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Radiative correction to the transferred polarization in elastic electron-proton scattering
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Using a method of electron structure functions, we calculated a model independent radiative correction to
the recoil proton polarization for elastic electron-proton scattering. Explicit expressions for the recoil proton
polarization are represented as a convolution of the electron structure functions and the hard part of the
polarization-dependent contribution into the cross section. The hard part is calculated with first order radiative
corrections. The obtained representation includes leading radiative corrections in all orders of perturbation
theory and the main part of the second order next-to-leading radiative corrections. Numerical calculations
illustrate our analytical results.
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I. INTRODUCTION

It was proposed over 25 years ago@1# that recoil proton
polarization in the elastic processeW1P→e1PW can be used
to measure the proton electric form factor (GE). This method
provides an alternative to the Rosenbluth separation and
pears to be more sensitive toGE in the GeV range of
4-momentum transfers (Q2). Such measurements were do
first at MIT-Bates@2# and extended later on to higherQ2

53.5 GeV2 at Jefferson Lab@3#. The latter experiment pro
vided the first evidence of significant deviation ofGEP from
the dipole form at higherQ2.

In the recent Jefferson Lab experiment@3# events corre-
sponding to the elastic process

eW 2~k1!1P~p1!→e2~k2!1PW ~p2! ~1!

as well as the radiative process

eW 2~k1!1P~p1!→e2~k2!1g~k!1PW ~p2! ~2!

have been analyzed.
The main goal of these experiments is the measureme

the proton electric form factorGE . It can be done becaus
the ratio of the longitudinal polarization of the recoil proto
to the transverse one in the Born approximation is prop
tional to the ratioGM /GE @1#, whereGM is the well known
proton magnetic form factor. Interpretation of these hig
precision experiments in terms of the proton electromagn
form factorsGM andGE requires adequate theoretical calc
lations with a percent accuracy or better. Such calculati
must include the first order radiative corrections~RC! to the
elastic cross section~due to the radiation of real soft an
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virtual photons! and full analysis of the radiative event
Moreover, leading higher order corrections have to be ta
into account.

The total radiative correction which has to be applied
data can be naturally divided into model-independent a
model-dependent corrections. The model-independent
rection can be calculated in the framework of a one-pho
exchange approximation. It includes all corrections to
lepton part of interaction and insertion of vacuum polariz
tion into the exchange photon propagator. The mod
dependent correction involves additional photon-hadron c
pling~s! and comes from box-type diagrams, hadronic ver
functions, etc. The current practice of data analysis in exp
ments onep scattering is that the model-independent corr
tion is taken into account with accuracy provided by theor
ical calculations. Practically it means that the contribution
the radiative effects is calculated theoretically and sim
subtracted from experimentally observed quantities or so
Monte Carlo generators constructed on the basis of th
calculations are implemented into codes of data analysis.
model-dependent correction is analyzed at the level allow
by the current knowledge of hadronic structure and its c
tribution is added to the systematic error due to RC. Th
are several reasons for that. First, the model-independent
rection is the main contribution because of the smallnes
electron mass. Second, the model-independent correction
be calculated without any additional assumptions. There
also a historical reason to give the most attention to
model-independent correction. A lot of measurements w
done using classical formulas of Mo and Tsai, where o
model-independent corrections were calculated. So fo
proper comparison between the results of different exp
ments only the model-independent correction should be
culated and applied.

All the corresponding contributions to the mode
independent correction can be unified within the framew
of the electron structure function representation, which i
QED analog of the well known Drell-Yan representation@4#.
This representation was applied before for the calculation
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RC to unpolarized electron-positron annihilation@5# and
deep inelastic scattering@6# cross sections. In the prese
work we generalize the electron structure function repres
tation for the case of scattering of polarized particles, nam
for the analysis of the recoil proton polarization in elasticep
scattering. Our analytical formulas for RC include the ex
first order contribution~of the ordera), the leading contri-
bution in all orders@of the order (aL)n#, and the main part of
the second order next-to-leading contribution~of the order
a2L). Together with numerical integration precision, whi
can be optionally changed in corresponding codes, they
vide the accuracy of calculated model-independent RC at
level of 0.1%.

The model-dependent correction including box-type d
grams and hadron vertex function also can give import
contribution to the observables. However, it cannot be ca
lated using the methods developed here and will be a sub
of a separate investigation. Recently, an important step in
understanding of the model-dependent correction was d
in Ref. @7#, where it was calculated with certain approxim
tions. It was shown that under the made assumptions
proton vertex correction can reach 2%.1

This paper is organized as follows. Section II introduc
definitions of electron structure functions and their contrib
tions to the observable cross section and recoil proton po
ization. Next-to-leading order~NLO! contributions to the ob-
servables are calculated in Sec. III. Section IV is devoted
the numerical analysis of radiative corrections under the
nematic conditions of the current Jefferson Lab experime
on polarization transfer in elasticep scattering. Section V
gives a summary of our results.

