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Radiative correction to the transferred polarization in elastic electron-proton scattering
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Using a method of electron structure functions, we calculated a model independent radiative correction to
the recoil proton polarization for elastic electron-proton scattering. Explicit expressions for the recoil proton
polarization are represented as a convolution of the electron structure functions and the hard part of the
polarization-dependent contribution into the cross section. The hard part is calculated with first order radiative
corrections. The obtained representation includes leading radiative corrections in all orders of perturbation
theory and the main part of the second order next-to-leading radiative corrections. Numerical calculations
illustrate our analytical results.
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I. INTRODUCTION virtual photon$ and full analysis of the radiative events.
Moreover, leading higher order corrections have to be taken
It was proposed over 25 years apg that recoil proton into account.

polarization in the elastic process- P—e+ P can be used The total radiative correction which has to be applied to
to measure the proton electric form fact@g). This method data can be naturally divided into model-independent and
provides an alternative to the Rosenbluth separation and apiodel-dependent corrections. The model-independent cor-
pears to be more sensitive B¢ in the GeV range of rection can be calculated in the framework of a one-photon
4-momentum transfersQ?). Such measurements were doneexchange approximation. It includes all corrections to the
first at MIT-Bates[2] and extended later on to high€? lepton part of interaction and insertion of vacuum polariza-
=3.5 GeV at Jefferson Lalj3]. The latter experiment pro- tion into the exchange photon propagator. The model-
vided the first evidence of significant deviation®fp from  dependent correction involves additional photon-hadron cou-

the dipole form at highe®?. pling(s) and comes from box-type diagrams, hadronic vertex
In the recent Jefferson Lab experiméBi events corre- functions, etc. The current practice of data analysis in experi-
sponding to the elastic process ments ore p scattering is that the model-independent correc-
tion is taken into account with accuracy provided by theoret-

é*(k1)+ P(py)—e (ky)+ |3(p2) (1) ical calculations. Practically it means that the contribution of

the radiative effects is calculated theoretically and simply

as well as the radiative process subtracted from experimentally observed quantities or some
Monte Carlo generators constructed on the basis of these
é‘(kl) +P(p1)—e (ky)+ y(k)+ I5(p2) (2 calculations are implemented into codes of data analysis. The
model-dependent correction is analyzed at the level allowed

have been analyzed. by the current knowledge of hadronic structure and its con-

The main goal of these experiments is the measurement @fibution is added to the systematic error due to RC. There
the proton electric form factoGg . It can be done because are several reasons for that. First, the model-independent cor-
the ratio of the longitudinal polarization of the recoil proton rection is the main contribution because of the smallness of
to the transverse one in the Born approximation is proporelectron mass. Second, the model-independent correction can
tional to the ratioGy, /Gg [1], whereGy, is the well known be calculated without any additional assumptions. There is
proton magnetic form factor. Interpretation of these high-also a historical reason to give the most attention to the
precision experiments in terms of the proton electromagnetienodel-independent correction. A lot of measurements were
form factorsGy andGg requires adequate theoretical calcu-done using classical formulas of Mo and Tsai, where only
lations with a percent accuracy or better. Such calculationmodel-independent corrections were calculated. So for a
must include the first order radiative correctidi®C) to the  proper comparison between the results of different experi-
elastic cross sectiofdue to the radiation of real soft and ments only the model-independent correction should be cal-

culated and applied.
All the corresponding contributions to the model-
*On leave of absence from Kharkov Institute of Physics and Techindependent correction can be unified within the framework

nology, 61108, Kharkov, Ukraine. of the electron structure function representation, which is a
TOn leave of absence from National Center of Particle and HighQED analog of the well known Drell-Yan representatjdi
Energy Physics, 220040 Minsk, Belarus. This representation was applied before for the calculation of
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RC to unpolarized electron-positron annihilati¢s] and D®P(z,,L) D"Yz,,L)
deep inelastic scatteringh] cross sections. In the present
work we generalize the electron structure function represen-
tation for the case of scattering of polarized particles, namely
for the analysis of the recoil proton polarization in elastic
scattering. Our analytical formulas for RC include the exact
first order contributionof the ordera), the leading contri-
bution in all ordergof the order @L)"], and the main part of
the second order next-to-leading contributi@f the order
a?L). Together with numerical integration precision, which
can be optionally changed in corresponding codes, they pro-
vide the accuracy of calculated model-independent RC at the
0,

lev?Lgfrggdgi-dependent correction including box-type dia- FIG. 1. Drell-Yan-iike representation for the cross section of
grams and hadron vertex function also can give importanvflastlcep scattering. T.hIS. represent.atlon takes into account model-
contribution to the observables. However, it cannot be calcu'—ndeloendent QED radiative corrections.
lated using the methods developed here and will be a subject )
of a separate investigation. Recently, an important step in th&#herem s the electron mass,
understanding of the model-dependent correction was done
in Ref.[7], where it was calculated with certain approxima- ~ ks
tions. It was shown that under the made assumptions the — ki=zik;, kp=_~, Q%*=—(k;—kp)?,
proton vertex correction can reach 2%. 2

