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Localization of bulk form fields on dilatonic domain walls

Donam Youm*
ICTP, Strada Costiera 11, 34014 Trieste, Italy

~Received 29 June 2001; published 26 November 2001!

We study the localization properties of bulk form potentials on dilatonic domain walls. We find that bulk
form potentials of any ranks can be localized as form potentials of the same rank or one lower rank, for any
values of the dilaton coupling parameter. For large enough values of the dilaton coupling parameter, bulk form
potentials of any ranks can be localized as form potentials of both the same rank and one lower rank.
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The Randall-Sundrum~RS! scenario@1,2# provides an al-
ternative compactification method, where our fou
dimensional spacetime is realized as a three brane on w
the bulk graviton can be localized even with noncomp
extra spatial dimensions due to warped spacetime. Loca
tion of various bulk fields on the brane has been studied
particular, it was shown that, whereas the bulk scalar can
localized on the RS domain wall, bulk photon and form p
tentials cannot be localized@3,4#. Later, it was found out@5#
that the bulk three-form potential, which is Hodge dual to
bulk scalar in five-dimensional bulk spacetime, can also
localized as a two-form potential in one lower dimensi
with a choice of a modified Kaluza-Klein~KK ! zero mode
ansatz.~cf. see also Ref.@6#.! It was proposed in Ref.@7#,
whose work was extended to the supersymmetric case in
@8#, that aU(1) field on the brane is originated rather fro
two bulk two-form potentials. Alternative methods for loca
izing the bulkU(1) field on the brane through topologic
Higgs mechanism@9# and by adding a potential of the bul
U(1) field to the brane action@10# were also proposed.

We showed@11–13# that dilatonic domain walls can lo
calize bulk gravity, provided that the tension of the wall
positive. Bulk fields with various spins, including the bu
U(1) field, were shown@12# to be localized on such dila
tonic domain walls, in the sense that the KK zero modes
the bulk fields are normalizable. It is the purpose of t
paper to study localization of bulk form potentials of vario
ranks, which were not considered in our previous work. U
like the case of a nondilatonic RS domain wall, any bu
p-form potentials can be localized on the dilatonic dom
wall both asp-form potentials and as (p21)-form potentials
in one lower dimension, provided the dilaton coupling p
rametera is large enough. Furthermore, for any values ofa,
any bulk p-form potential can be localized on the dilaton
wall as ap-form potential or as a (p21)-form potential in
one lower dimension.

We begin by summarizing dilatonic domain wall solutio
and localization of bulk graviton, studied in Refs.@11–13#.
The total action for the dilatonic domain wall solution is th
sum of theD-dimensional action in the bulk of the doma
wall:

Sbulk5
1

2kD
2 E dDxA2GFR2

4

D22
]Mf]Mf2e22afLG ,

~1!
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and the (D21)-dimensional action on the domain wa
~DW! world volume:

SDW52E dD21xA2gsDWe2af, ~2!

where g is the determinant of the induced metricgmn

5]mXM]nXNGMN on the domain wall world volume,sDW is
the energy density~or tension! of the domain wall,M ,N
50,1, . . . ,D21 andm,n50,1, . . . ,D22. In this paper, we
consider the case in which the gravity can be localized on
DW. For such a case, the DW solution isZ2 symmetric and
has naked singularities on both sides of the wall@11#:

GMNdxMdxN5W@2dt21dx1
21•••1dsD22

2 #1dy2,

f5 a21 ln~12Kuyu!, W5~12Kuyu!8/(D22)2a2
,

K5
~D22!a2

2
A L

2D
, D[

~D22!a2

2
22

D21

D22
, ~3!

the DW tension, which can be fixed by the boundary con
tion at y50, has the fine-tuned positive value

sDW5
1

kD
2

8K

~D22!a2 5
4

kD
2A L

2D
, ~4!

and the effective (D21)-dimensional gravitational constan
has the nonzero value (D14)AL/2DkD

2 /2. Note, from the
expression forK in Eq. ~3! we see that such solution exis
only for L,0 @L.0# whenD,0 @D.0#. We have shown
@11–13# that the normalizable KK zero mode for the bu
graviton exists and therefore the gravity can be localized
such a dilatonic domain wall, for any values ofa.

