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Seesaw mechanism in three flavors
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We advance a method used to analyze the neutrino properties~masses and mixing! in the seesaw mechanism.
Assuming quark-lepton symmetry and hierarchical light neutrino masses, we establish rather simple relations
between the light and the heavy neutrino parameters in the favored regions of the solar and the atmospheric
neutrino experiments. An empirical condition satisfied by the right-handed mixing angles is obtained.
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I. INTRODUCTION

Do neutrinos have a nonzero mass? How large wo
their mixing angles be? Are they like those in the qua
sector? These are among the pressing questions in pa
physics. The solar@1# and atmospheric@2# neutrino data sug-
gest that neutrinos do have mass and the recent results
Super-Kamiokande~SK! @2# imply a nearly maximal mixing
of nm and nt . On the other hand, the fact that neutrinole
double-b decay and other lepton number nonconserving p
cesses are not observed experimentally reflects the smal
of the neutrino masses@3#. The seesaw mechanism@4# has a
natural explanation for the small neutrino masses and m
enhance lepton mixing up to maximal@5–7#.

According to the seesaw mechanism, atM@mD , the Ma-
jorana mass matrixmeff of the left-handed~LH! neutrino
components is given as@5#

meff5mDM 21mD
T . ~1!

Here M is the Majorana mass matrix of the right-hand
~RH! neutrino components andmD is the neutrino Dirac
mass matrix which could be equal to the mass matrix of
up quarks:mD5mup according to some kind of quark-lepto
symmetry @5,6,8#. In the basis whereM 21 is diagonal,
M 215Mi

21d i j [Ri
2d i j ( i , j 51,2,3), mD can be written as

@8#

mD5U0mD
diagV0 . ~2!

HereU0 andV0 are LH and RH rotations, respectively, an
mD

diag5diag$m1 ,m2 ,m3%.
In this paper, we explore what can be determined ab

the masses and mixing of the right-handed neutrinos fr
the low-energy neutrino data. The paper is organized as
lows. In Sec. II, a parametrization is introduced and the s
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saw mechanism is expressed in two formulas: one of th
involves only the neutrino masses and the other invol
only some nondimensional parameters, such as mass r
and mixing angles. Then the RH neutrino masses and mix
angles are derived. In Sec. III, we obtain rather simple re
tions between the masses and mixing angles entering
seesaw formula in the favored regions of the solar and at
spheric experiments. The numerical results they infer
given thereafter. We summarize and discuss our main res
in Sec. IV.

II. GENERAL FRAMEWORK

A. Parametrization

Since theCP-violating effects in neutrino oscillations
should be small@9#, we shall therefore ignore them and co
siderU0 andV0 to be real orthogonal matrices. For simpli
ity, we also setU0;I . That is, the left-handed rotations th
diagonalize the charged leptonm1 and neutrino Dirac mass
matricesmD are the same or nearly the same and so the la
lepton mixing results from the seesaw transformation@5#.
Under these assumptions, it is convenient to write

mD
diagV0M 21V0

TmD
diag5U0

TU~Ndiag!2UTU0'U~Ndiag!2UT,
~3!

or by inverting it,

~mD
diag!21U~Ndiag!2UT~mD

diag!215V0M 21V0
T , ~4!

where U is LH rotation induced byM 21/2 and Ndiag

5diag$n1 ,n2 ,n3% with ni
25mi

eff ( i 51,2,3), the eigenvalues
of meff.

In analogy with the two-flavors case@10#, we introduce
the following mass parametrization:

j35
1

2
ln

m2

m1
, j85

1

6
ln

m3
2

m1m2
, ~5a!
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h35
1

2
ln

R1

R2
, h85

1

6
ln

R1R2

R3
2

, ~5b!

k35
1

2
ln

n2

n1
, k85

1

6
ln

n3
2

n1n2
, ~5c!

and the mixing matrices are parametrized as usual,

U5exp~ iu23l7!exp~ iu13l5!exp~ iu12l2!, ~6a!

V05exp~ ib23l7!exp~ ib13l5!exp~ ib12l2!.
~6b!

