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Two-loop polarization contributions to radiative-recoil corrections
to hyperfine splitting in muonium
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We calculate radiative-recoil corrections of ord&(Za)(m/M)E to hyperfine splitting in muonium gen-
erated by the diagrams with electron and muon polarization loops. These corrections are enhanced by the large
logarithm of the electron-muon mass ratio. The leading logarithm cubed and logarithm squared contributions
were obtained a long time ago. The single-logarithmic and nonlogarithmic contributions calculated here im-
prove the theory of hyperfine splitting, and affect the value of the electron-muon mass ratio extracted from the
experimental data on the muonium hyperfine splitting.
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I. INTRODUCTION: LEADING LOGARITHMIC Figs. 1, 2, 3, 4, and 5 generate corrections of this order. The
CONTRIBUTIONS OF ORDER a*(Za)(M/M)E¢ contribution induced by the irreducible two-loop vacuum po-

larization in Fig. 2 is again given by the effective charge

It is well known that the radiative-recoil corrections of €xpression. Subleading logarithm squared terms generated
2 ~ . e . by the one-loop polarization insertions in Fig. 1 may easily
g:ge:ncr(]a(ri:cé)d(mb/'vla?la:? Zylgeglrri]t?]rng:‘“?hgeIr(]algqcl:roorllwl?rlr?uo be calculated with the help of the two leading asymptotic
. y ge 109 . . terms in the polarization operator expansion and the skeleton
mass ratio cubefll]. The leading logarithm cube contribu-

N 2 L X integral. The logarithm squared contribution generated by the
tion is generated by the graphis Fig. 1 with insertions of diagrams in Fig. 3 is obtained from the leading single-

the electron one-loop polarization operators in the Woqqgarithmic contribution of the diagrams without polarization
photon exchange graphs. It may be obtained almost withoyhsertions by the effective charge substitution. An interesting
any calculations by substituting the effective chaadél) in  effect takes place in calculation of the logarithm squared
the leading recoil correction of ordeZ&)(m/M)Eg, and  term generated by the polarization insertions in the radiative
expanding the resulting expression in the power series oveshoton in Fig. 4. One might expect that the high energy
a [2]. asymptote of the electron factor with the polarization inser-
Calculation of the logarithm squared term of ordertion is given by the product of the leading constant term of
a?(Za)(m/M)Eg is more challenging2]. All graphs in  the electron factor-5a/(47) and the leading polarization
operator term. However, this expectation turns out to be
wrong. One may check explicitly that instead of the naive

*Email address: eides@pa_uky.edu’ eides@thd.pnpi_spb.ru faCtOI’ above one haS to multlply the pOlal’ization Operator by

TEmail address: asdean@pop.uky.edu the factor—3a/(4 7). The reason for this effect may easily

*Email address: shelyuto@vniim.ru be understood. The facter3a/(4 ) is the asymptote of the

We define the Fermi energy as electron factor in massless QED and it gives a contribution
_ 16 m/m\3 to the logarithmic asymptotics only after the polarization op-
EFZEZAszm(ﬁ) chR,, (1) erator insertion. This means that in massive QED the part

wherem and M are the electron and muon massasis the fine ~ — 2@/(4m) of the constant electron factor originates from

structure constant; is the velocity of light,h is the Planck con- the integration region where the integration momentum is of
stant,R,, is the Rydberg constant, arflis the nucleus charge in order of the electron mass. Naturally this integration region
terms of the electron charg€ £ 1 for muonium). The Fermi en-  does not give any contribution to the logarithmic asymptotics

ergy Er does not include the muon anomalous magnetic moment
a,, which does not factorize in the case of recoil corrections, and
should be considered on the same grounds as other corrections to + 2
hyperfine splitting.
2And by the diagrams with the crossed exchanged photon lines.
Such diagrams with the crossed exchanged photon lines are also
often omitted in other figures below. FIG. 1. Graphs with two one-loop polarization insertions.
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FIG. 2. Graphs with two-loop polarization insertions.

