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Numerical study of the gluon propagator and confinement scenario in the minimal Coulomb gauge
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We present numerical results inSU(2) lattice gauge theory for the space-space and time-time components
of the gluon propagator at equal time in the minimal Coulomb gauge. It is found that the equal-time would-be

physical 3-dimensionally transverse gluon propagatorD tr(kW ) vanishes atkW50 when extrapolated to infinite

lattice volume, whereas the instantaneous color-Coulomb potentialD44(kW ) is strongly enhanced atkW50. This
has a natural interpretation in a confinement scenario in which the would-be physical gluons leave the physical

spectrum while the long-range Coulomb force confines color. Gribov’s formulaD tr(kW )5(ukW u/2)@(kW2)2

1M4#1/2 provides an excellent fit to our data for the 3-dimensionally transverse equal-time gluon propagator

D tr(kW ) for relevant values ofkW .
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I. INTRODUCTION

Wilson’s lattice gauge theory provides a regularized f
mulation of gauge theory that is manifestly gauge invaria
and numerical simulations do not require gauge fixing. Ho
ever gauge fixing on the lattice is advantageous to gain c
trol of the critical or continuum limit, for this makes avai
able the strong results of gauge-fixed continuu
renormalization theory. For example one may prove in c
tinuum renormalization theory that a certain quantity, such
the running coupling constant, defined in terms of gluon c
relation functions in some gauge, is finite when the cutof
removed. Then the corresponding lattice quantity, define
the corresponding lattice gauge, should be finite in the c
cal limit, and it becomes of interest to make a numeri
determination of that quantity. Moreover one may determ
by numerical fit the location of the poles of propagato
which, according to the Nielsen identities, is independen
the gauge parameters@1#. Finally, if one has in hand a con
finement scenario in a particular gauge, then it is possibl
test its predictions numerically for gauge-fixed quantiti
Although the scenario may look quite different in differe
gauges, nevertheless any one of them provides a valid
spective.

Previous numerical studies of the Coulomb gauge w
reported in@2,3#. We present here a numerical study of t
gluon propagator inSU(2) lattice gauge theory, withou
quarks, in the minimal Coulomb gauge~defined in the Ap-
pendix!. Simulations have been done atb52.2 for 9 differ-
ent lattice volumesV5L4, with L514, 16, 18, 20, 22, 24
26, 28 and 30.~A total of 2420 configurations have bee
generated, from 50 configurations for 304 up to 600 for 144.!
The procedure is to first equilibrate ungauge-fixed confi
rationsU according to the Wilson action using a hybrid ove

*Electronic address: attilio@if.sc.usp.br
†Electronic address: daniel.zwanziger@nyu.edu
0556-2821/2001/65~1!/014001~11!/$20.00 65 0140
-
t,
-
n-

-
s

r-
s
in
i-
l
e

f

to
.

er-

e

-

relaxed algorithm@4#. Then statistically independent con
figurationsU are gauge fixed to the minimal lattice Coulom
gauge by a minimization that is effected using a stocha
over-relaxation algorithm described in@5# with accuracy
^(] iAi)

2&<10216, where the average is taken on each tim
slice separately and] iAi is defined in Eq.~A5!. Finally the
componentsD tr(kW ) andD44(kW ) of the equal-timegluon cor-
relator are evaluated. The lattice Coulomb gauge is m
easily accessible to numerical study than the Landau ga
because each time slice contributes separately to the num
cal average which, for a lattice of volume 304, gives a factor
of 30 gain. The total computer time devoted to this project
far is about 500 days on a 500 MHzALPHA workstation.1

The results provide a test of the confinement scenario
was originally proposed by Gribov@6# and elaborated in@7#.
The confinement scenario is particularly transparent in
Coulomb gauge because it is a physical gauge in the s
that the constraints are solved exactly, including Gauss’s
DiEi[] iEi1@Ai ,Ei #5rqu, and the Hilbert space has pos
tive metric. HereEi is the color-electric field,Di is the
gauge-covariant derivative, andrqu is the color-charge den
sity of quarks. Moreover the gauge fixing, described in
Appendix, is done independently within each time-slice
that the equal-time Euclidean and Minkowskian of the c
relation functions are identical.

In the Coulomb gauge, the 3-vector potentialAi is trans-
verse,] iAi50, soAi5Ai

tr . Gauss’s law is solved by

Ei5Ei
tr2] if, ~1!

where the color-Coulomb fieldf is given by

f5M 21rcoul. ~2!

1We thank Jorge L. deLyra for kindly providing us with access
the cluster ofALPHA work-stations at the Department of Mathema
cal Physics~DFMA! of the University of Sa˜o Paulo~USP!.
©2001 The American Physical Society01-1
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Herercoul[rqu2@Ai
tr ,Ei

tr# is the color-charge density of th
dynamical degrees of freedom, andM5M (Atr)5
2Di(A

tr)] i is the 3-dimensional Faddeev-Popov operato
In this gauge, the Hamiltonian~without quarks! is given

by

H5~2g0
2!21E d3x~E21B2! ~3!

5~2g0
2!21E d3x~Etr21B2!

1~2g0
2!21E d3xd3yrcoul~x!V~x,y;Atr!rcoul~y!. ~4!

Here

V~x,y;Atr![@M ~Atr!21~2]2!M ~Atr!21#xW ,yW ~5!

is a color-Coulomb potential-energy functional, depend
on Atr, that acts instantaneously and couples universally
color charge. The continuum form of the Coulomb Ham
tonian, with proper attention to operator ordering is given
@8# and the lattice form in@9#. For the minimal Coulomb
gauge, this Hamiltonian is supplemented by the bound
condition that the wave functionalsC(Atr) are restricted to
the Gribov region.~This is explained below and in the Ap
pendix.! It was proposed in continuum theory in@6# and in
lattice theory in@10#, that this restriction may be imposed b
use of an effective action or Hamiltonian

Heff5H1~2g0
2!21E d3xM4Ai

tr~2¹2!21Ai
tr . ~6!