II. THE LEADING APPROXIMATION

The cross section of electron-proton scattering can be
resented in the electron structure function~SF! method as a
convolution of a two-electron SF and the hard part of
cross section that depends on the shifted 4-momenta.
electron SF account for radiation of hard collinear photo
virtual photons as well as electron-positron pairs by the
tial and final electrons. This representation follows from t
quasireal electron method@8# that is suitable for a descriptio
of collinear radiation.

In the problem considered here we will be interested o
in the spin-dependent part of the cross section. Then
corresponding representation can be written as

ds i ,'~k1 ,k2!

d Q2d y
5E

z1m

1

d z1E
z2m

1

d z2D (p)~z1 ,L !
1

z2
2

D (u)~z2 ,L !

3
ds i ,'(hard)~ k̂1 ,k̂2!

d Q̂2 d ŷ
, L5 ln

Q2

m2
, ~3!

1We should note also that the noncritical application of a mod
dependent correction to the data can result in a double-countin
the effect. For example, if a model for form factors is used a
result of the fit of experimental data, where a model-depend
correction was not applied for, then probably the correction sho
not be applied for the measurement either.
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wherem is the electron mass,

k̂15z1k1 , k̂25
k2

z2
, Q252~k12k2!2,

Q̂252~ k̂12 k̂2!25
z1

z2
Q2,

y5
2p1~k12k2!

V
, ŷ512

12y

z1z2
, V52p1k1 .

~4!

A diagram in Fig. 1 explains the physical meaning of t
Drell-Yan-like representation used to describe the QED
diative corrections in the considered process. This diag
shows that the bare electron lines have to be replaced
some effective electron lines, and the hard subprocess sh
be calculated for the scattering of the electron with redu
momentumk̂1, provided that the scattered electron has a m
mentumk̂2.

The electron structure functionD (p)(z1 ,L) is responsible
for radiation by the initial polarized electron, whereas t
function D (u)(z2 ,L) describes radiation by the scattered u
polarized electron. The photon contribution into the electr
structure function is the same for polarized and unpolari
cases, but the contribution due to pair production differs
the singlet channel@9#. Therefore, we can write

D (u)~z,L !5Dg~z,L !1DN
e1e2

1D
S

e1e2
(u)

, ~5!

D (p)~z,L !5Dg~z,L !1DN
e1e2

1D
S

e1e2
(p)

. ~6!

The electron structure functionsDg(z,L), DN
e1e2

(z,L),

and DS
e1e2(u)(z,L) satisfy Dokshitzer-Gribov-Lipatov-

Altarelli-Parisi ~DGLAP! equations@10#. Explicit forms of
these equations were given in Ref.@5#. The iterative solution
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FIG. 1. Drell-Yan-like representation for the cross section
elasticep scattering. This representation takes into account mo
independent QED radiative corrections.
6-2
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RADIATIVE CORRECTION TO THE TRANSFERRED . . . PHYSICAL REVIEW D65 013006
of the equation forDg(z,L) defines it as the following series

~7!

whereP1(z) is, in fact, the kernel of the DGLAP equatio
for Dg(z,L). The iterative form~7! of D

g
does not include

any effects caused by pair production. The correspond
nonsinglet part of the structure function due to real and
tual pair productionDN

e1e2(z,L) can be inserted into the
iterative form ofDg(z,L) by replacingaL/2p on the right-
hand side of Eq.~7! with the effective electromagnetic cou
pling

ae f f

2p
52

3

2
lnS 12

aL

3p D , ~8!

which is an integral of the running electromagnetic consta
The singular atz51 terms in the electron structure fun

tion ~7! can be summed in all orders, leading to the expon
tial form of both Dg(z,L) and DN

e1e2(z,L). There exist
many different representations for them@10,11#, but here we
will use the form given in@5#

Dg~z,L !5
1

2
b~12z!b/221F11

3

8
b2

b2

48S 1

3
L1p2

2
47

8 D G2
b

4
~11z!1

b2

32F24~11z!ln~12z!

2
113z2

12z
ln z252zG , b5

2a

p
~L21!,

~9!

DN
e1e2

~z,L !5
a2

p2 H 1

12~12z! S 12z2
2m

« D b/2S L12
5

3D 2

3F11z21
b

6 S L12
5

3D G J uS 12z2
2m

« D ,

~10!

where « is the energy of the parent electron andL15L

12 ln(12z). The above form of the structure functionDN
e1e2

includes effects due to real pair production only. The corr
01300
g
-
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-

-

tion caused by virtual pairs is included inDg. Note that the
terms containinga2L3 cancel each other in the sumDg

1DN
e1e2

.

