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Numerical study of the gluon propagator and confinement scenario in the minimal Coulomb gauge
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We present numerical results 81U(2) lattice gauge theory for the space-space and time-time components
of the gluon propagator at equal time in the minimal Coulomb gauge. It is found that the equal-time would-be
physical 3-dimensionally transverse gluon propagﬁlﬁ(l?) vanishes ak=0 when extrapolated to infinite
lattice volume, whereas the instantaneous color-Coulomb pot@uj@f) is strongly enhanced &=0. This
has a natural interpretation in a confinement scenario in which the would-be physical gluons leave the physical
spectrum while the long-range Coulomb force confines color. Gribov’'s fornﬁlﬂ(alz):(|IZ|/2)[(I22)2
+M*]*2 provides an excellent fit to our data for the 3-dimensionally transverse equal-time gluon propagator
DY(k) for relevant values ok.
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[. INTRODUCTION relaxed algorithm[4]. Then statistically independent con-
figurationsU are gauge fixed to the minimal lattice Coulomb
Wilson’s lattice gauge theory provides a regularized for-gauge by a minimization that is effected using a stochastic
mulation of gauge theory that is manifestly gauge invariantover-relaxation algorithm described 5] with accuracy
and numerical simulations do not require gauge fixing. How<(diA;)%)<10"'°, where the average is taken on each time
ever gauge fixing on the lattice is advantageous to gain corflice separately and A; is defined in Eq(AS). Finally the
trol of the critical or continuum limit, for this makes avail- component®(k) andD 4(k) of the equal-timegluon cor-
able the strong results of gauge-fixed continuumrelator are evaluated. The lattice Coulomb gauge is more
renormalization theory. For example one may prove in coneasily accessible to numerical study than the Landau gauge
tinuum renormalization theory that a certain quantity, such apecause each time slice contributes separately to the numeri-
the running coupling constant, defined in terms of gluon corcal average which, for a lattice of volume“3@ives a factor
relation functions in some gauge, is finite when the cutoff isof 30 gain. The total computer time devoted to this project so
removed. Then the corresponding lattice quantity, defined if@" i about 500 days on a 500 MHzPHA workstation _
the corresponding lattice gauge, should be finite in the criti- The results provide a test of the confinement scenario that

cal limit, and it becomes of interest to make a numericalVas originally proposed by Gribdé] and elaborated ifi7].

determination of that quantity. Moreover one may determineThe confinement scenario is particularly transparent in the

by numerical fit the location of the poles of propagatorscr:g:l&?%g&‘i?;n?s(;?gssilnéz Z g?tllsm'ilclg?jqr?e énatr;i,ss?gse
which, according to the Nielsen identities, is independent o : v xactly, including t>au W

the gauge parametefs]. Finally, if one has in hand a con- ‘Ei:aiE.iHAi ’E‘]:.pqu’ and the Hllbgrt space has pOsI-
finement scenario in a particular gauge, then it is possible tve metric. .HereEi 1S 'the color-.electrlc fieldD; is the
test its predictions numerically for gauge-fixed quamities_g_auge-covarlant derivative, ang, is the color-charge den-
Although the scenario may look quite different in different sity of quarks. Moreover the gauge fixing, described in the

gauges, nevertheless any one of them provides a valid peﬁppendix, is done independently within each time-slice so

spective. that _the equa}l—time Egclidgan and Minkowskian of the cor-
Previous numerical studies of the Coulomb gauge weréelat'on functions are identical. .

reported in[2,3]. We present here a numerical study of the N the Coulomb gauge, the 3-vector potentilis trans-

gluon propagator inSU(2) lattice gauge theory, without VErs€diAi=0, SOA=A". Gauss's law is solved by

guarks, in the minimal Coulomb gaugddefined in the Ap-

pendi®. Simulations have been done @t 2.2 for 9 differ- Ei=E-d9, (1)

ent lattice volumes/=L*4, with L=14, 16, 18, 20, 22, 24,

26, 28 and 30(A total of 2420 configurations have been where the color-Coulomb fielg is given by

generated, from 50 configurations for*a@p to 600 for 14.)

The procedure is to first equilibrate ungauge-fixed configu- d=M"1p.ou- 2

rationsU according to the Wilson action using a hybrid over-
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Here pcou=pqu—[ A, E{'] is the color-charge density of the lim DY(K)=0, (11)
dynamical degrees of freedom, andM=M(A")= K0
—D;(A") g; is the 3-dimensional Faddeev-Popov operator.

In this gauge, the Hamiltoniatwithout quarks is given  although the rate of approach bf'(0.L) to 0, as a function
by of L, was not established, nor was it determined whether the
renormalized gluon propagator also shares this property. The
accuracy of Eq(8), and the crucial question of the extrapo-

lation to largeL of D”(IZ,L) are addressed in the numerical
study reported here.

We have also evaluated the 4-4 component of the gluon
propagator

H=(2g3)* f d3x(E2+B?) (3
=(29%) ! f d3x(E"?+B?)

