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Localization of bulk form fields on dilatonic domain walls
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We study the localization properties of bulk form potentials on dilatonic domain walls. We find that bulk
form potentials of any ranks can be localized as form potentials of the same rank or one lower rank, for any
values of the dilaton coupling parameter. For large enough values of the dilaton coupling parameter, bulk form
potentials of any ranks can be localized as form potentials of both the same rank and one lower rank.

DOI: 10.1103/PhysRevD.64.127501 PACS nuni§er04.50:+h, 11.25.Mj, 11.27d

The Randall-SundruntRS) scenarid1,2] provides an al- and the D—1)-dimensional action on the domain wall
ternative compactification method, where our four-(DW) world volume:
dimensional spacetime is realized as a three brane on which
the bulk graviton can be localized even with noncompact _ D-1 —ag
extra spatial dimensions due to warped spacetime. Localiza- Sow=~ | d7 " xV=yopwe 7, @
tion of various bulk fields on the brane has been studied. In
particular, it was shown that, whereas the bulk scalar can behere y is the determinant of the induced metrig,,
localized on the RS domain wall, bulk photon and form po-=4d,X"3,XNGy on the domain wall world volumerp,y is
tentials cannot be localizg®,4]. Later, it was found ou5]  the energy densityor tension of the domain wall,M,N
that the bulk three-form potential, which is Hodge dual to a=0,1,... D—1 andu,»=0,1, ... D—2. In this paper, we
bulk scalar in five-dimensional bulk spacetime, can also b&onsider the case in which the gravity can be localized on the
localized as a two-form potential in one lower dimensionpy, For such a case, the DW solutionds symmetric and

with a choice of a modified Kaluza-Klei(KK) zero mode pas naked singularities on both sides of the WWall:
ansatz.(cf. see also Ref[6].) It was proposed in Ref.7],

whose work was extended to the supersymmetric case in Ref. G, dxMdxN=W[ —dt?+ dx§+ cet ds%,z] +dy?,
[8], that aU(1) field on the brane is originated rather from

two bulk two-form potentials. Alternative methods for local- — a1 _ —1_ 8/(D —2)2a2
izing the bulkU (1) field on the brane through topological ¢=a~tIn(1=Kly}), W=(1-Kly) '
Higgs mechanisni9] and by adding a potential of the bulk

— 92 _2)32 _
U(1) field to the brane actiofiLO] were also proposed. K= ww /iy A= (D-2)a _2D 1, 3)
We showed 11-13 that dilatonic domain walls can lo- 2 2A 2 D-2

calize bulk gravity, provided that the tension of the wall is
positive. Bulk fields with various spins, including the bulk
U(1) field, were showr12] to be localized on such dila-

the DW tension, which can be fixed by the boundary condi-
tion aty=0, has the fine-tuned positive value

tonic domain walls, in the sense that the KK zero modes of 1 8K 4 A
the bulk fields are normalizable. It is the purpose of this Tow _2—2:_2\/ , (4)
paper to study localization of bulk form potentials of various kp (D—2)a” «kp ¥V 2A

ranks, which were not considered in our previous work. Un- . . i L
like the case of a nondilatonic RS domain wall, any bulk@nd the effective D —1)-dimensional gravitational constant

p-form potentials can be localized on the dilatonic domainh@s the nonzero values(+4)A/2A«3 /2. Note, from the

in one lower dimension, provided the dilaton coupling pa-only for A<0[A>0] whenA<0 [A>0]. We have shown
rametera is large enough. Furthermore, for any valuesaof [11-13 that the normalizable KK zero mode for the bulk
any bulk p-form potential can be localized on the dilatonic graviton exists and therefore the gravity can be localized on

wall as ap-form potential or as ag{—1)-form potential in ~ Such a dilatonic domain wall, for any values af _
one lower dimension. We considep-form potentials in the bulk of such a dila-

We begin by summarizing dilatonic domain wall solution tonic domain wall. The action for a masslgstorm potential
and localization of bulk graviton, studied in Refd1-13.  Awm,...m, With the field strength Fy . =(p
The total action for the dilatonic domain wall solution is the +1)d;u Aw,, .. My ] in the D-dimensional bulk spacetime
sum of theD-dimensional action in the bulk of the domain s given by

wall:
1
1 4 S :——f dPxy—GGMNz. ..
Somk:Wf dPx —G{R—D_ZaMquﬁ—e—MA : P 2. (p+1)!
D
M N
() XGTer e tEy vy Py g o &)
If we choose the following KK zero mode ansatz for the
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(X*),
(11)