The singlet structure functionDS
e1e2

is regular atz51
and needs to be calculated only in the lowest nonvanish
order. The corresponding solution of the DGLAP equati
reads@5#

DS
e1e2(u)~z,L !5

a2

4p2
L2F2~12z3!

z
1

1

2
~12z!

1~11z!ln zGuS 12z2
2m

« D . ~11!

For the polarized case, the equation forDS
e1e2(p) does not

exist and in order to obtain it one needs to compute
leading contribution of diagrams in Fig. 2 in kinematic
when all particles move almost parallel to the parent el
tron. Such calculations were performed in@9# and the result
is

DS
e1e2(p)~z,L !5

a2

4p2
L2S 5~12z!

2
1~11z!ln zD

3uS 12z2
2m

« D . ~12!

The integration limits with respect toz1 and z2 in the
master formula~3! can be found from the constraint on th
Bjorken variablex̂ for the partonic process

x̂5
2~ k̂12 k̂2!2

2p1~ k̂12 k̂2!
5

z1yx

z1z21y21
,1, x5

Q2

2p1~k12k2!
.

~13!

By taking into account also thatz1,2,1 andxy5Q2/V, we
derive, from Eq.~13!,

1.z2.z2m , 1.z1.z1m , z2m5
12y

z1
1

Q2

V
,

z1m5
V~12y!

V2Q2
. ~14!

In the framework of the leading logarithmic approxim
tion, we have to take the elastic~Born! cross section as the
hard part under the integral on the right-hand side of Eq.~3!

FIG. 2. Feynmann diagrams needed to calculate the elec
structure functionDS

e1e2(z,L) in perturbation theory.
6-3
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dshard
i ,'(B)

d Q2d y
5

ds i ,'(B)

d Q2
dS y2

Q2

V D . ~15!

In the case of the longitudinal polarization of the rec
proton, we have

dshard
i(B)

d Q2
5

4pa2~2Q2!

VQ2 S 12
Q2

2VDA Q2

4M21Q2
GM

2 ~2Q2!.

~16!

The quantitya(2Q2) on the right-hand side of Eq.~16! is
the running electromagnetic constant that accounts
vacuum polarization effects

a~q2!5
a

12
a

3p
ln

2q2

m2

.

For the transverse polarization of recoil proton, the h
part of the cross section reads

dshard
'(B)

d Q2
522

4pa2~2Q2!

VQ2

M

AQ214M2

3A12
Q2

V
~11t!GE~2Q2!GM~2Q2!,

t5
M2

V
. ~17!

Note that in the zeroth order of perturbation theory t
photon contribution into the electron structure function giv
an ordinaryd function because@see also the iterative form
~7!#

lim
b→0

1

2
b~12z!(1/2)b215d~12z!. ~18!

It is easy to see that the representation~3! reproduces the
Born cross section in this case

ds i ,'

d Q2d y
5E dz1E dz2

1

z2
2
d~12z1!d~12z2!

3
ds i ,'(B)

dQ̂2
dS ŷ2

Q̂2

V̂
D

5
ds i ,'(B)

d Q2
dS y2

Q2

V D . ~19!

III. BEYOND THE LEADING APPROXIMATION

We can improve the leading approximation f
ds i ,'/dQ2dy given by formula~3! with ds i ,'(B)/dQ2dy as
a hard part of the cross section under the integral. It can
01300
l
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done by making more precise the expression namely for
hard part

dshard
i ,'

d Q2d y
5

ds i ,'(B)

d Q2d y
1

ds i ,'(1)

d Q2d y
. ~20!

The additional term on the right-hand side of Eq.~20! takes
into account RC due to real and virtual photon emissio
without its leading part that has already accounted forD
functions. To findds i ,'(1)/d Q2d y, we should calculate the
corresponding cross sections of the process~1! ~with virtual
and soft corrections! and of the process~2!, and then subtrac
from their sum the right-hand side of formula~3! with

dshard
i ,'

d Q2d y
5

ds i ,'(B)

d Q2d y
,

which appears in the same order of perturbation theory.
We begin with calculation of the cross section of the

diative process~2! ~the corresponding polarization calcula
tions were performed earlier for deep inelastic scatter
@12#!

dsg(p)

d Q2d y
5

2pa2~q2!

Vq4

a

4p2
Lmn

g
Hmn

d3k

k0

d3p2

p20

3d~p11k12k22p22k!, ~21!

whereq5k12k22k5p22p1 . Herein after we will be in-
terested in the polarization-dependent parts of leptonic (Lmn)
and hadronic (Hmn) tensors and assume that the degree
initial electron polarization is equal to 1. Then we have

Hmn52 iM emnlrqlF2GE~q2!Ar

1
2@GE~q2!2GM~q2!#

4M22q2
~Ap1!p1rGGM~q2!, ~22!