(2097 f XY peou(X)VXYi A peou( ). (4) Daa(X,1)=(Aa(X,)A4(0,0)) (12

at equal-time. In the minimal Coulomb gaum4(§,t) is

Here given by[12]

ALY — try—1 2 try—17- -
is a color-Coulomb potential-energy functional, depending ) ) . .
on AY', that acts instantaneously and couples universally td'heret=x, is the Euclidean “time” andP(x,t) is a non-
color charge. The continuum form of the Coulomb Hamil- instantaneous vacuum-polarization term. This gives
tonian, with proper attention to operator ordering is given in e
[8] and the lattice form ir{9]. For the minimal Coulomb f dtD(X,t)=V(X)+0(e€), (14)
gauge, this Hamiltonian is supplemented by the boundary —e
condition that the wave functional® (A") are restricted to .
the Gribov region(This is explained below and in the Ap- where o(e) vanishes withe. We call V(x) the color-
pendix) It was proposed in continuum theory 6] and in  Coulomb potential. In momentum space E§3) reads
lattice theory in[10], that this restriction may be imposed by R R R
use of an effective action or Hamiltonian Dk, k) =V(K)+P(k,ky), (15)

where Iim<4_,wP(IZ,k4)=0. In dimensiond<4, V(x) coin-

HamH+(200) | aPxmeal(-v2) Al (@ vherel
cides with

As a result,ﬁtheeenergy of a gluon of momentkrgets modi- Vo(X—Y)=(V(x,y;A")). (16)
fied to E?(k)=k2+ (k?) "M%, as one sees from the qua-

dratic part of Her. One obtains for the equal-time However ind=4 dimensions there is a mixing d(k) and
3-dimensionally transverse Wo_uld-be physical gluon propap i k,) associated with divergences, avick) differs from
gator the approximate expression Vo(K) by terms of the forrrr:ng(z)”llz2 in each order of per-

) 1 1 turbation theory, as explained in detail [ib2].
D"(k):(2w)*1f dks— o= = (7) Stated simply, the confinement of color is caused by the
ka+ES(k)  2E(k) predominantly long range of the color-Coulomb potential

V(x), corresponding to an enhancementgk) at low |K|.

— _ K _ (8) Note however that\/(i) is not the gauge-invariant energy
2[(k?)2+M4]Y2 eigenvalue of the quantum state of infinitely massive sepa-
rated quarks. Nevertheless it is an important quantity. It may
This quantity is defined by be used as an order parameter for color confinefnand
. L . it is the starting point for calculations of the ground-state
Dij (k)= (&; —kik;)D"(Kk), (9  wave-functiona[13-15.
) The rather surprising and counter-intuitive vanishing of
whereDj} (k) is the Fourier transform of D'(k) atk=0, and the enhancement ¥{k) atk=0 in the
.. . . minimal Coulomb gauge are both caused by the Gribov ho-
DI (x—y)=(Al(X,HA{(y,1)). (100  rizon. This is a boundary in the space of configurations

A"(x) defined by the condition that the Faddeev-Popov op-

In the absence of an estimate of corrections, one does n%ﬁator be positiveM (A")=0. The Gribov horizon represents
know how accurate Eq8) may be. However it was proven the points where the lowest eigenvalig(A") of M(A")

[11] that the lattice gluon propagata“(lg) atinfinite spatial  first goes negative. As shown in the Appendix, all configu-
lattice volumeL® must indeedvanishat k=0, rations that contribute to the Euclidean functional integral in
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the minimal Coulomb gauge are constrained to lie within the
Gribov horizon. Because of entropy consideratitsee Refs. &
[6,10]), the Euclidean probability gets concentrated near the s

horizon where the color-Coulomb interaction eneigA"), 100 £ E

Eq. (5), diverges. This causes an enhancement of the instan

taneous color-Coulomb potenti&tl(i). At the same time it

places very severe bounds on the magnitude of the low mo

mentum components of the gluon fiéld. - °
The Coulomb gauge does not offer any particular advan-

tage for perturbative calculations and renormalization. How- 10 ¢ e v

ever it is the finite limit of renormalizable gaug€s9]. A ; -

valuable feature of this gauge is that the time-time compo- [ ©

nent of the gluon propagath44(E,k4) is independent of - ®

both the cut-offA and the renormalization mags[7]. This - e

holds separately for its instantaneous pé(k). Thus the a L.

minimal Coulomb gauge allows us to introduce a running 1 * s, ® oy r
coupling constant by?,,(|k|)=constk?V(k). The propor- i xo o te
tionality constant is determined by the condition that in the [
large-momentum or weak-coupling regirgéom(lﬂ) satisfy
the standard renormalization-group equation,

k2
99 FIG. 1. Plot of the gluon propagatoB!(k) and D (k) as a
coul_ 3 5 2
|k| J k| Beoul Yeou) = — (BoYcout P19c0ut - - ) function of the square of the lattice momentifor L =28 (sym-

17) bols * andO respectively andL =30 (symbolsA andV respec-
tively). Notice the logarithmic scale in theaxis. Error bars are one

where, for SU(N) gauge theory without quarkshg standard deviation.