This paper is organized as follows. Section Il introduces
definitions of electron structure functions and their contribu- A, IR <
tions to the observable cross section and recoil proton polar- Q7 =—(ki—kp)*=-Q%,
ization. Next-to-leading orddNLO) contributions to the ob-
servables are calculated in Sec. lll. Section IV is devoted to

the numerical analysis of radiative corrections under the ki- _2py(kyi—ky) . 1 1-y V=20.k
nematic conditions of the current Jefferson Lab experiments y= V YT VT Paks-
on polarization transfer in elastiep scattering. Section V (4
gives a summary of our results.
Il. THE LEADING APPROXIMATION A diagram in Fig. 1 explains the physical meaning of the

Drell-Yan-like representation used to describe the QED ra-
The cross section of electron-proton scattering can be remdiative corrections in the considered process. This diagram
resented in the electron structure functi®@H method as a shows that the bare electron lines have to be replaced by
convolution of a two-electron SF and the hard part of thesome effective electron lines, and the hard subprocess should
cross section that depends on the shifted 4-momenta. THee calculated for the scattering of the electron with reduced
electron SF account for radiation of hard collinear photonsmomentunk,, provided that the scattered electron has a mo-
virtual photons as well as electron-positron pairs by the ini'mentumR
tial and final electrons. This representation follows from the 2

; oo o The electron structure functioBP’(z,,L) is responsible
quaswgal electr'on. meth@8] that is suitable for a description for radiation by the initial polarized electron, whereas the
of collinear radiation.

. . . unction Z,, escribes radiation e scattered un-
In the probl dered h Il be interested onty UStion D*)(zz. L) describes radiation by the scattered
. t?] € prod em %onstl eret fetrﬁ We will be ng_eresTerz] or]d)]/ olarized electron. The photon contribution into the electron
In the splg.- ependen fat.f N ebcrosit section. Then Mgy cture function is the same for polarized and unpolarized
corresponding representation can be writien as cases, but the contribution due to pair production differs in
dol (K ky) 1 1 1 the singlet channdld]. Therefore, we can write
—————=| dz| dzD®(z,l)5DW(z,L)
Zim Z2m Zy

dQdy fe o)
dol(ard (k) Q2 DM (z,L)=D"(z,L)+Dy +Dg , 5)
X — , L=In—, 3
dQ?dy m? L
ete" €€ (p
D®(z,L)=D(z,L)+Dy +Dg . (6)

We should note also that the noncritical application of a model-
dependent correction to the data can result in a double-counting of . y ete”
the effect. For example, if a model for form factors is used as a The ee+lgf:(t:)on structur.e functions .(Z’L)’ PN (_Z’L)’
result of the fit of experimental data, where a model-dependen@nd Dg (z,L) satisfy Dokshitzer-Gribov-Lipatov-
correction was not applied for, then probably the correction shouldAltarelli-Parisi (DGLAP) equations[10]. Explicit forms of
not be applied for the measurement either. these equations were given in RES]. The iterative solution
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of the equation foD ”(z,L) defines it as the following series:
S AL
Y = _ | — @k
Dm0+ 3, L o J<
P (z)®---®@P(z)=P(2)%,

k

FIG. 2. Feynmann diagrams needed to calculate the electron
structure functiorDE* ¢~ (z,L) in perturbation theory.