Here,l2 ,l5 ,l7 are the Gell-Mann matrix. One can see th
h3 andh8 describe the hierarchy of the RH neutrino mas
and are always non-negative. Especially,h350 implies M1
5M2 while h353h8 implies M25M3. Using the diagonal
Gell-Mann matrixl3 and l8, the mass matrices involve
now can be rewritten as

mD
diag5~m1m2m3!1/3e2j3l32A3j8l8, ~7a!

M 215~R1
2R2

2R3
2!1/3e2h3l312A3h8l8, ~7b!

~Ndiag!25~n1
2n2

2n3
2!1/3e22k3l322A3k8l8. ~7c!

This parametrization shows clearly that the re
vant variables in the diagonalization ofM 21 are
u12, u13, u23, k3 , k8 , j3, and j8. Of these, it is usually
assumed thatj3 and j8 can be identified with the corre
sponding quantities of the up sector of quarks as stated
fore, andu12,u13,u23,k3 ,k8 can be obtained, at least ap
proximately, from the low-energy neutrino data. Now let
denote

X̄~k,j,u!5~R1
2R2

2R3
2!1/3V0e2h3l312A3h8l8V0

T

5~m1m2m3!22/3~n1
2n2

2n3
2!1/3X~k,j,u!. ~8!

Here

X~k,j,u!5ej3l31A3j8l8Ue22k3l322A3k8l8UTej3l31A3j8l8

~9!

and k, j, and u refer to k3 ,k8 ; j3 ,j8; and u12,u13,u23;
respectively. Equation~8! is equivalent with the following
two equations:

R1
2R2

2R3
25~m1m2m3!22~n1

2n2
2n3

2!, ~10a!

X~k,j,u!5V0e2h3l312A3h8l8V0
T . ~10b!

The first relation is just the equality of the determinations
both sides of Eq.~8!. Taking the total term (R1

2R2
2R3

2)1/3

5(m1m2m3)22/3(n1
2n2

2n3
2)1/3 out from Eq.~8! we get the sec-

ond relation. For later use, we present here the expressio
the inverse ofX(k,j,u). It is easy to see from Eq.~9! that
01300
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X21~k,j,u!5e2j3l32A3j8l8U

3e2k3l312A3k8l8UTe2j3l32A3j8l8, ~11!

so that

X21~k,j,u!5X~2k,2j,u![Y~k,j,u! ~12!

and we have

Y~k,j,u!5V0e22h3l322A3h8l8V0
T . ~13!

We will start from Eqs.~10b! and ~13! to derive the expres-
sions of h3 , h8, and V0. Then from Eq. ~10a!, Mi( i
51,2,3) can be obtained. In the following discussion,
shall omit the variablesk,j,u in X andY.

B. Determination of the Majorana masses

In this subsection we deduce two equations about the
erarchy,h3 and h8, of the RH neutrino masses. Taking th
trace of both sides of Eq.~10b! we obtain

Tr~V0e2h3l312A3h8l8V0
T!5Tre2h3l312A3h8l85Tr X,

~14!

that is,

e2h312h81e22h312h81e24h85X111X221X33[A.
~15!

Similarly, taking the trace of both sides of Eq.~13! we get

e22h322h81e2h322h81e4h85Y111Y221Y33[B.
~16!

It is sufficient for solvingh3 andh8 from Eqs.~15! and~16!
sinceXii andYii ( i 51,2,3) are known. Onceh3 andh8 are
solved, insertingM15M3e22h326h8, M25M3e2h326h8, n1

2

5n3
2e22k326k8, andn2

25n3
2e2k326k8 in Eq. ~10a!, we obtain

the following expressions of the RH neutrino masses,

M15Fe22h822h3, M25Fe22h812h3, M35Fe4h8.
~17!

Here F5(mt
2/m3

eff)e4k824j8 and we have identifiedmi( i
51,2,3) with the masses of up quarks.

All the above results are exact but formal. We need
decoupleh3 andh8 in Eqs.~15! and~16!. From Eq.~15!, we
have

A5e2h312h81e22h312h81e24h8

>3~e2h312h8e22h312h8e24h8!1/353. ~18!

