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Two-loop polarization contributions to radiative-recoil corrections
to hyperfine splitting in muonium
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We calculate radiative-recoil corrections of ordera2(Za)(m/M )EF to hyperfine splitting in muonium gen-
erated by the diagrams with electron and muon polarization loops. These corrections are enhanced by the large
logarithm of the electron-muon mass ratio. The leading logarithm cubed and logarithm squared contributions
were obtained a long time ago. The single-logarithmic and nonlogarithmic contributions calculated here im-
prove the theory of hyperfine splitting, and affect the value of the electron-muon mass ratio extracted from the
experimental data on the muonium hyperfine splitting.
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I. INTRODUCTION: LEADING LOGARITHMIC

CONTRIBUTIONS OF ORDER a2
„Za…„M ÕM …ẼF

It is well known that the radiative-recoil corrections

order1 a2(Za)(m/M )ẼF to hyperfine splitting in muonium
are enhanced by the large logarithm of the electron-m
mass ratio cubed@1#. The leading logarithm cube contribu
tion is generated by the graphs2 in Fig. 1 with insertions of
the electron one-loop polarization operators in the tw
photon exchange graphs. It may be obtained almost with
any calculations by substituting the effective chargea(M ) in
the leading recoil correction of order (Za)(m/M )ẼF , and
expanding the resulting expression in the power series o
a @2#.

Calculation of the logarithm squared term of ord
a2(Za)(m/M )ẼF is more challenging@2#. All graphs in

*Email address: eides@pa.uky.edu, eides@thd.pnpi.spb.ru
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1We define the Fermi energy as

ẼF5
16

3
Z 4a 2

m

MSmr

mD3

chR̀ , ~1!

wherem and M are the electron and muon masses,a is the fine
structure constant,c is the velocity of light,h is the Planck con-
stant,R` is the Rydberg constant, andZ is the nucleus charge in
terms of the electron charge (Z51 for muonium!. The Fermi en-

ergy ẼF does not include the muon anomalous magnetic mom
am which does not factorize in the case of recoil corrections, a
should be considered on the same grounds as other correctio
hyperfine splitting.

2And by the diagrams with the crossed exchanged photon li
Such diagrams with the crossed exchanged photon lines are
often omitted in other figures below.
0556-2821/2001/65~1!/013003~8!/$20.00 65 0130
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Figs. 1, 2, 3, 4, and 5 generate corrections of this order.
contribution induced by the irreducible two-loop vacuum p
larization in Fig. 2 is again given by the effective char
expression. Subleading logarithm squared terms gener
by the one-loop polarization insertions in Fig. 1 may eas
be calculated with the help of the two leading asympto
terms in the polarization operator expansion and the skele
integral. The logarithm squared contribution generated by
diagrams in Fig. 3 is obtained from the leading sing
logarithmic contribution of the diagrams without polarizatio
insertions by the effective charge substitution. An interest
effect takes place in calculation of the logarithm squa
term generated by the polarization insertions in the radia
photon in Fig. 4. One might expect that the high ener
asymptote of the electron factor with the polarization ins
tion is given by the product of the leading constant term
the electron factor25a/(4p) and the leading polarization
operator term. However, this expectation turns out to
wrong. One may check explicitly that instead of the nai
factor above one has to multiply the polarization operator
the factor23a/(4p). The reason for this effect may easi
be understood. The factor23a/(4p) is the asymptote of the
electron factor in massless QED and it gives a contribut
to the logarithmic asymptotics only after the polarization o
erator insertion. This means that in massive QED the p
22a/(4p) of the constant electron factor originates fro
the integration region where the integration momentum is
order of the electron mass. Naturally this integration reg
does not give any contribution to the logarithmic asymptot