Lmn
g 522i emnlrql@k1rRt1k2rRs#,

Rt5
u1t

st
22m2S 1

s2
1

1

t2D , Rs5
u1s

st
22m2

st

ut2
,

st5
2u~u1Vy!

u1V
, ~23!

whereA is the 4-vector of recoil proton polarization and w
use the following notation for kinematic invariants:

u5~k12k2!2, s52kk2 , t522kk1 ,

q25u1s1t, Q252u.

It is convenient to express the recoil proton polarizati
4-vectorA in terms of the particle 4-momenta and Loren
invariants. Below we use the following parametrization f
Ai andA':
6-4
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Am
i 5

2M2qm2q2p2m

MQi
, Qi5A2q2~4M22q2!, ~24!

Am
'5

2@2M2k1q1q2k1p1#p2m22@2M2k1q2q2k1p2#p1m1q2~q224M2!k1m

2Q'

,

Q'5Aq2@q2M2~k1p11k1p2!21~2M2k1q2q2k1p2!~2M2k1q1q2k1p1!#, ~25!

2k1p25V1u1t, 2k1q5u1t.
on

ic

e
ing

s
co

of
e

ide

of
It is easy to verify that the 4-vectorAi in the rest frame of
the recoil proton has components (0,nW ), where 3-vectornW
has an orientation of the recoil proton 3-momentum in
laboratory system. One can verify also the orthogonality c
ditions, A'Ai50, and the following relations valid in the
rest frame of the recoil proton:

A'5~0,nW'!, nW'
2 51, nW nW'50,

where the 3-vectornW' is within the plane (kW1 ,pW 2) in the
laboratory system.

For longitudinal polarization, the contraction of lepton
and hadronic tensors yields

Lmn
g Hmn

q4
52

2m2

s2
~qs

212V!F~qs
2!2

2m2

t2
~u12V!

3S 11
stqt

2

u2 D F~qt
2!1H 1

tu
@~u21q4!~u12V!

22q2~q22qt
2!~u1V!#1

1

sqs
2 @~q41u2!

3~qs
212V!22q2V~q22qs

2!#J F~q2!

q22u
, ~26!

where

qt
25u1st5

uV~12y!

u1V
, qs

25u1ts5
uV

V~12y!2u
,

ts5
u~u1Vy!

V~12y!2u
,

F~q2!52GM
2 ~q2!

1

q2
A 2q2

4M22q2
.

The physical meaning of quantitiesqt
2 andqs

2 is as follows:
qt

2 andqs
2 are the values ofq2 in the cases of the initial-stat

and final-state collinear radiation, respectively. When writ
the formula~26!, we took into account the fact that the term
containing the electron mass squared contribute only in
linear kinematics.
01300
a
-

l-

To separate the contribution into the right-hand side
Eq. ~26! due to collinear radiation for the polelike terms, w
apply the operationsP̂t and P̂s ,

1

t
f ~q2,u,t,s!5

1

t
~12 P̂t1 P̂t! f ~q2,u,t,s!,

P̂t f ~q2,u,s,t !5 f ~qt
2 ,u,st,0!

for an arbitrary nonsingular function att→0 and similarly
for 1/s terms. Therefore, we can rewrite the right-hand s
of Eq. ~26! in the form

H 2
2m2

s2
~qs

212V!P̂s2
2m2

t2
~u12V!S 11

stqt
2

u D P̂tJ F~q2!

1H ~u12V!~u21qt
4!

ut
P̂t1

~qs
212V!~u21qs

4!

qs
2s

P̂s

1
12 P̂t

ut
@~u12V!~u21q4!22q2~q22qt

2!~u1V!#

1
12 P̂s

qs
2s

@~qs
212V!~u21q4!22q2V~q22qs

2!#J F~q2!

q22u
.

~27!

For the case of transverse polarization, the contraction
leptonic and hadronic tensors has a more complex form,

1

q4
Lmn

g Hmn

5„@q2~u1t12V!21~4M22q2!~u1t !2#Rt

1$q2~u1t12V!@ t2q212V~12y!#

1~4M22q2!~uq22st!%Rs…
GE~q2!GM~q2!

q4

3A 2q2M2

~4M22q2!@2q2V~V1u1t !2M2~u1t !2#
.

~28!
6-5
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The expression in the round brackets on the right-hand
of Eq. ~28! can be rewritten in the form suitable for th
photon angular integration as follows:

22@q2Vy14M2~q21u!#2
2m2

s2
4V2qs

2KsP̂s

2
2m2

t2
4V2qt

2S 11
stqt

2

u2 D KtP̂t1
1

t F4V2qt
2~u21qt

4!

u~qt
22u!