The equality is satisfied whenh35h850, that is, when
M15M25M3. At A@3 ~then B@3 is also true!, Eq. ~15!
and Eq.~16! can be approximated as follows:

e2h312h81e22h312h8'A, ~19a!

e2h322h81e4h8'B. ~19b!
2-2
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Such a case corresponds to at most two degenerate Majo
masses. There are now two possibilities to simplify the ab
two equations further.

~a! A.B. It is easy to know from Eqs.~19a! and ~19b!
thatA.B impliesh3.h8. Soe22h312h8(,1) may be omit-
ted in Eq.~19a!,

e2h312h85e2h322h8e4h8'A. ~20!

Then it is easy to see from Eqs.~19b! and~20! thate2h322h8

ande4h8 are roots of the following quadratic equation:

x22Bx1A50 ~21!

and the three eigenvalues ofX are

e2h312h8'A, ~22a!

e22h312h8'
2

B2AB224A
, ~22b!

e24h8'
2

B1AB224A
. ~22c!

~b! A,B. In this case, we haveh3,h8. Omitting the
term e2h322h8(,1) in Eq. ~19b!, we have

e4h85e2h312h8e22h312h8'B. ~23!

Now e2h312h8 ande22h312h8 are roots of the following qua
dratic equation:

x22Ax1B50. ~24!

Thus one has

e2h312h8'
A1AA224B

2
, ~25a!

e22h312h8'
A2AA224B

2
, ~25b!

e24h8'
1

B
. ~25c!

From Eq.~22! we know thate22h312h8;e24h8 ~and so
M2;M3) when B2;4A and from Eq. ~25! e2h312h8

;e22h312h8 ~and soM1;M2) when A2;4B. Far beyond
these regions, both Eq.~22! and Eq. ~25! give the same
asymptotic solution:e2h312h8'A, and e24h8'1/B and
e22h312h85e22h322h8e4h8'B/A. The solutions are also
useful for rough estimation of the Majorana masses e
when two of them are degenerate, which can be seen f
e2h312h8,e2h312h81e22h312h8,2e2h312h8 and e4h8

,e2h322h81e4h8,2e4h8. The maximal deviations for
e2h312h8 ande4h8 are both 2.

Usually one should have to solve a cubic characteri
equation to obtain the eigenvalues. In the seesaw mo
however, one usually encounters a case in whiche2h312h8
01300
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@1 and e24h8!1 simultaneously. This is a practical diffi
culty even in numerical calculation. In addition, the soluti
of a cubic equation is too obscure to see any relation betw
various physical quantities. By taking the trace ofX and its
inverse, we decompose the eigenequation in two equat
and each contains the main term ofe2h312h8 and e4h8, re-
spectively. In concrete calculation, the expressions ofA and
B can be simplified to such a great extent that their dep
dence on the parameters can be exhibited explicitly. We
discuss this issue later.

C. Determination of the RH angles

Once one has solved the three eigenvalues, then the t
eigenvectors~and then the three rotation angles! of M 21 can
be found by the standard procedure of linear algebra.
eigenequation ofX is

~X2QiI !S V1i

V2i

V3i

D 50 ~ i 51,2,3!, ~26!

where Vi j 5(V0) i j and we useQi( i 51,2,3) satisfyingQ1
.Q2.Q3 to denote the three eigenvalues ofX. The eigen-
vectors, a solution of Eq.~26!, can be expressed in

V215
~X12X332X13X23!2Q1X12

~X23
2 2X33X22!1~X331X22!Q12Q1

2
V11, ~27a!

V315
~X13X222X12X23!2Q1X13

~X23
2 2X33X22!1~X221X33!Q12Q1

2
V11,

~27b!

etc. We also know that

X215
1

detX
adjointX. ~28!

Notice detX51; the inverse ofX is just its adjoint matrix. So

Y115X22X332X23
2 , Y225X11X332X13

2 ,

Y335X11X222X12
2 ,

Y125X13X232X12X33, Y135X12X232X13X22,

Y235X12X132X11X23, ~29!

and Yi j 5Yji . The quadratic terms in Eq.~27! are just the
elements ofY. By replacing them withYi j ( i , j 51,2,3), we
have

V215
Y121Q1X12

~Y111Q1X11!2~Q2
211Q3

21!
V11, ~30a!

