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Renormalization-group calculation of the color-Coulomb potential
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We report here on the application of the perturbative renormalization-group to the Coulomb gauge in QCD.
We use it to determine the high-momentum asymptotic form of the instantaneous color-Coulomb potential

V(kW ) and of the vacuum polarizationP(kW ,k4). These quantities are renormalization-group invariants in the
sense that they are independent of the renormalization scheme. A scheme-independent definition of the running

coupling constant is provided bykW2V(kW )5x0g2(kW /LCoul), and ofas[g2(kW /LCoul)/4p, wherex0512N/(11N
22Nf), andLCoul is a finite QCD mass scale. We also show how to calculate the coefficients in the expansion

of the invariantb function b(g)[ukW u(]g/]ukW u)52(b0g31b1g51b2g71 . . . ), where all coefficients are
scheme independent.
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I. INTRODUCTION

In QCD the Wilson loop is the basic gauge-invariant o
servable. A rectangular Wilson loop of dimensionR3T
has, asymptotically at largeT, the form W(R,T)
;exp@2TVW(R)#. The Wilson potentialVW(R) is the total
energy of the state of lowest energy that contains a pai
infinitely massive external quarks at separationR. If dynami-
cal quarks are present in the theory, the pair of exter
quarks polarizes the vacuum and extracts a pair of dynam
quarks from it, so that, forR not too small, a pair of meson
is formed at separationR, each meson being formed of on
external quark and one dynamical quark, plus doses of o
constituents. In this caseVW(R) represents the total energ
of the pair of mesons at separationR. Clearly the Wilson
potentialVW(R) is not a color-confining potential, but rathe
a residual potential that remains after color has been s
rated by vacuum polarization. In this respectVW(R) should
be regarded as a QCD analogue of the van der Waals in
atomic potential. Clearly it is not the van der Waals force t
holds the atom together, but rather the electrostatic Coulo
potential. In the present article we shall be concerned w
the QCD analog of the electrostatic Coulomb potent
which we regard as responsible for confinement of co
charge.

This quantity is the color-Coulomb potentialV(R). Just as
the electrostatic Coulomb potential is the instantaneous
of the 44-component of the photon propagator in the C
lomb gauge, likewiseV(R) is the instantaneous part of th
44-component of the gluon propagator in the~minimal! Cou-
lomb gauge, defined in Eq.~3! below. It is not gauge invari-
ant like the Wilson potentialVW(R), but it is a more elemen
tary quantity, in terms of which one may hope to understa
the dynamics of the underlying theory. Indeed we expect

*Electronic address: attilio@if.sc.usp.br
†Electronic address: daniel.zwanziger@nyu.edu
0556-2821/2001/65~1!/014002~11!/$20.00 65 0140
-

of

al
al

er

u-

er-
t
b
h
l,
r

rt
-

d
at

its linear rise~or not! at largeR may serve as an order pa
rameter for the confinement of color charge, even wh
VW(R) is not linearly rising due to vacuum polarization. I
the present article we report on a renormalization-group
culation of V(R) in the high-momentum regime, more pre

cisely, a calculation of its Fourier transformV(ukW u) at large

ukW u.
To be sure, confinement manifests itself rather at low m

mentum. For information in this region we have turned
numerical study, and in an accompanying article onSU(2)
lattice gauge theory without quarks@1#, we present a numeri

cal determination ofV(ukW u) and also of the equal-time
would-be physical 3-dimensionally transverse gluon pro

gatorDi j
tr (kW ). The reader may find further references in@1#,

and a confrontation of the confinement scenario in the C
lomb gauge with the numerical data. This confinement s
nario is also discussed in@2#, and in Sec. III of the presen
article.

The Coulomb gauge is a ‘‘physical gauge’’ in the sen
that the constraints are solved exactly, including in particu
Gauss’s law,DiEi5rqu, which is essential for color confine
ment. In a confining theory, all physical states are bou
states, and the Coulomb gauge is the preferred gauge
calculations of bound states. Binding is provided by the
stantaneous color-Coulomb potentialV(R) that is treated
non-perturbatively, while everything else is regarded a
perturbation@3,4#. However, the Coulomb gauge offers n
particular advantage for purely perturbative calculations.

In the present article we shall apply the perturbat
renormalization group in the Coulomb gauge. This prese
new challenges. However, they are amply rewarded by p
ticularly strong results. These are a consequence of the
that in the Coulomb gauge the 4-component of the vec
potential is invariant under renormalization@2#:

g0A0,4~x!5grAr ,4~x!, ~1!
©2001 The American Physical Society02-1
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where the subscripts 0 andr refer to unrenormalized an
renormalized quantities. This is not true in a Loren
covariant gauge.

The Coulomb gauge is traditionally defined by the con
tion ] iAi50. This is an incomplete gauge fixing becau
gauge transformationsg(t) that depend ont are not fixed,
and consequently in higher-order calculations one encoun
singular expressions whose evaluation is ambiguous@5,6#.
No doubt this has been an obstacle to the use of the Coul
gauge in QCD. These difficulties are overcome, however
defining the Coulomb gauge as the limit of the interpolat
gauge characterized by the condition] iAi1l4A450, where
l is a real positive parameter@7#. Calculations are done a
finite l, and at the end one takes the limitl→0. The inter-
polating gauge is a renormalizable gauge that may be tre
by standard Becchi-Rouet-Stora-Tyutin~BRST! methods.
The gauge-fixing term breaks Lorentz invariance, but it
BRST-exact. An extension of the BRST operator to inclu
infinitesimal Lorentz transformations assures Lorentz inv
ance for BRST-invariant observables@7#. This definition of
the Coulomb gauge is sufficient for the purposes of per
bation theory, and for the perturbative renormalization gro
that is the subject of the present article. In fact the o
calculations that we will do explicitly~in Appendix B! are
one loop, and for these one may setl50 directly. However
in our discussion of the renormalization group we rely on
existence of the limitl→0 in every order of perturbation
theory.