We considerp-form potentials in the bulk of such a dila
tonic domain wall. The action for a masslessp-form potential
AM1 . . . M p

with the field strength FM1 . . . M p11
5(p

11)] [ M1
AM2 . . . M p11] in the D-dimensional bulk spacetime

is given by

Sp52
1

2•~p11!! E dDxA2GGM1N1
•••

3GM p11Np11FM1 . . . M p11
FN1 . . . Np11

. ~5!

If we choose the following KK zero mode ansatz for th
p-form potential
©2001 The American Physical Society01-1
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Am1 . . . mp
~xm,y!5am1 . . . mp

~xm!, ~6!

then the action~5! becomes1

Sp52
1

2•~p11!! E21/K

1/K

dy~12Kuyu!4(D22p23)/(D22)2a2

3E dD21xA2ggm1n1
•••gmp11np11

3 f m1 . . . mp11
f n1 . . . np11

, ~7!

where gmn(xr) is the KK zero mode for the bulk metri
GMN(xm,y) and f m1 . . . mp11

[(p11)] [m1
am2 . . . mp11] is the

field strength of the (D21)-dimensionalp-form potential
am1 . . . mp

. The bulkp-form potentialAM1 . . . M p
can be local-

ized on the dilatonic domain wall, if they integral in Eq.~7!
is finite, which is the case when

p,
D23

2
1

~D22!2a2

8
5

~D22!~D14!

4
. ~8!

As observed in Ref.@4#, a nondilatonic DW (a50) cannot
localize p-form potentials withp>(D23)/2. In particular,
the RS DW @the (D,a)5(5,0) case# can localize only a
0-form field or a scalar field. However, the dilatonic DW
(aÞ0) can additionally localize the higher rankp-form po-
tentials, as long as the dilaton coupling parametera is large
enough: The higher the rankp of the form potential, the
larger the value ofa required for localizing the form poten
tial. All the bulk form potentials~up to rankD21) can be
localized on the wall when

a2> 4~D13!/~D22!2⇔D> 8/~D22! . ~9!

So, for example, the five-dimensional dilatonic domain w
in string theories obtained by compactifying branes with o
type of constituent brane on a Ricci flat manifold, for whi
D54, can localize bulk form potentials of all ranks.

The problem with the KK zero mode ansatz of the fo
~6! is that the ansatz of such form for the pairAm1 . . . mp

and

Am1 . . . mD2p22
are not compatible with the following Hodge

duality formula in the bulk spacetime:

A2GGM1N1
•••GMD2p21ND2p21F̃N1 . . . ND2p21

5
1

~p11!!
eM1 . . . MD2p21N1 . . . Np11FN1 . . . Np11

. ~10!

Another problem is that a higher rank form potential hod
dual to a lower rank form potential which can be localized
the wall may not be localizable, as can be seen from
criterion ~8!. To resolve such contradictions, it was propos
in Ref. @5# to choose the KK zero mode ansatz for ap-form
potential withp.(D21)/2 as

1Note, spacetime is undefined beyond the singularities aty5
61/K, so the integration interval is21/K<y<1/K.
12750
l
e

e
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d

Am1 . . . mp21y~xm,y!5W 2(D22p21)/2~y!am1 . . . mp21
~xm!,

~11!

with all the other components vanishing. Then, ansatz~6!
and ~11! are compatible with with Eq.~10!, and the bulk
Hodge-duality formula~10! reduces to the following Hodge
duality formula inD21 dimensions:

A2ggm1n1
•••gmD2p21nD2p21 f̃ n1 . . . nD2p21

5
1

p!
em1 . . . mD2p21n1 . . . npf n1 . . . np

. ~12!