1 z\ dt
P(z)®P(2)= J Pl(I)Pl(?> e tion caused by virtual pairs is included Bv’. Note that the
: Y terms containinga®L® cancel each other in the sul”
1422 + D§+87 .
Pr(z)= 3001 —2=A)+ (1 =2) The singlet structure functiobg © is regular atz=1

3 and needs to be calculated only in the lowest nonvanishing
21nA+—>, A<l, ) order. The corresponding solution of the DGLAP equation
2 reads[5]

X

whereP,(2) is, in fact, the kernel of the DGLAP equation )

for D(z,L). The iterative form(7) of D" does not include Dg*“u)(z,L):“—B[
any effects caused by pair production. The corresponding 472
nonsinglet part of the structure function due to real and vir-

tual pair productionDy" ® (z,L) can be inserted into the +(1+2)Inz
iterative form ofD?(z,L) by replacingalL /27 on the right-

hand side of Eq(7) with the effective electromagnetic cou-

2(1-2% 1
7 3172

1)
0| 1-z2— —|. W
&

pling For the polarized case, the equation Iﬂfe (P) does not
exist and in order to obtain it one needs to compute the
ot 3 al leading contribution of diagrams in Fig. 2 in kinematics
o 5'“( 1- g) (8)  when all particles move almost parallel to the parent elec-
tron. Such calculations were performed[8] and the result
is

which is an integral of the running electromagnetic constant.
The singular az=1 terms in the electron structure func-

2 _
tion (7) can be summed in all orders, leading to the exponen- Dge‘(p)(z'l_): a_|_2< 5(1-2) +(14+2)In z)
tial form of both D¥(z,L) and D§"® (z,L). There exist 4m? 2
many different representations for th¢a0,11], but here we 5
) . . m
will use the form given if5] x ol 1—z— _) (12)
&
1 3 2(1 : o .
DY(z,L)==B(1-2)#? Y1+ - p— =| =L+ x? The integration limits with respect te; and z, in the
2 8 4813 master formula3) can be found from the constraint on the

47\1 B B? Bjorken variablex for the partonic process
-3 —Z(1+z)+3—2 —4(1+2)In(1-2)
14372 : S — (ky—ky)? _ 4yX w— Q?
Z = = = = y = -
- Inz—5-z|, B="S(L-1), 2py(ky—kp) 21Z2ty—1 2p1(ky~ko)
1-z m (13)
©) o 2
By taking into account also tha ,<<1 andxy=Q</V, we
5 L o B2 5|2 derive, from Eq.(13),
ete” I D P >
Px (Z'L)‘w2:12<1—z>(1 i ) (Ll 3) 1y @
1>22>22m, 1>Zl>21m, 22m: 7 +V,
B 5 2m !
X 1+22+€ L1—§ 0 1—2—? ,
V(1-y)
(10) Zlm—V_—QZ. (14)

where ¢ is the energy of the parent electron ah¢=L In the framework of the leading logarithmic approxima-
+2 In(1-2). The above form of the structure functi@f;, © tion, we have to take the elastiBorn) cross section as the
includes effects due to real pair production only. The correchard part under the integral on the right-hand side of Bp.
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doyasy’ _do'®

= 0
dQ?dy d@Q?

Q2 done by making more precise the expression namely for this
y— 7) (15) hard part

dojily dolt® dglht@
In the case of the longitudinal polarization of the recoil = st ———.
proton, we have dQdy dQdy dQdy

B The additional term on the right-hand side of E20) takes
dah(a’)d:‘lwaz(_Qz)(l_ Q_z) A/ Q’ G2 (—Q?) into account RC due to real and virtual photon emissions
d Q? VQ? 2V) Nam2+qQ2 M ~ without its leading part that has already accounted Bor

(16)  functions. To finddo'-)/d Q3d y, we should calculate the
) _ _ _ corresponding cross sections of the proddsgwith virtual
The quantitya(—Q?) on the right-hand side of Eq16) is  and soft correctionsand of the proces®), and then subtract

the running electromagnetic constant that accounts fofrom their sum the right-hand side of formul@ with
vacuum polarization effects

(20

doliarg :dU”’l(B)
a(qz):?. dQ?dy dQidy’

1- 3—77"1—2 which appears in the same order of perturbation theory.
We begin with calculation of the cross section of the ra-

iative procesg2) (the corresponding polarization calcula-

ons were performed earlier for deep inelastic scattering

For the transverse polarization of recoil proton, the harcﬂ
part of the cross section reads

[12])
doarg _ 4ma’(—Q%) M 4o 2ma?(q®) @ ., d%dp,
dQ? VQ2  \JQ?+4M? ddy Ve 4—772anHWk—0 .