=(47) 21IN/3, b,;=(4) *34N?/3. The proportionality
constant is calculated ir12], with the result that foS U(N)
gauge theory without quarks

log of the invariant charge in QED that is defined in terms of
the transverse part of the photon propagator in a Lorentz-
covariant gauge.

— 12 2 _
k=V(k)= ﬁgcoul(|k|/Acoul)v (18 Il. RESULTS

. We evaluate the space-space gluon propagator
and more generally, witNN; quark flavors P P 9 propag

N 12N - Q)=
KAV(K) = =y, Geou Kl Acou- (19 D'(0) =5y

Here A oy Aqcp is a finite QCD mass scale, characteristic 1 L 3 3
of the' Coulomb gauge, such that asymptotically in the weak- tr(k)—_v > DD DZZ(k,t), (22)
coupling regime

k?=A2,,exd (bogZw) ~*1(bogZw)" (200  and the time-time gluon propagator

where r=b, /b3. The ratio A cou/Aqcp May be obtained D44(k)——V 2 2 D2(k,t), (23)
from a 2-loop calculatiofil2]. We conclude that in the mini- t=1b=
mal Coulomb gauge the running coupling constant of QCD

may be obtained from a numerical determination of thewhere

equal-time 2-point functio,,, whereas in other gauges it

must be obtained from a 3-point function. The running cou- bb

pling constang,,, that we have introduced is the QCD ana- D, (k )= < H

2
b > -
2A similar confinement scenario for the Landau gauge was pro- + EX: A;msm(a X)| (24)
posed in16,17,. It has also been verified numerically in the Landau
gauge that typicalthermalized and gauge-fixedonfigurations lie b
very close to the Gribov horizof18]. and the lattice gluon fieltA;m is defined in Eq(A6). Here,
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FIG. 2. Plot of the gluon propagat®"(k) as a function of the FIG. 3. Plot of the gluon propagat®"(k) as a function of the
square of the lattice momenturk? for L=14 (*), 18 (A), square of  the lattice momentum k2 for L
22 (0), 26 (¢), and 30 () and fits of these data using E@1) =16 (*), 20 (A), 24 (O) and 28 (¢) and fits of these data
with the parameter values reported in Table I. Error bars are onasing Eq.(31) with the parameter values reported in Table I. Error
standard deviation. bars are one standard deviation.

etrize these data, we were guided by the Nielsen identities
[1]. They tell us that the poles of the gluon propagator

D”(Iz,k4) are independent of the gauge parametdrspar-

as usual, we have defineld=2 sin(@/2), for —m7<@,
=2mn;/L<m, and integem;. An average over thé time

slices is included. In our simulations we consider onlyt_ lar for the cl ; dofined by.Al+ 9 A =0
3-momenta aligned along major axés=(0,0,2wn/L). No- icular, for the class of gauges defined by,Aq+diAi =0,
] ray i o L ) which interpolate between the Landau gauge,1, and the
tice th?‘th(O) IS nch]t g|\(/:en IbyDb (k) atk=0. Eh_e differ- N Coulomb gauge) =0, the poles are independentxfin the
ence is due to the Coulomb gauge condition — the, .4, , gauge, the poles occulkdt k?+ k2= —m?, by Lor-
continuum-like condition, Eq(A5) — which in momentum lid . : dth Iso in all th
space reads entz.(Eum eaﬂmyanant;e, and thus also in all these gauges,
by virtue of the Nielsen identities. We have made a 2-pole fit
with poles atm? andm3, which may be either a pair of real
3 numbers or a complex conjugate pakccording to[11], the
2 R — propagator in the minimal Coulomb gauge vanishesk at
. kIAkII_O! (25) o . . . . s
i=1 =0. We use this condition to fix the residues to within an
over-all normalization

whereAy, is the three-dimensional Fourier transform of the

gauge fieldAg; . If IZ#(0,0,0) only two of the three Lorentz 3strictly speaking, the Nielsen identities have been established
components oﬁgﬁ — and therefore of\y; — are indepen- only for Faddeev-Popov type gauge fixing. This does not include

dent. This explains the factor @nstead of 9 in the defini- e Minimal Coulomb gauge because the gauge fixing is done by a
minimization procedure that is not describable by a local

tion of DY(k). ) R R 4-dimensional action. However the minimal Coulomb gauge may
Figure 1 show®"(k) andD (k) as a function ok? on  be obtained as a limiting case of a local 5-dimensional quantum

the same logarithmic plot for the lattice sides-28 and 30. field theory that describes stochastic quantization with stochastic

The qualitative behavior is quite different in the two casesgauge fixing, as has been discussed recenfl§6nl7. The Nielsen

WhereaD ,(K) arows stronalv at |OWZ’ by contrasD (K identities may be extended to the 5-dimensional formulation.
44(k) 9 gy y (k) 4According to the general principles of quantum field theory, the

turns over ar?d decrt(raasgs at law propagator of physical particles should have poles only at real posi-
() Analysis of D". Figures 2 and 3 show our data for {jye m?. However in the confined phase the gluon propagator may

D“(IZ) for the nine lattice volumes considered. To param-have singularities that correspond to unphysical excitations.
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TABLE |. Fit of the transverse gluon propagalDF(IZ) using Eq.(31). The resulting fitting parameters,
x?/d.o.f. and goodness-of-fi are reported for each lattice sitle

