the renormalized coupling constant

The form of the higher-order contributions is not . . s
known. However wegshall make the simplestt%g\ssumptiongr:gf(.'“/AQCD) is a function of the renormalization mass
' ' tetermined by

namely that the same procedure may be effected to arbitrary
order so that only constant terms in each order in the expan- w9, ldu=B,(g,). (46)

sion ofk?V(|K|,go,A) are ambiguous,

k2V(|K|,90,A)=02%o+ge[v11IN(A/|K) +x,], (39

wherex, andx, are as yet unknown constants.

In the Coulomb gaug® 44 has no anomalous dimension
k2V(|K|,go, A) coming from multiplicative renormalization. It therefore
obeys the simple Callan-Symanzik equation
2n+2

© n
=g§xo+n§l % Xn+mE:1 vamIN™(A/IKD) | [AdldA+ Bo(Do) 9/ 391D o.ad |kl Ks,90, A)=0. (47)

(400  As a result, in the Coulomb gauge, tjgefunction may be
o _obtained from the propagatdd, ,,—in fact only D&%, is
Here the coefficients,,, are calculated from the perturbative needed—whereas in covariant gauges a calculation of the

expansion ofV,, but thex, are a set of as yet unknown yertex function is necessary. Indeed from the last equation
constants(In case there are additional ambiguous terms inye have

higher order in the separation of the vacuum polarization part

Po from Dy 44, they may also be determined using the renor- AdDg 44! IA

malization group, because it also restricts thg,.) Bo(9o) =~ EIWIT (48)
From its definition as the largles limit of D ,,, it follows '

that color-Coulomb potential is a renormalization-group i”'whereDO,M:D0,44(|IZ|,k4,go,A). This holds identically for

variant. So whenV(|k]) is expressed either in terms of un- ) values of|K|, k, andA, so we may sek, to an asymp-
renormalized or renormalized quantities, it is independent ofqtically large value and obtain
A and u (and of the regularization and renormalization
schemg, AdDGJIA
i i i Bo(Go)=— —————
V(|k|)EV(|k|'go(A/AQCD)aA):V(|k|ygr(M/AQCD),,la-l) D044 990

From the one-loop expressid87) for D§3,, we obtain the
Consequently we may sét=|k|, andx=|Kk|, which gives first coefficient of theg function

(49)

> : - - 1
V([k[)=V(kl|,go(|k[/Aqcp). K]) bozz(vlpL P11). (50)
=V(|K,g:(|KI/Aocp).|K]). 42
{14,911k aco) KDy “2 From Egs.(35) and(36) we obtain the standard expression
(Once the functional dependencel 44 0r V, on the cutoff
A is determined—it is a polynomial in I in each order of _ 1 (1—1N— EN ) (51)
perturbation theory—them\ may be assigned any finite o (4m)? 3 31

value) Thus we may set =|k| in Eq. (40), which gives a

simple expansion in terms of the unknown coefficients without calculating any vertex function. All coefficienks,

may be calculated in this way.

% We take the largd, limit of the Callen-Symanzik equa-
K2V(K))=xog5(|Kl/Aqeo) + 2 xn85" " *(IKI/Agco)- tion (47, and observe  that V(|K|,go,A)
=t 43 =lim, Dol ks,go,A) satisfies the same Callan-

Symanzik equation,

V. RENORMALIZATION GROUP IN THE COULOMB
GAUGE

The unrenormalized coupling constagy=go(A/Agcp)  2NC€YJ0=Jo(A/Aqco) is @ solution of the flow equation
is a function of the cutoff\, determined by the flow equa- (44 the Callan-Symanzik equation yields

tion _
dV(lk|,go(A/Agcp),A) _

[AdlIA+ Bo(do) 3l 9go]V(|K

,00,A)=0. (52

0, (53)

014002-6



RENORMALIZATION-GROUP CALCULATION OF THE ...

which is again the statement th‘e((||2|,go(A/AQCD),A) is
independent of\.