3KtP̂t1~12 P̂t!
q2

u~q22u!
@4V2~u21q4!Kq22q2

3~q22qt
2!~u12V!~u1V!#G1

1

s F4V2~u21qs
4!

~qs
22u!

KsP̂s

1~12 P̂s!
q2V

qs
2~q22u!

@4V~u21q4!Ks22V~q22qs
2!

3~2Vq22u2!#G ,

Ks511
qs

2

V
~11t!, Kt511

u

V
1

u2t

Vqt
2

,

Kq511
u

V
1

u2t

Vq2
. ~29!

To perform photon angular integration, we choose the s
tem kW11pW 12kW250. In this system the energies of particl
are

k05
a

2AR
, k105

u1V

2AR
, k205

V~12y!2u

2AR
,

p105
2M21Vy

2AR
, p205

R1M2

2AR
,

a5u1Vy, R5a1M2. ~30!

Taking theZ-axis along the initial proton 3-momentum in th
chosen system, we also have

ck5cosuk5
2M222p10p202q2

2upW 1uupW 2u
,

c25cosu25
2k20p102V~12y!

2upW 1uukW2u
,

c15cosu15
2k10p102V

2upW 1uukW1u
,

01300
e

s-

upW 1u5
AV2y224uM2

2AR
, upW 2u5k0 , ~31!

whereu1(u2) is the polar angle of the initial~scattered! elec-
tron anduk is the photon polar angle. Besides Eqs.~30! and
~31!, we will use the relation

d3k

k0

d3p2

p20
d~k11p12k22k2p2!5

a

2R
dw d cosuk .

~32!

Let us concentrate on the case of longitudinal polarizat
of the recoil proton. For the terms containin
m2/s2, m2/t2, P̂t /t and P̂s /s, we can use the following for-
mulas:

E m2dwd cosuk

2ps2
5E m2dwd cosuk

2pt2
5

2R

a2
,

E dwd cosuk

2ps
5

2R

a~V~12y!2u!
~Ls1L !,

E dwd cosuk

2p~2t !
5

2R

a~u1V!
~Lt1L !,

Ls5 ln
~V~12y!2u!2

2uR
, Lt5 ln

~V1u!2

2uR
.

~33!

Terms which contain (12 P̂t), (12 P̂s) operators can be
integrated over the azimuthal angle, while retaining integ
tion with respect toq2 using the transformationd cosuk

5d q2/2upW 1uupW 2u,

E d w

2ps2upW 1uupW 2u
5

2R

auq22qs
2u@V~12y!2u#

,

E d w

2p~2t !2upW 1uupW 2u
5

2R

auq22qt
2u~V1u!

. ~34!

The limits of q2 integration in this case can be derived fro
the restriction on cosuk in the chosen system,ucosuku,1.
This restriction leads to the relation

q2
2 ,q2,q1

2 ,

q6
2 5

1

2R
@2uM22Vy~u1Vy!6~u1Vy!AV2y224uM2#.

~35!

By using Eqs.~33!, ~34!, and~35!, we can write the cross
section of the radiative process~2! for the longitudinal po-
larization of recoil proton as follows:
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ds ig

d Q2d y
5

2a

V H 2
qs

212V

u1Vy
P̂s2

~u12V!~u21stqt
2!

u2~u1Vy!
P̂t

2@11Lt1~L21!#
~u12V!~u21qt

4!

2u~u1V!~qt
22u!

P̂t

1@11Ls1~L21!#
~qs

212V!~u21qs
4!

2qs
2~V~12y!2u!~qs

22u!
P̂s

1E
q2

2

q1
2 F2

d q2

uq22qt
2u

~12 P̂t!

3
~u12V!~u21q4!22q2~q22qt

2!~u1V!

2u~u1V!~q22u!

1
d q2

uq22qs
2u

~12 P̂s!

3
~qs

212V!~u21q4!22q2V~q22qs
2!

2qs
2@V~12y!2u#~q22u!

G J
3a2~q2!F~q2!uS y1

u

V
2

2MD«

V D . ~36!

The u function appears on the right side of Eq.~36!
due to the restriction on the photon hardness in the radia
process~2!

k05
u1Vy

2AM21u1Vy
.D«→y.2

u

V
1

2MD«

V
, ~37!

whereD« is the minimal photon energy in the chosen co
dinate system.

To be complete, we should also take into account RC
to virtual and soft~with the energy smaller thanD«) photon
emission to the cross section of the elastic process~1!. It can
be written as~see, for example,@6#!

ds i(V1S)

d Q2d y
5

4pa2~2Q2!

V S 12
Q2

2VDF~2Q2!
a

2p F2~L21!