@At the non-perturbative level with, say, lattice regulariz
tion, the interpolating gauge condition is still subject to t
Gribov ambiguity. This is resolved by the further specific
tion of theminimal Coulomb gauge, whose lattice definitio
is given in @1#. Its continuum analogue would be to fir
minimize Fhor,A(g)[*d3x gAi

2 , for eacht, with respect to
all local gauge transformationsg(x,t), wheregAm5g21Amg
1g21]mg is the gauge transform ofAm . At the minimum,
the Coulomb gauge condition] iAi50 is satisfied for eacht,
and the Faddeev-Popov operatorM (A)52Di(A)] i is posi-
tive. NextFver,A(g)[*d4x gA4

2 is minimized with respect to
t-dependent gauge transformationsg(t). At the minimum
*d3xA4

a(xW ,t)5C, where C is a constant that satisfiesC
<2pV/T. HereV is the spatial 3-volume andT is the tem-
poral extent of the Euclidean 4-volume.#

An immediate consequence of Eq.~1! is that the 44-
component of the gluon propagator is also invariant un
renormalization. This gives the relations

D44~kW ,k4 ,LQCD!5D0,44~kW ,k4 ,g0 ,L!5Dr ,44~kW ,k4 ,gr ,m!.
~2!

~We use the same symbol to designate a quantity and
Fourier transform, but distinguish them by their argumenx
or k.! HereLQCD is a finite QCD scale,L is the ultraviolet
cutoff, andm is the renormalization mass. We have writt
the finite quantityD44(kW ,k4 ,LQCD) without a subscript 0 or
r because it is a renormalization-group invariant in the se
that it is independent ofL and m and of the regularization
and renormalization schemes. The finite scaleLQCD , for ex-
ample LQCD5L latt or LQCD5Lm̄s , appears in
01400
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D0,44(kW ,k4 ,g0 ,L) only through its dependence ong0

5g0(L/LQCD), and similarly for Dr ,44(kW ,k4 ,gr ,m). The
scale is defined within the particular regularization sche
that is used for calculations, for example lattice or dime
sional regularization. To relate two different scales, one c
culates the same renormalization-group invariant in the
schemes.

In the Coulomb gaugeD44(xW ,t) has the decomposition
into an instantaneous part, proportional tod(t) and a non-
instantaneous partP(xW ,t) that is less singular att50,

D44~xW ,t !5V~xW !d~ t !1P~xW ,t !, ~3!

whereV(xW ) is what we call the instantaneous color-Coulom
potential, andP(xW ,t) is a vacuum polarization term.@See
Eqs. ~27!–~29!.# We shall see thatV(xW ) is anti-screening,
whereasP(xW ,t) is screening. In momentum space this d
composition reads

D44~kW ,k4!5V~kW !1P~kW ,k4!. ~4!

The instantaneous part is independent ofk4. The
k4-independent part is defined, without reference to a d
grammatic expansion, by

V~kW ![ lim
k4→6`

D44~kW ,k4!. ~5!

Here it is assumed that the limit~5! exists and is independen
of the sign ofk4. This implies that

P~kW ,k4![D44~kW ,k4!2V~kW ! ~6!

vanishes at largek4,

lim
k4→6`

P~kW ,k4!50. ~7!

The only tool available to calculate these quantities a
lytically is perturbation theory. Perturbatively, ind,4 di-
mensions, the separation into instantaneous and vacuum
larization parts may be made diagram by diagram. E
diagram is either independent ofk4 or satisfies Eq.~7!. @See
the decomposition~27!–~29! below.# However, ind54 di-
mensions, individual vacuum polarization diagrams cont
powers of ln(Lk4) associated with divergences, and the lim
~5! does not exist in any finite order of perturbation theo
As a result there is an ambiguity in the separation of
instantaneous and vacuum polarization parts in any finite
der of perturbation theory.~This may be regarded as a mix
ing of V and P due to renormalization.! However, because
D44 is a renormalization-group invariant, it follows from th
above definition thatV(kW ) and P(kW ,k4) are separately
renormalization-group invariants. This will allow us to re
solve the ambiguity by use of the perturbative renormali
tion group. We shall then find the asymptotic form ofV(kW ) at
large ukW u and ofP(kW ,k4) at largek4.

As a result of a renormalization-group calculation, w
find that in anSU(N) gauge theory withNf quarks in the
2-2



lo

he

t
lc
m

ti

ire

o

f

on

d
n

r-
been
lor
d-

e
re-
not

of
uc-
tric
n
be
rees

e

and

h

-

in-
rm
o

RENORMALIZATION-GROUP CALCULATION OF THE . . . PHYSICAL REVIEW D65 014002
fundamental representation, the instantaneous co
Coulomb potential is given by

kW2V~kW !5x0g2~ ukW u/LCoul!, ~8!

where

x05
12N

11N22Nf
, ~9!

and LCoul is a finite QCD mass scale specified below. T
running coupling constantg(ukW u/LCoul) is found as the solu-
tion of the renormalization-group equation

ukW u
]g

]ukW u
5b~g!, ~10!

where theb function has the weak-coupling expansion

b~g!52~b0g31b1g51b2g71 . . . !, ~11!

whereall coefficientsbn are scheme independent, not justb0
andb1. The coefficientsb0 andb1 are also gauge invarian
and have their standard values. We shall show how to ca
late the remaining coefficients perturbatively in the Coulo
gauge. This allows a calculation ofV(kW ) to arbitrary accu-
racy in the high-momentum region. Its leading asympto
behavior is given by

kW2V~ ukW u!;
x0

2b0 ln~ ukW u/LCoul!
. ~12!

We suppose that asymptotic freedom holds, which requ
that b0, given explicitly below, be positive,b0.0. This is
equivalent to 11N22Nf.0. We observe thatx0.0, and in
fact x0.1.