As a result, the energy of a gluon of momentumkW gets modi-
fied to E2(kW )5kW21(kW2)21M4, as one sees from the qua
dratic part of Heff . One obtains for the equal-tim
3-dimensionally transverse would-be physical gluon pro
gator the approximate expression

D tr~kW !5~2p!21E dk4

1

k4
21E2~kW !

5
1

2E~kW !
~7!

5
ukW u

2@~kW2!21M4#1/2
. ~8!

This quantity is defined by

Di j
tr ~kW !5~d i j 2 k̂i k̂ j !D

tr~kW !, ~9!

whereDi j
tr (kW ) is the Fourier transform of

Di j
tr ~xW2yW !5^Ai

tr~xW ,t !Aj
tr~yW ,t !&. ~10!

In the absence of an estimate of corrections, one does
know how accurate Eq.~8! may be. However it was prove
@11# that the lattice gluon propagatorD tr(kW ) at infinite spatial
lattice volumeL3 must indeedvanishat kW50,
01400
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lim
kW→0

D tr~kW !50, ~11!

although the rate of approach ofD tr(0,L) to 0, as a function
of L, was not established, nor was it determined whether
renormalized gluon propagator also shares this property.
accuracy of Eq.~8!, and the crucial question of the extrap
lation to largeL of D tr(kW ,L) are addressed in the numeric
study reported here.

We have also evaluated the 4-4 component of the gl
propagator

D44~xW ,t ![^A4~xW ,t !A4~0,0!& ~12!

at equal-time. In the minimal Coulomb gaugeD44(xW ,t) is
given by @12#

D44~xW ,t !5V~xW !d~ t !1P~xW ,t !, ~13!

where t5x4 is the Euclidean ‘‘time’’ andP(xW ,t) is a non-
instantaneous vacuum-polarization term. This gives

E
2e

1e

dtD44~xW ,t !5V~xW !1o~e!, ~14!

where o(e) vanishes with e. We call V(xW ) the color-
Coulomb potential. In momentum space Eq.~13! reads

D44~kW ,k4!5V~kW !1P~kW ,k4!, ~15!

where limk4→`P(kW ,k4)50. In dimensiond,4, V(xW ) coin-
cides with

V0~xW2yW ![^V~x,y;Atr!&. ~16!

However ind54 dimensions there is a mixing ofV(kW ) and
P(kW ,k4) associated with divergences, andV(kW ) differs from
V0(kW ) by terms of the formcng0

2n/kW2 in each order of per-
turbation theory, as explained in detail in@12#.

Stated simply, the confinement of color is caused by
predominantly long range of the color-Coulomb potent
V(xW ), corresponding to an enhancement ofV(kW ) at low ukW u.
Note however thatV(xW ) is not the gauge-invariant energ
eigenvalue of the quantum state of infinitely massive se
rated quarks. Nevertheless it is an important quantity. It m
be used as an order parameter for color confinement@7#, and
it is the starting point for calculations of the ground-sta
wave-functional@13–15#.

The rather surprising and counter-intuitive vanishing
D tr(kW ) at kW50, and the enhancement ofV(kW ) at kW50 in the
minimal Coulomb gauge are both caused by the Gribov
rizon. This is a boundary in the space of configuratio
Ai

tr(xW ) defined by the condition that the Faddeev-Popov
erator be positive,M (Atr)>0. The Gribov horizon represent
the points where the lowest eigenvaluel0(Atr) of M (Atr)
first goes negative. As shown in the Appendix, all config
rations that contribute to the Euclidean functional integral
1-2
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NUMERICAL STUDY OF THE GLUON PROPAGATOR AND . . . PHYSICAL REVIEW D65 014001
the minimal Coulomb gauge are constrained to lie within
Gribov horizon. Because of entropy considerations~see Refs.
@6,10#!, the Euclidean probability gets concentrated near
horizon where the color-Coulomb interaction energyV(Atr),
Eq. ~5!, diverges. This causes an enhancement of the ins
taneous color-Coulomb potentialV(xW ). At the same time it
places very severe bounds on the magnitude of the low
mentum components of the gluon field.2

The Coulomb gauge does not offer any particular adv
tage for perturbative calculations and renormalization. Ho
ever it is the finite limit of renormalizable gauges@19#. A
valuable feature of this gauge is that the time-time com
nent of the gluon propagatorD44(kW ,k4) is independent of
both the cut-offL and the renormalization massm @7#. This
holds separately for its instantaneous partV(kW ). Thus the
minimal Coulomb gauge allows us to introduce a runn
coupling constant bygcoul

2 (ukW u)5constkW2V(kW ). The propor-
tionality constant is determined by the condition that in t
large-momentum or weak-coupling regimegcoul

2 (ukW u) satisfy
the standard renormalization-group equation,

ukW u
]gcoul

]ukW u
5bcoul~gcoul!52~b0gcoul

3 1b1gcoul
5 1 . . . !

~17!

where, for SU(N) gauge theory without quarks,b0
5(4p)2211N/3, b15(4p)2434N2/3. The proportionality
constant is calculated in@12#, with the result that forSU(N)
gauge theory without quarks

kW2V~kW !5
12

11
gcoul

2 ~ ukW u/Lcoul!, ~18!

and more generally, withNf quark flavors

kW2V~kW !5
12N

11N22Nf
gcoul

2 ~ ukW u/Lcoul!. ~19!