nt
d
to

s.
lso

FIG. 1. Graphs with two one-loop polarization insertions.
©2001 The American Physical Society03-1
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of the radiatively corrected electron factor. The least triv
logarithm squared contribution is generated by the three-l
diagrams in Fig. 5 with the insertions of the light by lig
scattering block. Their contribution was calculated explici
in Ref. @2#. Later it was realized that these contributions a
intimately connected with the well known anomalous ren
malization of the axial current in QED@3#. Because of the
projection on the hyperfine splitting~HFS! spin structure in
the logarithmic integration region the heavy particle prop
gator effectively shrinks to an axial vector current verte
and in this situation calculation of the respective contribut
to HFS reduces to substitution of the well known two-lo
axial renormalization factor in Fig. 6@4# in the recoil skel-
eton diagram. Of course, this calculation reproduces
same contribution as obtained by direct calculation of
diagrams with light by light scattering expressions. From
theoretical point of view it is interesting that one can me
sure anomalous two-loop renormalization of the axial vec
current in the atomic physics experiment.

The sum of all logarithm cubed and logarithm squar
contributions of ordera2(Za)(m/M )ẼF is given by the ex-
pression@1,2#

DE5S 2
4

3
ln3

M

m
1

4

3
ln2

M

mDa2~Za!

p3

m

M
ẼF . ~2!

It was also shown in Ref.@2# that there are no other contr
butions with the large logarithm of the mass ratio squa
accompanied by the factora3, even if the factorZ enters in
another manner than in the equation above.

Single-logarithmic and nonlogarithmic terms of ord
a2(Za)(m/M )ẼF are generated by all diagrams in Fig
1–4, by the graphs with the muon polarization loops, by
graphs with polarization and radiative photon insertions
the muon line, and also by the graphs with two radiat
photons in the electron and/or muon lines. Only a par
result for the single-logarithmic and nonlogarithmic corre
tions generated by the pole part of the graphs with b
electron and muon polarization loops is known now@5#. Nu-
merically the respective contribution is about 9 Hz, and m
be considered only as an indication of the scale of the
spective corrections. Corrections of this scale are phen
enologically relevant for modern experiment and theory@6#.
In this paper we calculate all radiative-recoil corrections g

FIG. 3. Graphs with radiative photon insertions.

FIG. 2. Graphs with two-loop polarization insertions.
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erated by the diagrams including only the polarization loo
either electronic or muonic, leaving calculation of the oth
contributions for the future.

II. TWO-PHOTON EXCHANGE DIAGRAMS:
CANCELLATION OF THE ELECTRON

AND MUON LOOPS

Calculation of single-logarithmic and nonlogarithm
radiative-recoil corrections of relative ordera2(Za)(m/
M ) @and also of orders (Z2a)2(Za)(m/M ) and
a(Z2a)(Za)(m/M )# resembles in many respects calculati
of the corrections of relative ordersa(Za)(m/M )
and Z2a(Za)(m/M ). It was first discovered in Refs.@7,8#
that the contributions of the diagrams with insertions of t
electron and muon polarization loops partially cancel, a
hence, it is convenient to treat such diagram
simultaneously.3 A similar cancellation holds also for the co
rections of ordera2(Za)(m/M )ẼF , so we will first remind
the reader how it arises when one calculates the polariza
contribution of ordera(Za)(m/M )ẼF . The nonrecoil con-
tribution in the heavy particle pole of the two-photon e
change diagrams exactly cancels in the sum of the elec
and muon polarizations~see for more details Refs.@8,6#!.
Then the skeleton recoil contribution to the hyperfine sp
ting generated by the diagrams with two-photon exchan
in Fig. 7 is the result of the subtraction of the heavy po
contribution

DE54
Za

p

m

M
ẼFE

0

`dk

k F f ~mk!2 f S k

2D G , ~3!

wherem5m/(2M ), and

FIG. 5. Graphs with light by light scattering insertions.

3We always consider the external muon as a particle with cha
Ze; this makes the origin of different contributions more transp
ent. However, somewhat inconsequently we omit the factorZ in the
case of the closed muon loops. The reason for this apparent in
sistency is just the cancellation which we discuss now.