FIG. 4. Graphs with polarization insertions in the radiative

of the radiatively corrected electron factor. The least trivialphoton.
logarithm squared contribution is generated by the three-loop
diagrams in Fig. 5 with the insertions of the light by light erated by the diagrams including only the polarization loops,
scattering block. Their contribution was calculated explicitly either electronic or muonic, leaving calculation of the other
in Ref.[2]. Later it was realized that these contributions arecontributions for the future.
intimately connected with the well known anomalous renor-
malization of the axial current in QE[B]. Because of the
projection on the hyperfine splittindHFS) spin structure in
the logarithmic integration region the heavy particle propa- CANCELLATION OF THE ELECTRON
gator effectively shrinks to an axial vector current vertex, AND MUON LOOPS
and in this situation calculation of the respective contribution  Calculation of single-logarithmic and nonlogarithmic
to HFS reduces to substitution of the well known tWO-lOOp radiative-recoil corrections of relative ordeyz(za)(m/
axial renormalization factor in Fig. B4] in the recoil skel- \) [and also of orders Z2@)%(Za)(m/M) and
eton diagram. Of course, this calculation reproduces the,(z24)(zZa)(m/M)] resembles in many respects calculation
same contribution as obtained by direct calculation of thesf the corrections of relative ordersa(Za)(m/M)
diagrams with light by light scattering expressions. From thegng z24(z«)(m/M). It was first discovered in Ref§7,8]
theoretical point of view it is interesting that one can mea-that the contributions of the diagrams with insertions of the
sure anomalous two-loop renormalization of the axial vectollectron and muon polarization loops partially cancel, and,
current in the atomic physics experiment. hence, it is convenient to treat such diagrams

The sum of all logarithm cubed and logarithm squaredsimyltaneously.A similar cancellation holds also for the cor-

contributions of order*(Za)(m/M)Eg is given by the ex-  rections of orde?®(Za)(m/M)Er, so we will first remind

II. TWO-PHOTON EXCHANGE DIAGRAMS:

pression(1,2] the reader how it arises when one calculates the polarization
contribution of ordera(Za)(m/M)Eg. The nonrecoil con-
[ 4 M 4 M)a®(Za) m tribution in the heavy particle pole of the two-photon ex-
AE=|— §|” H+ §In m/ 3 M 2 change diagrams exactly cancels in the sum of the electron

and muon polarizationgsee for more details Ref$8,6]).
Then the skeleton recoil contribution to the hyperfine split-

It was alsq shown in Ref2] t_hat there are no othgr contri- ing generated by the diagrams with two-photon exchanges
butions with the large logarithm of the mass ratio square n Fig. 7 is the result of the subtraction of the heavy pole
accompanied by the facter®, even if the factoiZ enters in contribution

another manner than in the equation above.
Single-logarithmic and nonlogarithmic terms of order
a®(Za)(m/M)Eg are generated by all diagrams in Figs. AE=4Z_a E’EFIwﬂ([f(Mk)_f(E”, (3)
1-4, by the graphs with the muon polarization loops, by the ™ M o Kk 2
graphs with polarization and radiative photon insertions in
the muon line, and also by the graphs with two radiativewhere = m/(2M), and
photons in the electron and/or muon lines. Only a partial

result for the single-logarithmic and nonlogarithmic correc-
tions generated by the pole part of the graphs with both
electron and muon polarization loops is known ri@j Nu- + +
merically the respective contribution is about 9 Hz, and may

be considered only as an indication of the scale of the re-
spective corrections. Corrections of this scale are phenom-
enologically relevant for modern experiment and thedly FIG. 5. Graphs with light by light scattering insertions.
In this paper we calculate all radiative-recoil corrections gen-

et ek f’v\‘l SWe always consider the external muon as a particle with charge
) é g 4o é § 4o g é 4o é § Ze; this makes the origin of different contributions more transpar-
ent. However, somewhat inconsequently we omit the factorthe
case of the closed muon loops. The reason for this apparent incon-
FIG. 3. Graphs with radiative photon insertions. sistency is just the cancellation which we discuss now.
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Vo T H TR

FIG. 6. Renormalization of the fifth current. . . L .
FIG. 8. Diagrams with one-loop polarization insertions.