HereLcoul}LQCD is a finite QCD mass scale, characteris
of the Coulomb gauge, such that asymptotically in the we
coupling regime

kW25Lcoul
2 exp@~b0gcoul

2 !21#~b0gcoul
2 !r , ~20!

where r[b1 /b0
2. The ratio Lcoul/LQCD may be obtained

from a 2-loop calculation@12#. We conclude that in the mini
mal Coulomb gauge the running coupling constant of Q
may be obtained from a numerical determination of
equal-time 2-point functionD44, whereas in other gauges
must be obtained from a 3-point function. The running co
pling constantgcoul that we have introduced is the QCD an

2A similar confinement scenario for the Landau gauge was p
posed in@16,17#. It has also been verified numerically in the Land
gauge that typical~thermalized and gauge-fixed! configurations lie
very close to the Gribov horizon@18#.
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log of the invariant charge in QED that is defined in terms
the transverse part of the photon propagator in a Lore
covariant gauge.

II. RESULTS

We evaluate the space-space gluon propagator

D tr~0W !5
1

9V (
t51

L

(
m51

3

(
b51

3

Dmm
bb ~0W ,t ! ~21!

D tr~kW !5
1

6V (
t51

L

(
m51

3

(
b51

3

Dmm
bb ~kW ,t !, ~22!

and the time-time gluon propagator

D44~kW !5
1

3V (
t51

L

(
b51

3

D44
bb~kW ,t !, ~23!

where

Dmm
bb ~kW ,t !5K H F(

xW
AxW tm

b cos~uW •xW !G2

1F(
xW

AxW tm
b sin~uW •xW !G2

, ~24!

and the lattice gluon fieldAxW tm
b is defined in Eq.~A6!. Here,

-

FIG. 1. Plot of the gluon propagatorsD tr(kW ) and D44(kW ) as a

function of the square of the lattice momentumkW2 for L528 ~sym-
bols * ands respectively! andL530 ~symbolsn and, respec-
tively!. Notice the logarithmic scale in they axis. Error bars are one
standard deviation.
1-3
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ATTILIO CUCCHIERI AND DANIEL ZWANZIGER PHYSICAL REVIEW D 65 014001
as usual, we have definedki[2 sin(ui/2), for 2p<u i
52pni /L<p, and integerni . An average over theL time
slices is included. In our simulations we consider on
3-momenta aligned along major axesu i5(0,0,2pn/L). No-
tice thatD tr(0W ) is not given byD tr(kW ) at kW50W . The differ-
ence is due to the Coulomb gauge condition —
continuum-like condition, Eq.~A5! — which in momentum
space reads

(
i 51

3

kiÃkW t i50, ~25!

whereÃkW t i is the three-dimensional Fourier transform of t
gauge fieldAxW t i . If kWÞ(0,0,0) only two of the three Lorent
components ofÃkW t i — and therefore ofAxW t i — are indepen-
dent. This explains the factor 6~instead of 9! in the defini-
tion of D tr(kW ).

Figure 1 showsD tr(kW ) andD44(kW ) as a function ofkW2 on
the same logarithmic plot for the lattice sidesL528 and 30.
The qualitative behavior is quite different in the two cas
WhereasD44(kW ) grows strongly at lowkW , by contrastD tr(kW )
turns over and decreases at lowkW .

~a! Analysis of D tr. Figures 2 and 3 show our data fo
D tr(kW ) for the nine lattice volumes considered. To para

FIG. 2. Plot of the gluon propagatorD tr(kW ) as a function of the

square of the lattice momentumkW2 for L514 (*), 18 ~n!,
22 ~s!, 26 ~L!, and 30 (h) and fits of these data using Eq.~31!
with the parameter values reported in Table I. Error bars are
standard deviation.
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etrize these data, we were guided by the Nielsen identi
@1#. They tell us that the poles of the gluon propaga
D tr(kW ,k4) are independent of the gauge parameters.3 In par-
ticular, for the class of gauges defined byl]4A41] iAi50,
which interpolate between the Landau gauge,l51, and the
Coulomb gauge,l50, the poles are independent ofl. In the
Landau gauge, the poles occur atk25kW21k4

252m2, by Lor-
entz~Euclidean! invariance, and thus also in all these gaug
by virtue of the Nielsen identities. We have made a 2-pole
with poles atm1

2 andm2
2, which may be either a pair of rea

numbers or a complex conjugate pair.4 According to@11#, the
propagator in the minimal Coulomb gauge vanishes akW
50. We use this condition to fix the residues to within
over-all normalization

3Strictly speaking, the Nielsen identities have been establis
only for Faddeev-Popov type gauge fixing. This does not inclu
the minimal Coulomb gauge because the gauge fixing is done
minimization procedure that is not describable by a lo
4-dimensional action. However the minimal Coulomb gauge m
be obtained as a limiting case of a local 5-dimensional quan
field theory that describes stochastic quantization with stocha
gauge fixing, as has been discussed recently in@16,17#. The Nielsen
identities may be extended to the 5-dimensional formulation.

4According to the general principles of quantum field theory, t
propagator of physical particles should have poles only at real p
tive m2. However in the confined phase the gluon propagator m
have singularities that correspond to unphysical excitations.

e

FIG. 3. Plot of the gluon propagatorD tr(kW ) as a function of the

square of the lattice momentum kW2 for L
516 (*), 20 (n), 24 (s) and 28 (L) and fits of these data
using Eq.~31! with the parameter values reported in Table I. Err
bars are one standard deviation.
1-4
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TABLE I. Fit of the transverse gluon propagatorD tr(kW ) using Eq.~31!. The resulting fitting parameters
x2/d.o.f. and goodness-of-fitQ are reported for each lattice sideL.