Ay g (XEY) =8 (XF), (6) Ay oy Xy =W 720 DR y)a,

then the actior(5) become$
with all the other components vanishing. Then, angéjz

_ 1 K dy(1—K|y|)4©@-20-3)0- 27 and (11) are compatible with with Eq(10), and the bulk
Sp= 2-(p+1))_ ¥( yD Hodge-duality formuld10) reduces to the following Hodge-
p 1K _ : ) :
duality formula inD — 1 dimensions:
Xf dPIx\—ggt1”i. . . ghpritptl J—ggH.. .gl‘D—pfl”Dfpflkal e
><f,ul---#p+1f”1---”p+1’ @) = —¢eMt1--HD-p-1Y1---Vpf . (12

! Vl o Vp
where g,,,(x”) is the KK zero mode for the bulk metric P
Gun(x*,y) and ful---up+15(p+ 1)(9[#1%2.”#’)“} is the SL_Jbst|tut|ng the ansatdl) into the bulk action(5), we ob-
field strength of the [ —1)-dimensionalp-form potential ~ t&in
By oy The bulkp-form potentiaIAM1 ..., can be local- K
ized on the dilatonic domain wall, if thgintegral in Eq.(7) S=~ 5o dy(1—K|y|)~4®—2p-1)/(0~2)%?
is finite, which is the case when “PHJ -1k

D-3 (D-2)%a® (D—2)(A+4)
2 8 A

p< (8) Xf dD_lXV_ggﬂlvl‘"g'uprfﬂl-'-#prl---Vp' (13)
From this we see that the criterion for a byHform potential
with the KK zero mode of the fornfll) to be localized on
the wall is

As observed in Refl4], a nondilatonic DW &4=0) cannot
localize p-form potentials withp=(D —3)/2. In particular,
the RS DW/[the (D,a)=(5,0) casé can localize only a
O-form field or a scalar field. However, the dilatonic DWs p>(D—1)/2 — (D-2)%a%/8 = — (D—2)Al4. (14)
(a#0) can additionally localize the higher rapkform po-
tentials, as long as the dilaton coupling parametés large  So, for any values o#, all the bulkp-form potentials with
enough: The higher the rank of the form potential, the p>(D—1)/2 can be localized on the wall as p1)-form
larger the value of required for localizing the form poten- potential. In the bulk of dilatonic domain walkg 0), bulk
tial. All the bulk form potentialsup to rankD—1) can be  form potentials with the lower ranks can be additionally lo-
localized on the wall when calized on the wall in such a manner: The larger the value of
a, the less stringent the lower bound prior such localiza-
a’>4(D+3)/(D~2)*=A=8/(D~-2). © " tion. Al the bulk p-form potentials withp=1 can be local-

So, for example, the five-dimensional dilatonic domain wall'Z€d on the dilatonic wall asp(—1)-form potentials, if

in string theories obtained by compactifying branes with one 2 _ _ 92
type of constituent brane on a Ricci flat manifold, for which a=4(D-1)/(D-2)"=A=0. (19
A=4, can Iocahzg bulk form potentials of all ranks. So, for example, all the DWs obtained frofimtersecting
The problem with the KK zero mode ansatz of the formpranes(with equal chargesin string theories through the
(6) is that the ansatz of such form for the pAi .., and  compactification on Ricci flat manifolds, for which=4/N
A Hp_p_, Ar€ not compatible with the following Hodge- with Ne Z, , can localize any rank bulg-form potentials as
duality formula in the bulk spacetime: (p—1)-form potentials inD —1 dimensions.
When the KK zero mode is chosen to be of the fqén
J—GGMiN.. .GMD*p*lND*p*lENl_ for the lower rank form potentials and of the forhl) for
the higher rank form potentials, the only cases in which the
1 My Mo o iNy. Noi nondilatonic domain wallsg=0) cannot localize the bulk
(p+1) € . PHEN, Ny (1O form potentials argp=(D—3)/2 andp=(D—1)/2, as can
be seen from Eqgs(8) and (14). For the RS domain wall
Another problem is that a higher rank form potential hodge(D =5), these correspond to the bulk(1) field and two-
dual to a lower rank form potential which can be localized onform field. On the other hand, dilatonic domain walls can
the wall may not be localizable, as can be seen from théocalize bulk p-form potentials withp=(D—3)/2 and p
criterion (8). To resolve such contradictions, it was proposed=(D —1)/2 when KK zero modes are chosen to be of the
in Ref.[5] to choose the KK zero mode ansatz fop-form  forms(6) and(11), respectively, for any values af So, bulk
potential withp>(D—1)/2 as p-form potentials of any ranks can be localized on the dila-
tonic domain wall(with any a) as p-form potentials or
—1)-form potentials inD—1 dimensions. Furthermore,
INote, spacetime is undefined beyond the singularitey=at  from Egs.(9) and(15) we see that bullp-form potentials of
+1/K, so the integration interval is 1/K<y<1/K. any ranks can be localized on the dilatonic domain walls as