We have also found the leading asymptotic behavior
the vacuum polarization termP(kW ,k4) at largek4 namely,

kW2Pas~ ukW u,k4 ,g0 ,L!;
y0

2b0 ln~k4 /LCoul8 !
, ~13!

where LCoul8 is another finite QCD mass scale, andy051
2x052(N12Nf)/(11N22Nf),0. The negative sign o
y0 shows that the vacuum polarization term is indeed
screening term.

II. FORMULA FOR D44 IN THE COULOMB GAUGE

In the minimal Coulomb gauge, the Euclidean partiti
function is given by the familiar Faddeev-Popov formula

Z~JW ,J4![E
G

d4A d~] iAi !det~2Di] i !

3expE d4x@2~1/4!Fmn
2 2 ig0JmAm!], ~14!

where Fmn is the Yang-Mills field. We have introduce
sourcesJm , in terms of which the gluon propagator is give
by
01400
r-

u-
b

c

s

f

a

D0,mn~x2y!dab[g0
2^Am

a ~x!An
b~y!&

52Z21
d

dJm
a ~x!

dZ

dJn
b~y!

U
J50

. ~15!

~We shall frequently suppress color indices.! The subscriptG
on the integral refers to the fact that the integral overAi

tr is
restricted to within the Gribov region. This has very impo
tant dynamical consequences at long range that have
proposed as a mechanism for the confinement of co
charge@8,9#, and which are substantiated by numerical stu
ies of the Coulomb gauge@1#. However, in the present articl
we are interested in the asymptotically high-momentum
gion where asymptotic freedom reigns, and we need
specify the Gribov regionG.

The partition function may also be expressed in terms
the first order or phase-space functional integral, by introd
ing a Gaussian integral over an independent color-elec
field Ei

a . This is done in Appendix A, with the result that i
the minimal Coulomb gauge the partition function may
expressed as an integral over the physical, canonical deg
of freedomAi

tr andEi
tr with the canonical action

Z~JW ,J4!5E
G

dAtrdEtr expE d4x~ iEi
trȦi

tr2H2 ig0JiAi
tr!.

~16!

Here

H5~1/2!~Ei
21Bi

2! ~17!

is the classical Hamiltonian density,B1[]2A32]3A2

1g0A23A3, etc., whereAi
a5Ai

tr,a , (X3Y)a[ f abcXbYc,
and the color-electric fieldEi is expressed in terms of th
canonical variables by solving Gauss’s law,

DiEi5g0J4 , ~18!

whereDi[] i1g0Ai3 is the gauge-covariant derivative.
Gauss’s law is solved by separating the transverse

longitudinal components ofEi according to

Ei5Ei
tr2] if. ~19!

Here f is the color-Coulomb potential in terms of whic
Gauss’s law reads2Di] if1g0Ai

tr3Ei
tr5g0J4, or

M ~Atr!f5rCoul1g0J4 , ~20!

where M (Atr)[2Di(A
tr)] i is the 3-dimensional Faddeev

Popov operator, andrCoul[2g0Ai
tr3Ei

tr is the color-charge
density of the dynamical degrees of freedom. If we had
cluded dynamical quarks then, in addition to a Dirac te
q̄(g iDi1m)q in the Hamiltonian density, there would als
be a quark contribution to the color-charge density

rCoul
a 5rgl

a 1rqu
a 52g0f abcAi

tr,bEi
tr,c1g0q̄g0taq. ~21!

The solution of Gauss’s law is given by
2-3
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f~xW ,x4!5E d3y M21@xW ,yW ,Atr~x4!#~rCoul1g0J4!~yW ,x4!.

~22!

BecauseM (Atr) involves only spatial derivatives, the invers
operatorM 21(Atr) acts instantaneously in time. The Ham
tonian is given by

H5E d3x H5~1/2!E d3x~Ei
21Bi

2!

5~1/2!E d3x@Ei
tr21~] if!21Bi

2# ~23!

5~1/2!E d3x~Ei
tr21Bi

2!1~1/2!E d3x d3y~rCoul1g0J4!

3~xW !V~xW ,yW ;Atr!~rCoul1g0J4!~yW !. ~24!

Here

V~xW ,yW ;Atr![@M ~Atr!21~2]2!M ~Atr!21#xW ,yW ~25!

is a color-Coulomb potential-energy functional that depe
on Atr. It acts instantaneously, and couples universally
color charge including, in the present case, the sourceJ4. Its
physical significance will be discussed in the next sectio

We now come to the important point. We useZ from Eq.
~16! andH from Eq. ~24!, and obtain

Z21
dZ

dJ4
a~x!

52g0E d3z^V ac~xW ,zW;Atr!

3@rCoul
c ~zW,x4!1g0J4

c~zW,x4!#&. ~26!

To calculateD0,44(x2y) we applyd/dJ4
b(y) and we obtain

two terms,

D0,44~x2y!5V0~x2y!1P0~x2y!. ~27!

The first,

V0~x2y!dab[g0
2^V ab@xW ,yW ;Atr~x4!#&d~x42y4!, ~28!

comes from theJ4
c(zW,x4) that appears explicitly in Eq.~26!.

It is manifestly instantaneous. The second term,

P0~x2y!dab[2g0
2^~VrCoul!

a~x!~VrCoul!
b~y!&, ~29!

where (Vr)a(x)5(Vr)a(xW ,x4)
[*d3zV ab@xW ,zW;Atr(x4)#rb(zW,x4) represents polarization o
the vacuum. The expansion ofV0 and P0 up to one loop is
given in Appendix B. The significance of these two terms
confinement is discussed in the next section.