L z r a x y2 x2/d.o.f. Q

14 3.93(33) 3.86(35) 0.76(5) 0.36(6) 1.07(5) 0.42 73.9%
16 4.79(42) 2.72(28) 0.70(5) 0.27(8) 1.08(7) 1.46 21.1%
18 5.91(53) 2.27(33) 0.57(7) 0.38(13) 1.11(13) 3.45 0.4%
20 5.78(19) 1.80(8) 0.66(2) 0.19(4) 0.99(4) 0.45 84.5%
22 5.81(23) 1.57(8) 0.67(3) 0.09(4) 0.97(5) 0.59 76.5%
24 6.33(25) 1.43(8) 0.62(3) 0.12(4) 0.99(6) 0.86 55.0%
26 6.99(22) 1.08(5) 0.62(2) 0.12(3) 0.82(4) 0.60 79.8%
28 7.21(28) 1.05(6) 0.60(3) 0.14(4) 0.82(5) 0.72 70.6%
30 7.08(45) 0.93(8) 0.64(4) 0.06(6) 0.78(8) 1.54 11.0%
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D tr~kW ,k4!5C~kW2!a21S k4
21m1

2

kW21k4
21m1

2
2

k4
21m2

2

kW21k4
21m2

2D ~26!

52C~kW2!aS 1

kW21k4
21m1

2
2

1

kW21k4
21m2

2D , ~27!

wherea is a fitting parameter. This formula does not repr
duce the correct asymptotic behavior at large mome
;(kW21k4

2)21 times logarithmic corrections. However, this

not a problem because our largest value ofukW u is less than 2
GeV, and we are probably far from the ultraviolet regim5

We wish to emphasize that our pole parameters — to
extent that they are a valid fit — are gauge-independ
quantities that characterize the gluon.

The equal-time part of this propagator is given
D tr(kW )5(2p)21*du4D tr(kW ,k4), wherek452sin(u4/2). This
gives

D tr~kW !52C8~kW2!a~A1
21/22A2

21/2! ~28!

5C9~kW2!a
41h11h2

A1
1/2A2

1/2~A1
1/21A2

1/2!
, ~29!

wherehi[vk21mi
2 andAi[4hi1hi

2 for i 51,2. If we take
a pair of complex conjugate poles,m1

25x1 iy and m2
25x

2 iy , we obtain

D tr~kW !5C-~kW2!a
v

~u214y2v2!1/2@~u214y2v2!1/21u#1/2,

~30!

whereu[4(kW21x)1(kW21x)22y2 andv[(21kW21x). The
case of a pair of real poles is obtained from this formula
taking a negative value ofy2. For the case of a lattice o
finite volumeV5L4, we modify this formula to

5In the Landau gauge@20# the gluon propagator reaches three-lo
asymptotic scaling at momenta of about 5–6 GeV.
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D tr~kW !5z@~kW2!a1r #
v

~u214y2v2!1/2@~u214y2v2!1/21u#1/2.

~31!

The factor

v@~u214y2v2!1/21u#21/2

5~A12A2!@81/2iy~A1
1/21A2

1/2!#21

is slowly varying over the relevant range ofkW and parameter
values, so a fit to Eq.~31! is a test of the simpler formula

D tr~kW !5z8@~kW2!a1r #
1

~u214y2v2!1/2. ~32!

Stated differently, Eqs.~31! and ~32! have the same singu
larities that are nearest to the origin. In the continuum lim
we haveu→4(kW21x) and v→2, and Eq.~32! is a lattice
discretization of Gribov’s approximate formula~8! provided
that the fitting parameters have the valuesr 50, a50.5, x
50, with the identificationy25M4. It is intended to report
on the fit to Eq.~32! elsewhere, but preliminary indication
are that it is comparable in quality to the fit to Eq.~31!.

For each lattice sideL we have made a fit of the param
etersz(L),r (L),a(L),x(L) andy2(L). By using Table 3 of
@21# and by setting the physical string tension equal toAs
50.44 GeV we obtain that, forb52.2, the inverse lattice
spacing isa2150.938 GeV. This givesa50.21 fm, so that
the largest lattice volume considered here, i.e.V5304, corre-
sponds to (6.3 fm)4, the smallest non-zero momentum th
can be considered for that lattice is equal to 0.196 G
while the maximum momentum value~for each lattice side
L) is 1.876 GeV. The results6 are exhibited in Table I, and

6The fits have been done using gnuplot; the errors repre
68.3% confidence interval. Similar results have been obtained u
a conjugate-gradient method with errors estimated by a jack-k
method. Let us notice that we did not consider the correlati
between different momenta when fitting the data. However, at l
in the Landau gauge, the covariance matrix for the gluon propag
in momentum space is essentially diagonal@22#, and the value of
the ‘‘naive’’ x2/d.o.f. is usually compatible with the value obtaine
using the full covariance matrix@23#.
1-5
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TABLE II. Extrapolation to infinite lattice sideL for the five fitting parameters appearing in Eq.~31! ~we
always haver 50). Five different cases are considered~see Sec. II!.

kWmin
2 No. data points z a x y2 x2/d.o.f. Q

17.2(249) 0.48(5) 20.2(1) 0.45(1)
0.5 23 12.8(20) 0.45(7) 0.11(17) 0.45(6) 0.98 48.1%
0.3 25 13.4(11) 0.43(4) 0.17(8) 0.42(3) 0.94 53.8%
0.5 23 11.5(2) 0.49(1) 0 0.47(4) 0.96 50.9%
0.3 25 11.1(1) 0.51(1) 0 0.39(2) 1.22 21.7%
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the curves are plotted in Figs. 2 and 3. There is noa priori
reason why a 2-pole fit should be accurate over the wh
range of momenta considered. However the fit is excel
for all momentakW2 and for eachL. We have also checke
that results in agreement with those reported in Table I
obtained if one considers only the data corresponding tokW2

,2.
We have extrapolated to infiniteL the fitting parameters

z(L),a(L),x(L),y2(L) and the product (rz)(L); in all cases
we tried three different types of fitting functions, namelya
1b/Lc, exp(a)/Lb anda1 log(11b/L), and we chose the fi
with smallestx2/d.o.f. Results7 are shown in Table II~first
row! and plotted in Figs. 4–8.