VI. RENORMALIZATION GROUP TO THE RESCUE

PHYSICAL REVIEW D65 014002

rqggn+2 “Zl/AQCD)}
(62

k2V([K))=xo 9§(||2|/AQCD)+§

We shall use the renormalization group and our knowl- wherex =Xn/Xo. Remarkably, the leading term is not sim-
edge of theB function to determine the unknown constantsPly g5, as one would expect from E¢B3), but ratherx,gj

. From the Callan-Symanzik equati¢d2) for V we have

—~AoV(|K|,gg,A) A
Bo(do)

This is an identity that holds for alk, and we may simplify
it by settingA =|k]|,

NV(|K|,g90,A)/ dgo= (54)

— AOV(IK|,go, M)A s

NIkl 9o, M)/ ago| s =i = Bo(9o)

(55

To find all thex,, we substitute the expansid0) on the left-
and right-hand sides. We also expand

Bo 1(90)=—Dy gy 1+p21 cpgé”), (56)

where, from Eq(45), we havec, = —b /b, etc. The deriva-
tive with respect to\ on the right-hand side of E@55) kills
the constants,,, and we have

Z 2(n+1)ga"* x =balgaspz pgopE 95" 20 1

(57)
wherecy=1. Equating like powers af, we obtain
n+1
=[2(n+1)b] ™' X, Cn-misvma, (58)
and in particular
Xo=(2bg) vq; (59
X1 =(4bg) " H(v11C1+v2). (60)

Thus xq is found fromwv; and by which require one-loop

=[12N/(1IN—2Ny)1g3.
The leading asymptotic form o may be found from
expression40) to ordergg, with vq,=2bgxy, namely,

K2V(|K|)=x003{1+g3[2bo IN(A/[K) +x;T} (63
which to this order may be written
K2V(IK)) = Xo{go >~ [2bo IN(A/[K)) +x;1} 2, (64)
where
,_Xl_ 1 U2 bl
Xl_Xo_ 2(Un bo)' (69

From the asymptotic form oggz~2boln(AIAQCD), this
gives

k2V(|k])~xo[2bo In(|K|/Agep) X111 (66)

Xo

~—, (67)
2bg In([k|/Acow)

which is valid for largek|. Here we have introduced the new
mass scale\ ¢, characteristic of the Coulomb gauge. It is
related to the scalé ocp used in the scheme by which tige
function was defined according to

X/
AcouE exr{ b ) Agcp- (68)

Normally, a ratio such as\cq,/Agcp can be determined

from a one-loop calculation, but here a two-loop calculation
of v,q, the coefficient of a two-loop logarithm that appears
in Eq. (65) would be required. For just as the determination

calculations, anc, requires two-loop calculations. Usually of the constank,, of O-loop order, requires the 1-loop cal-
the renormalization group is used to determine higher-ordegulation which we report here, similarly, to determine the
logarithms from lower-order terms. Here instead we haveconstantx; of 1-loop order would require a 2-loop calcula-
used it to consistently determine an unknown lower-ordetion. In both cases the reason is the ambiguity in the separa-
constant from a known higher-order logarithm. From Egstion of the instantaneous pavtwhich, as noted above, can-

(35 and(51), we obtain

12N

XOTTIN—2N;

(61)

It will be convenient in the following to factorize the co-

efficient x, out of the expansiofé43) for V, and we write

not be determined from individual perturbative diagrams.
Instead it requires the perturbative renormalization group to
determine thenth order constant from then(1)th order
logarithm.