III. PHYSICAL INTERPRETATION

We comment briefly on the physical meaning of the d
composition~27!–~29!. We showed in@1# that the Faddeev
Popov operatorM (Atr) is a positive operator in the minima
Coulomb gauge. It follows thatV(Atr)5M 21(2]2)M 21 is
01400
s
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also a positive operator. TheP0 term represents ordinar
vacuum polarization that also occurs in QED. The min
sign that appears in front ofP0 indicates that it correspond
to screening. In QED, the color-Coulomb potential ener
functionalV(xW ,yW ,Atr) would be replaced by the electrostat
Coulomb potential (4puxW2yW u)21. In @1# we argued that
V(Atr) is long-range for a typical configurationAtr, and we
presented numerical evidence that this is true.

According to the confinement scenario in the minim
Coulomb gauge,V(Atr) is predominantly long range becaus
M 21(Atr) is long range. This happens because the Grib
region is bounded byM (Atr)>0, and entropy favors dens
population close to the boundary. The boundary occ
whereM (Atr) has a zero eigenvalue, so it has a small eig
value close to the boundary. As a resultM 21(Atr) is en-
hanced close to the boundary where the population is de
The same color-Coulomb potential energy functionalV(Atr)
appears in both the instantaneous termV0 and the vacuum
polarization termP0, so both are long range.

The instantaneous termV0 is responsible for confinemen
whereas the vacuum polarization termP0 causes screening
In any physical process bothV0 andP0 contribute of course,
and one or the other may dominate. Consider the Wils
loop which is a model of a pair of infinitely heavy extern
quarks. In a theory of pure glue without dynamical quarks
is believed that at long range there is a linearly rising pot
tial VW(R) in the Wilson loop, characterized by a string te
sion. In this case, according to the confinement scenari
the Coulomb gauge, the instantaneous termV0 dominates.
However, if dynamical quarks are present then it is believ
that the string ‘‘breaks’’ at some distance because it is en
getically favorable to produce pairs of dynamical quar
from the vacuum. In this case the vacuum polarization te
P0 dominates. However, in both cases color charge itsel
confined. According to the confinement scenario in the C
lomb gauge, that is because the instantaneous termV0(R) is
long range and presumably linearly rising even whenVW(R)
is not. Indeed it is precisely the long range ofV0(R) that
makes it energetically favorable to produce dynamical qu
pairs from the vacuum, thereby causing color confineme
Thus in the Coulomb gauge the instantaneous part prov
an order-parameter for the confinement of color charge e
when dynamical quarks are present.

As noted, the termV0 is instantaneous. It is easy to se
that in each order of perturbation theoryV0(x2y) is the sum
of diagrams in which the pointsx and y are continuously
connected by instantaneous free gluon propagators, as i
trated in Fig. 1~a!. We now show that the diagrams contrib
uting to P0(x2y) have no instantaneous parts. Indeed
free propagators ofAtr andEtr are given by

^Ai
trAj

tr&05Pi j ~ k̂!/~kW21k4
2!

^Ei
trEj

tr&05~kW2d i j 2kikj !/~kW21k4
2! ~30!

^Ei
trAj

tr&05Pi j ~ k̂!k4 /~kW21k4
2!,
2-4
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wherePi j ( k̂)5(d i j 2 k̂i k̂ j ) is the 3-dimensionally transvers
projector. These propagators vanish in the limitk4→`, as do
the quark free propagators. From the structure of the vacu
polarization term~29!, as illustrated in Fig. 1~b!, one sees
that the diagrams contributing to it must somewhere be c
nected by the dynamical propagators~30!, so P0 has no in-
stantaneous part.1 This is apparent in the one-loop calcul
tion presented in Appendix B.

IV. A TECHNICAL DIFFICULTY

In Eq. ~5! we have given a definition of the color
Coulomb potential which is independent of perturbati
theory. However, since its defining property is false in a
finite order or perturbation theory, we must address the pr
lem of how to calculate it.

The perturbative expansion ofD0,445V01P0 begins with

V0~ ukW u,g0 ,L!5g0
2~kW2!211O~g0

4! ~31!

P0~ ukW u,k4 ,g0 ,L!5O~g0
4!. ~32!

The Feynman integrals for these quantities are derived
one-loop order in Appendix B. The integral fo

1It is essential to use the phase-space integral with first-order
tion to separate out the instantaneous diagrams in this way. For
could also integrate outA4 in the second-order Lagrangian forma

ism. However if one did that, thenȦi
tr would appear at vertices

instead of the independent field variableEi
tr . The free propagator

^Ȧi
trȦj

tr&05Pi j ( k̂)k4
2/(kW21k4

2) does not vanish in the limitk4→`,

but rather has the limit̂ Ȧi
trȦj

tr&0→Pi j ( k̂) which has an instanta
neous non-local part.

FIG. 1. Horizontal lines correspond to instantaneous propa

tors 1/kW2. Curved lines correspond to non-instantaneous propaga

1/(kW21k4
2). ~a! is a contribution toV0. ~b! is a contribution toP0.
01400
m

n-

y
b-

to

P0(ukW u,k4 ,g0 ,L) is relatively complicated; however, it sim
plifies considerably fork4@ukW u, as discussed in Appendix B
and one obtains to one-loop order forSU(N) gauge theory,

kW2V0~ ukW u,g0 ,L!5g0
21g0

4@v11 ln~L/ukW u!1v10# ~33!

kW2P0~ ukW u,k4 ,g0 ,L!5g0
4@p11 ln~L/k4!1p101o~ ukW u/k4!#,

~34!

whereL is an ultra-violet cutoff, limx→0o(x)50, andvnm
andpnm are constants, with

v115
8N

~4p!2 ~35!

p1152
2

~4p!2S 1

3
N1

2

3
Nf D . ~36!

Here we have included the vacuum polarization contribut
of Nf flavors of quark in the fundamental representati
which, to this order, is gauge independent. These coefficie
are also found in a Hamiltonian formalism@10#.

We obtain asymptotically fork4@ukW u, for D0,44
as 5V0

1P0
as,

kW2D0,44
as ~ ukW u,k4 ,g0 ,L!5g0

21g0
4@v11 ln~L/ukW u!