FIG. 4. Graphs with polarization insertions in the radiati
photon.
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TWO-LOOP POLARIZATION CONTRIBUTIONS TO . . . PHYSICAL REVIEW D65 013003
f ~k!5
1

k
~A11k22k21!2

1

2 S kA11k22k22
1

2D ,

f ~k!k→0→2
3

4
1

k2

2
, f ~k!k→`→2

1

k
. ~4!

The electron polarization contribution is obtained fro
the skeleton integral by multiplying the expression in Eq.~3!
by the multiplicity factor 2, and inserting the polarizatio
operator (a/p)k2I 1(k) in the integrand

a

p
k2I 1~k![

a

p
k2E

0

1

dv
v2~12v2/3!

41k2~12v2!
. ~5!

The muon polarization contribution is given by a simil
expression; the only difference is that

I 1~k!→I 1m~k![E
0

1

dv
v2~12v2/3!

m221k2~12v2!
. ~6!

Then the total recoil contribution induced by the diagra
with both the one-loop electron and muon polarizations
Fig. 8 has the form

DE58
a~Za!

p2

m

M
ẼFE

0

`dk

k F f ~mk!

2 f S k

2D G@k2I 1~k!1k2I 1m~k!#. ~7!

Next we rescale the integration variablek→kM/m in the
muon term and obtain

DE58
a~Za!

p2

m

M
ẼFE

0

`dk

k F f ~mk!2 f S k

2D1 f S k

2D
2 f S k

4m D Gk2I 1~k!

58
a~Za!

p2

m

M
ẼFE

0

`dk

k F f ~mk!2 f S k

4m D Gk2I 1~k!.

~8!

We see that the electron and muon polarization contributi
have partially canceled. Moreover, it is not difficult to che
explicitly that the term withf „k/(4m)… generates only cor
rections of higher order inm, so with linear accuracy in the
small mass ratiom/M all recoil contributions generated b

FIG. 6. Renormalization of the fifth current.

FIG. 7. Diagrams with two-photon exchanges.
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the diagrams with the one-loop electron and muon polar
tion insertions in Fig. 8 are given by the integral

DE58
a~Za!

p2

m

M
ẼFE

0

`dk

k
f ~mk!k2I 1~k!. ~9!

This integral was calculated in Ref.@8# and we will not dis-
cuss its calculation here. Our only goal in this section was
demonstrate the mechanism of the partial cancellation of
electron loop and muon loop contributions.

III. DIAGRAMS WITH EITHER TWO ELECTRON
OR TWO MUON LOOPS

The nonrecoil contribution generated by the diagra
with two electron or muon loops in Fig. 1 and Fig. 9 w
obtained a long time ago@9#. Although it was not empha-
sized in that work explicitly, it is easy to check that the res
in Ref. @9# includes heavy pole contributions which are d
to the diagrams with both the electron and muon polari
tions. Repeating the same steps as in the previous sectio
is easy to see that the recoil contribution generated by
diagrams in Fig. 1 and Fig. 9 is determined by the integr

DE512
a2~Za!

p3

m

M
ẼFE

0

`dk

k
f ~mk!k4I 1

2~k!, ~10!

where the numerical factor before the integral is due to
multiplicity of the diagrams, and the whole integral is simil
to the integral in Eq.~9!. The only significant difference is
that now we have the two-loop factork4I 2(k) in the inte-
grand instead of the one-loop factork2I 1(k).

We calculate the integral in Eq.~10! separating the con
tributions of small and large momenta with the help of t
auxiliary parameters such that 1!s!1/m:

DE53~B11
, 1B11

. !
a2~Za!

p3

m

M
ẼF . ~11!

Then for the small integration momenta region in the lead
order inms (mk<ms!1) we have

B11
, 54E

0

sdk

k
f ~mk!k4I 1

2~k!.23E
0

sdk

k
k4I 1

2~k!. ~12!