The reader will have noticed that the product (rz)(L)
extrapolates to 0~see Fig. 8!. This corresponds to avanishing
of D tr(0) at infinite lattice volume, in accordance with@11#.
To check on this important point we have also fittedD tr(0,L)
using the three fitting functions considered above. A good
is provided by D tr(0,L)5exp(a)/Lb, with a52.43(4), b
50.50(1), x2/d.o.f.50.69 and goodness-of-fitQ565.6%
~see Fig.9!.8 An indication of how reliable these fits are is th
comparison of the powerb in the fit of the product (rz)(L)
and ofD tr(0,L) which areb51.1(1) andb50.50(1) respec-
tively. We have also made a similar fit forr (L) ~not plotted!
and obtainedb51.8(1).

We next consider thekW dependence ofD tr(kW ) at low kW .
For the power dependence parametrized by (kW2)a, observe
that a(L) extrapolates toa(`)50.48(5), seeFig. 5. This
agrees with Gribov’s approximate formula~8!, which gives
a50.5. Moreover this value is consistent with the other ro
of Table II, by the method described below, so this res
appears quite stable. Particularly striking is that, withx50
imposed, one obtainsa50.49(1) anda50.51(1) respec-
tively from the fourth and fifth rows of Table II~explained
below!.

Another striking feature of the fit is thaty2(L) is positive
for all 9 values ofL ~see Table I!, corresponding to a pair o

7These fits have also been done usingGNUPLOT. For the fitting
function exp(a)/Lb the results have been checked with the ex
minimizing formula~notice that this fitting function is linear in the
coefficientsa andb after taking the logarithm!.

8When using the fitting functiona1b/Lc we obtain, both for
(rz)(L) andD tr(0,L), a value ofa that is zero within errors but a
worsex2/d.o.f.
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complexconjugate poles rather than a pair of real pol
Moreover, in all casesx(L) is quite small compared toy(L).
For examplex(30)50.06(6) andy(30)50.88(5). The ex-
trapolation to infiniteL also strongly indicates a positiv
valuey2(`).0 and a small, possibly zero, value forx(`).
Thus our data are compatible with and perhaps suggestiv
poles at purely imaginarym2506 iy , in agreement with Gri-
bov’s formula~8! with y25M4.

Finally, we have fit the data forL528 andL530 using
Eq. ~31! with r 50 and with a low-momentum cutkWmin

2 ,
namely considering only a range of momenta in which fini
size effects are negligible. Results are reported in the sec
and third rows of Table II for two different values ofkWmin

2 .
Similar results are also obtained when the fixed valuex50 is
imposed~see the last two rows of Table II and Fig. 10!. The
values fora andy2 obtained in this way are in good agre
ment with the values obtained by extrapolatinga(L) and
y2(L) to infinite L ~compare the first row of Table II with the
other four rows of the same table!.

~b! Analysis ofD44. Equation~14! shows that for lattice
quantities we may make the identificationV(xW )5D44(xW ),
whereD44(xW ) is the equal-time propagator, and similarly fo
their 3-momentum transforms,V(kW )5D44(kW ). This allows us
to use Eqs.~23! and ~18! to also define the lattice quantit
gcoul

2 (kW ) by

12

11
gcoul

2 ~kW ![kW2V~kW ![kW2D44~kW !. ~33!

Figure 11 shows our data for the running coupling co
stant 12

11 gcoul
2 (kW ). In the continuum limit, its behavior at larg

momentum is governed by the perturbative renormalizat
group ~17! and ~20!. For the fitting formula we modify Eq.
~20! to

kW25Lcoul
2 exp@~bgcoul

2 !21#@~bgcoul
2 !2r1z~bgcoul

2 !a#21,
~34!

which implicitly defines gcoul
2 (kW2). Here r 5102/121, and

Lcoul
2 ,b,z,a are fitting parameters whose significance w

now explain. Naturally the parameterLcoul
2 sets the mass

scale. For smallgcoul
2 , which corresponds to largekW2, this

formula is dominated by the first term in the denominat
whereas for largegcoul

2 , which corresponds to smallkW2, it is

t

1-6
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dominated by the second term in the denominator. For sm
gcoul

2 the formula approaches Eq.~20!, provided thatb5b0

511/24p2'0.046. However we are quite far from the co
tinuum limit for D44(kW ), as indicated by the small valu
^(1/2)tr(U4)&50.221(6) ~for lattice volume 144),9 and we
expect significantb-dependence in the extrapolation to t
continuum limit. Moreover, for fixedb, it has been found
that different lattice discretizations of the gluon field lead
identical gluon propagators to within numerical accura
apart from the overall normalization@24#. We allow for this
by taking the overall normalization ofgcoul

2 to be a fitting
parameter. This requires putting an arbitrary normalizat
coefficient everywhere in front ofgcoul

2 in Eq. ~34!, which is
equivalent to replacing the fixed numberb0 by the fitting
parameterb. Of course, an extrapolation inb to the con-
tinuum limit should giveb5b0.

For largegcoul
2 and smallkW2, this formula approaches

bgcoul
2 5S Lcoul

2

zkW2 D 1/a

. ~35!

Thus the parameterz sets the overall normalization in th
strong-coupling or infrared regime, anda governs the
strength of the singularity ofgcoul

2 in the infrared limit. If the

color-Coulomb potentialV(kW ) is governed by a string ten
sion at large distances thengcoul

2 (kW );const/kW2, which corre-
sponds toa51.

9Before minimizingFver we find ^(1/2)tr(U4)&520.0005(57).