2
X \J1- S (L4 7)Ge(~ Q)G (~ Q). *olpatky ke pa k), @

whereq=k;—k,—k=p,—p;. Herein after we will be in-
M? terested in the polarization-dependent parts of leptanjgX
=V (17 and hadronic K ,,) tensors and assume that the degree of
initial electron polarization is equal to 1. Then we have
Note that in the zeroth order of perturbation theory the
photon contribution into the electron structure function gives
an ordinaryé function becausgsee also the iterative form

(7]

H/.w: —iM E,uv}\pq)\ - GE(qZ)Ap

2y _ 2
+2[GE(Q )~ Gm(a9)]

1
lim 5 B(1~2)M2E 1= 5(1-2). (18) am?—g?
B—0

Gw(a?), (22

(Ap1)P1,

. LZV:_ZiGMVqux[klpRt—i_kZpRs]r
It is easy to see that the representat{@n reproduces the

Born cross section in this case U+t 1 1 u+s s
- — 2 —_— -1, = m2— ,
dol+ f 1 tost 2 2 S st 2
= dzlf dz,— 8(1—21)6(1—2,)
dQdy z _ —u(u+Vy) 23
dol+® [ &2 ut+tv
dQ? oy \Y; whereA is the 4-vector of recoil proton polarization and we
use the following notation for kinematic invariants:
dol-® Q2 ,
= 10 5(y— V) (19 u=(ky—ky)*, s=2kk,, t=-—2kky,

g’°=u+s+t, Q?=-u.
Ill. BEYOND THE LEADING APPROXIMATION . . . .
It is convenient to express the recoil proton polarization
We can improve the leading approximation for 4-vectorA in terms of the particle 4-momenta and Lorentz
do!+/dQ3dy given by formula(3) with do!-(®)/dQ?dy as  invariants. Below we use the following parametrization for
a hard part of the cross section under the integral. It can bal andA*:
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Al Z2M°0.— 0P,
g MQ

At = 202M%KaG+°kipa]pa, — 2[2M%Ka0 — ka1, + (07— 4M Ky,
14 1

. QIEV-0%(4M%—q?), (24)

2Q,
Q. =Va7[a*M?(kyp1+Kkipp)?+(2M?Kk1q—g°k1Po) (2M k1 + g7k ps) ], (25
2kipo,=V+u+t, 2k;g=u-+t.
|
It is easy to verify that the 4-vecta@¥! in the rest frame of To separate the contribution into the right-hand side of

the recoil proton has components {p, where 3-vectom  Ed.(26) due to collinear radiation for the polelike terms, we
has an orientation of the recoil proton 3-momentum in aapply the operation®, and Py,

laboratory sYstem. One can verify also the orthogonality con-

ditions, A*Al=0, and the following relations valid in the 1, 1 P )

rest frame of the recoil proton: f@suts)=+(1-P+Pyi(qiuts),

/AR =2 == .
A=), ni=t, =0, Bif (o, u,5,0) = 1(d,,5,0)

where the 3-vecton, is within the plane K1,pz) in the ¢4 an arbitrary nonsingular function &t-0 and similarly

laboratory system. o _ _ for 1/s terms. Therefore, we can rewrite the right-hand side
For longitudinal polarization, the contraction of leptonic ¢ Eq. (26) in the form

and hadronic tensors yields

2m? . m? Stqz)A
LY H,, 2m? 2m? T (? - >t 2
,uV4,u __ - (q§+2V)F(q§)——2(U+2V) [ 32 (qs+2V)PS t2 (U+2V) 1+ u Pt F(q)
q S t
5P . . (u+2V)(u*+qf) +(q§+2V)(u2+q;‘)6
x(1+?>F(qf)+{m[(u2+q4)(u+2V) ut ! q%s s
1 P 24 44 2002 2
_2q2(q2_qt2)(u+v)]+_[(q4+u2) + ut [(U+2V)(U +q )_Zq (q _Qt)(u+v)]
SCg
1-Ps F(a)
F(a) + [(q2+2V)(u2+q“)—2q2V(q2—q2)]] :
X(q§+2v)—2qzv(q2—q§)]}qz_u, (26) ais T a?-u
(27)
where o .
For the case of transverse polarization, the contraction of
uV(1l-y) uv leptonic and hadronic tensors has a more complex form,
=ut+s=———, Qi=utte=c———,
u+Vv V(1-y)—u
1
— 17
_ U(U+Vy) q4L,u.VH,uV
S_V(l_y)_u, 2 2 2 2 2
=([q(u+t+2V)*+(4M°—g°)(u+1)“]R;
1 —q° 2 ) _
F(a?) = — G2 (g2)— _ +{q*(u+t+2V)[t—g°+2V(1-y)]
(@)=-GU(@) 5\ ez