L z r @ X y? x3/d.o.f. Q
14 3.93(33)  3.86(35  0.76(5)  0.36(6) 1.07(5) 0.42 73.9%
16 479(42)  2.72(28)  0.70(5)  0.27(8) 1.08(7) 1.46 21.1%
18 591(53)  227(33)  057(7)  038(13)  1.11(13) 3.45 0.4%
20 578(19)  1.80(8)  0.66(2)  0.19(4) 0.99(4) 0.45 84.5%
22 581(23)  157(8)  0.67(3)  0.09(4) 0.97(5) 0.59 76.5%
24 6.33(25)  1.43(8)  0.62(3)  0.12(4) 0.99(6) 0.86 55.0%
26 6.99(22)  1.08(5)  0.62(2)  0.12(3) 0.82(4) 0.60 79.8%
28 7.21(28)  1.05(6)  0.60(3)  0.14(4) 0.82(5) 0.72 70.6%
30 7.08(45)  093(8)  0.64(4)  0.06(6) 0.78(8) 154 11.0%
k2+m? k24+m3 . . v
DY(K,ky)=C(K?)* Y| ot - 2 2 26) D"(k)=z[(k})*+r] :
( 4) ( ) k2+ki+mi k2+ki+m§ ( ) (U2+4y202)1/2[(U2+4y21)2)1/2+ U]1/2

(31)
1 1
k2+k2+m?2  Kk?+k3+m3

The factor
U[(u2+4y2v2)1/2+u]71/2

:(Al_A2)[81/2iY(Ai/2+A%/2)]_l

=—C(k)“ . (27)

wherew is a fitting parameter. This formula does not repro- _ R
duce the correct asymptotic behavior at large moment# Slowly varying over the relevant rangelofind parameter
~ (k?+k2)~* times logarithmic corrections. However, this is values, so a fit to Eq31) is a test of the simpler formula

not a problem because our largest valuékbfis less than 2 _ . 1
GeV, and we are probably far from the ultraviolet regitne. D"(k):z’[(kz)“+r](—um—m. (32
We wish to emphasize that our pole parameters — to the yv

eﬁfrﬂ?tigia:hﬁegh:rrgctzri\;agutjhélt Eor?re gauge-mdependenétated differently, Eqs(31) and (32) have the same singu-
q ) 9 : . larities that are nearest to the origin. In the continuum limit
The equal-time part of this propagator is given by - _ _
we haveu—4(k“+x) andv—2, and Eq.(32) is a lattice

iRy — -1 trele —9ai ;
D¥(k)=(2m)""fd6,D"(k.ky), wherek,=2sin(6,2). This discretization of Gribov’s approximate formu(8) provided

gives that the fitting parameters have the values0O, «=0.5, x
R R =0, with the identificationy?=M?*. It is intended to report
DY(k)=—C'(k)*“(A; *=A; ") (28)  on the fit to Eq.(32) elsewhere, but preliminary indications
are that it is comparable in quality to the fit to H1).
4+h,+h, For each lattice sidé we have made a fit of the param-

— CN(EZ)&

(29 etersz(L),r(L),a(L),x(L) andy?(L). By using Table 3 of
[21] and by setting the physical string tension equak/t®
=0.44 GeV we obtain that, foB=2.2, the inverse lattice

whereh;=vk?+m? andA;=4h;+h7 fori=1,2. If we take  gpacing isa~1=0.938 GeV. This givea=0.21 fm, so that

a pair of complex conjugate poles);=x+iy andm;=x the largest lattice volume considered hereM-e30*, corre-

Ai/2A§/2(Ai/2+ A%/Z) 1

—iy, we obtain sponds to (6.3 frf), the smallest non-zero momentum that
can be considered for that lattice is equal to 0.196 GeV,
it . v while the maximum momentum valugor each lattice side
D¥(k)=C" (k%) (W2t ay% D) Vg (24 4y20?) T2y a2 L) is 1.876 GeV. The resuftsare exhibited in Table I, and
(30

6 " ; .
- - - The fits have been done using gnuplot; the errors represent
— /(]2 2 2_\2 = 2

whereu=4(k“+x)+ (k"+x)°—y* andv=(2+k"+x). The 68.3% confidence interval. Similar results have been obtained using

cas_e of a pair (,)f real polesz|s obtained from this formula bya conjugate-gradient method with errors estimated by a jack-knife
taking a negative value of”. For the case of a lattice of method. Let us notice that we did not consider the correlations
finite volumeV=L*, we modify this formula to between different momenta when fitting the data. However, at least
in the Landau gauge, the covariance matrix for the gluon propagator
in momentum space is essentially diagof2#], and the value of
5In the Landau gaugl20] the gluon propagator reaches three-loop the “naive” y?/d.o.f. is usually compatible with the value obtained
asymptotic scaling at momenta of about 5-6 GeV. using the full covariance matrip23].
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TABLE II. Extrapolation to infinite lattice sidé for the five fitting parameters appearing in E§1) (we
always have =0). Five different cases are considersée Sec. )l