1p11 ln~L/k4!1v101p10#.

~37!

Observe thatp10 contributes a 1/kW2 term to D0,44. Conse-
quently we cannot assert that the instantaneous part ofD0,44
in d54 dimensions, namely the color-Coulomb potentialV
is given by the sum of instantaneous diagrams, as it is id
,4 dimensions,

V~ ukW u,LQCD!ÞV0~kW ,g0 ,L!. ~38!

We shall see that V0 and P0 separately are no
renormalization-group invariants, and this will be the key
an unambiguous separation of the instantaneous partV. This
implies that the coefficients that appear inV0 andP0 may be
scheme dependent. In particular,v10 andp10 are scheme de
pendent.

Another way to see that the separation cannot be m
diagram by diagram is to recall that in higher order, calcu
tions must be done in the interpolating gauge, with gau
condition] iAi1l]4A450. For finitel no diagram is instan-
taneous, and a separation criterion is required for the limit
expression atl50.

As a first step we note that in one-loop ord
D0,44

as (ukW u,k4 ,g0 ,L) at largek4 conveniently separates into

sum of terms that depend, respectively, onukW u and onk4. To
get the instantaneous part, namely the part that is indep
dent of k4, we simply delete the term that depends onk4,
namelyp11 ln(L/k4). However, the separation of the consta
term is ambiguous, as it is in each order. We conclude tha

c-
ne

a-

rs
2-5
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one-loop order, the k4-independent part o
D0,44(ukW u,k4 ,g0 ,L) is given by

kW2V~ ukW u,g0 ,L!5g0
2x01g0

4@v11 ln~L/ukW u!1x1#, ~39!

wherex0 andx1 are as yet unknown constants.
The form of the higher-order contributions toP0 is not

known. However, we shall make the simplest assumpt
namely that the same procedure may be effected to arbit
order so that only constant terms in each order in the exp
sion of kW2V(ukW u,g0 ,L) are ambiguous,

kW2V~ ukW u,g0,L!

5g0
2x01 (

n51

`

g0
2n12Fxn1 (

m51

n

vnm lnm~L/ukW u!G .

~40!

Here the coefficientsvnm are calculated from the perturbativ
expansion ofV0, but the xn are a set of as yet unknow
constants.~In case there are additional ambiguous terms
higher order in the separation of the vacuum polarization p
P0 from D0,44, they may also be determined using the ren
malization group, because it also restricts thevnm .!

From its definition as the large-k4 limit of D44, it follows
that color-Coulomb potential is a renormalization-group
variant. So whenV(ukW u) is expressed either in terms of un
renormalized or renormalized quantities, it is independen
L and m ~and of the regularization and renormalizatio
scheme!,

V~ ukW u![V„ukW u,g0~L/LQCD!,L…5V„ukW u,gr~m/LQCD!,m….
~41!

Consequently we may setL5ukW u, andm5ukW u, which gives

V~ ukW u!5V„ukW u,g0~ ukW u/LQCD!,ukW u…

5V„ukW u,gr~ ukW u/LQCD!,ukW u…. ~42!

~Once the functional dependence ofD0,44 or V0 on the cutoff
L is determined—it is a polynomial in lnL in each order of
perturbation theory—thenL may be assigned any finit
value.! Thus we may setL5ukW u in Eq. ~40!, which gives a
simple expansion in terms of the unknown coefficientsxn ,

kW2V~ ukW u!5x0g0
2~ ukW u/LQCD!1 (

n51

`

xng0
2n12~ ukW u/LQCD!.

~43!

V. RENORMALIZATION GROUP IN THE COULOMB
GAUGE

The unrenormalized coupling constantg05g0(L/LQCD)
is a function of the cutoffL, determined by the flow equa
tion

L ]g0 /]L5b0~g0!. ~44!
01400
n,
ry
n-

n
rt
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-

f

The b function has the expansion

b0~g0!52~b0g0
31b1g0

51b2g0
71 . . . !. ~45!

In general, the coefficientsbn are both scheme and gaug
dependent, except forb0 andb1 that are scheme and gaug
independent. Similarly the renormalized coupling const
gr5gr(m/LQCD) is a function of the renormalization mas
determined by

m ]gr /]m5b r~gr !. ~46!

In the Coulomb gaugeD0,44 has no anomalous dimensio
coming from multiplicative renormalization. It therefor
obeys the simple Callan-Symanzik equation

@L]/]L1b0~g0!]/]g0#D0,44~ ukW u,k4 ,g0 ,L!50. ~47!

As a result, in the Coulomb gauge, theb function may be
obtained from the propagatorD0,44—in fact only D0,44

as is
needed—whereas in covariant gauges a calculation of
vertex function is necessary. Indeed from the last equa
we have

b0~g0!52
L]D0,44/]L

]D0,44/]g0
, ~48!

whereD0,445D0,44(ukW u,k4 ,g0 ,L). This holds identically for
all values ofukW u, k4 andL, so we may setk4 to an asymp-
totically large value and obtain

b0~g0!52
L]D0,44

as /]L

]D0,44
as /]g0

. ~49!

From the one-loop expression~37! for D0,44
as , we obtain the

first coefficient of theb function

b05
1

2
~v111p11!. ~50!

From Eqs.~35! and ~36! we obtain the standard expressio

b05
1

~4p!2S 11

3
N2

2

3
Nf D , ~51!

without calculating any vertex function. All coefficientsbn
may be calculated in this way.

We take the largek4 limit of the Callen-Symanzik equa
tion ~47!, and observe that V(ukW u,g0 ,L)
5 limk4→`D0,44(ukW u,k4 ,g0 ,L) satisfies the same Callan
Symanzik equation,

@L]/]L1b0~g0!]/]g0#V~ ukW u,g0 ,L!50. ~52!