1 1 1
f(k)=—(Jy1+k®—k—1)— —( ky1+k>—k?— —), the diagrams with the one-loop electron and muon polariza-
k 2 2 tion insertions in Fig. 8 are given by the integral
f(k) k2 f(k) - 4 Za) dk
—0— ’ T T m _ *
k=0 7 “ k AE:83&£LRWEFJ-?4(uMk4ﬂk) )
The electron polarization contribution is obtained from ™ 0

the skeleton integral by multiplying the expression in ).
by the multiplicity factor 2, and inserting the polarization This integral was calculated in Rd8] and we will not dis-

operator @/ )k?l (k) in the integrand cuss its calculation here. Our only goal in this section was to
demonstrate the mechanism of the partial cancellation of the
a a (1. vi(1-v3) electron loop and muon loop contributions.
—kly(k)y=—k°| dv ————-. (5
™ 7 Jo o 4+K3(1-0?)

o S o IIl. DIAGRAMS WITH EITHER TWO ELECTRON
The muon polarization contribution is given by a similar OR TWO MUON LOOPS

expression; the only difference is that _ o )
The nonrecoil contribution generated by the diagrams

2(1-0v2%13) with two electron or muon loops in Fig. 1 and Fig. 9 was
T (6)  obtained a long time agfe]. Although it was not empha-
+k3(1-v?) sized in that work explicitly, it is easy to check that the result

Then the total recoil contribution induced by the dlagramsIn Ref. [9] includes heavy pole contributions which are due
the diagrams with both the electron and muon polariza-

with both the one-loop electron and muon polarizations mto Repeating th me steps as in the ction. it
Fig. 8 has the form ns. Repeating the same steps as i previous section, i

is easy to see that the recoil contribution generated by the
a(Za) M. [=dk diagrams in Fig. 1 and Fig. 9 is determined by the integral
AE=8—7 —EFJ — | f(uk)
2 M o k

1y

Next we rescale the integration variathe-kM/m in the
muon term and obtain

ﬂMHhAM—fd

o2
z
AE= 12 (Za)

[K?11(K) + K21, (K)]. (@) m

~ (=dk
M'EﬁL'F4(Mmkﬁﬁk% (10

where the numerical factor before the integral is due to the
multiplicity of the diagrams, and the whole integral is similar
to the integral in Eq(9). The only significant difference is
that now we have the two-loop factéf12(k) in the inte-

AE:g@ mEfodk[f(Mk)_f 5) +f K grand instead of the one-loop factiofl 1(k).
m M 2 2 We calculate the integral in Eq10) separating the con-
K tributions of small and large momenta with the help of the
_f( ”kz 1,(K) auxiliary parametetr such that Ko<1l/u:
a(Za) m. [=dk k N ( @) M
:8_772 MEFL [f(,uk) f(4_”k2 1,(K). AE=3(By; Bn) MEF (1

@ Then for the small integration momenta region in the leading

We see that the electron and muon polarization contribution€'4€" iNuo (uk<po<1) we have

have partially canceled. Moreover, it is not difficult to check dK

explicitly that the term withf (k/(4u)) generates only cor- _ f"_ M2 j‘_ 42

rections of higher order ip, so with linear accuracy in the ~—! 4 o k Flpk)kili(lo=-3 o k K13(k). (12
small mass ration/M all recoil contributions generated by

7% ¢ 08 |

FIG. 7. Diagrams with two-photon exchanges. FIG. 9. Graphs with two muon one-loop polarization insertions.
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a(Za) m dk|~ k )
, Y ae-s" S0 B | Tk 5] [,
T
17
FIG. 10. Graphs with both the electron and muon loops. where
We substitute in this integral the closed expression for the - 1
polarization 1,(k), and again preserving only the leading f(k)_f(kHE' (18)

contributions inuo<1 obtain
Unlike Eg. (7) we have restored in Eq17) the heavy par-
B<m_ X3 ot 10, o G o —{(3)+ 203 ticle pole contribution, which in the case of the muon polar-
n 9 9 27 324 ization loop also carries the recoil factor. To simplify further
(13 calculations we rescale the integration momentlm

—KkM/m:
The high momenta contribution is calculated by expanding
the polarization operator in KI<1/0?<1: a(Za) m »dk K
a0 M (K] (Kl
_(=dk i 7 M ok 4 "0
Bllz4fr?f('u’k)k 17(k) (19)
and note that with the linear accuracyrniM we may omit
:4f —[—( V1+ u?k?—uk—1) the second term in the square brackets in the integrand. Then
o the muon loop diagrams in Fig. 8 are described by the ex-
1 1\1/2 5\ 2 pression
- —(,uk 1+ u?k?— pu?k?— —) (—In k— —)
’ BRI ap=gtZY Mg def ik 20
(14) =8 wE kM2 1(K). (20)