K2, No. data points z a X y? x2/d.o.f. Q
17.2(249)  0.48(5) —-0.2(1)  0.45(1)

0.5 23 12.8(20)  045(7)  0.11(17)  0.45(6) 0.98 48.1%

0.3 25 13.4(11)  043(4)  0.17(8)  0.42(3) 0.94 53.8%

0.5 23 11.5(2) 0.49(1) 0 0.47(4) 0.96 50.9%

0.3 25 11.1(1)  0.51(1) 0 0.39(2) 1.22 21.7%

the curves are plotted in Figs. 2 and 3. There isanariori complexconjugate poles rather than a pair of real poles.
reason why a 2-pole fit should be accurate over the whol®loreover, in all cases(L) is quite small compared tp(L).
range of momenta considered. However the fit is excellenFor examplex(30)=0.06(6) andy(30)=0.895). The ex-

for all momentak? and for eachL. We have also checked trapolation to infiniteL also strongly indicates a positive
that results in agreement with those reported in Table | ar¥a@luey?()>0 and a small, possibly zero, value fof=).
obtained if one considers only the data correspondin@zto Thus our data are ct_)mpatzlble W'_th :_;md perhaps suggestive of
<2 poles at purely imaginam =0=iy, in agreement with Gri-

We have extrapolated to infinite the fitting parameters POV'S formula(8) with y=M". _
(L), (L), x(L),y3(L) and the productrg)(L): in all cases Finally, we have fit the data for =28 andL =30 using
we tried three different types of fitting functions, namely EQ. (31) with r=0 and with a low-momentum cuky,,,
+b/L¢, exp@)/L® anda+log(1+b/L), and we chose the fit namely considering only a range of momenta in which finite-
with smallesty?/d.o.f. Results are shown in Table Ilfirst ~ size effects are negligible. Results are reported in the second
row) and plotted in Figs. 4—-8. and third rows of Table Il for two different values Eﬁin.

The reader will have noticed that the productz)(L) Similar results are also obtained when the fixed valg® is
extrapolates to (see Fig. 8 This corresponds toanishing  imposed(see the last two rows of Table Il and Fig.)1The
of D'(0) at infinite lattice volume, in accordance withl].  values fora andy? obtained in this way are in good agree-
To check on this important point we have also fit2¥0,L) ment with the values obtained by extrapolatinglL) and
using the three fitting functions considered above. A good fity?(L) to infinite L (compare the first row of Table Il with the
is provided by D"(0L)=exp@)/L", with a=2.434), b other four rows of the same table
=0.50(1), x?/d.0.f=0.69 and goodness-of-filQ=65.6% (b) Analysis ofD,,. Equation(14) shows that for lattice
(see Fig.92 An indication of how reliable these fits are is the guantities we may make the identificatiof(x) =D 44(X),

comparison of the powds in the fit of the product(z)(L) > L o
and ofD"(0,L) which areb=1.1(1) ancb= 0.50(1) respec- whereD 44(X) is the equal-time propagator, and similarly for

tively. We have also made a similar fit fofL) (not plotted ~ their 3-momentum transformy/(k) = D,,(k). This allows us
and obtainecb=1.8(1). to use Eqs(23) and (18) to also define the lattice quantity

N N N 2 "
We next consider th& dependence ob"(K) at low k. ~ 9cou(K) by

For the power dependence parametrized 5%/)5(, observe 12

that a(L)_extra_poIates tca(oo_)=0.4a5), seeFig_. 5. This ﬁggoul(k)zk2v(k)zk2D44(|<)_ (33
agrees with Gribov's approximate formul&), which gives

a=0.5. Moreover this value is consistent with the other rows . )

of Table I, by the method described below, so this result F'gl;”ez 11 shows our dfita for f[h§ running cgupllng con-
appears quite stable. Particularly striking is that, with0  stantiggo,(K). In the continuum limit, its behavior at large
imposed, one obtaing=0.49(1) anda=0.51(1) respec- Momentum is governed by the perturbative renormalization
tively from the fourth and fifth rows of Table lexplained group(17) and(20). For the fitting formula we modify Eq.

below). (20) to
Another striking feature of the fit is thgf(L) is positive _
for all 9 values ofL (see Table), corresponding to a pair of  k?=AZ2 exd (bgZ,,) *1[(bg) "+2z(bg%) 1 %
(39

"These fits have also been done usigupLoT. For the fitting  which implicitly defines ggou,(EZ). Here r=102/121, and

function exp@)/L® the results have been checked with the exactA2 | b,z,a are fitting parameters whose significance we

mlnlmlglng formula(notice that this flttlng function is linear in the now explain. Naturally the parametéfgom sets the mass

coefficientsa andb after taking the logarithm 2 . & thi
8When using the fitting functiora+b/L® we obtain, both for SCale. For smalhg,, which corresponds to large, this

(rz)(L) andD"(0.L), a value ofa that is zero within errors but a formula is dominated by the first term in the depominator,
worse xy?/d.o.f. whereas for larggZ,,, which corresponds to smai?, it is
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) . FIG. 5. Fit of the parametak(L) (see Table)las a function of
FIG. 4. Fit of the parametea(L) (see Table)las a function of 1L using a+log(1+b/L). We obtain a=0.445), b=4.0(13),
H C H — —
1_/L using a—zb/L . _We obtaina=17.2(249), b_— 35.9(117),c ¥2/d.0.f=0.66 and goodness-of-fp=70.6%.
=0.38(83), x“/d.0.f=0.89 and goodness-of-i@=50.1%.