Expression(67) for V(|k|) exhibits asymptotic freedom
and, withx, positive, indeecy>1, the instantaneous part of
D44 is anti-screening.
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VII. ASYMPTOTIC FORM OF THE NON-INSTANTANEOUS
PART

PHYSICAL REVIEW D 65 014002

_ 99(|KI/ A cow)

We may also determine to this order the asymptotic form

of the non-instantaneous paR=Dg4—V. It is also a

renormalization-group invariant. If we s&j to an asymp-

totically high value we obtain

D&S|K|,karG0,A) = V(|K|,g0,A).
(69

Pas(||2|vk4igO!A)E

From Egs.(37) and(39) this gives to one-loop order

k2P| k|,k4,90,A) =050+ ggl P11 IN(A/K,) +y1],

(70)
where, by Eqs(59), (50), (51), and(36),
Yo=1—Xo=(2bg) " *(2bg—v17) = (2bg) "*pys
_N+2N -
T 1IN-2N{’ (73)

andy,;=pgtvi9—Xy. This gives

EzPﬁS(lﬁl,k4,go,A>=yogé{1+gS[2boIn(A/k4)+y1}(, )
72

wherey; =Yy, /yq. By the reasoning that leads to E§7), we
obtain to this order the asymptotic expression

Yo

K2P3(|K|,K4,00,A)~ ,
Kl ka,90,A) 2o (ks Abyco)

(73

WhereAé)CD is another finite QCD mass scale like-y,. It

would take also take a 2-loop calculation to determine

AQCD/AQCD Sinceyy<0 is negativeP is indeed screen-
ing.

VIII. INVARIANT COLOR CHARGE

In this section we show how to calculat4|k|) to arbi-

trary accuracy in the ultra-violet region. We define a new

running coupling by constamg= g(|K|/Acou) by
K2V(IK)=xog?(|KI/ Agou.- (74

BecauseV(|K|) is scheme independem(|k|/A coy) is also.
From Eq.(62) we have

gz(||z|/ACouI)

go+2 92n+2 /) '

go=go(“2‘/AQCD)
(75

so the new coupling constant agrees vgthin lowest order.

=k = 76
B(9)=|k| P (76)
It may be calculated from
f79 Q 590(|k|/AQCD
= —_— 7
B(9)= | | AR (77)
J
-3 78)

Tg()ﬂo(go)|go(g) ,

wheregy(g) is obtained by inverting Eq.75). This may be
simplified by using

1 dg?
B(9)= 5=

55 9. 090 (79
AL ©0

29X%y 990 [Kj=A oG
K2 AV, -

20%y, JA “zle’

by Eq. (55). From Eq.(40) this gives

1 2n+2

B@)="55 2bogo+2 00196 . (82

90(9)

wherev ,;=v,, /%o, and we have usegh;/xq= 2b,. To find

V([K|) to arbitrary accuracy, one calculatg¢g) perturba-
tively and then solves the flow equatioil0) for
9(IK|/A gou-
Finally we remark that we may choose new unrenormal-
ized and renormalized expansion parameters according to

g(l):g(A/ACoul) (83)

gr, =9(/Acow) (84)
so gy andg, lie on the same invariant trajectory, the only
difference between them being the value of the argument.

IX. CONCLUSION

We have successfully applied the perturbative renormal-
ization group to the Coulomb gauge. In this gauge, the 44-
K ,ks,Aocp) is a
renormalization-group invariant in the sense that it is inde-
pendent of the regularization and renormalization schemes,
and of the ultra-violet cutoffA and renormalization mags.

With the help of the perturbative renormalization group we

Thus it is a regular redefinition of the coupling constant, andhave decomposed it into an instantaneous Wéjk|), which

g may be used for perturbative expansions.

function defined by

we call the color-Coulomb potential, and a vacuum polariza-

. Each of these
terms is separately a renormalization-group invariant, and
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their asymptotic form, at largkk| andk,, respectively, was Search of Daniel Zwanziger was partially supported by the

reported in the Introduction. National Science Foundation under grant PHY-9900769.
The color-Coulomb potential allows us to define an in-

variant QCD charge g(|k|/Acow) by  K2V(K) APPENDIX A: RELATION OF FADDEEV-POPOV AND