Ge(a*)Gm(g®)

+(4M?=g*)(ug®—st}Ry) n
q

The physical meaning of quantitieg andq? is as follows:
g andq? are the values af? in the cases of the initial-state
and final-state collinear radiation, respectively. When writing \/ —g°M?
the formula(26), we took into account the fact that the terms 2_ 2 2 VY 21"
containing the electron mass squared contribute only in col- (AM7=QIL—aV(VHu+D) = MU+ )7
linear kinematics. (28
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The expression in the round brackets on the right-hand side

of Eg. (28) can be rewritten in the form suitable for the
photon angular integration as follows:

—2[q?Vy+4M2(g%+ u)]— 4V2qSKSPS
2m? : 1| 4v3g?(u?+q;
LV O ﬁ) b 1 AV )
t2 t U(qt —u)

2
XK P+ (1— Ist)j—[4V2(u2+q4)Kq— 22
u(g®—u)

1| 4V3(u?+qd)
X (92— af)(u+2V)(u+\V)] +— ———Ks
(qs_u)
2
+(1-Py) Zqzv [4V(u?+*)Ks—2V(g?— )
qs(q —U)

X(Zqu—Uz)]l.

2 2

Kem1+ 22(147), Ke=14 o+ o?
s V( T)! t— V Vqtzl
K—1+U+UT (29

To perform photon angular integration, we choose the sys-

temk,+p;—k,=0. In this system the energies of particles ;
are
a u+vVv V(l-y)—u
ko=-7= k=7 =, ko=— (=
2R 2R 2R
_2M?+Vy _R+M?
P1o 2R P20 2R
a=u+Vy, R=a+M?2 (30

Taking theZ-axis along the initial proton 3-momentum in the
chosen system, we also have

2M?— 2P10P20~ q2

C,=CO0Ss6,= ——
T 20pyllpl

2Ka0p10—V(1-Y)

C > S
2|py kel

2= COSGZ =

2Kq0p10—V

C - - ]
2|pq k4

1= C0591=

PHYSICAL REVIEW D65 013006

= WY A 31
pl - 2\/§ l p2 — ROy

where6,(6,) is the polar angle of the initigscattereglelec-
tron andé, is the photon polar angle. Besides E(30) and
(31), we will use the relation
d3k d3p,
k0 P20

a
o(ki+pi— ﬁdgodcosb’k.

(32

—k—=py)=

Let us concentrate on the case of longitudinal polarization
of the recoil proton. For the terms containing

m?/s?, m?/t?, P,/t andP./s, we can use the following for-
mulas:

f m?ded cosak_f m’ded cosf, 2R
2ms? 2rt? a2’
J' dedcosty 2R L4l
2ms _a(V(l—y)—u)( stL),
ded cosy 2R
f (L+L),
2m(—t)  a(u+V)
Lo (V(1—y)—u)? (V+U)2
sSITTUR TR
(33

Terms which contain (+ P,), (1—P,) operators can be
integrated over the azimuthal angle, while retaining integra-
tion with respect tog? using the transformatiom cosé

=d q2/2|51||52|,

J
| o

The limits of g2 integration in this case can be derived from
the restriction on cog, in the chosen systengcosé|<1.
This restriction leads to the relation

de
2752/pylpsl

2R
alg?—g2[[V(1-y)—u]’

2R
“al— g (V+u)

de
t)2] p1| | p2|

(34

9?2 <g?<q?,

2 1 2 2,,2 2
qt=ﬁ[2uM —Vy(u+Vy) £ (u+Vy)yVy —4uM].
(35
By using Eqs(33), (34), and(35), we can write the cross

section of the radiative proce$28) for the longitudinal po-
larization of recoil proton as follows:
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do!” 2o git2v. (u+2V)(u2+stqt)A
dQxdy V| utVy Ps™ u2(u+Vy)
(u+2V)(u +qt)A

—[1+L+(L-1
e e

(g5 +2V)(u”+qg)

PHYSICAL REVIEW B5 013006

To include the hard cross section into the electron struc-
ture function representatiof8) in the form (39) and to get
rid of the double counting, we must remove from the sum
(39) the contribution which arises in the representati®nin
the first order with respect to the fine structure constaat