On a finite periodic lattice with finite lattice spacing and
dominated by the second term in the denominator. For smallith o2 (K) defined by 202 (K)=Kk2V(K). necessaril
92, the formula approaches E€R0), provided thath=b, 9eouf k) Y £i8c0u(k) (), Y
=11/247°~0.046. However we are quite far from the con-

tinuum limit for D,4(K), as indicated by the small value
((1/2)tr(U,))=0.221(6) (for lattice volume 14),° and we
expect significaniB-dependence in the extrapolation to the
continuum limit. Moreover, for fixeds, it has been found
that different lattice discretizations of the gluon field lead to
identical gluon propagators to within numerical accuracy,
apart from the overall normalizatidr24]. We allow for this
by taking the overall normalization cgjﬁouI to be a fitting
parameter. This requires putting an arbitrary normalization
coefficient everywhere in front a2, in Eq. (34), which is
equivalent to replacing the fixed numbleg by the fitting
parameterb. Of course, an extrapolation i to the con-
tinuum limit should giveb=by,.

For largegZ,, and smallk?, this formula approaches

gioul(ﬁ) vanishes ak=0. Actually ggoul(ﬁ) gets a maximum
value atk?~0.2 and goes to zero in the infrared lintitee

Fig. 11). This unphysical behavior is a lattice artifact that
also appears in studies of the running coupling constant us-
ing the three-gluon vertej25]. In order to fit our data we

have made a low-momentum cutkd. .=0.5. The values of

x(L)

Agoul) Ye (35)

bggoulz ( 2 Ez

Thus the parametez sets the overall normalization in the
strong-coupling or infrared regime, and governs the
strength of the singularity aj?,,, in the infrared limit. If the 02 i
color-Coulomb potentiaV/(Kk) is governed by a string ten- . . ! L ! L !
sion at large distances they,,(K) ~ constk?, which corre- 0 001 002 003 004 005 005 007 008
sponds tow=1. "

FIG. 6. Fit of the parametetr(L) (see Table)las a function of
1/L using a+log(1+b/L). We obtaina=—0.2(1), b=10.0(34),
®Before minimizingF ¢, we find ((1/2)tr(U,))= —0.0005(57). x%/d.0.£=0.94 and goodness-of-i@=47.4%.
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FIG. 7. Fit of the parameter’(L) (see Table) as a function of
1/L using a+log(1+b/L). We obtaina=0.451), b=13.6(45),
x?/d.0.f=1.05 and goodness-of-ip=39.3%.

FIG. 8. Fit of the productrz)(L) (see Table)las a function of
1/L using expd)/L®. We obtaina=5.6(4), b=1.1(1), x*/d.o.f.
=0.36 and goodness-of-i@=92.6%.

2

the parameters which we obtdinare A% ,=1.0(2), z

tr - - . . .
—12(1), b'=0.182), b=0.202), a=19(3), with D"(k,L) at zeromomentumk extrapolates to O in the limit

infini i i tr —
¥?/d.0.f.=0.44 and goodness-of-h=98.3% using the data of infinite lattice volume, i.eD"(0,2)=0. The rate of ap-

_ _ r—11 proach for lattice volumeV=L* was fit by D"(0OL)
for L=28 andL =30, whereb’'=5b. We havezchecked that “CL-P, where b=0.501). The vanishing of the gluon

imil It btained wittf,,=0.3 andk?,,=1.0 o . A
similar results are obtained witth, animin (see propagatoD'(k) atk=0 is highly counter-intuitive, and the

Table Ill) but the resultingy’/d.o.f. is smallest forks,, only explanation for it is the suppression of the low momen-

=0.5. . tum components of the gluon field that is a particular feature
The value ofa~2 corresponds t@?Z,,~const/k|, and

V(k)~const/k|® at low momentum. The volume depen- - 35 . . . . . . .

dence of the data, and therefore of our fit, is quite weak, butg

one notices in Table Ill that the value af decreases as the

low momentum cut-ofk2, increases. This corresponds to an

increase in the strength of the singularity @f, (k) at k

=0 as finite-volume effects are reduced. However, as ex-
plained above, we must make an extrapolatiogim order

to arrive at any precise conclusion about the strength of the
singularity in the continuum limit. Nevertheless, our data at
finite B8 andL clearly indicate a color-Coulomb potential that

is more singular thav(k) ~ const/k|? at low k.

oL

Dll'

III. CONCLUSIONS

We have used simple formulas to fit the data for the equal-

time gluon correlatorQD”(lZ) and D4(k) in SU(2) lattice
gauge theory in the minimal lattice Coulomb gaugepat
=2.2. Our fits have the following features: 0 ' ' ' ' ' ' '