FIG. 8. Diagrams with one-loop polarization insertions.

FIG. 9. Graphs with two muon one-loop polarization insertions.
3-3
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EIDES, GROTCH, AND SHELYUTO PHYSICAL REVIEW D65 013003
We substitute in this integral the closed expression for
polarization I 1(k), and again preserving only the leadin
contributions inms!1 obtain

B11
, .2

4

9
ln3 s1

10

9
ln2 s2

25

27
ln s2

2

3
z~3!1

203

324
.

~13!

The high momenta contribution is calculated by expand
the polarization operator in 1/k2<1/s2!1:

B11
. 54E

s

`dk

k
f ~mk!k4I 1

2~k!

.4E
s

`dk

k F 1

mk
~A11m2k22mk21!

2
1

2 S mkA11m2k22m2k22
1

2D G S 2

3
ln k2

5

9D 2

.

~14!

For calculation of this integral we use the standard integ
introduced in Ref.@10# as well as some new standard int
grals ~see Appendix!, and obtain

B11
. 5

4

9
ln3~2m!2

8

9
ln2~2m!1S 2p2

9
1

25

27D ln~2m!

1
2

3
z~3!2

4p2

27
2

41

18
1

4

9
ln3 s2

10

9
ln2 s1

25

27
ln s.

~15!

Now we are ready to write down the total recoil contributi
generated by the diagrams in Fig. 1 and Fig. 9:

DE5F2
4

3
ln3

M

m
2

8

3
ln2

M

m
2S 2p2

3
1

25

9 D ln
M

m
2

4p2

9

2
535

108Ga
2~Za!

p3

m

M
ẼF . ~16!

The logarithm cubed and logarithm squared terms in
expression are already known@1,2#, and the single-
logarithmic and nonlogarithmic terms are obtained here.

IV. DIAGRAMS WITH BOTH THE ELECTRON
AND MUON LOOPS

Consider now the diagrams with one electron and o
muon loop in Fig. 10. We can look at these diagrams a
result of the electron polarization operator insertions in
muon loop diagrams in Fig. 8. The complete analytic expr
sion for the last two diagrams in Fig. 8 has the form

FIG. 10. Graphs with both the electron and muon loops.
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DE58
a~Za!

p2

m

M
ẼFE

0

`dk

k F f̃ ~mk!2 f̃ S k

2D Gk2I 1m~k!,

~17!

where

f̃ ~k!5 f ~k!1
1

k
. ~18!

Unlike Eq. ~7! we have restored in Eq.~17! the heavy par-
ticle pole contribution, which in the case of the muon pol
ization loop also carries the recoil factor. To simplify furth
calculations we rescale the integration momentumk
→kM/m:

DE58
a~Za!

p2

m

M
ẼFE

0

`dk

k F f̃ S k

2D2 f̃ S k

4m D Gk2I 1~k!,

~19!

and note that with the linear accuracy inm/M we may omit
the second term in the square brackets in the integrand. T
the muon loop diagrams in Fig. 8 are described by the
pression

DE58
a~Za!

p2

m

M
ẼFE

0

`dk

k
f̃ S k

2D k2I 1~k!. ~20!

The integral in Eq.~20! turns into the contribution of the
diagrams in Fig. 10 after multiplication by the factor 3 an
insertion in the integrand of the additional factor

a

p S k

2m D 2

I 1S k

2m D5
a

p F2

3
ln

k

2m
2

5

9
1OS m2

k2 D G . ~21!

This extra factor enters in the asymptotic regime since
characteristic scale of the integration momenta in Eq.~20! is
about one, and the parameterm goes to zero.

Then the contribution to the HFS of the diagrams in F
10 is given by the integral

DE524
a2~Za!

p3

m

M
ẼFE

0

`dk

k
f̃ S k

2D k2I 1~k!S 2

3
ln

k

2m
2

5

9D
524

a2~Za!

p3

m

M
ẼFE

0

`

dkF ~A41k22k!