£ do—‘llward dol®

+[1+Lg+(L—1)] Ps - ,
205(V(1—y)—u)(gi—u) dQ’dy dQ%dy
9’ dq2 A
+f2 | _ | —Py The procedure for deriving this contribution is described in
- 4G [6]. We can verify that it equals to
(u+2V)(u?+g*) —20%(q*~gf) (u+V)
X
2u(u+V)(g*-u) 2a 1 (U+2V)(u+gf)
de®_ v 2u(u+V)(g?-u) '
+|q2—q2|( e (g2+2V)(u?+q?
: T— i ?]az(qzw(q%e
><(q§+2V)(u2+q4)—2q2V(q2—q§)l] 203(V(1-y)—u)(gi—u) °
292[V(1-y)—u](g>—u) " +E_2MA8> ( _1)(|n4M2(A8)2+§)
(ARVARNY V(u+V) 2
0 o 5 u 2MAe
XX Q)R Ol Y+~ —y (36) o2 y
_ = \|.2(_N2 02 -
x| 1 ZV)a( Q?)F( Q)6(y+v)]. (40)

The 6 function appears on the right side of E(B6)

due to the restriction on the photon hardness in the radiative

process2)

whereAe is the minimal photon energy in the chosen coor-

dinate system.

To be complete, we should also take into account RC due
to virtual and soft(with the energy smaller thafie) photon
emission to the cross section of the elastic pro¢gsdt can

be written aq(see, for exampld,6])

dolV+9) 47Ta2(—Q2)
dQXdy v

Q2

1——)F( Q)—[Z(L 1)

Thus, we can write the final result for thbrﬂ]ard/d Q%dyin
the following very compact form:

dO’h g dol® a w2 u+V
= 14 —|-1- ——In>—
dQ’dy dQidyl 27 3 Y,

u+V+ur 2a (u+2V)(qt2—u)E)

ANV TV T 2uury)

(@+r2v)(@i-u). (@ de | 1
+ o Po+P|t——| ———
u a’ g*—ul|g*—qs|

(G2+2V)(u?+g*) —29°V(g°—q?)

4M2(A8)2 3 m? o u+V X (1-Py)
- - 205(V(1-y)—u
<| Viurv) " ) 1- 5 —In*—; gs(V(1-y)—u)
u+V+ur Q? - (1-P)
A 5(y— v)' 9%~ q?|
vd x L U2V gY) —26°(utV)(a* - )
)= Fina-x. (39 UV
Therefore, the sum of the cross sections of the procdé&ses X aX(qA)F(q?) 6| y+ u , (41)
and(2) is defined by the formula \4

dol® dol”  dolstV)

+ + :
dQ’dy dQ’dy dQdy

(39) where P stands for the principal value integration. When

writing the last formula, we used the following relations:
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Pfqidqzqu)—f(q?)] f(q»Hqu dq?

2 |o2-qd(g®-u)  g?-u ' Je? |g?—c
f 2
X( iq) <qt)), w
9°~u gf-u
Pfqad o’[f(a®)—f(ad)] _ f(ad) ] +fqa dg?
lo?—a2l(@®~u)  g?-u ° Jo 9>~
f(g® f(q?
X( (@) _ i%)). w3
g°—u Qgs—u
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omitted the term—2MA€/V from the argument of the
function on the right side of Eq41). For numerical calcu-
lations the principle value integration can be understood as

2 dq2 2 dq2
Pf1*2—F<q2)= jq;Z—[F(qZ)—F(u)]
q— g ~—u q= g°—u

+F(u)logz+—

The hard part of the cross section in the case of transverse
polarization of the recoil proton can be derived in full anal-
ogy with the above. The main difference is caused by the fact

where the symbol P indicates how we shall integrate thehat the vector of the transverse polarization has a compli-
unphysical singularity aj?=u. These relations allow us to cated dependence on the photon azimuthal anmfjlend
see that infrared singularities of separate terms irtherefore even¢ integration becomes nontrivial. The
do!@/dQ?dy exactly cancel each other. That is why we straightforward calculations give