V315
Y131Q1X13

~Y111Q1X11!2~Q2
211Q3

21!
V11.

~30b!
2-3
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Here we have used TrX5X111X221X335Q11Q21Q3 and
detX5Q1Q2Q351. Thus all the nondiagonal elements
V0 can be expressed in a unified form:

Vi j 5
Yi j 1QjXi j

~Yj j 1QjXj j !2Q̂j
21

Vj j ~ i , j 51,2,3 and iÞ j !.

~31!

HereQ̂j
215Tr Y2Qj

21 . Considering the normalization con
dition ~or unitarity of V0) V0V0

T5V0
TV05I , all the elements

can be obtained from Eq.~31!. Then the deduction of the
three RH angles is direct: tanb235V23/V33, cosb13sinb12
5V12, and sinb135V13.

All the relations obtained, including the masses and
angles, can be easily transformed to express the light n
trino parameters inM 21, mD , andV0. The approach is jus
to make the exchangek↔2h, j↔2j, and u i j ↔b i j (1
< i , j <3).

III. NEUTRINO MASSES AND MIXINGS

The deficit of muon neutrinos observed by the sup
Kamiokande collaboration and the zenith angle distributio
of the data can be explained by oscillation betweennm and
nt with the best-fit parameters at@2#

~sin2 2u23,Dmatm
2 !5~0.95,5.931023 eV2!. ~32!

The ne2nm explanation to the solar neutrino problem r
quires one set of parameters~the best-fit values! in Table I
corresponding to the VO and MSW~including LMA, LOW,
and SMA!, respectively@11#. Here MSW and VO refer to
Mikheyev-Smirnov-Wolfenstein matter-enhanced oscil
tions @12# and vacuum oscillations~so-called just-so oscilla
tion!, respectively. LMA~SMA! stands for a large~small!
mixing angle and LOW stands for low probability~or low
mass!. We assume the effective neutrino masses have a
archical pattern, that is,m1

eff!m2
eff!m3

eff . So n3
25m3

eff

'ADmatm
2 and n2

25m2
eff'ADmsolar

2 . Little is known about
the value ofm1

eff , which we denote using the parameterr
5m2

eff/m1
eff@1. In the framework of three-flavor neutrino o

cillations, the big hierarchy betweenDmatm
2 and Dmsolar

2 to-

gether with no observation of then̄e→ n̄e oscillation in the

TABLE I. ne→nm solutions to the solar neutrino problem. He
MSW and VO refer to Mikheyev-Smirnov-Wolfenstein matte
enhanced oscillations@12# and vacuum oscillations~the so-called
just-so oscillations!, respectively. LMA~SMA! stands for a large
~small! mixing angle and LOW stands for low probability~or low
mass!.

Solution Dmsolar
2 (eV2) sin2 2u12

VO 6.5310211 0.75
MSW ~LMA ! 1.831025 0.76
MSW ~LOW! 7.931028 0.96
MSW ~SMA! 5.431026 6.031023
01300
e
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-
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CHOOZ experiment implies that then3 component inne is
rather small~even negligible! and the upper limit on the
value ofu13 is @13#

sin2 u13[uUe3u2<0.01520.05. ~33!

We shall therefore setu1350. The Dirac masses of neutrino
are taken at the scalem5109 GeV @14#:

mD
diag~m!5diag$mu~m!,mc~m!,mt~m!%

5diag$1.47 MeV,427 MeV,149 GeV%.

~34!

These are all the values enteringA andB.

IV. ANALYSIS AND RESULT

In this section we start from Eqs.~15! and~16! to get the
RH mass hierarchies,h3 and h8. Then using Eq.~31!, the
elements~and then the mixing angles! of the RH mixing
matrix would be obtained. The Majorana masses can be
tained from Eq.~17!.

Although we have decoupled the Majorana masses
the RH mixing, the expressions of these parameters woul
so complicated due to the complicated structure ofX that it is
hard to see explicitly the relations of various physical para
eters. The hierarchical properties of the Dirac and the eff
tive masses of neutrinos make it possible to drop the sma
terms inA and B. In the following, only the leading-orde
terms ofXi j (Yi j ) andA(B) will be reserved, respectively.