3S ln
4M2~D«!2

V~u1V!
1

3

2D212
p2

3
2 ln2

u1V

V

22 f S u1V1ut

u1V D GdS y2
Q2

V D ,

f ~y!5E
0

yd x

x
ln~12x!. ~38!

Therefore, the sum of the cross sections of the processe~1!
and ~2! is defined by the formula

ds i(B)

d Q2d y
1

ds ig

d Q2d y
1

ds i(S1V)

d Q2d y
. ~39!
01300
e
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e

To include the hard cross section into the electron str
ture function representation~3! in the form ~39! and to get
rid of the double counting, we must remove from the su
~39! the contribution which arises in the representation~3! in
the first order with respect to the fine structure constanta at

dshard
i

d Q2d y
5

ds i(B)

d Q2d y
.

The procedure for deriving this contribution is described
@6#. We can verify that it equals to

2a

V H ~L21!F2
~u12V!~u21qt

4!

2u~u1V!~qt
22u!

P̂t

1
~qs

212V!~u21qs
4!

2qs
2~V~12y!2u!~qs

22u!
P̂sGa2~q2!F~q2!u

3S y1
u

V
2

2MD«

V D12~L21!S ln
4M2~D«!2

V~u1V!
1

3

2D
3S 12

Q2

2VDa2~2Q2!F~2Q2!dS y1
u

VD J . ~40!

Thus, we can write the final result for thedshard
i /d Q2d y in

the following very compact form:

dshard
i

d Q2d y
5

ds i(B)

d Q2d y
H 11

a

2p F212
p2

3
2 ln2

u1V

V

22 f S u1V1ut

u1V D G J 1
2a

V H ~u12V!~qt
22u!

2u~u1V!
P̂t

1
~qs

212V!~qs
22u!

2uV
P̂s1PE

q2
2

q1
2 d q2

q22u
F 1

uq22qs
2u

3~12 P̂s!
~qs

212V!~u21q4!22q2V~q22qs
2!

2qs
2~V~12y!2u!

2
1

uq22qt
2u

~12 P̂t!

3
~u12V!~u21q4!22q2~u1V!~q22qt

2!

2u~V1u! G J
3a2~q2!F~q2!uS y1

u

VD , ~41!

where P stands for the principal value integration. Wh
writing the last formula, we used the following relations:
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PE
q2

2

q1
2 d q2@ f ~q2!2 f ~qt

2!#

uq22qt
2u~q22u!

5
f ~qt

2!

qt
22u

Lt1E
q2

2

q1
2 d q2

uq22qt
2u

3S f ~q2!

q22u
2

f ~qt
2!

qt
22u

D , ~42!

PE
q2

2

q1
2 d q2@ f ~q2!2 f ~qs

2!#

uq22qs
2u~q22u!

5
f ~qs

2!

qs
22u

Ls1E
q2

2

q1
2 d q2

uq22qs
2u

3S f ~q2!

q22u
2

f ~qs
2!

qs
22u

D , ~43!

where the symbol P indicates how we shall integrate
unphysical singularity atq25u. These relations allow us to
see that infrared singularities of separate terms
ds i(1)/dQ2dy exactly cancel each other. That is why w
r

n

01300
e

n

omitted the term22MDe/V from the argument of theu
function on the right side of Eq.~41!. For numerical calcu-
lations the principle value integration can be understood

PE
q2

2

q1
2 d q2

q22u
F~q2!5E

q2
2

q1
2 d q2

q22u
@F~q2!2F~u!#

1F~u!log
q1

2 2u

q2
2 2u

.

The hard part of the cross section in the case of transv
polarization of the recoil proton can be derived in full ana
ogy with the above. The main difference is caused by the
that the vector of the transverse polarization has a com
cated dependence on the photon azimuthal anglef and
therefore evenf integration becomes nontrivial. Th
straightforward calculations give
dshard
'

d Q2d y
5

ds'(B)

d Q2d y
H 11

a

2p F212
p2

3
2 ln2

u1V

V
22 f S u1V1ut

u1V D G J 1
2a

V H F2~qt
22u!V

u~u1V!
1

2V~u21qt
4!

u2~u1Vy!
LtGKtP̂t

qt
2

1F2~qs
22u!

u
1

2V~u21qs
4!

uqs
2~u1Vy!

LsGKsP̂s

qs
2

1E
q2

2

q1
2 d q2

AV2y224uM2E0

2pdw

2p F @2yq224t~u1q2!#

q4

1
12 P̂t

t S 2V~u21q4!

uq2~q22u!
Kq2

~u12V!~u1V!~q22qt
2!

uV~q22u!
D 1

12 P̂s

s S 2V~u21q4!

qs
2q2~q22u!