dofarg  dot®) af | i | Ju+V ot utViur|]] | 2a 2(g2-u)V  2V(u?+a) KPP,
dQ¥dy dQAdy 27 3 v u+v V|| u(u+v) ud(u+Vy) |
L|20mw | 2v(utha)) q+ 2wd<p [-yg®—4r(u+g?)]
u uqs(u+Vy) q? \/sz2 4uM? q*
+1—I5t/2V(u2+q4) (u+2V)(u+V)(q2—qt2))+1—l5$ V(P +ah)
t lugd(g®-u uv(g?-u) s\ a¥q2(a®—u)
(uz—zqzvxqz—qé))” 2 [ [ et o) @Ou(g)6 u) w
a*(q + + e(@9)Gm(Q7) 0l Y+ |-
29%(¢°—u) amz-g?\ T Vv v
|
For invariantss andt on the right side of Eq(44), we can 27 do U+t  (u+t)?r -2
neglect the electron mass and use here the simplified expres- f — —+
sions o 2t v Vg
~ 3 B(1+b)y
S=C, —S;COSp, —t=cCq;—S;COSp, - |q2_qt2|_ - 2(V+U)|q2_q2| \/X
t
_ _ B; 1-A(e, k)
Cqij=2kok,d 1 —cosé, cosé,], /—1 b () 4+ — = v
uflK) byy V1—«%by)’
Cp = 2Koko 1 — COSH, COSH], (45) (46)
- 2 -1/2
s;= 2Kk Sin 84 sin 6, = 2Kk Sin 6, Sin 6, . fz de utt (u+n’s
o 27S V qu
The integrals overy can be calculated analytically in Jq B(1+ bs)\/)\—y
terms of elliptic functionsC and Il > 2
“la-d? 2(V—a)|g?— g3/ VX
—-1/2
2nde ut+t (u+t)?r B 1- A(es, )
1y — 5 =3.= KC( k), \/1 b K(k)+ —=
fo 277( \4 Vg? O ayX () ) byy V1= 7Ibss)’
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where where A=y?V?—4M?u. As a result of substituting Egs.
- (46)—(48) into the formula for the hard cross sectigh) we
X=(1+%,) (1= X_) s Si arrive at the same structure of singularities as in the longitu-
* qVv?’ dinal case(36). In the collinear limitg?>—q¢, we have
- 2(Xy—X_)

= A x)(1=x)’ yX(1- k%101 ) —Kis Drsbis,Bis—1, A(e,k)—0.
. ~

— —x_+1 These limiting formulas allow us to use relatio®2) and
“x -1’ (43) to write the final expression for hard cross section in
N such a form that provides explicit cancellation of infrared
2M2sx. =2M2(— g2+ Cp) — VOR(1+ M1—aM2q2 219?) divergence in the same way as for the longitudinal polariza-
1Nt I — .
tion.
=2M?(—u+cy)— V(1= J1-4M?/g?) Combining all results together, we obtain the final for-
47 mula for the cross section in the transverse polarized case:
1+V_ bs,t+bs,ty Coi do’ﬁard dot(® 1+ % a _1 2 | U+V
= - 1 =" = - 5 n N,
R ) s dQ’dy dQdyl™ 27 3 v
Bs=bisy+1-Y. u+V+ur —u)V K,P,
) ) u(u+V) q2
The function A(e k) (e=arcsin(1—by)/(1—+?)]€s t
=¢(b;—Db,4 §) is nonsingular Heuman's Lambda function 2(q —u) KP, d ¢
varying from 0 to 1(see[13] for details and exact defini- — q*
tions). It is related to complete elliptic integrél (b, ,«) of u \/— (g°—u)
the third kind [ 4 2)] 1-p
yq’—4r(u+q —F
1-A(e,k) 2 4 (a*~ )J0+| 2_ 2|‘]t
+K(k). (49 q G

2
—1I(by, k)=
T

\ll_bl\/l_K2/b1

For e—0 (or b;—1) this function goes to zero. In the last
formula the singular behavior dfi(b,,«) for b;—1 is ex-

2V(uP+qgh  (u+2V)(u+V)(g2—af)
uq2 Kq_ uVv

pressed explicitly in the first term. This limit corresponds to 1- Py 2V(u2+ g4
collinear radiation: > 5
Vel o
(u*—29°V)(*—q?)
+ | | {2(0?)
gsq
(49 M 2 2 !
X MGE(q Gm(@) o\ y+y ). (50

)

1) Q%<5 GeV?

2) Q=3 GeV?

-

FIG. 3. Longitudinal and
transverse polarization parts of
cross sections normalized to Born
ones (left plot) and their ratios
(right plot) [see Eq(52) for exact
definitiond as a function of miss-
ing mass squared for beam energy
4.26 GeV V=8 Ge\?).

3) Q%=1 Gev?