2
k

2 S k

4
A41k22

k2

4
2

1

2D G E
0

1

dv
v2~12v2/3!

41k2~12v2!

3F2

3
ln

M

m
1

2

3
ln k2

5

9G . ~22!

After calculation we obtain~see the Appendix!

DE5F S 2p2

3
2

20

9 D ln
M

m
1

p2

3
2

53

9 Ga2~Za!

p3

m

M
ẼF .

~23!
3-4



m
o-

r

op

thm
r

to

o-
re-

ral

e
te-

TWO-LOOP POLARIZATION CONTRIBUTIONS TO . . . PHYSICAL REVIEW D65 013003
V. DIAGRAMS WITH SECOND ORDER POLARIZATION
INSERTIONS

The recoil contribution to HFS generated by the diagra
in Fig. 2 and Fig. 11 with two-loop electron and muon p
larization insertions is given by the integral@compare Eq.
~9!#

DE58
a2~Za!

p3

m

M
ẼFE

0

`dk

k
f ~mk!k2I 2~k!, ~24!

where (a2/p2)k2I 2(k) is the two-loop polarization operato
@11,12#

I 2~k!5
2

3E0

1

dv
v

41k2~12v2!
H ~32v2!~11v2!

3FLi2S 2
12v
11v D12 Li2S 12v

11v D1
3

2
ln

11v
12v

ln
11v

2

2 ln
11v
12v

ln vG1F11

16
~32v2!~11v2!1

v4

4 G ln11v
12v

1F3

2
v~32v2!ln

12v2

4
22v~32v2!ln vG

1
3

8
v~523v2!J . ~25!

To further simplify calculations we represent the two-lo
polarization operator in the form

I 2~k!5
3

4
I 1~k!1E

0

1

dv
R~v !

41k2~12v2!
, ~26!

where

R~v !5
2

3
vH ~32v2!~11v2!FLi2S 2

12v
11v D12 Li2S 12v

11v D
1

3

2
ln

11v
12v

ln
11v

2
2 ln

11v
12v

ln vG
1F11

16
~32v2!~11v2!1

v4

4 G ln 11v
12v

1F3

2
v~32v2!ln

12v2

4
22v~32v2!ln vG

1
3

4
v~12v2!J . ~27!

The integral in Eq.~26! decreases as 1/k2 at largek. Note
that sinceR(v)→3(12v) at v→1 this leading term in the

FIG. 11. Graphs with muon two-loop polarization insertions.
01300
s

asymptotic expansion is not enhanced by the large logari
lnk. Absence of this logarithm significantly simplifies furthe
calculations.

In terms of the functionR(v) the integral for the recoil
contribution in Eq.~24! has the form

DE58
a2~Za!

p3

m

M
ẼFE

0

`

dkk f~mk!F3

4
I 1~k!

1E
0

1

dv
R~v !

41k2~12v2!
G[DEa1DEb. ~28!

The first contribution on the right hand side is proportional
the well known one-loop contribution in Eq.~9! @13,7,8#:

DEa5F2
3

2
ln2~2m!12 ln~2m!2

p2

4
2

7

3Ga2~Za!

p3

m

M
ẼF .

~29!

Calculation of the second termDEb is a bit more in-
volved. We again introduce the auxiliary parameters (1
!s!1/m) and consider separately the small and large m
menta contributions. For the small integration momenta
gion in the leading order inms we have

DEb,58
a2~Za!

p3

m

M
ẼFE

0

s

dkk f~mk!E
0

1 dvR~v !

41k2~12v2!

.23
a2~Za!

p3

m

M
ẼFE

0

s

dk2E
0

1 dvR~v !

41k2~12v2!

.23
a2~Za!

p3

m

M
EFE

0

1

dv
R~v !

12v2
ln

s2~12v2!