Substituting the ansatz~11! into the bulk action~5!, we ob-
tain

Sp52
1

2•p! E21/K

1/K

dy~12Kuyu!24(D22p21)/(D22)2a2

3E dD21xA2ggm1n1
•••gmpnpf m1 . . . mp

f n1 . . . np
. ~13!

From this we see that the criterion for a bulkp-form potential
with the KK zero mode of the form~11! to be localized on
the wall is

p.~D21!/2 2 ~D22!2a2/8 52 ~D22!D/4 . ~14!

So, for any values ofa, all the bulkp-form potentials with
p.(D21)/2 can be localized on the wall as a (p21)-form
potential. In the bulk of dilatonic domain wall (aÞ0), bulk
form potentials with the lower ranks can be additionally l
calized on the wall in such a manner: The larger the value
a, the less stringent the lower bound onp for such localiza-
tion. All the bulk p-form potentials withp>1 can be local-
ized on the dilatonic wall as (p21)-form potentials, if

a2> 4~D21!/~D22!2 ⇔D>0. ~15!

So, for example, all the DWs obtained from~intersecting!
branes~with equal charges! in string theories through the
compactification on Ricci flat manifolds, for whichD54/N
with NPZ1 , can localize any rank bulkp-form potentials as
(p21)-form potentials inD21 dimensions.

When the KK zero mode is chosen to be of the form~6!
for the lower rank form potentials and of the form~11! for
the higher rank form potentials, the only cases in which
nondilatonic domain walls (a50) cannot localize the bulk
form potentials arep5(D23)/2 andp5(D21)/2, as can
be seen from Eqs.~8! and ~14!. For the RS domain wall
(D55), these correspond to the bulkU(1) field and two-
form field. On the other hand, dilatonic domain walls c
localize bulk p-form potentials withp5(D23)/2 and p
5(D21)/2 when KK zero modes are chosen to be of t
forms~6! and~11!, respectively, for any values ofa. So, bulk
p-form potentials of any ranks can be localized on the d
tonic domain wall~with any a) as p-form potentials or (p
21)-form potentials in D21 dimensions. Furthermore
from Eqs.~9! and~15! we see that bulkp-form potentials of
any ranks can be localized on the dilatonic domain walls
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 64 127501
both p-form potentials and (p21)-form potentials inD21
dimensions, if the condition~9! is satisfied.

We now explicitly study the KK modes of massless bu
p-form potentials by considering the following equations
motion obtained from the bulk action~5!:

1

A2G
]M1

@A2GGM1N1
•••GM p11Np11FN1 . . . Np11

#50.

~16!

We will find above all that the KK zero modes of a bulk for
potentials are indeed given by Eqs.~6! and ~11!.

First, we consider the dimensional reduction of a bu
p-form potential to a form potential of the same rankp. By
using the gauge degrees of freedom, we can take the g
conditionsAM1 . . . M p21y50. We consider the following KK
mode ansatz for the bulkp-form potential:

Am1 . . . mp
~xm,y!5am1 . . . mp

(m) ~xm!um~y!, ~17!

where am1 . . . mp

(m) is assumed to satisfy the following fiel

equations for a massive p-form potential in
(D21)-dimensional flat spacetime:

]m1f m1 . . . mp11

(m) 1m2am2 . . . mp11

(m) 50, ~18!

along with the gauge conditions]m1am1 . . . mp

(m) 50, where

f m1 . . . mp11

(m) [(p11)] [m1
am2 . . . mp11]

(m) is the field strength of

am1 . . . mp

(m) . Then, the equations of motion~16! for the bulk

p-form potential with the bulk metric~3! substituted reduce
to the following form of the Sturm-Liouville equation satis
fied by um(y):

]y@W (D22p21)/2]yum#5m2W (D22p23)/2um . ~19!