- 0.6
W2, GeVv?
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Ly r
0.9 1.03

b 3) W
0.88 - 5 2 m,cut
@'=5Gev 1.025

= 0.3 GeV?
3)

2 W2, = 0.2 GeV? FIG. 4. Radiative correction to
recoil polarization rationsr
L2 )W, =01 GeV? (left plot) andr (right plot (52)
within the kinematical conditions
of Jefferson Lab, as a function of
Q? and value of a cut on missing
mass for beam energy 4.26 GeV
(V=8 Ge\?). Solid (dashedl line
on the left plot shows(r).

0.86 [
0.84 —
0.82 —
0.8 — 1.015 -
078 —

b 1.01 [
076 [

N\ Q%= 3 GeV?

0.7 C L L L 1 L L L 1 L L L L T
0 0.05 0.1 0.15 0.2 0.25 0.3 1 2 3 4

5
W2, Gev? Q2 Gev?

0.74
r 1.005
0.72

The theoretical formula for the ratio of longitudinal and functions (from DY, DP, and they dependence of the Born
transverse polarizations of the recoil proton that was megross sectionand only double integration. So we have be-
sured in recent experimen(&,3] is defined by the ratio of hayior as in Eq(18) in this limit. Only the factorizable part
the right-hand side of Eq(3) for longitudinal polarization  isimportant here, so both longitudinal and transv@éeare
[with Eq. (41) as the hard cross septiqn under the i”tegrabractically the same. For larger values Wrzn (or y) the
sign| and for the transverse polarizatipwith Eq. (44) as the nonfactorized part contribution becomes important. It can be

hard cross sectidn This high precision formula takes into seen from Fi where ratios of these spectra are pre-
account model-independent RC with all the leading and thg g eq. 9. ®), P P

main part of the next-to-leading corrections, and has accu-

racy at the level of 0.1% Figure 4 presents the results integrated owty
. 0.

=d\A/2n/V. This integration has to be performed up to some
specific values of a cut on the missing mass which is defined
IV. NUMERICAL ANALYSIS by experimental conditions. Using the hard cut leads to nega-

The ratio of proton elastic form factof3,/G,, measured Ve values of RClor rr, becomes less than opéecause

experimentally[2,3] is related to the ratio of recoiled proton the contribution of loops, which is usually negative, domi-

polarization components. At the Born levik., without RG nates in this case. If the positive contribution of hard photon
the ratio of polarizations is defined by the ratio of a Spin_rad|at|on is allowed by using less stringent cuts, the radiative

dependent cross section given by EGs$) and (17): correction to the polarized parts of cross se(_:tion goes up and
can exceed several tens of percents. The right plot in Fig. 4

gives a radiative correction factor to the polarization ratio or

p. o0 the measured ratio of form factors. One can see that the
T _g. (51) radiative correction to it is rising not only with the increasing
PL o} value of the cut but also with increasin@?. Within the

kinematical conditions of Jefferson Lab, the radiative correc-
The photon spectrum can be defined as a function of thdon is at the level of several percent or smaller if the hard cut
missing mas¥V2,=yV— Q? (eithery or photon energy in the ©On Missing massgor missing energyis used.
chosen frameE,) of the observed cross sectiva(Wﬁ)

defingd by the master equgti()%). An in_tegral overy givgs a V. DISCUSSION AND CONCLUSION
radiative correction to recoil polarizations and to their ratio.
Let us define the following quantities: In this paper we calculated radiative corrections to ob-

servable quantities in elastic electron-proton scattering where
polarization of the final proton is measured. An observable
o7 (W2) . Rr(W2) cross section of this process has to include QED loop effects
)=— % TWp)=——"—-, and contributions of radiation of real photons and electron-
oTL RL(Wi) positron pair creation from the lepton line. In this paper a
method of structure functions is applied for this calculation.
Within this approach, it is possible to calculate the contribu-
. :J' me (W2), r= r (52 tions of leading and m_ain part of next-t_o-leading_ o_rder RCin
T.L v rnlWm), re’ all orders of perturbation theory. Obtained explicit formulas
are free from infrared divergence and can be used for
In Fig. 3 theRy | as a function of missing mass is pre- straightforward numerical analysis. This numerical analysis
sented. For very small values of missing mass or alternawas done for the kinematic conditions of current and future
tively for y—Q?%V the cross sections reproduce theexperiments at Jefferson Lab. Specific values of radiative
o-function behavior. In the limi(18), there are three delta correction factors were calculated. It was shown that a radia-

Rr. (W2
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tive correction to the observable ratio of recoil polarizationsof Fermi motion and the finite momentum of the spectator

is at the percent level. nucleon system have to be taken into account.
We note that the problem was solved for the case when
. B . 2 . .
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