. . . 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08
(i) The equal-time would-be physical gluon propagator "

FIG. 9. Fit of the zero-momentum transverse gluon propagator
1The fit has been done using a conjugate gradient method with B(0,L) as a function of 1/ using expé)/L". Considering the data
numerical inversion of Eq(34). Errors are estimated using a jack- for L=16, we obtaira=2.434), b=0.5Q1), x?/d.0.f.=0.69 and
knife method. goodness-of-fiQ=65.6%.
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k)

3

FIG. 10. Plot of the gluon propagatDr“(IZ) as a function of the
square of the lattice momentuk? for L =28 (*) and 30 A) and
fits of these data using E¢31) with the parameter values and low
momentum cut-offs reported in the fourtolid line) and fifth (dot-
ted line rows of Table Il. Error bars are one standard deviation.

of the Gribov horizon, which constitutes the boundary of

configuration spac¥.

(if) Asymptotically at low momentum our fitting formula
behaves IikeD"(IZ)oc(IZZ)“, with the value extrapolated to
infinite lattice volumea=0.48(5) (see Table . With the
value x=0 imposed and a low-momentum cut-off one ob-
tains (from L=28 andL=30) «=0.49(1) ora=0.51(1)
(see Table . This is in striking numerical agreement with
Gribov's formula DY(K)= (|k|/2)[ (k?)2+M*]~ Y2, which
givesa=0.5.

(i) We have obtained an excellent 2-pole fit DF(K).
Our fit indicates that the poles occur@mplex M=x=*iy.
The real park is quite small and compatible with 0. Remark-
ably, a pole irk? at purely imaginanym?=0=+iy agrees with
the Gribov propagatod (k) = (|K|/2)[ (k?)2+ M*]~ 2, with
y?=M*. Note that only a purely imaginary pair of poles
gives a correction to the free equal-time propagﬂ(‘f(IZ)
~|k|~1(1— [ M?*(K?)?]) of relative order k?)2 with coef-
ficient of dimension(mas3“. It may not be a coincidence
that this is the dimension of the gluon condens&eg),

PHYSICAL REVIEW 5 014001

O ¥

FIG. 11. Plot of the running coupling constafgfgZ,,(K)

EIZZDM(IZ) as a function of the square of the lattice momenkfm

for L=28 (*) and 30 (A) and fits of these data using E@4)

with the parameter values and low momentum cut-offs reported in
the second row of Table Ill. Error bars are one standard deviation.

virtue of the Nielsen identitiegl], and because of the theo-
retical suggestiveness of our result, we are encouraged to
report the valuesm?=0=iy, for y=0.671(7) in lattice
units, ory=0.590(7) GeV, M=y?=0.768(4) GeV for

the location of the gluon poles k?.

(iv) The Coulomb gauge offers a definition of the running
coupling constanti2g?.,(K) =k?D 4(k), which has advan-
tages for numerical determination. It is less subject to fluc-
tuation than the determination gf from the 3-point func-
tion in the Landau gaugg?5], but the extrapolation B
remains to be done.

(v) Our data forD ,4(K) require a cut at low momentum to
eliminate lattice artifacts. After this cut, the running coupling
constant defined by2g%,(k/Aocp) =k?D4y(K) extrapo-
lates to low momentum in accordance with infrared slavery,
namely the running coupling constagﬁou,(IZ/AQCD) di-
verges in the zero-momentum limit.

(vi) The observed strongnhancemenbf the instanta-

neous color-Coulomb potentibtl(lz) and the stronguppres-

which is the lowest dimensional condensate in QCD. Besjon of the equal-time would-be physical gluon propagator
cause of the gauge invariance of the location of the poles, b%"(IZ) both at lowk, strongly support the confinement sce-

YA similar result, i.e. a transverse gluon propagator thatesd

momentunk extrapolates to O in the limit of infinite lattice volume .

V, has been recently obtained for puB&J(2) lattice gauge theory

nario of Gribov[6,7]. In addition to this qualitative agree-
ment, we note excellent numerical agreement of our fit to
Gribov's formula DY(K) = (|K|/2)[ (k?)2+M*]~ Y2 reported

in 1, 2, and 3 above. If this excellent fit is maintained at

in the three-dimensional case and in the magnetic sector at finit@'9er B values, then it appears that we have obtained a

temperaturg 26].

quantitative understanding &f(k).
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TABLE IIl. Fit of the running coupling constantzg?,,(k)=Kk?D 4(k) using Eq.(34). The resulting
fitting parameters,y?/d.o.f. and goodness-of-fiQ are reported for three different values of the low-

2
momentum cuky,, .

K2, No. data points A2, z b'= b @ x?/d.o.f. Q

03 25 084(8)  1.14(5)  0.165(9)  2.2(1) 0.59 92.8%

05 23 1.0(2) 1.2(1) 018(2)  1.9(3) 0.44 98.3%

1.0 20 1.2(9) 1.3(4) 019(7)  1.7(7) 0.48 95.8%
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APPENDIX: NUMERICAL GAUGE FIXING

. . . . F=Fport AFyer (A3)
The minimal lattice Coulomb gauge is defined by two

gauge-fixing steps. In the first step thpatial link variables is minimized, and the limih — 0 is taken.