The operatorL5]y(W (D22p21)/2]y) is self-adjoint, pro-
vided the boundary condition @(W (D22p21)/2un8)um

2(W (D22p21)/2um8 )un#u21/K
1/K 50 is satisfied. For such a cas

the eigenvaluem2 is real and the eigenfunctionsum with
different eigenvalues are orthogonal to each other with
spect to the weighting functionw(y)5W (D22p23)/2, i.e.,
*21/K

1/K dy um(y)un(y)w(y)50 for m2Þn2. By using a new

y-dependent functionũm5W (D22p21)/4um , we can bring
the Sturm-Liouville equation~19! into the following form of
the Schro¨dinger equation with zero-energy eigenvalue:

2 d2ũm/dy2 1V~y!ũm50, ~20!

where the potential is given by

V~y!5
D22p21

4
W 21W 91

~D22p21!~D22p25!

16

3W 22~W 8!21m2W 21. ~21!

In the case of the KK zero mode (m50), by substituting the
expression for the warp factor~3! into Eq. ~21!, we obtain
the following explicit expression for the potential:
12750
f

ge

-

V~y!5
2~D22p21!K2

~D22!4a4

2~D22p21!2~D22!2a2

~12Kuyu!2

2
4~D22p21!K

~D22!2a2 d~y!. ~22!

From this we see that the solution to the Schro¨dinger equa-
tion ~20! satisfies the boundary conditionũ08(0

1)2ũ08(0
2)

52 4(D22p21)Kũ0(0)/(D22)2a2. The solution to Eq.
~20! satisfying this boundary condition isũ0(y);(1
2Kuyu)2(D22p21)/(D22)2a2

. So, the KK zero mode is con
stant: u0(y)5W 2(D22p21)/4ũ0(y)5constant. This zero
modeu0(y) is normalizable if its norm

E
21/K

1/K

dy u0
2~y!w~y!

;~12Kuyu! [4(D22p23)1(D22)2a2]/ ~D22)2a2
u21/K
1/K

~23!

is finite, which is the case when 4(D22p23)1(D
22)2a2.0. This normalization condition coincides with th
condition ~8! obtained by considering the effective actio
~7!. For such a case, the normalized zero mode is given

u0~y!5A4~D22p23!1~D22!2a2

2~D22!2a2 K.

We make a couple of comments on the KK zero mode. Fi
had we just considered the Sturm-Liouville equation~19!
with m50, the most general form of the KK zero mod
would have been given by

u0~y!5c11c2W (D22)2a2/82(D22p21)/2, ~24!

wherec1 andc2 are integration constants. This solution e
pressed in terms ofũ05W (D22p21)/4u0 is also a genera
solution to the Schro¨dinger equation~20! in the regiony
Þ0. The boundary condition aty50 due to thed-function
term in the potential~22! requires thatc250. However,
when just the Sturm-Liouville equation~19! is considered,
such a restriction due to the boundary condition aty50 does
not exist. If we use the general zero mode~24!, then the bulk
action ~5! takes the form