FIG. 4. Fit of the parameterz(L) ~see Table I! as a function of
1/L using a2b/Lc. We obtain a517.2(249), b535.9(117), c
50.38(83),x2/d.o.f.50.89 and goodness-of-fitQ550.1%.
01400
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On a finite periodic lattice with finite lattice spacing an
with gcoul

2 (kW ) defined by 12
11 gcoul

2 (kW )[kW2V(kW ), necessarily

gcoul
2 (kW ) vanishes atkW50. Actually gcoul

2 (kW ) gets a maximum

value atkW2'0.2 and goes to zero in the infrared limit~see
Fig. 11!. This unphysical behavior is a lattice artifact th
also appears in studies of the running coupling constant
ing the three-gluon vertex@25#. In order to fit our data we
have made a low-momentum cut atkWmin

2 50.5. The values of

FIG. 5. Fit of the parametera(L) ~see Table I! as a function of
1/L using a1 log(11b/L). We obtain a50.48(5), b54.0(13),
x2/d.o.f.50.66 and goodness-of-fitQ570.6%.

FIG. 6. Fit of the parameterx(L) ~see Table I! as a function of
1/L using a1 log(11b/L). We obtaina520.2(1), b510.0(34),
x2/d.o.f.50.94 and goodness-of-fitQ547.4%.
1-7
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ATTILIO CUCCHIERI AND DANIEL ZWANZIGER PHYSICAL REVIEW D 65 014001
the parameters which we obtain10 are Lcoul
2 51.0(2), z

51.2(1), b850.18(2), b50.20(2), a51.9(3), with
x2/d.o.f.50.44 and goodness-of-fitQ598.3% using the data
for L528 andL530, whereb8[ 11

12 b. We have checked tha
similar results are obtained withkWmin

2 50.3 andkWmin
2 51.0 ~see

Table III! but the resultingx2/d.o.f. is smallest forkWmin
2

50.5.
The value ofa;2 corresponds togcoul

2 ;const/ukW u, and

V(kW );const/ukW u3 at low momentum. The volume depen
dence of the data, and therefore of our fit, is quite weak,
one notices in Table III that the value ofa decreases as th
low momentum cut-offkmin

2 increases. This corresponds to

increase in the strength of the singularity ofgcoul
2 (kW ) at kW

50 as finite-volume effects are reduced. However, as
plained above, we must make an extrapolation inb in order
to arrive at any precise conclusion about the strength of
singularity in the continuum limit. Nevertheless, our data
finite b andL clearly indicate a color-Coulomb potential th
is more singular thanV(kW );const/ukW u2 at low kW .

III. CONCLUSIONS

We have used simple formulas to fit the data for the equ
time gluon correlatorsD tr(kW ) and D44(kW ) in SU(2) lattice
gauge theory in the minimal lattice Coulomb gauge atb
52.2. Our fits have the following features:

~i! The equal-time would-be physical gluon propaga

10The fit has been done using a conjugate gradient method w
numerical inversion of Eq.~34!. Errors are estimated using a jac
knife method.

FIG. 7. Fit of the parametery2(L) ~see Table I! as a function of
1/L using a1 log(11b/L). We obtain a50.45(1), b513.6(45),
x2/d.o.f.51.05 and goodness-of-fitQ539.3%.
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D tr(kW ,L) at zeromomentumkW extrapolates to 0 in the limit
of infinite lattice volume, i.e.D tr(0,̀ )50. The rate of ap-
proach for lattice volumeV5L4 was fit by D tr(0,L)
5CL2b, where b50.50(1). The vanishing of the gluon
propagatorD tr(kW ) at kW50 is highly counter-intuitive, and the
only explanation for it is the suppression of the low mome
tum components of the gluon field that is a particular feat

a

FIG. 8. Fit of the product (rz)(L) ~see Table I! as a function of
1/L using exp(a)/Lb. We obtaina55.6(4), b51.1(1), x2/d.o.f.
50.36 and goodness-of-fitQ592.6%.

FIG. 9. Fit of the zero-momentum transverse gluon propaga
D tr(0,L) as a function of 1/L using exp(a)/Lb. Considering the data
for L>16, we obtaina52.43(4), b50.50(1), x2/d.o.f.50.69 and
goodness-of-fitQ565.6%.
1-8
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of the Gribov horizon, which constitutes the boundary
configuration space.11

~ii ! Asymptotically at low momentum our fitting formul
behaves likeD tr(kW )}(kW2)a, with the value extrapolated to
infinite lattice volumea50.48(5) ~see Table II!. With the
value x50 imposed and a low-momentum cut-off one o
tains ~from L528 andL530) a50.49(1) ora50.51(1)
~see Table II!. This is in striking numerical agreement wit
Gribov’s formula D tr(kW )5(ukW u/2)@(kW2)21M4#21/2, which
givesa50.5.

~iii ! We have obtained an excellent 2-pole fit forD tr(kW ).
Our fit indicates that the poles occur atcomplex m25x6 iy .
The real partx is quite small and compatible with 0. Remar
ably, a pole ink2 at purely imaginarym2506 iy agrees with
the Gribov propagatorD tr(kW )5(ukW u/2)@(kW2)21M4#21/2, with
y25M4. Note that only a purely imaginary pair of pole
gives a correction to the free equal-time propagatorD tr(kW )
'ukW u21

„12 1
2 @M4/(kW2)2#… of relative order (kW2)2 with coef-

ficient of dimension~mass! 4. It may not be a coincidence
that this is the dimension of the gluon condensate^F2&,
which is the lowest dimensional condensate in QCD. B
cause of the gauge invariance of the location of the poles

11A similar result, i.e. a transverse gluon propagator that atzero

momentumkW extrapolates to 0 in the limit of infinite lattice volum
V, has been recently obtained for pureSU(2) lattice gauge theory
in the three-dimensional case and in the magnetic sector at fi
temperature@26#.

FIG. 10. Plot of the gluon propagatorD tr(kW ) as a function of the

square of the lattice momentumkW2 for L528 (*) and 30 (n) and
fits of these data using Eq.~31! with the parameter values and lo
momentum cut-offs reported in the fourth~solid line! and fifth ~dot-
ted line! rows of Table II. Error bars are one standard deviation
01400
f
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virtue of the Nielsen identities@1#, and because of the theo
retical suggestiveness of our result, we are encourage
report the valuesm2506 iy , for y50.671(7) in lattice
units, or y50.590(7) GeV2, M5y1/250.768(4) GeV for
the location of the gluon poles ink2.