Since g05g0(L/LQCD) is a solution of the flow equation
~44!, the Callan-Symanzik equation yields

dV„ukW u,g0~L/LQCD!,L…

dL
50, ~53!
2-6
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which is again the statement thatV„ukW u,g0(L/LQCD),L… is
independent ofL.

VI. RENORMALIZATION GROUP TO THE RESCUE

We shall use the renormalization group and our kno
edge of theb function to determine the unknown constan
xn . From the Callan-Symanzik equation~52! for V we have

]V~ ukW u,g0 ,L!/]g05
2L]V~ ukW u,g0 ,L!/]L

b0~g0!
. ~54!

This is an identity that holds for allL, and we may simplify
it by settingL5ukW u,

]V~ ukW u,g0 ,L!/]g0uL5ukW u5
2L]V~ ukW u,g0 ,L!/]LuL5ukW u

b0~g0!
.

~55!

To find all thexn we substitute the expansion~40! on the left-
and right-hand sides. We also expand

b0
21~g0!52b0

21g0
23S 11 (

p51

`

cpg0
2pD , ~56!

where, from Eq.~45!, we havec152b1 /b0, etc. The deriva-
tive with respect toL on the right-hand side of Eq.~55! kills
the constantsxn , and we have

(
n50

`

2~n11!g0
2n11xn5b0

21g0
23(

p50

`

cpg0
2p (

m51

`

g0
2m12vm1 ,

~57!

wherec0[1. Equating like powers ofg0 we obtain

xn5@2~n11!b0#21 (
m51

n11

cn2m11vm1 , ~58!

and in particular

x05~2b0!21v11 ~59!

x15~4b0!21~v11c11v21!. ~60!

Thus x0 is found fromv11 and b0 which require one-loop
calculations, andx1 requires two-loop calculations. Usuall
the renormalization group is used to determine higher-or
logarithms from lower-order terms. Here instead we ha
used it to consistently determine an unknown lower-or
constant from a known higher-order logarithm. From E
~35! and ~51!, we obtain

x05
12N

11N22Nf
. ~61!

It will be convenient in the following to factorize the co
efficient x0 out of the expansion~43! for V, and we write
01400
-

er
e
r
.

kW2V~ ukW u!5x0Fg0
2~ ukW u/LQCD!1 (

n51

`

xn8g0
2n12~ ukW u/LQCD!G ,

~62!

wherexn8[xn /x0. Remarkably, the leading term is not sim
ply g0

2, as one would expect from Eq.~33!, but ratherx0g0
2

5@12N/(11N22Nf)#g0
2.

The leading asymptotic form ofV may be found from
expression~40! to orderg0

4, with v1152b0x0, namely,

kW2V~ ukW u!5x0g0
2$11g0

2@2b0 ln~L/ukW u!1x18#% ~63!

which to this order may be written

kW2V~ ukW u!5x0$g0
222@2b0 ln~L/ukW u!1x18#%21, ~64!

where

x185
x1

x0
5

1

2 S v21

v11
2

b1

b0
D . ~65!

From the asymptotic form ofg0
22;2b0 ln(L/LQCD), this

gives

kW2V~ ukW u!;x0@2b0 ln~ ukW u/LQCD!2x18#21 ~66!

;
x0

2b0 ln~ ukW u/LCoul!
, ~67!

which is valid for largeukW u. Here we have introduced the ne
mass scaleLCoul characteristic of the Coulomb gauge. It
related to the scaleLQCD used in the scheme by which theb
function was defined according to

LCoul[expS x18

2b0
DLQCD . ~68!

Normally, a ratio such asLCoul/LQCD can be determined
from a one-loop calculation, but here a two-loop calculati
of v21, the coefficient of a two-loop logarithm that appea
in Eq. ~65! would be required. For just as the determinati
of the constantx0, of 0-loop order, requires the 1-loop ca
culation which we report here, similarly, to determine t
constantx18 of 1-loop order would require a 2-loop calcula
tion. In both cases the reason is the ambiguity in the sep
tion of the instantaneous partV which, as noted above, can
not be determined from individual perturbative diagram
Instead it requires the perturbative renormalization group
determine thenth order constant from the (n11)th order
logarithm.

Expression~67! for V(ukW u) exhibits asymptotic freedom
and, withx0 positive, indeedx0.1, the instantaneous part o
D44 is anti-screening.
2-7
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VII. ASYMPTOTIC FORM OF THE NON-INSTANTANEOUS
PART

We may also determine to this order the asymptotic fo
of the non-instantaneous partP5D0,442V. It is also a
renormalization-group invariant. If we setk4 to an asymp-
totically high value we obtain

Pas~ ukW u,k4 ,g0 ,L![D0,44
as ~ ukW u,k4 ,g0 ,L!2V~ ukW u,g0 ,L!.

~69!

From Eqs.~37! and ~39! this gives to one-loop order

kW2Pas~ ukW u,k4 ,g0 ,L!5g0
2y01g0

4@p11 ln~L/k4!1y1#,
~70!

where, by Eqs.~59!, ~50!, ~51!, and~36!,

y0512x05~2b0!21~2b02v11!5~2b0!21p11

52
N12Nf

11N22Nf
, ~71!

andy15p101v102x1. This gives

kW2Pas~ ukW u,k4 ,g0 ,L!5y0g0
2$11g0

2@2b0 ln~L/k4!1y18%,
~72!

wherey185y1 /y0. By the reasoning that leads to Eq.~67!, we
obtain to this order the asymptotic expression

kW2Pas~ ukW u,k4 ,g0 ,L!;
y0

2b0 ln~k4 /LQCD8 !
, ~73!

whereLQCD8 is another finite QCD mass scale likeLCoul. It
would take also take a 2-loop calculation to determ
LQCD8 /LQCD . Sincey0,0 is negative,P is indeed screen
ing.

VIII. INVARIANT COLOR CHARGE

In this section we show how to calculateV(ukW u) to arbi-
trary accuracy in the ultra-violet region. We define a n
running coupling by constantg5g(ukW u/LCoul) by

kW2V~ ukW u![x0g2~ ukW u/LCoul!. ~74!