~Np_pa
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both p-form potentials and {— 1)-form potentials inD—1 2(D-2p—-1)K? 2(D—2p—1)—(D—2)%a?
dimensions, if the conditiof9) is satisfied. V(y)= (D-2)%a" (1—K[y])?
We now explicitly study the KK modes of massless bulk
p-form potentials by considering the following equations of 4D—-2p—1)K
motion obtained from the bulk actiof®): T T D=2)%Z a(y). (22)
1 . . .
_ From this we see that the solution to the Sdhinger equa-
—— . [V—GGMiNi. . .GMp+aNprap 1=0. = <
J-Gg M Ni--Nora tion (20) satisfies the boundary conditiar,(0*)—ugy(0™)
(16 —_ 4(D—2p—1)KUy(0)/(D—2)%a2 The solution to Eq.
We will find above all that the KK zero modes of a bulk form (20)  satisfying this boundary condition islo(y)~(1
potentials are indeed given by Eds) and (11). —K]y|)2®-2p~1I(0=2)%a" g the KK zero mode is con-

First, we consider the dimensional reduction of a bulkstant: uy(y)=Ww~(P-2P-1M4 (y)=constant. This zero

p-form potential to a form potential of the same ramkBy  modeu,(y) is normalizable if its norm
using the gauge degrees of freedom, we can take the gauge

conditionsAMlmMpfly=0. We consider the following KK 1K
mode ansatz for the bulEform potential: Ll/Kdy w(y)w(y)
Aﬂl...ﬂp(x“,y)ZaLT)__,Mp(X“)Um(y), (17 N(l_K|y|)[4(D—2p—3)+(D—2)2a2]/(D—2)2a2|J;II;/K

where aﬁfl‘).__#p is assumed to satisfy the following field (23

equations for a massive p-form potential in

(D 1)-dimensional flat spacetime: is finite, which is the case when B-2p—3)+(D

—2)%a2>0. This normalization condition coincides with the

graf(m +m2a(m -0 (18) condition (8) obtained by considering the effective action
K- Mpel Mg M1 (7). For such a case, the normalized zero mode is given by
a(lo)ng with the gauge(c)onditioné“laﬁfl‘)_._#pzo, where \/4(D—2p—3)+(D—2)2a2
m —_ m H . =
ful---up+1=(p+ 1)5[M1aM2___Mp+l] is the field strength of Uo(y) 2(D—2)%a2

aﬂT...Mp- Then, the equations of motiofl6) for the bulk

p-form potential with the bulk metri¢3) substituted reduce \We make a couple of comments on the KK zero mode. First,

to the following form of the Sturm-Liouville equation satis- had we just considered the Sturm-Liouville equatid®)
fied by up(y): with m=0, the most general form of the KK zero mode

would have been given by
ay[w(D—Zp—l)/Z&yum]:m2w(D—2p—3)/2um. (19)
/ . - uo(y):Cl+CZW(D—2)2a2/8—(D—2p—1)/2, (24)
The operatorL=a,(W{P~2P~D/25 ) is self-adjoint, pro-
vided i tf;e ) /bOUﬂdaf)lllK condition _[(W(D_Zp_l)/zurﬁ)um wherec; andc, are integration constants. This solution ex-
—(W_( —-2p-— )zu?)_un] ik=01is satv_sfled. For_such acase, pressed in terms ofi,=W {2~ D4y  is also a general
the eigenvaluem® is real and the eigenfunctions,, with  so|ution to the Schidinger equation(20) in the regiony
different eigenvalues are orthogonal to each other with rez.qg The boundary condition at=0 due to thes-function
it ; _ —2p-3)12 :

SE’/EC'[ to the weighting funct|omv(2y) —ZW(D : 2 ie.  term in the potential(22) requires thatc,=0. However,
J=1kdy Un(y)un(y)w(y) =0 for m*#n<. By using a new  hen just the Sturm-Liouville equatiofi9) is considered,
y-dependent functioru,,=W®-2P~14, we can bring such a restriction due to the boundary conditioyat0 does
the Sturm-Liouville equation19) into the following form of  not exist. If we use the general zero ma@d), then the bulk

the Schrdinger equation with zero-energy eigenvalue: action (5) takes the form
v ~ _
—-d um/dy2 +V(y)u,=0, (20 S —_ 1 1K dy(Clmz(D_zp_g)/(D_z)zaz
P 2-pl) -1k

where the potential is given by
+szl—Z(D—2p+1)/(D—2)2a2)2

D-2p-1 D—-2p—-1)(D—-2p-5
Viy)= 4p -ty (D= 2P i(e p—5)
XJ'delx\/__ngLO)”.M FO)u1 - ipin
XW (W' )2+ mPw L, 21) B
(1K