4

523
a2~Za!

p3

m

M
ẼFH Fz~3!1

5

24G lns2

4
12z~3!ln 2

1
25

24
z~3!1

16

3
Li4S 1

2D2
2p2

9
ln2 21

2

9
ln4 2

1
5

12
ln 22

5p4

108
2

223

144J , ~30!

where we used certain integrals for the functionR(v) col-
lected in the Appendix.

The high-momentum contribution is given by the integ

DEb.58
a2~Za!

p3

m

M
ẼFE

s

`

dkk f~mk!E
0

1 dvR~v !

41k2~12v2!
.

~31!

First we use the relationk2@s2@1 and the relationR(v)
→3(12v) as v→1 and omit 4 in the denominator in th
integrand, and then perform the calculations using the in
grals from the Appendix
3-5
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DEb.54Fz~3!1
5

24Ga
2~Za!

p3

m

M
ẼFE

s2

` dk2

k2 F 1

mk
~A11m2k2

2mk21!2
1

2 S mkA11m2k22m2k22
1

2D G
52Fz~3!1

5

24GF3 ln~2m!2
9

2

13 lns Ga2~Za!

p3

m

M
ẼF . ~32!

The total recoil contribution to the HFS generated by
diagrams with two-loop polarization insertions in Fig. 11
given by the sum of the contributions in Eqs.~29!, ~30!, and
~32!:

DE5DEa1DEb,1DEb.

5H 2
3

2
ln2

M

m
2F6z~3!1

13

4 G lnM

m
2

97

8
z~3!

216 Li4S 1

2D1
2p2

3
ln2 22

2

3
ln4 21

5p4

36

2
p2

4
1

7

16J a2~Za!

p3

m

M
ẼF . ~33!

The logarithm squared term in this expression was obtai
in Ref. @2#, and the single-logarithmic and nonlogarithm
terms are obtained here.

VI. DISCUSSION OF RESULTS

Collecting all contributions in Eq.~16!, Eq. ~23!, and Eq.
~33! we obtain

DEt5H 2
4

3
ln3

M

m
2

25

6
ln2

M

m
2F6z~3!1

33

4 G lnM

m

2
97

8
z~3!216 Li4S 1

2D1
2p2

3
ln2 22

2

3
ln4 21

5p4

36

2
13p2

36
2

4495

432J a2~Za!

p3

m

M
ẼF . ~34!

The contribution which contains only single logarithms a
constants is

DE5H 2F6z~3!1
33

4 G ln M

m
2

97

8
z~3!216 Li4S 1

2D
1

2p2

3
ln2 22

2

3
ln4 21

5p4

36
2

13p2

36

2
4495

432J a2~Za!

p3

m

M
ẼF . ~35!
01300
e

d

The factor in the square brackets is about (2103), and
numerically the respective contribution to the muonium H
is

DEnew520.027 7 kHz. ~36!

The magnitude of this correction is just in the range
should expect based on the partial result in Ref.@5#. The
contribution in Eq.~36! is of the same scale as the logarit
mic in Za corrections of order (Za)3(m/M )EF and
a(Za)2(m/M )EF , calculated recently in Refs.@14,15#.

Collecting the recent results from Refs.@10,14,15# and
Eq. ~35!, and using the experimental value of the muoniu
hyperfine splitting @16# we may derive a value of the
electron-muon mass ratio

M

m
5206.768 279 8~23! ~16! ~32!, ~37!

where the first error comes from the experimental error of
hyperfine splitting measurement, the second comes from
error in the value of the fine structure constanta, and the
third is an estimate of the yet unknown theoretical contrib
tions.

Combining all errors we obtain the mass ratio

M

m
5206.768 279 8~43!, d5231028, ~38!

which is almost six times more accurate than the best di
experimental value in Ref.@16#.