BecauseV(ukW u) is scheme independent,g(ukW u/LCoul) is also.
From Eq.~62! we have

g2~ ukW u/LCoul!5S g0
21 (

n51

`

g0
2n12xn8D

g05g0(ukW u/LQCD)

,

~75!

so the new coupling constant agrees withg0 in lowest order.
Thus it is a regular redefinition of the coupling constant, a
g may be used for perturbative expansions.

Corresponding to the invariant charge is an invarianb
function defined by
01400
e

d

b~g![ukW u
]g~ ukW u/LCoul!

]ukW u
. ~76!

It may be calculated from

b~g!5
]g

]g0
ukW u

]g0~ ukW u/LQCD!

]ukW u
~77!

5
]g

]g0
b0~g0!ug0(g) , ~78!

whereg0(g) is obtained by inverting Eq.~75!. This may be
simplified by using

b~g!5
1

2g

]g2

]g0
b0~g0! ~79!

5
kW2

2gx0

]V0

]g0
U

ukW u5L

b0~g0! ~80!

52
kW2

2gx0

L]V0

]L
U

ukW u5L

, ~81!

by Eq. ~55!. From Eq.~40! this gives

b~g!52
1

2gS 2b0g0
41 (

n52

`

vn18 g0
2n12DU

g0(g)

, ~82!

wherevn18 [vn1 /x0, and we have usedv11/x052b0. To find

V(ukW u) to arbitrary accuracy, one calculatesb(g) perturba-
tively and then solves the flow equation~10! for
g(ukW u/LCoul).

Finally we remark that we may choose new unrenorm
ized and renormalized expansion parameters according

g085g~L/LCoul! ~83!

gr85g~m/LCoul! ~84!

so g08 and gr8 lie on the same invariant trajectory, the on
difference between them being the value of the argumen

IX. CONCLUSION

We have successfully applied the perturbative renorm
ization group to the Coulomb gauge. In this gauge, the
component of the gluon propagatorD44(ukW u,k4 ,LQCD) is a
renormalization-group invariant in the sense that it is ind
pendent of the regularization and renormalization schem
and of the ultra-violet cutoffL and renormalization massm.
With the help of the perturbative renormalization group w
have decomposed it into an instantaneous partV(ukW u), which
we call the color-Coulomb potential, and a vacuum polari
tion partP(ukW u,k4) which vanishes at largek4. Each of these
terms is separately a renormalization-group invariant, a
2-8
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their asymptotic form, at largeukW u andk4, respectively, was
reported in the Introduction.

The color-Coulomb potential allows us to define an
variant QCD charge g(ukW u/LCoul) by kW2V(kW )
5x0g2(ukW u/LCoul), where x0512N/(11N22Nf). This in-
variant charge is the QCD analogue of the invariant cha
of Gell-Mann and low in QED. We have shown how to ca
culate the corresponding invariantb function, ukW u(]g/]ukW u)
5b(g). Because this charge is scheme independent it m
offer some advantage in providing a definition ofas(kW

2)
5g2(ukW u/LCoul)/4p, whereas the standard definition in cu
rent use is scheme-dependent~see, for example,@11#!. The
color-Coulomb potentialV(ukW u) is also the natural starting
point for calculations of bound states such as heavy qua
nium.

The Coulomb gauge provides direct access to quant
of non-perturbative interest. Indeed bothV(ukW u) and
P(ukW u,k4) have a natural role in a confinement scenar
V(ukW u,LQCD) is long-range, anti-screening, and responsi
for the confinement of color charge, whereas the vacu
polarization termP(ukW u,k4) is screening, and responsible fo
‘‘breaking of the string’’ between external quarks, when d
namical quark pairs are produced from the vacuum. We
pect the linear rise~or not! of V(uxW u) at largeuxW u to provide
an order parameter for confinement of color charge, eve
the presence of dynamical quarks when the Wilson loop c
not serve this purpose. The accompanying article@1# reports
a numerical study of the running coupling consta
g2(kW /LCoul). The data show a significant enhancement at l
ukW u, in agreement with this confinement scenario. Howev
additional studies at larger values ofb[4/g0

2 are necessary
before a conclusion can be reached about a linear ris
V(xW ) at largeuxW u in the continuum limit,b→`.

The data also show a strong suppression of the eq
time, 3-dimensionally transverse, would-be physical, glu
propagatorDi j

tr (kW ) at kW50, and agree with a formula of Gri

bov thatvanisheslike ukW u nearukW u50. The only explanation
for this counter-intuitive behavior is the suppression of co
figurations outside the Gribov horizon in the minimal Co
lomb gauge. SinceDi j

tr (kW ) is strongly suppressed, we ma
understand the main long-range forces between color ch
as being due toD44 which, as we have seen, is the sum of t
attractive instantaneous color-Coulomb potentialV(ukW u) that
is anti-screening, and the vacuum polarization te
P(ukW u,k4) that is screening. According to the confineme
scenario discussed in Sec. III and in@2# and @1#, both are
long range in the minimal Coulomb gauge because entr
favors a high density population close to the Gribov horiz
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APPENDIX A: RELATION OF FADDEEV-POPOV AND
PHASE-SPACE FUNCTIONAL INTEGRALS

We wish to derive the canonical or phase-space functio
integral ~16! from the Faddeev-Popov formula~14!. The ar-
gument merely reverses the textbook derivation of
Faddeev-Popov formula from the canonical phase-sp
functional integral in Coulomb gauge while keeping track
the sourcesJm . We introduce the identity

expF2~1/2!E d4xF0i
2 G

5NE d3E expE d4x@ iEiF0i2~1/2!Ei
2#, ~A1!

which is a Gaussian integral over new variablesEi
a that will

play the role of independent color-electric field variable
This allows us to rewrite~14! as

Z~JW ,J4!5E
G

d4A d3E d~] iAi !det~2Di] i !