Ks

1
~u222q2V!~q22qs

2!

qs
2q2~q22u!

D G J a2~q2!A M2

4M22q2S 11
u1t

V
1

~u1t !2t

Vq2 D 21/2

GE~q2!GM~q2!uS y1
u

VD . ~44!
For invariantss and t on the right side of Eq.~44!, we can
neglect the electron mass and use here the simplified exp
sions

s5c2i2si cosw, 2t5c1i2si cosw,

c1i52k0k10@12cosu1 cosuk#,

c2i52k0k20@12cosu2 cosuk#, ~45!

si52k0k10sinu1 sinuk52k0k20sinu2 sinuk .

The integrals overf can be calculated analytically i
terms of elliptic functionsK andP

E
0

2pdw

2p S 11
u1t

V
1

~u1t !2t

Vq2 D 21/2

5J05
2

pAX
K~k!,
es- E
0

2p dw

2pt S 11
u1t

V
1

~u1t !2t

Vq2 D 21/2

5
Jt

uq22qt
2u

52
Bt~11bt!Al ȳ

2~V1u!uq22qt
2uAX

3S 2

p
A12b1tK~k!1

Bt

b1tȳ

12L~e t,k!

A12k2/b1t
D ,

~46!

E
0

2p dw

2ps S 11
u1t

V
1

~u1t !2t

Vq2 D 21/2

5
Js

uq22qs
2u

5
Bs~11bs!Al ȳ

2~V2a!uq22qs
2uAX

3S 2

p
A12b1sK~k!1

Bs

b1sȳ

12L~es,k!

A12k2/b1s
D ,
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where

X5~11x1!~12x2!
M2si

2

2q2V2 ,

k25
2~x12x2!

~11x1!~12x2!
,

ȳ5
2x211

2x221
,

2M2six652M2~2q21c2i !2Vq2~16A124M2/q2!

52M2~2u1c1i !2Vq2~16A124M2/q2!

~47!

b1s,t5
11 ȳ2bs,t1bs,tȳ

ȳ~11bs,t!
, bs,t5

c2,1i

si
,

Bs,t5b1s,tȳ112 ȳ.

The function L(e,k) „e5arcsin@(12b1)/(12k2)#,et,s
5e(b1→b11,s)… is nonsingular Heuman’s Lambda functio
varying from 0 to 1~see@13# for details and exact defini
tions!. It is related to complete elliptic integralP(b1 ,k) of
the third kind

2

p
P~b1 ,k!5

12L~e,k!

A12b1A12k2/b1

1
2

p
K~k!. ~48!

For e→0 ~or b1→1) this function goes to zero. In the la
formula the singular behavior ofP(b1 ,k) for b1→1 is ex-
pressed explicitly in the first term. This limit corresponds
collinear radiation:

A12b1t5
u1V

~11bt!si
Aȳl

uq22qt
2u,

A12b1s5
V2a

~11bs!si
Aȳl

uq22qs
2u, ~49!
01300
where l5y2V224M2u. As a result of substituting Eqs
~46!–~48! into the formula for the hard cross section~44! we
arrive at the same structure of singularities as in the long
dinal case~36!. In the collinear limitq2→qt,s

2 , we have

ȳX~12k2/b1t,s!→Kt,s bt,s ,b1t,s ,Bt,s→1, L~e,k!→0.

These limiting formulas allow us to use relations~42! and
~43! to write the final expression for hard cross section
such a form that provides explicit cancellation of infrar
divergence in the same way as for the longitudinal polari
tion.

Combining all results together, we obtain the final fo
mula for the cross section in the transverse polarized ca

dshard
'

d Q2d y
5

ds'(B)

d Q2d y
H 11

a

2p F212
p2

3
2 ln2

u1V

V

22 f S u1V1ut

u1V D G J 1
2a

V H 2~qt
22u!V

u~u1V!

KtP̂t

qt
2

1
2~qs

22u!

u

KsP̂s

qs
2

1PE
q2

2

q1
2 d q2

Al~q22u!

3F @2yq224t~u1q2!#

q4
~q22u!J01

12 P̂t

uq22qt
2u

Jt

3S 2V~u21q4!

uq2
Kq2

~u12V!~u1V!~q22qt
2!

uV D
1

12 P̂s

uq22qs
2u

JsS 2V~u21q4!

qs
2q2

Ks

1
~u222q2V!~q22qs

2!

qs
2q2 D G J a2~q2!