~iv! The Coulomb gauge offers a definition of the runni

coupling constant,12
11 gcoul

2 (kW )5kW2D44(kW ), which has advan-
tages for numerical determination. It is less subject to fl
tuation than the determination ofg2 from the 3-point func-
tion in the Landau gauge@25#, but the extrapolation inb
remains to be done.

~v! Our data forD44(kW ) require a cut at low momentum t
eliminate lattice artifacts. After this cut, the running couplin

constant defined by12
11 gcoul

2 (kW /LQCD)5kW2D44(kW ) extrapo-
lates to low momentum in accordance with infrared slave

namely the running coupling constantgcoul
2 (kW /LQCD) di-

verges in the zero-momentum limit.
~vi! The observed strongenhancementof the instanta-

neous color-Coulomb potentialV(kW ) and the strongsuppres-
sion of the equal-time would-be physical gluon propaga

D tr(kW ) both at lowkW , strongly support the confinement sc
nario of Gribov @6,7#. In addition to this qualitative agree
ment, we note excellent numerical agreement of our fit
Gribov’s formula D tr(kW )5(ukW u/2)@(kW2)21M4#21/2, reported
in 1, 2, and 3 above. If this excellent fit is maintained
larger b values, then it appears that we have obtained
quantitative understanding ofD tr(kW ).

ite

FIG. 11. Plot of the running coupling constant12
11gcoul

2 (kW )

[kW2D44(kW ) as a function of the square of the lattice momentumkW2

for L528 (*) and 30 (n) and fits of these data using Eq.~34!
with the parameter values and low momentum cut-offs reporte
the second row of Table III. Error bars are one standard deviat
1-9
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TABLE III. Fit of the running coupling constant12
11gcoul

2 (kW )[kW2D44(kW ) using Eq.~34!. The resulting
fitting parameters,x2/d.o.f. and goodness-of-fitQ are reported for three different values of the low

momentum cutkWmin
2 .

kWmin
2 No. data points Lcoul

2 z b85
11
12b a x2/d.o.f. Q

0.3 25 0.84(8) 1.14(5) 0.165(9) 2.2(1) 0.59 92.8%
0.5 23 1.0(2) 1.2(1) 0.18(2) 1.9(3) 0.44 98.3%
1.0 20 1.2(9) 1.3(4) 0.19(7) 1.7(7) 0.48 95.8%
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APPENDIX: NUMERICAL GAUGE FIXING

The minimal lattice Coulomb gauge is defined by tw
gauge-fixing steps. In the first step thespatial link variables
UxW t iPSU(N), for i 51,2,3, are made as close to unity
possible by minimizing the ‘‘horizontal’’ minimizing func-
tion

Fhor,U~g![(
xW ,t,i

Re Tr~12gUxW t i !, ~A1!

with respect to gauge transformationsgxW t . The sum extends
over all horizontal or space-like links, and the minimizati
is done independently on each time-slicet5x4. ~The gauge
transform gUxm of the link variable Uxm is defined by
gUxy[gx

21Uxygy , wherey[x1m̂ and m̂ is the unit vector
in the m direction.! The stochastic over-relaxation algorith
does not necessarily yield the absolute minimum of the m
mizing function but leads in general to one of several lo
minima. Different minima correspond to different Gribo
copies. For the lattice volumes 164 and 204 we have checked
that the dependence of the gluon propagatorsD tr(kW ) and
D44(kW ) on which Gribov copy one ends up is of the order
magnitude of the numerical accuracy, in agreement with R
@27#.

After this step the lattice gluon field is 3-dimensiona
transverse@see Eq.~A5! below#. But the gauge fixing is as
yet incomplete because it leaves at-dependent but
xW -independent gauge transformationgt arbitrary. This arbi-
trariness is fixed in the second step in which thetime-like
link variablesUxW t4 are made as close to unity as possible
minimizing the ‘‘vertical’’ minimizing function

Fver,U~g![(
xW ,t

Re Tr~12gUxW t4!, ~A2!

with respect toxW -independent gauge transformationsgt . The
sum extends over all vertical or time-like links. This gau
fixing of the vertical links does not alter the spatial correla
01400
n

e
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l

f
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y

r

D tr(kW ) nor the color-Coulomb potentialV(Atr). However it
reduces the non-instantaneous part ofD44(kW ), so that it is
suppressed compared to the instantaneous partV(kW ) and van-
ishes with the lattice spacing in the continuum limit.

This gauge fixing, in which firstFhor is minimized and
thenFver is minimized is equivalent to the limit of the inter
polating gauge in which the single function, depending o
real positive parameterl,

F5Fhor1lFver ~A3!

is minimized, and the limitl→0 is taken.
With this gauge fixing, the link variables should approa

unity in the continuum limit in the sense tha
limb→`(1/2)Tr(Uxm)51. In our study atb52.2 we obtain
^(1/2)Tr(Uxi)&50.86249(3) for the space-like links
whereas for time-like linkŝ (1/2)Tr(Ux4)&50.221(6) on
lattice volume 144. ~The dependence on the volume is n
strong.! Thus we are quite far from the continuum limit fo
quantities such asV(kW ) that depend on the vertical links, an
they may exhibit significantb-dependence in the extrapola
tion to the continuum limit. This will be reported subs
quently.