For calculation of this integral we use the standard integral
introduced in Ref[10] as well as some new standard inte-
grals(see Appendix and obtain

She integral in Eq.(20) turns into the contribution of the
diagrams in Fig. 10 after multiplication by the factor 3 and
insertion in the integrand of the additional factor

2
B>=L—1In3(2 )_§|n2(2 )+ l+—5|l’l(2 ) al k\2 k al2 Kk 5 ,lLZ
umg g T g T g TR G AT AT 1l P 21
T\ 21 2] w3 2n 9 k2
2 472 41 4 10 25
+3008) - 5718ty In® o — 9 In? o+ 57N This extra factor enters in the asymptotic regime since the

characteristic scale of the integration momenta in &6) is
(15 about one, and the paramejgrgoes to zero.
Then the contribution to the HFS of the diagrams in Fig.

Now we are ready to write down the total recoil contribution . "™ :
10 is given by the integral

generated by the diagrams in Fig. 1 and Fig. 9:

4 M 8 _M [27% 25 M 4nx? a’(Za) m _ dela K\ , k 5
AE= ——In m——m E_(T—’_g)lnE_T AE_24TM F o?f 2 kI 1(k) nz_g
535|a?(Za) m. 2(Za
ST R (16) —24—( ) f dk (V4+k>—k)
108 53 M
The logarithm cubed and logarithm squared terms in this k(k 5 2 1 1 p%(1-0v23)
expre_ssiqn are aIready kn_ow{11,2], and the single- ~5l2 4+k “27 32 fo dvm
logarithmic and nonlogarithmic terms are obtained here.
M 5
IV. DIAGRAMS WITH BOTH THE ELECTRON Xz In—+3Ink=gl (22)
AND MUON LOOPS
Consider now the diagrams with one electron and OnéAfter calculation we obtairisee the Appendjx
muon loop in Fig. 10. We can look at these diagrams as a 2 2 2
result of the electron polarization operator insertions in the  Ap— (21_ @) |nM+ T 5_3 LZa) m Eq.
muon loop diagrams in Fig. 8. The complete analytic expres- 3 9/ m 3 9] 5 M
sion for the last two diagrams in Fig. 8 has the form (23
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asymptotic expansion is not enhanced by the large logarithm
2 + 4 Ink. Absence of this logarithm significantly simplifies further
calculations.
In terms of the functiorR(v) the integral for the recoll
FIG. 11. Graphs with muon two-loop polarization insertions. ~ contribution in Eq.(24) has the form

V. DIAGRAMS WITH SECOND ORDER POLARIZATION (Za) m 3

INSERTIONS AE=8~ 5 EFJ dkkf( wk) —| 1(K)

o
The recoil contribution to HFS generated by the diagrams

in Fig. 2 and Fig. 11 with two-loop electron and muon po- 1 R(v) i a b
larization insertions is given by the integradompare Eq. Odv 4+KY(1-v?) =AET+AEY. (28
9]

2¥(Za) m ~dk The first contribution on the right hand side is proportional to

AE_g_a EFJ f( k) k21 5(K) (24)  the well known one-loop contribution in E¢) [13,7,8:

7T3 ,

. - 3 2 7]a*(Za) m -
where @?/7?)k?l ,(k) is the two-loop polarization operator AEa:{— 5 IN2(2) +2 In(24) — %_ 3 Laa) S Er
[11,12 T