= xo0%(|K|/Acoy), Where xg=12N/(1IN—2N;). This in- PHASE-SPACE FUNCTIONAL INTEGRALS

variant charge is the QCD analogue of the invariant charge \yg wish to derive the canonical or phase-space functional
of Gell-Mann and low in QED. We have shown how to cal- jntegral (16) from the Faddeev-Popov formu(a4). The ar-
culate the corresponding invariagt function, |k|(9g/d|k|)  gument merely reverses the textbook derivation of the
=(9). Because this charge is scheme independent it mafaddeev-Popov formula from the canonical phase-space
offer some advantage in providing a definition @g(RZ) functional integral in Coulomb gauge while keeping track of
= g%(|k|/ A cou)/ 4, Whereas the standard definition in cur- the sources,, . We introduce the identity

rent use is scheme-dependésee, for example,11]). The

color-Coulomb potentiaV/(|k|) is also the natural starting ex’{_(llz)f d*xF3,
point for calculations of bound states such as heavy quarko-
nium.
The Coulomb gauge provides direct access to quantities =Nf d*E expf d*X[iEiFoi—(1/QE7], (A1)

of non-perturbative interest. Indeed botk(|k|) and
P(|k|,k,) have a natural role in a confinement scenario:which is a Gaussian integral over new variatigsthat will

V(|E|1AQCD) is long-range, anti-screening, and responsibleohy the role of independent color-electric field variables.
for the confinement of color charge, whereas the vacuundhis allows us to rewrit¢14) as

polarization termP(|k|,k,) is screening, and responsible for

“breaking of the string” between external quarks, when dy- 2(5,34):f d*A d°E 8(5,A)de( — D, ;)

namical quark pairs are produced from the vacuum. We ex- G

pect the linear riséor not of V(|x|) at large|x| to provide

an order parameter for confinement of color charge, even in X expf d*x[iE;(A;—D;iA,) — (1/2)
the presence of dynamical quarks when the Wilson loop can-
not serve this purpose. The accompanying arfitlereports X (E?+B2) — i90,A )], (A2)

a numerical study of the running coupling constant

gz(E/ACOU,). The data show a significant enhancement at lowyhere Bi=9,A5— d3A5+ gofabCA'Lz’,A\C , etc. Integration on
|IZ|, in agreement with this confinement scenario. HoweverA, imposes color-Gauss’s lald;E;=gyJ,4, in the form of
additional studies at larger values ,6»%4/93 are necessary the constraint®(D;E;—goJ,),
before a conclusion can be reached about a linear rise of
V(x) at large|x| in the continuum limit,3— . 71— 3A 43 _

(T)he dat% |allso show a strong supfression of the equaE(J'J“)_ de AGE odiA)del = D)
time, 3-dimensionally transverse, would-be physical, gluon
propagatoD | (k) atk=0, and agree with a formula of Gri-
bov thatvanishedike |k| near|k|=0. The only explanation
for this counter-intuitive behavior is the suppression of con-
figurations outside the Gribov horizon in the minimal Cou-
lomb gauge. Sinc@}}(IZ) is strongly suppressed, we may
understand the main long-range forces between color chargghe constraint expressed #,A) has allowed us to re-
as being due t®,, which, as we have seen, is the sum of thep|ace A, by its transverse pai everywhere. We separate
attractive instantaneous color-Coulomb potentélk|) that  the transverse and longitudinal partsEf= Ef'— d; ¢, and we
is anti-screening, and the vacuum polarization termhayed®E=NdE"d#. The Faddeev-Popov determinant is ab-
P(|k|,k,) that is screening. According to the confinementsorbed by
scenario discussed in Sec. lll and[i2] and[1], both are
long range in the minimal Coulomb gauge because entropydei —D;d;) 8(D;E;—goJ,) =detM) (M ¢ — pcou—9oda)
favors a high density population close to the Gribov horizon. (A4)

X 8(DiEj—9goda)
X expf d*X[iE;A"— (1/2) (E?+B?) —igoJiAl].