Instead of calculating the RH Majorana parameters
inserting the values of these parameters, we give a m
general analysis in two cases according to whetheru12 is
large~VO, LMA, and LOW! or small~SMA! and derive the
corresponding relations between the masses and mixin
the RH neutrino and the other neutrino parameters.

A. Case I: Large u12

1. Mass

In this case, all the elements ofU have the same orde
except thatUe350. Reserving the leading-order terms inA
andB, we find

A'Ue2
2 exp~2j312j812k322k8!

1Um3
2 exp~4k822j312j8!, ~35a!

B'Ut1
2 exp~2k312k814j8!. ~35b!

It is easy to see that bothA and B are much larger than 3
Note that whenDmatm

2 /Dmsolar
2 <108, we also haveA,B.

Then from Eq.~25! one has

Q15e2h312h8'Ue2
2 exp~2k322k812j312j8!,

~36a!

Q25e22h312h8'Um3
2 exp~4k822j312j8!,

~36b!
2-4
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Q35e24h8'
1

Ut1
2

exp~22k322k824j8!.

~36c!

Here we have used the relationUe2
2 Um3

2 5Ut1
2 , which is sat-

isfied whenu1350. We should point out that our resul
would be correct as long asu13 is small enough. Substituting
the eigenvalues in Eq.~17!, we have

M1'
1

sin2 u12

mu
2

m2
eff

, M2'
1

sin2 u23

mc
2

m3
eff

,

M3'sin2 u23sin2 u12

mt
2

m1
eff

. ~37!

The formulas are the same as those given in Ref.@8#. M1 and
M2 scale as 1/m2

eff and 1/m3
eff , respectively, whileM3 scales

as 1/m1
eff , which gives scales for the two lighter masses,M1

and M2, lower and the heaviest one,M3, higher than one
would expect when no mixing occurs.

2. Angles

Reserving the leading-order terms of the numerators
denominators in Eq.~31!, respectively, we obtain

V21'
Um2

Ue2
e22j3V11, V31'

Ut2

Ue2
e2j323j8V11, ~38a!

V12'2
Um2

Ue2
e22j3V22, V32'2

Um1

Ut1
ej323j8V22,

~38b!

V13'
Ue1

Ut1
e2j323j8V33, V23'

Um1

Ut1
ej323j8V33.

~38c!

Exploiting the unitarity ofV0, it is appropriate to setVii
'1. Then the three RH angles are

b12'V12'2
mu

mc
cosu23cotu12, ~39a!

b13'V13'
mu

mt

cotu12

sinu23
, ~39b!

b23'V23'2
mc

mt
cotu23. ~39c!

All of the RH angles are small and independent of the eff
tive neutrino masses. Note that, unlike like the LH qua
mixing where tanu'AmD /ms in the two-generation cas
@15#, the RH mixing angles scale linearly with the ratios
the Dirac neutrino masses.
01300
d

-

3. Numerical results

a. VO. Inserting the parameters in Eq.~37!, we have

M1'8.03108 GeV, M2'4.63109 GeV,

M3 /r'1.531017 GeV. ~40!

The mixing angles are easy to obtain from Eq.~39!,

b12'24.631023, b13'3.231025,

b23'24.331023. ~41!

b. LMA. In this case we have nearly the same RH ang
as in VO and we find

M1'1.53106 GeV, M2'4.63109 GeV,

M3 /r'2.831014 GeV. ~42!

c. LOW. We now have

M1'1.53107 GeV, M2'4.63109 GeV,

M3 /r'6.631015 GeV ~43!

and

b12'23.331023, b13'2.331025,

b23'24.331023. ~44!

B. Case II: Small u12 „SMA…

In this case,Ue350, andUe2 , Um1, and Ut1 have the
same order 1022 while the other elements ofU are of order
1. We have

A'Ue1
2 exp~22k322k812j312j8!

1Ue2
2 exp~2k322k812j312j8!'X11, ~45a!

B'Ut2
2 exp~22k312k814j8!

1Ut1
2 exp~2k312k814j8!'Y33. ~45b!

Again, they satisfyB.A@3 andA2@4B, so that

Q1'A' f 21Ue2
2 exp~2k322k812j312j8!, ~46a!