Sp52
1

2•p! E21/K

1/K

dy~c1Ã2(D22p23)/(D22)2a2

1c2Ã122(D22p11)/(D22)2a2
!2

3E dD21xA2g fm1 . . . mp11

(0) f (0)m1 . . . mp11

1 c̃2E
21/K

1/K

dyE dD21xA2gam1 . . . mp

(0) a(0)m1 . . . mp,

~25!
1-3



he
ss

at
-

od
e

ld
i

e

a
e

l-

he

s
n

r
n-

ulk

sti-

ns

ion

de

ng
ted
ed,
ed
in

nd
red.
a-

to

the

ofva

BRIEF REPORTS PHYSICAL REVIEW D 64 127501
whereÃ[12Kuyu and the constantc̃2 is proportional toc2.
So, with c2Þ0, we have a finite mass term2 for the p-form
potential in the effective action, which is contradictory to t
fact thatu0 is the KK zero mode. Furthermore, the finitene
of the kinetic term in Eq.~25! requires a larger value ofa
than the value satisfying Eq.~9!. Second, we have seen th
the KK zero modes for the bulkp-form potentials are inde
pendent of the extra spatial coordinatey. Although such zero
modes are normalizable, one might argue that the zero m
are not localized on the wall because they are spread ev
in the bulk ~rather than localized sharply near the wall!. On
the other hand, the KK zero mode of the bulk scalar fie
which is widely regarded as being localized on the wall,
also independent ofy. Furthermore, the KK zero mode of th
bulk graviton is also independent ofy, if the bulk graviton
hmn is defined asW(hmn1hmn)dxmdxn1dy2. Perhaps, we
might wish to choose to consider the productu0

2(y)w(y) for
determining the distribution of the bulk field across they
direction rather than the zero modeu0 itself, since it is this
product that appears as the integrand of they integral in the
kinetic term of the effective action and may be interpreted
being related to the form potential charge density along thy
direction. Then, we find that the bulkp-form potential is
localized aroundy50, spread evenly in the bulk and loca
ized arounduyu51/K, whenp,(D23)/2, p5(D23)/2 and
p.(D23)/2, respectively. So, forD55, the distribution of
the KK zero mode is localized around the wall only for t
bulk scalar field case. For the KK zero mode ansatz~11!, the
bulk p-form potential is localized aroundy50, spread
evenly in the bulk and localized arounduyu51/K, when p
.(D21)/2, p5(D21)/2, andp,(D21)/2, respectively,
as can be seen from the integrand of they integration in Eq.
~13!. So, forD55, the distribution of the KK zero mode i
localized around the wall only for the bulk three form pote

2For the nondilatonic domain wall case, the integration inter
for the y integration is infinite, so the mass term would diverge.
gy

’’

12750
es
nly

,
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s

-

tial case.~Also, with such criterion, the KK zero mode fo
the bulk graviton is localized around both dilatonic and no
dilatonic domain walls.!

Second, we consider the dimensional reduction of a b
p-form potential to a (p21)-form potential. We choose
Am1 . . . mp21y(x

m,y)5am1 . . . mp21
(xm)v(y) to be the KK an-

satz with all the other components taken to vanish. Sub
tuting this ansatz into Eq.~16!, we obtain the following
equation satisfied byv(y): ]y@W (D22p21)/2v#50, from
which we obtainv;W 2(D22p21)/2. So, the KK ansatz~26!
coincides with the ansatz~11! proposed in Ref.@5#, thereby
providing a justification for such a choice.

It is pointed out in Ref.@5# that if we would additionally
require the consistency with the bulk Einstein’s equatio
then only thep50 case with the ansatz~6! and thep5D
22 case with the ansatz~11! are allowed. Actually, consid-
ering the Einstein’s equations means looking for the solut
for gravitating ~nondilatonic! charged (p21) brane or (p
22) brane~coupled to the bulkp-form potential! within the
domain wall, depending on the choice of the KK zero mo
ansatz. We have seen in our previous works@14,15# that such
solutions do not always exist due to the constraint followi
from the equations of motion. In this paper and other rela
papers, where just the KK modes of bulk fields are studi
the gravitational backreaction of the bulk fields are ignor
~thereby, the bulk metric remaining as a static background
which the bulk fields propagate!, assuming that bulk fields
make very little contribution to the bulk energy density, a
therefore the Einstein’s equations should not be conside
If we would insist on consistency with the Einstein’s equ
tions, then we should rather consider the solution for~non-
dilatonic! charged brane within the wall, which, according
Ref. @14#, does not exist except for thep50,D22 cases
mentioned in the above, as the bulk metric, instead of
domain wall solution~3!. In the case in which the kinetic
term for the bulk form potential has the dilaton factore2apf,
the solution for the charged brane exists for anyp, provided
a andap satisfy the constraint resulting from the equations
motion @14,15#.
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