In the case of the KK zero moden=0), by substituting the +C2f UKdYJ dD_lXV—gaELOB, . ,,Lpa(o)”l ke,
expression for the warp factdB) into Eq. (21), we obtain N
the following explicit expression for the potential: (25
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wherew=1-K|y| and the constart, is proportional toc,.  tial case.(Also, with such criterion, the KK zero mode for
So, withc,#0, we have a finite mass tefrfor the p-form the bullk gravitqn is localized around both dilatonic and non-
potential in the effective action, which is contradictory to the dilatonic domain Wa"S- _ _ .

fact thatu, is the KK zero mode. Furthermore, the finiteness >€c0nd, we consider the dimensional reduction of a bulk
of the kinetic term in Eq(25) requires a larger value g~ P-form potential to a p—1)-form potential. We choose
than the value satisfying E¢9). Second, we have seen that Ay oy yXEY) =8y, (X¥)u(y) to be the KK an-
the KK zero modes for the bulg-form potentials are inde- Satz with all the other components taken to vanish. Substi-
pendent of the extra spatial coordingtélthough such zero tuting this ansatz into Eq(16), we obtain the following
modes are normalizable, one might argue that the zero mod&§uation satisfied by (y): ‘7y[]//V(D72pfl)lzv]:0’ from

are not localized on the wall because they are spread evenfyllich we obtainu~W~ (2207172 So, the KK ansat£26)

in the bulk (rather than localized sharply near the wadn  coincides with the ansata1) proposed in Refl5], thereby
the other hand, the KK zero mode of the bulk scalar field,Providing a justification for such a choice. y

which is widely regarded as being localized on the wall, is It IS pointed oqt n Ref[5J that if we WO.UId e}d,(j|t|onally
also independent of Furthermore, the KK zero mode of the require the corlS|stency Wlth the bulk Einstein’s eq_uatlons
bulk graviton is also independent gf if the bulk graviton tju;n onlyvtvrilg]pt;lo c:se(;vll)th rthe liir\lsagﬁ)Aapd I'Thep_nDid
h,, is defined asV(7,,,+h,,)dx“dx"+dy? Perhaps, we case e ansaia.) are alowed. ACLaty, consic-

: : ‘ ering the Einstein’s equations means looking for the solution
might wish to choose to consider the produgty)w(y) for g, gravitating (nondilatonio charged p—1) brane or p

dgtermining the distribution of the l?ulk fie[d across tjne —2) brane(coupled to the bullp-form potentia) within the
direction rather than the zero modg itself, since it is this  gomain wall, depending on the choice of the KK zero mode
product that appears as the integrand ofjthetegral in the  ansatz. We have seen in our previous wdt; 15 that such
kinetic term of the effective action and may be interpreted asolutions do not always exist due to the constraint following
being related to the form potential charge density along/the from the equations of motion. In this paper and other related
direction. Then, we find that the bulg-form potential is  papers, where just the KK modes of bulk fields are studied,
localized around/=0, spread evenly in the bulk and local- the gravitational backreaction of the bulk fields are ignored
ized aroundy|=1/K, whenp<(D—3)/2,p=(D—3)/2and (thereby, the bulk metric remaining as a static background in
p>(D—3)/2, respectively. So, fdb =5, the distribution of which the bulk fields propagateassuming that bulk fields
the KK zero mode is localized around the wall only for the make very little contribution to the bulk energy density, and
bulk scalar field case. For the KK zero mode ansafy, the therefore the Einstein's equations should not be considered.
bulk p-form potential is localized aroungy=0, spread If we would insist on consistency with the Einstein’s equa-
evenly in the bulk and localized arouny|=1/K, whenp  tions, then we should rather consider the solution(fan-
>(D—-1)/2, p=(D—-1)/2, andp<(D—1)/2, respectively, dilatonic charged brane within the wall, which, according to
as can be seen from the integrand of yhiategration in Eq.  Ref. [14], does not exist except for the=0D—2 cases
(13). So, forD=5, the distribution of the KK zero mode is mentioned in the above, as the bulk metric, instead of the
localized around the wall only for the bulk three form poten-domain wall solution(3). In the case in which the kinetic

term for the bulk form potential has the dilaton facesfr?,

the solution for the charged brane exists for gnyrovided

%For the nondilatonic domain wall case, the integration intervala anda,, satisfy the constraint resulting from the equations of

for they integration is infinite, so the mass term would diverge. motion[14,15.
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