Q2'
B

A
'Um3

2 exp~e4k314k822j312j8!, ~46b!

Q3'
1

B
' f Ut1

2 exp~22k322k824j8!. ~46c!

Here f 5@r /(r 1cot2 u12)# and it cannot be omitted sinc
cotu12@1. As with case I, we have
2-5
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TABLE II. Exact numerical and approximate results whenr 5101. In each cell we listed the numerica
and approximate results above and below, respectively. By solving the eigenequation ofX we obtain the
eigenvalue~s! that are larger than 1 and the corresponding eigenvector~s!. The reciprocal value~s! of the other
eigenvalue~s! and the corresponding eigenvector~s! are obtained by solving the eigenequation ofY. Substi-
tuting these eigenvalues in Eq.~24! we get the three masses in the Majorana sector~see the text for details!.

r 5101 M1(GeV) M2(GeV) M3(GeV) b12 b13 b23

VO 6.23108

8.03108
4.63109

4.63109
1.931018

1.531018
23.731023

24.631023
2.231025

3.231025
24.331023

24.331023

LMA 1.23106

1.53106
4.53109

4.63109
3.731015

2.831015
23.231023

24.631023
2.231025

3.231025
24.131023

24.331023
LOW 1.33107

1.53107
4.63109

4.63109
7.631016

6.631016
22.631023

23.331023
1.831025

2.331025
24.331023

24.331023

SMA 7.03106

7.03106
4.43109

4.63109
2.131015

2.031015
29.331024

21.031023
6.231026

7.231026
24.031023

24.331023
d

a

in
n

n:
M1' f
1

sin2 u12

mu
2

m2
eff

, M2'
1

sin2 u23

mc
2

m3
eff

,

M3' f 21sin2 u23sin2 u12

mt
2

m1
eff

. ~47!

For the mixing angles, we obtain

b12'V12'2 f
mu

mc
cosu23cotu12, ~48a!

b13'V13' f
mu

mt

cotu12

sinu23
, ~48b!

b23'V23'2
mc

mt
cotu23. ~48c!

Again the factorf appears. Note that the expressions ofM2
andb23 are the same as that whenu12 is large. Moreover, the
SK data suggest strongly thatu23'p/4. So bothM2 andb23
have the same values in all the favored regions considere
is noteworthy that the factorf makes the value ofM3 remain
at a relatively low scale for a wide range ofr, which is
different from that in Ref.@8#. When r @cot2 u12 ~then f
'1), we have the same expressions of the RH masses
the mixing angles regardless of whetheru12 is large or not.
01300
. It

nd

Substituting the values of the parameters from Eq.~47!
we have

M1'4.73108f GeV, M2'4.63109 GeV,

M3'3.031012
r

f
GeV. ~49!

and from Eq.~48a!,

b12'27.031022f , b13'4.931024f ,

b23'24.331023. ~50!

Here, with the value ofu12 substituted, f '@r /(r 16.6
3102)#.

Comparisons with the exact numerical results are given
Tables II–IV, from which we can see that they fit well. I
calculation we takemD

diag(m) at m5109 GeV. Note that, al-
though the up-quark masses are running withm, the Dirac
mass hierarchiesh3 andh8 are almost fixed whenm varies.
We find that they satisfy the following approximate relatio

mu~m!mt~m!

mc
2~m!

'1. ~51!

So the deviation mainly results fromF@5(mt
2/

m3
eff)e4k824j8# whenmD

diag(m) is taken at a different scale.
TABLE III. Same as in Table I but forr 5102.

r 5102 M1(GeV) M2(GeV) M3(GeV) b12 b13 b23

VO 7.73108

8.03108
4.63109

4.63109
1.531019

1.531019
25.331023

24.631023
3.131025

3.231025
24.331023

24.331023

LMA 1.53106

1.53106
4.63109

4.63109
2.931016

2.831016
24.431023

24.631023
3.131025

3.231025
24.331023

24.331023

LOW 1.43107

1.53107
4.63109

4.63109
6.731017

6.631017
23.231023

23.331023
2.331025

2.331025
24.331023

24.331023

SMA 6.13107

6.13107
4.43109

4.63109
2.431015

2.331015
29.131023

29.131023
6.031025

6.431025
24.031023

24.331023
2-6
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TABLE IV. Same as in Table I but forr 5103.