Estimating the errors in Eq.~37! we assumed that the
theoretical error of calculation of the muonium hyperfi
splitting is about 70 Hz. This theoretical error is determin
by the estimate of the still uncalculated terms which inclu
single-logarithmic and nonlogarithmic radiative-recoil co
rections of ordera2(Za)(m/M )ẼF generated by the graph
containing besides the polarization loops also radiative p
tons, as well as the nonlogarithmic contributions of ord
(Za)3(m/M )EF , a(Za)2(m/M )EF , and some other cor
rections~see a more detailed analysis in Refs.@6,17#!. Cal-
culation of all these contributions and reduction of the the
retical uncertainty of the hyperfine splitting in muoniu
below 10 Hz is the current task of the theory. As the next s
towards this goal we hope to present soon the results
calculation of the single-logarithmic and nonlogarithm
radiative-recoil corrections of ordera2(Za)(m/M )ẼF gen-
erated by the graphs containing besides the polariza
loops also radiative photons.

Note added in proof

We would like to mention one more radiative-recoil co
rection, namely, the leading logarithmic correction of ord
a3(Za):

DE52
8

9
ln4

M

m

a3~Za!

p4

m

M
ẼF . ~39!

This correction is generated by the diagrams with four po
ization operator insertions in the exchanged photons sim
to the diagrams with the three polarization insertions in F
3-6
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1. It contains the large logarithm to the fourth power, a
like the leading logarithm cubed contribution in Eq.~39! may
be easily obtained either by direct calculation or by subst
tion of the effective chargea~M! in the leading recoil cor-
rection of order (Za)(m/M )ẼF. We mention this correction
together with the radiative-recoil corrections of ord
a2(Za) because due to the presence of the large logarith
is numerically of the same order as these corrections:

DE521.668
a2~Za!

p3

m

M
ẼF . ~40!
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APPENDIX: AUXILIARY INTEGRALS

All contributions to hyperfine splitting in the main bod
of this paper are written with the help of the function

f ~mk![F0
m~k!1

1

2
F1

m~k!, ~A1!

where the standard auxiliary functionsFn(k) were
introduced in Ref.@10#:

F0
m~k!5W~jm!2

1

Ajm

, ~A2!

F1
m~k!52jmW~jm!1

1

2
, ~A3!

and

W~jm!5A11
1

jm
21, jm5m2k2. ~A4!

In terms of these functions all high-momentum contributio
to hyperfine splitting may be represented as linear comb
tions of the standard integrals

Vlmn5E
s

` dk2

~k2! l
~ ln k!mFn

m~k!, ~A5!

wherel 51, m50,1,2 andn50,1. Calculation of these inte
grals was described in Ref.@10#, and we present here onl
the results for the two integrals which were not calculated
Ref. @10#:

V1205
2

3
ln3~2m!22 ln2~2m!1S p2

3
14D ln~2m!1z~3!

2
p2

3
241

2

3
ln3 s, ~A6!
01300
-

it

e

s
a-

n

V12152
1

3
ln3~2m!2

1

2
ln2~2m!2S p2

6
1

1

2D ln~2m!

2
1

2
z~3!2

p2

12
2

1

4
2

1

3
ln3 s. ~A7!

In Sec. IV we encountered the integral

E
0

`

dk ln kF ~A41k22k!

2
k

8
~kA41k22k222!G

3E
0

1

dv
v2~12v2/3!

41k2~12v2!

5
p2

18
2

209

432
, ~A8!

which may be calculated by changing the integration va
able

z5
2

k1A41k2
. ~A9!

A number of integrals with the functionR(v) @see Eq.~27!#
used in Sec. V are collected below:

E
0

1

dvF3

4
v2S 12

v2

3 D1R~v !G5
82

81
, ~A10!

E
0

1

dvR~v !5
329

405
, ~A11!

E
0

1

dv
R~v !

12v2
5z~3!1

5

24
, ~A12!

E
0

1

dv
R~v !

12v2
ln~12v2!

52z~3!ln 21
25

24
z~3!1

16

3
Li4S 1

2D
2

2p2

9
ln221

2

9
ln421

5

12
ln 22

5p4

108
2

223

144
.

~A13!
3-7
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