(29)
2 (1 v 2 2
la(k)=3 Odvm (3—=v)(1+v) Calculation of the second termEP is a bit more in-
(1=v%) volved. We again introduce the auxiliary parameter(1
_ 1-v\ 3 14v 1+v <o<1l/u) and consider separately the small and large mo-
X Liz( 17 +2 Liz(lT) + > In1 In > menta contributions. For the small integration momenta re-
gion in the leading order imo we have
| 1+v| . 11(3 214 2)+v4| 1+v
—In—Inv|+|=(3-v v —1In
1- 16 4| 1—- Za) m dvR(v
v AEb<= (Za) Epf dkkf(,uk)f 2—()2
3 1—p2 s 4+k“(1—v"°)
+|50(3=v?)ln —20(3-v?)Inv
2(Za) m E f j dvR(v)
3 B 04+K(1—0v?)
+§v(5—3vz)]. (25 a
2 2014 _,,2
To further simplify calculations we represent the two-loop ~_3 @’ (Za) m E,:fldv R(v) T (1-v%)
polarization operator in the form e M 0 1—v? 4
2 2
3 1 R(v) (Za) m - [ 5] o
1K) = o1 (k +J d——) =3 {(3)+ y[In7-+24(3)In2
=gkt | v 0 (26) M
16 1y 2 2
where 5(3) 3 Lid| 5 —i 22+ = In2
2 9
R(v)= 2 [(3 2)(1+02)| Li ( el PPN 5 574 223
v)=3v —v v Io|l = 7— 2 o’
3 1+ 1+ =
v 0 1227 108 144] (30
3 1+v 1+v 1+v
t3 Inl_v In 2 ~In 1—v Inv where we used certain integrals for the functi®fv) col-
4 lected in the Appendix.
N 1_1(3_02)(1+02)+ i 1+v The high-momentum contribution is given by the integral
16 1-v
o? 1 dvR(v)
3 —v? b>_ (Za) m J j _oomu
+|5 vE=vAIn 5 —-20(3-vD)nv AR =8 oy Be ), dKKIk) | o ey
3 (31
_ _ .2
tzvd-v )]' @7 First we use the relatiok®> 0?>1 and the relatiorR(v)

—3(1-v) asv—1 and omit 4 in the denominator in the
The integral in Eq.(26) decreases asKd at largek. Note  integrand, and then perform the calculations using the inte-
that sinceR(v)—3(1—v) atv—1 this leading term in the grals from the Appendix
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The factor in the square brackets is about103), and

a?(Za) m - [=dk? : . VRS .
f k( V1+ p2k2 numerically the respective contribution to the muonium HFS

AEP~= 4[5(3)+

77_3 |\/| o2 k2 is

_Mk_l)_%<ﬂk T A% _Mzkz_%” AEjen=—0.027 7 kHz. (36)
The magnitude of this correction is just in the range we

5 should expect based on the partial result in R&l. The
[5(3)+ 3In(2p) =35 contribution in Eq.(36) is of the same scale as the logarith-

mic in Za corrections of order Za)3(m/M)Eg and

a¥(Za) m - a(Za)?(m/M)Eg, calculated recently in Ref§14,15.
+3Ino —=% M EF (32 Collecting the recent results from Refsl0,14,13 and
o

Eq. (35), and using the experimental value of the muonium

hyperfine splitting [16] we may derive a value of the
The total recoil contribution to the HFS generated by theelectron -muon mass ratio

diagrams with two-loop polarization insertions in Fig. 11 is

) S . M
%\g)a.n by the sum of the contributions in Eq29), (30), and H=206.768 279823) (16) (32), (37

AE=AE2+ AEP<+AEP> where the first error comes from the experimental error of the
hyperfine splitting measurement, the second comes from the

B | , M 13 | error in the value of the fine structure constantand the
| E n? — - 6§(3)+ "M E® 5(3) third is an estimate of the yet unknown theoretical contribu-
tions.
1 271_2 2 571,4 .. . .
_161Li, 2) P In22— 5 In% 24 o Combining all errors we obtain the mass ratio

M
- =206.768279843), 5=2x1078, (38

772 a’(Za

_ ‘.
w3 M which is almost six times more accurate than the best direct

experimental value in Refl16].