r 5103 M1(GeV) M2(GeV) M3(GeV) b12 b13 b23

VO 7.93108

8.03108
4.63109

4.63109
1.531020

1.531020
25.531023

24.631023
3.231025

3.231025
24.331023

24.331023

LMA 1.53106

1.53106
4.53109

4.63109
2.831017

2.831017
24.631023

24.631023
3.231025

3.231025
24.331023

24.331023

LOW 1.53107

1.53107
4.63109

4.63109
6.631018

6.631018
23.331023

23.331023
2.331025

2.331025
24.331023

24.331023

SMA 2.83108

2.83108
4.53109

4.63109
5.131015

5.031015
24.431022

24.231022
2.931024

2.931024
24.131023

24.331023
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V. SUMMARY AND DISCUSSION

In this paper, we introduce a parametrization which tra
forms all the involving masses in the seesaw formula to
mass ratios. Then by taking the traces ofX and its inverse,
we derive the equations of the Majorana mass ratios,h3 and
h8. The solutions to these equations are obtained under s
conditions and the elements ofV0 are expressed in a unifie
form. Assuming quark-lepton symmetry and hierarchical
fective neutrino masses, rather simple relations among
various neutrino parameters entering the seesaw formula
deduced. Finally, setting the Dirac neutrino masses to
equal to the up-quark masses, we present the numerica
sults in the favored regions of the solar and atmosph
neutrino experiments.

Now let us give a combined analysis of the results o
tained and list our main points as follows:M2 ('4.6
3109 GeV) and so the product ofM1 and M3 is nearly
independent ofu12; the three RH neutrino masses are hi
archical and M3 /M2(}m3

eff/m1
eff)@M2 /M1(}m1

eff/m2
eff);

b23 ('24.331023) and b12/b13'2 1
2 (mt /mc)sin 2u23'

2 1
2 (mt /mc) are also independent ofu12. Moreover, the RH

mixing angles satisfy the following condition:

b12b23

b13
'cos2 u23'

1

2
, ~52!

which is independent of not onlyu12 and the effective neu
trino masses but also the Dirac masses of neutrinos.
interesting to notice that the~13! elements (Ue3 , V13, and
Uus! determined by the third mixing angles of the three c
responding mixing matrices are all small. It is also notew
thy that the third mixing angles in both the Cabibb
Kobayashi-Maskawa~CKM! matrix of quarks and the RH
mixing matrix are of orders of the products of the other tw
angles, respectively. In the former, we haveuUusUub /Ucbu
'(r21h2)21/2. Here,r andh are smaller than 1@16#.

Numerically, the lightest right-handed neutrino mass c
lie between 106 GeV and 108 GeV while the heaviest right
handed neutrino mass ranges from about 1012 GeV to far
larger than 1017 GeV.
01300
-
e

me

-
he
re
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re-
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-

-

is

-
-

n

Numerically, all the three RH angles are small althou
they may contain the contribution from the diagonalizati
of M 21. The absolute values ofb12 and b13 are about
1023;1022 and 1026;1024, respectively.

The SMA solution seems especially attractive in the se
that M3;1015 GeV for a wide range ofr due to the factorf
while M3’s for the other three regions~VO, LMA, and
LOW! increase rapidly withr and become too large to b
viable. Especially, for the VO solution to the solar neutri
problem, both the two mass squared difference splittings~of
the order 1023 eV2 and 10211 eV2, respectively! and the
scale of the heaviest RH neutrino massM3 (@1017 GeV)
make it look very unnatural@17#.

In this work, we have setu1350. Although the smallu13

has little effect on the oscillation solution to the solar and
atmospheric neutrino deficits, it may become important
the seesaw mechanism, especially in the SMA region wh
u13 is comparable withu12. It may lead to large RH mixing
angles owing to the contribution from the diagonalization
M 21 as well as degenerate masses. This can also be
from the fact that the coefficients ofUe3 in A are much larger
than that of the other elements ofU. We point out that the
method is even valid in such cases in which more skills m
be needed. We will discuss this in more detail in a la
paper.
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