The gauge fixing just described produces a configura
U which is a local minimum ofFhor,U(g) and Fver,U(g) at
g51. At a local minimum the minimizing functions are~i!
stationary under infinitesimal variationsdF50 and ~ii ! the
matrix of second variations of the minimizing function
non-negative,d2F>0. We now comment on implications o
these properties for gauge-fixed configurationsU. At a local
minimum, the horizontal minimizing functionFhor,U(g) is
stationary with respect to infinitesimal variationsgx→gx(1
1vx). Herevx5tavx

a is an element of the Lie algebra of th
SU(N) group, with anti-Hermitian basista satisfying
@ ta,tb#5 f abctc and Tr(tatb)52 1

2 dab. The corresponding
variation ofFhor is given by

dFhor,U~g!52
1

2 (
xW ,i

Tr@~vxW1 î ,t2vxW t!~
gUxW t i2

gUxW t i
†

!#.

~A4!

For a configurationU which is a local minimum~at gx51),
this quantity must vanish for allvxW t , which gives

(
i

~AxW ,t,i2AxW2 î ,t,i !50. ~A5!

HereAxW ,t,i is the lattice gluon field defined by
1-10
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Axm
a [2Tr@ ta~Uxm2Uxm

† !#, ~A6!

which is a lattice analog of the continuum connectionAm
a (x).

Equation~A5! is the lattice transversality condition for sp
tial directions, which is the defining condition for the lattic
Coulomb gauge.

Since the gauge-fixed configurationU is a local minimum
of Fhor,U(g) ~at gx51), its second variation is non-negativ

d2Fhor,U~g!5„v,M ~U !v…>0 for all v. ~A7!

HereM (U) is the lattice Faddeev-Popov matrix defined on
given time-slicet by

„v,M ~U !v…[2
1

2 (
xW ,i

Tr@~vxW1 î 2vxW !~UxW ivxW1 î 2vxWUxW i

1vxW1 îUxW i
†

2UxW i
†

vxW !#, ~A8!

and we have suppressed the indext which is common to all
variables. The positivity ofM (U) is a condition on configu-
v.

01400
rations U which, together with the transversality conditio
~A5!, defines the lattice Gribov region, whose boundary
the Gribov horizon.

@That this is a highly restrictive condition is suggested
the following consideration. The Faddeev-Popov mat
M (U) for SU(N) gauge theory is a symmetric matrix o
dimensionV(N221), whereV is the~large! number of sites
of the lattice, so it hasV(N221) eigenvalues. Configuration
space is divided intoV(N221)11 different regionsRn ac-
cording to the numbern50, . . . ,V(N221) of positive ei-
genvalues ofM (U). Of these, the Gribov region consists
the single regionRV(N221) that includesUxW i51. For the
SU(2) group at least, all regions are populated. To see t
observe that forUxm51, we haveM (1)52D, whereas for
Uxm521, we haveM (21)5D, whereD is the lattice La-
placian. In these 2 cases, depending on the sign, the con
ration U561 is in regionRV(N221) or R0. By continuity
therefore allV(N221)11 different regions are populated
Similar considerations apply toFver,U(g).#
r

@1# N.K. Nielsen, Nucl. Phys.B101, 173 ~1975!.
@2# R.E. Cutkosky, Phys. Rev. D30, 447 ~1984!.
@3# C. Parrinello, S. Petrarca, and A. Vladikas, Phys. Lett. B268,

236 ~1991!.
@4# K.M. Decker and Ph. de Forcrand, Nucl. Phys. B~Proc.

Suppl.! 17, 567 ~1990!.
@5# A. Cucchieri and T. Mendes, Nucl. Phys.B471, 263 ~1996!.
@6# V.N. Gribov, Nucl. Phys.B139, 1 ~1978!.
@7# D. Zwanziger, Nucl. Phys.B518, 237 ~1998!.
@8# N.H. Christ and T.D. Lee, Phys. Rev. D22, 939 ~1980!.
@9# D. Zwanziger, Nucl. Phys.B485, 185 ~1997!.

@10# D. Zwanziger, Nucl. Phys.B378, 525 ~1992!.
@11# D. Zwanziger, Nucl. Phys.B364, 127 ~1991!.
@12# A. Cucchieri and D. Zwanziger, following article, Phys. Re

D 65, 014002~2002!.
@13# A. Cucchieri and D. Zwanziger, Phys. Rev. Lett.78, 3814

~1997!.
@14# A. Szczepaniaket al., Phys. Rev. Lett.76, 2011~1996!.
@15# D.G. Robertsonet al., Phys. Rev. D59, 074019~1999!.
@16# L. Baulieu and D. Zwanziger, Nucl. Phys.B581, 604 ~2000!.
@17# L. Baulieu, P.A. Grassi, and D. Zwanziger, Nucl. Phys.B597,
583 ~2001!.
@18# A. Cucchieri, Nucl. Phys.B521, 365 ~1998!.
@19# L. Baulieu and D. Zwanziger, Nucl. Phys.B548, 527 ~1999!.
@20# D. Becirevicet al., Phys. Rev. D61, 114508~2000!.
@21# J. Fingberg, U. Heller, and F. Karsch, Nucl. Phys.B392, 493

~1993!.
@22# C. Bernard, C. Parrinello, and A. Soni, Phys. Rev. D49, 1585

~1994!.
@23# D.B. Leinweberet al., Phys. Rev. D60, 094507~1999!; 61,

079901~2000!.
@24# A. Cucchieri and T. Mendes, inStrong and Electroweak Matte

’98, edited by J.Ambjo”rn et al. ~World Scientific, Singapore,
1999!; A. Cucchieri, The Lattice Gluon Propagator into the
Next Millennium, in Understanding Deconfinement in QCD,
edited by D. Blaschke, F. Karsch, and C. D. Roberts~World
Scientific, Singapore, 2000!.

@25# B. Alles et al., Nucl. Phys.B502, 325 ~1997!; P. Boucaud
et al., J. High Energy Phys.10, 017 ~1998!.

@26# A. Cucchieri, F. Karsch, and P. Petreczky, Phys. Lett. B497,
80 ~2001!.

@27# A. Cucchieri, Nucl. Phys.B508, 353 ~1997!.
1-11