(A3)

ACKNOWLEDGMENTS =8d—M Hpcourt goJ4)](A5)

The research of Attilio Cucchieri was partially supported
by the TMR network Finite Temperature Phase Transitions irwhere the symbols are defined as in E20). We now inte-
Particle Physics, EU contract No. ERBFMRX-CT97-0122grate overg, and in a similar way we integrate out the lon-
and by FAPESP, Brazi(Project No. 00/0504795 The re-  gitudinal part ofA;, to obtain Eq.(16).
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APPENDIX B: ONE-LOOP EXPANSION

PHYSICAL REVIEW D 65 014002

Similarly, for Py given in Eq.(29), we have to one-loop
order

In this appendix we find the one-loop expansion of the

guantitiesV, and P, defined in Eqgs.(28) and (29), and
which appear iDg 44=Vo+ Po. The Faddeev- Popov opera-
tor is writtenM (A") = M -+ M (A"), whereM o= — 9% is the
negative of the Laplacian, andli()2°= — g,f2°°AP "(9 The
color-Coulomb potential energy functiorig{A"), defined in
Eq. (25), reads

VOGY AN =[(Mg+ M) " ™Mo(Mo+My) iy, (BD)

and has the expansion
VIX,y; AN =My -
+3My MMy M M T+

2My M Myt

IRy
(B2

where Mgz ;= (2m) 3[d3k(K?) ~* exik- (x—y)]=(4m|x
—y|)~%. From Eq.(28) for V, we obtain to one-loop order

Vo(x—y)=g5[Mg '+ 3Mg MMy M 1)oMg 5y

Po(x—y) 8= _QS«MO 1P%oul)(x)(MO P00u| (Y))o,
(B8)

wherep? = — gof2P°AI"PEC | This gives
Pox—y) 5%~ ~g3 [ X %y Mg %)
X<P?Zoul()_(), 1X4)pdCoul()7, ay4)>OM(;l()_;, _)_/))1

(B9)

where

<p?:0ul PcOu| >0

= gof (AT OAT(Y)) o EF (O ET (Yo
+<Atrb Etr g(y >0<Etrc X)Atr e(y)>o]

This term is illustrated in Fig. (b). In momentum space it is
given by

(B10)

X 8(Xg=Ya), (B3)

_ ~goN Py(p)
where we have usedM;(A"))=0, which holds because P, ,(k)=— (277)*4f d*p—=—5-
M, (A") is linear inA". The average designated by . . ), ' (k)2 (p?+p2)
refers to the free-field average, with free-field propagators - -

given in Eq.(30). This gives

Vo=VootVoa (B4)
where the zero-loop piece is given explicitly by
VodX—y)8%¢=giMo (X~ y) 8(x4—y4) 6°°  (BE)

and the one-loop piece by
Voa(x—y)6°°=3g; f dx" A3y OO AT(X x,)
XAtrd (¥ Xa))oMg H(X—

x')

X aMo (X =y ) GMo (Y —Y) 8(Xa=Ya).
(B6)
These terms are illustrated in Figial In momentum space

we haveV, o= g3/k?, and

goN ki( 68—
oal K= (kz)z 2m 4 [ atp 5"

The result of this integral is given in Eq&3) and(35).

f)ilaj)kj

(p?+p3)(p—k)?
(B7)

Pij(p—k)
[(p—K)2+(ps—k4)?]

[52_ Pa(Pa—Ka) ],
(B11)

where P;;(p)=8;—pip; is the 3-dimensionally transverse
projector. The contraction in the numerator gives 2 terms,

Pij(P)P;j(p—K)=J;1+J; (B12)

Ji=2 (B13)
12k2—(p-K)2

J,=— pR—{p-10 (B14)

p2(p—k)?

Each term results in a Feynman integrglandl,. The inte-
grall, looks more complicated. However, it is only logarith-
mically divergent by power counting, and when the integra-
tion is performed, the coefficient of the divergent part of
vanishes, so, is finite. As a result,(|K|,k,) vanishes in the
limit k,— 0, and does not contribute ®§{k). The result of
the |, integration is given in Eq9.34) and(36).

The integrals(B7) and (B11) are evaluated by dimen-
sional regularization, withp,—p4, and p=(p;) for i
=1,...,d-1).
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