3expE d4x@ iEi~Ȧi2DiA4!2~1/2!

3~Ei
21Bi

2!2 ig0JmAm!], ~A2!

where B1
a5]2A3

a2]3A2
a1g0f abcA2

bA3
c , etc. Integration on

A4 imposes color-Gauss’s law,DiEi5g0J4, in the form of
the constraintd(DiEi2g0J4),

Z~JW ,J4!5E
G

d3A d3E d~] iAi !det~2Di] i !

3d~DiEi2g0J4!

3expE d4x@ iEiȦi
tr2~1/2!~Ei

21Bi
2!2 ig0JiAi

tr!].

~A3!

The constraint expressed byd(] iAi) has allowed us to re-
placeAi by its transverse partAi

tr everywhere. We separat
the transverse and longitudinal parts ofEi5Ei

tr2] if, and we
haved3E5NdEtrdf. The Faddeev-Popov determinant is a
sorbed by

det~2Di] i !d~DiEi2g0J4!5det~M !d~Mf2rCoul2g0J4!
~A4!

5d@f2M 21~rCoul1g0J4!#,
~A5!

where the symbols are defined as in Eq.~20!. We now inte-
grate overf, and in a similar way we integrate out the lon
gitudinal part ofAi , to obtain Eq.~16!.
2-9
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APPENDIX B: ONE-LOOP EXPANSION

In this appendix we find the one-loop expansion of t
quantitiesV0 and P0 defined in Eqs.~28! and ~29!, and
which appear inD0,445V01P0. The Faddeev-Popov opera
tor is writtenM (Atr)5M01M1(Atr), whereM0[2] i

2 is the
negative of the Laplacian, and (M1)ac[2g0f abcAi

b,tr] i . The
color-Coulomb potential energy functionalV(Atr), defined in
Eq. ~25!, reads

V~xW ,yW ;Atr!5@~M01M1!21M0~M01M1!21#xW ,yW , ~B1!

and has the expansion

V~xW ,yW ;Atr!5@M0
2122M0

21M1M0
21

13M0
21M1M0

21M1M0
211 . . . #xW ,yW ,

~B2!

where M0
21uxW ,yW5(2p)23*d3k(kW2)21 exp@ikW•(xW2yW)#5(4puxW

2yWu)21. From Eq.~28! for V0 we obtain to one-loop order

V0~x2y!5g0
2@M0

2113M0
21^M1M0

21M1&0M0
21#xW ,yW

3d~x42y4!, ~B3!

where we have used̂M1(Atr)&50, which holds because
M1(Atr) is linear in Atr. The average designated by^ . . . &0
refers to the free-field average, with free-field propagat
given in Eq.~30!. This gives

V05V0,01V0,1 ~B4!

where the zero-loop piece is given explicitly by

V0,0~x2y!dae5g0
2M0

21~xW2yW !d~x42y4!dae ~B5!

and the one-loop piece by

V0,1~x2y!dae53g0
4E d3x8d3y8 f abcf cde^Ai

tr,b~xW8,x4!

3Aj
tr,d~yW 8,x4!&0M0

21~xW2xW8!

3] iM0
21~xW82yW 8!] jM0

21~yW 82yW !d~x42y4!.

~B6!

These terms are illustrated in Fig. 1~a!. In momentum space
we haveV0,05g0

2/kW2, and

V0,1~ ukW u!5
3g0

4N

~kW2!2
~2p!24E d4p

ki~d i j 2 p̂i p̂ j !kj

~pW 21p4
2!~pW 2kW !2

.

~B7!

The result of this integral is given in Eqs.~33! and ~35!.
01400
s

Similarly, for P0 given in Eq.~29!, we have to one-loop
order

P0~x2y!dad52g0
2^~M0

21rCoul
a !~x!~M0

21rCoul
d !~y!&0 ,

~B8!

whererCoul
a 52g0f abcAi

tr,bEi
tr,c . This gives

P0~x2y!dad52g0
2E d3x8d3y8M0

21~xW2xW8!

3^rCoul
a ~xW8,x4!rCoul

d ~yW 8,y4!&0M0
21~yW 82yW !,

~B9!

where

^rCoul
a ~x!rCoul

d ~y!&0

5g0
2f abcf deg@^Ai

tr,b~x!Aj
tr,e~y!&0^Ei

tr,c~x!Ej
tr,g~y!&0

1^Ai
tr,b~x!Ej

tr,g~y!&0^Ei
tr,c~x!Aj

tr,e~y!&0#. ~B10!

This term is illustrated in Fig. 1~b!. In momentum space it is
given by

P0,1~k!5
2g0

4N

~kW2!2
~2p!24E d4p

Pi j ~pW !

~pW 21p4
2!

3
Pi j ~pW 2kW !

@~pW 2kW !21~p42k4!2#
@pW 22p4~p42k4!#,

~B11!

where Pi j (pW )5d i j 2 p̂i p̂ j is the 3-dimensionally transvers
projector. The contraction in the numerator gives 2 terms

Pi j ~pW !Pi j ~pW 2kW !5J11J2 ~B12!

J152 ~B13!

J252
pW 2kW22~pW •kW !2

pW 2~pW 2kW !2
. ~B14!

Each term results in a Feynman integralI 1 and I 2. The inte-
gral I 2 looks more complicated. However, it is only logarith
mically divergent by power counting, and when the integ
tion is performed, the coefficient of the divergent part ofI 2

vanishes, soI 2 is finite. As a resultI 2(ukW u,k4) vanishes in the
limit k4→`, and does not contribute toP0

as(k). The result of
the I 1 integration is given in Eqs.~34! and ~36!.

The integrals~B7! and ~B11! are evaluated by dimen
sional regularization, withp4→pd , and pW 5(pi) for i
51, . . . ,(d21).
2-10
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