The logarithm squared term in this expression was obtained Estimating the errors in Eq37) we assumed that the

in Ref. [2], and the single-logarithmic and nonlogarithmic theoretical error of calculation of the muonium hyperfine

terms are obtained here. splitting is about 70 Hz. This theoretical error is determined
by the estimate of the still uncalculated terms which include
VI. DISCUSSION OF RESULTS single-logarithmic and nonlogarithmic radiative-recoil cor-

rections of orderaZ(Za)(m/M)EF generated by the graphs
containing besides the polarization loops also radiative pho-
tons, as well as the nonlogarithmic contributions of order
(Za)3(M/M)Eg, a(Za)?>(M/M)Eg, and some other cor-

Collecting all contributions in Eq.16), Eq. (23), and Eq.
(33) we obtain

AEtz: _ ‘_1 In3 M_ 2_ In M—[6§(3)+ 33 InM rectiqns(see a more deta_iled_ analysis in Re{ﬁ,.l?]). Cal-
3 ' m 6 culation of all these contributions and reduction of the theo-
97 22 5 54 retical uncer'tainty of the hyperfine splitting in muonium
— - (3)—16Liy = |+ —In?2— = In*2+ —— below 10 Hz is the current task of the theory. As the next step
8 2 3 3 36 towards this goal we hope to present soon the results of

calculation of the single-logarithmic and nonlogarithmic

. (34) radiative-recoil corrections of order?(Za)(m/M)Eg gen-

m M erated by the graphs containing besides the polarization
loops also radiative photons.

The contribution which contains only single logarithms and

constants is

137° 4495 o’(Za) m _
36 432 M

Note added in proof
We would like to mention one more radiative-recoil cor-

33 M 97 1 rection, namely, the leading logarithmic correction of order
AE 6{(3)+ In ———5(3) 16 Liy > a3(Za):
2 8 M a*(Za) m~
L2 oy 2y, BT 13T AE=—5 In‘—~ =~ ¢ (39
3 3 36 36 m.m

4495 o*(Za) m Th|s_ correction is gengrateq by the diagrams with four polgr-
- —L _E.. (35)  ization operator insertions in the exchanged photons similar
432) 72 M to the diagrams with the three polarization insertions in Fig.
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1. It contains the large logarithm to the fourth power, and

like the leading logarithm cubed contribution in E§9) may

be easily obtained either by direct calculation or by substitu-

tion of the effective charge(M) in the leading recoil cor-
rection of order Za)(m/M)Eg. We mention this correction

together with the radiative-recoil corrections of order

PHYSICAL REVIEW [®5 013003

’7T2

1

Vo=

1|32 1|22
§n( M)—En( w)—

(A7)

«?(Za) because due to the presence of the large logarithm |t

is numerically of the same order as these corrections:

a?(Za) m~
AE=-1. 668—r E,: (40
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APPENDIX: AUXILIARY INTEGRALS

All contributions to hyperfine splitting in the main body
of this paper are written with the help of the function

1
fluk)=0g(k)+ 5 P1(k), (A1)

where the standard auxiliary functionsb,(k) were
introduced in Ref[10]:

1
LK) =W(&,)— —, A2
1
Pr(k)==E W)+ 5, (A3)
and
[ 1
W(E,)= 1+§——1, £,= n2k% (A4)
y

In terms of these functions all high-momentum contributions

In Sec. IV we encountered the integral

f dkink
0

—g(km—ktz)}

Jl v2(1-0%/3)

X | dy ———

0 4+k3(1-0v?)
7% 209

18 232

(Va+K2—K)

(A8)

which may be calculated by changing the integration vari-
able

2

k+\a+k%

(A9)

A number of integrals with the functioR(v) [see Eq(27)]
used in Sec. V are collected below:

to hyperfine splitting may be represented as linear combina-

tions of the standard integrals

= dk?

Vlmn_f (k2)|

wherel=1, m=0,1,2 anch=0,1. Calculation of these inte-
grals was described in Ref10], and we present here only

——(Ink)™®#(k), (A5)

the results for the two integrals which were not calculated in

Ref.[10]:
2 i
v120:§|n3(2u)—2|n2(2ﬂ)+ 5 4 In(2m)+ £(3)
71_2
_ - 13
3 4+3In o, (AB)

Jld 3 211 v? R _% A10
JdvzY —§+ (v) =81 (A10)
jd R 329 A1l
vR(v)= 205 (A11)
fld RO) _r3y+ 2 A12
. vl_vz—z( )t o (A12)
1 R
fdv ) In(l v?)
O —
25 16 (1
—2§(3)In2+ (3)+ L|4 5
27 2|22 |42 5I2 574 223
TTg MetgN et 2" 108 144
(A13)
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