3A M2

4M22q2
GE~q2!GM~q2!uS y1

u

VD . ~50!
f
n

y

FIG. 3. Longitudinal and
transverse polarization parts o
cross sections normalized to Bor
ones ~left plot! and their ratios
~right plot! @see Eq.~52! for exact
definitions# as a function of miss-
ing mass squared for beam energ
4.26 GeV (V58 GeV2).
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FIG. 4. Radiative correction to
recoil polarization rations r T,L

~left plot! and r ~right plot! ~52!
within the kinematical conditions
of Jefferson Lab, as a function o
Q2 and value of a cut on missing
mass for beam energy 4.26 Ge
(V58 GeV2). Solid ~dashed! line
on the left plot showsr T(r L).
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The theoretical formula for the ratio of longitudinal an
transverse polarizations of the recoil proton that was m
sured in recent experiments@2,3# is defined by the ratio of
the right-hand side of Eq.~3! for longitudinal polarization
@with Eq. ~41! as the hard cross section under the integ
sign# and for the transverse polarization@with Eq. ~44! as the
hard cross section#. This high precision formula takes int
account model-independent RC with all the leading and
main part of the next-to-leading corrections, and has ac
racy at the level of 0.1%.

IV. NUMERICAL ANALYSIS

The ratio of proton elastic form factorsGe /Gm measured
experimentally@2,3# is related to the ratio of recoiled proto
polarization components. At the Born level~i.e., without RC!
the ratio of polarizations is defined by the ratio of a sp
dependent cross section given by Eqs.~16! and ~17!:

PT

PL
5

sT
0

sL
0

. ~51!

The photon spectrum can be defined as a function of
missing massWm

2 5yV2Q2 ~eithery or photon energy in the
chosen frameEg) of the observed cross sectionsT,L(Wm

2 )
defined by the master equation~3!. An integral overy gives a
radiative correction to recoil polarizations and to their rat
Let us define the following quantities:

RT,L~Wm
2 !5

sT,L~Wm
2 !

sT,L
0

, r ~Wm
2 !5

RT~Wm
2 !

RL~Wm
2 !

,

r T,L5E dWm
2

V
RT,L~Wm

2 !, r 5
r T

r L
. ~52!

In Fig. 3 theRT,L as a function of missing mass is pr
sented. For very small values of missing mass or alter
tively for y→Q2/V the cross sections reproduce t
d-function behavior. In the limit~18!, there are three delta
01300
a-

l

e
u-

-

e

.

a-

functions~from Du, Dp, and they dependence of the Born
cross section! and only double integration. So we have b
havior as in Eq.~18! in this limit. Only the factorizable part
is important here, so both longitudinal and transverseR8s are
practically the same. For larger values ofWm

2 ~or y) the
nonfactorized part contribution becomes important. It can
seen from Fig. 3~b!, where ratios of these spectra are pr
sented.

Figure 4 presents the results integrated overdy
5dWm

2 /V. This integration has to be performed up to som
specific values of a cut on the missing mass which is defi
by experimental conditions. Using the hard cut leads to ne
tive values of RC~or r T,L becomes less than one!, because
the contribution of loops, which is usually negative, dom
nates in this case. If the positive contribution of hard pho
radiation is allowed by using less stringent cuts, the radia
correction to the polarized parts of cross section goes up
can exceed several tens of percents. The right plot in Fi
gives a radiative correction factor to the polarization ratio
the measured ratio of form factors. One can see that
radiative correction to it is rising not only with the increasin
value of the cut but also with increasingQ2. Within the
kinematical conditions of Jefferson Lab, the radiative corr
tion is at the level of several percent or smaller if the hard
on missing mass~or missing energy! is used.

V. DISCUSSION AND CONCLUSION

In this paper we calculated radiative corrections to o
servable quantities in elastic electron-proton scattering wh
polarization of the final proton is measured. An observa
cross section of this process has to include QED loop effe
and contributions of radiation of real photons and electr
positron pair creation from the lepton line. In this paper
method of structure functions is applied for this calculatio
Within this approach, it is possible to calculate the contrib
tions of leading and main part of next-to-leading order RC
all orders of perturbation theory. Obtained explicit formul
are free from infrared divergence and can be used
straightforward numerical analysis. This numerical analy
was done for the kinematic conditions of current and futu
experiments at Jefferson Lab. Specific values of radia
correction factors were calculated. It was shown that a ra
6-10
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tive correction to the observable ratio of recoil polarizatio
is at the percent level.

We note that the problem was solved for the case w
the kinematical variableQ2 is reconstructed via the electro
momentum measured. There is also a possibility that
variable is calculated using the measurement of the final
ton momentum. This case requires another treatment,
Ref. @14#. Also the present calculation does not include
fects due to two-photon coupling to the proton.

The target considered in this paper is a proton; howe
the results can be straightforwardly generalized to the c
when a nuclear target is used instead. In this case the ef
ev

cl

01300
s

n

is
o-
ee
-

r,
se
cts

of Fermi motion and the finite momentum of the specta
nucleon system have to be taken into account.
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