Ui e SU(N), for i=1,2,3, are made as close to unity as  With this gauge fixing, the link variables should approach
possible by minimizing the “horizontal” minimizing func- unity in the continuum Ilimit in the sense that
tion limg_..(1/2)Tr(U,,)=1. In our study atg=2.2 we obtain
((1/2)Tr(U,;))=0.86249(3) for the space-like links,
whereas for time-like links((1/2)Tr(U,,))=0.221(6) on
lattice volume 14. (The dependence on the volume is not
strong) Thus we are quite far from the continuum limit for

with respect to gauge transformatiogis . The sum extends quantities such ag(k) that depend on the vertical links, and
over all horizontal or space-like links, and the minimizationthey may exhibit significanB-dependence in the extrapola-
is done independently on each time-slicex,. (The gauge tion to the continuum limit. This will be reported subse-
transform U, of the link variable U,, is defined by quently.

lguxyzg;_luxy.gy, whereyzx+[.L and u is the.unit vect_or Th_e gauge fixing jl_Js_t described produces a configuration
in the « direction) The stochastic over-relaxation algorithm U which is a local minimum ofF,, ,(g) andFe(g) at
does not necessarily yield the absolute minimum of the minig=1. At a local minimum the minimizing functions afe
mizing function but leads in general to one of several localstationary under infinitesimal variation$F==0 and(ii) the
minima. Different minima correspond to different Gribov matrix of second variations of the minimizing function is
copies. For the lattice volumes“6nd 20 we have checked non-negative 52F=0. We now comment on implications of

that the dependence of the gluon propagaldfgk) and these properties for gauge-fixed configuratithsAt a local

D 44(K) on which Gribov copy one ends up is of the order of Minimum, the horizontal minimizing funCtiof hor,,(9) is

magnitude of the numerical accuracy, in agreement with Reftationary with respect to infinitesimal variatiogg— g,(1

[27]. + w,). Herew,=t2wg is an element of the Lie algebra of the

After this step the lattice gluon field is 3-dimensionally SU(ISI) group. with antg-HerrTltlabn basist® satisfying
transversdsee Eq.(A5) below]. But the gauge fixing is as [t5°]=f*1° and Tr¢*t”)=—36". The corresponding
yet incomplete because it leaves tdependent but Variation ofFq is given by
i—independent gauge transformatigp arbitrary. This arbi- 1 :
trariness is fixed in the second step in which thee-like OF horu(9)=— > 2 Trl (w47~ 03) (OUgi —9U ) 1
link variablesUy;, are made as close to unity as possible by i
minimizing the “vertical” minimizing function (A4)

Froru(9)=2 Re T(1—-9U3), (A1)

X,t,i

For a configuratioid which is a local minimumat g,=1),
Fveru(g)Ez Re T(1—9U;,), (A2) this quantity must vanish for atby;, which gives
Xt

with respect to?—independent gauge transformatians The Z (Axti= A1) =0. (AS)

sum extends over all vertical or time-like links. This gauge
fixing of the vertical links does not alter the spatial correlatorHere Ay ; ; is the lattice gluon field defined by

014001-10
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A%, =—Tt3(U,,—Ul)], (A6)

which is a lattice analog of the continuum connectkﬂ(x).

Equation(A5) is the lattice transversality condition for spa-

PHYSICAL REVIEW [B5 014001

rations U which, together with the transversality condition
(A5), defines the lattice Gribov region, whose boundary is
the Gribov horizon.

[That this is a highly restrictive condition is suggested by

tial directions, which is the defining condition for the lattice the following consideration. The Faddeev-Popov matrix

Coulomb gauge.
Since the gauge-fixed configuratithis a local minimum

M(U) for SU(N) gauge theory is a symmetric matrix of
dimensionV(N?—1), whereV is the(large number of sites

of Froru(9) (atgy=1), its second variation is non-negative of the [attice, so it ha¥(N2— 1) eigenvalues. Configuration

0% Fhoru(9)=(w,M(U)w)=0 forall w. (A7)

space is divided int&/(N?>—1)+ 1 different regionsR,, ac-
cording to the numben=0, ... V(N?—1) of positive ei-

HereM (V) is the lattice Faddeev-Popov matrix defined on agenvalues oM (U). Of these, the Gribov region consists of

given time-slicet by
1
(@MU)o)==5 X T(w54i~ 0 (Ugiwgsi— o:U5
X, 1

+ w34 iUL—UL o], (A8)

and we have suppressed the indexhich is common to all
variables. The positivity oM (U) is a condition on configu-

the single regionRy 21y that includesUy;=1. For the
SU(2) group at least, all regions are populated. To see this,
observe that fol,, =1, we haveM(1)=—A, whereas for
Ux,=—1, we haveM(—1)=A, whereA is the lattice La-
placian. In these 2 cases, depending on the sign, the configu-
ration U==*1 is in regionRy(y2_1) or Ry. By continuity
therefore allV(N?—1)+1 different regions are populated.
Similar considerations apply #e;(9).]
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