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Scaling solutions and reconstruction of scalar field potentials
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Starting from the hypothesis of scaling solutions, the general exact form of the scalar field potential is found.
In the case of two fluids, it turns out to be a negative power of hyperbolic sine. In the case of three fluids the
analytic form is not found, but is obtained by quadratures.
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INTRODUCTION po=Da"m ()

3

In cosmological theories containing scalar fields with a . . : .
g 9 where a(t) is the expansion scale factaf=al/a is the

self-interaction potential/(¢), it is sometimes possible to . : .
reconstruct the required scalar field potential for a simpleHUbble expansion rate, and an overdot denotes differentia-

cosmological solution. In the context of inflationary theory, tlog g/'thz rez;\n/e’c_t dt\c/)/ dtheTr?omovn:g tr;:r(;)per (;'mE tgh
this approach was used by various autidrs10, and was _ °7>/C" andv = ¢- The constanin depends on the

primarily interested in the behavior of solutions containingtyp\?v()]c perfe(it ﬂut'ﬁ present.t | f th le fact
only scalar fields undergoing inflation. The more recent in- e normalize the present vajue of the scale factoado

vocation of a scalar field as a dark matter source responsible 1, without loss of generality, and for brevity denote the

for accelerating the universe today, under the pseudonym dif€Sent matter-density paramet@iy, by (2o, and define
“quintessence’[11-15 is mathematically almost identical,

but places different requirements on the solutions. In particu- D=3H50Q0/G. ©)
lar, it is of interest to find solutions which contain both per-

fect fluids and scalar fields. In this new context, interesting |f we make the assumption that

applications of the reconstruction approach were made by
Chiba and Nakamurkl6,17] and Sainiet al. [20].

In this paper, we seek exact cosmological solutions for a
universe containing a perfect fluid and a scalar field. We start ) ) _
from the assumption that the energy density of the scaIaW'th n<m, so the scalar field can dominate at late times, and
field scales as an exact power of the scale facigy: define
=Ka ", which is equivalent to imposing an equation of
state linking the pressure and density, of the fau=wp,, K=3H3(1-Q0)/G, (7)
with the constantv=n/3—1. For a flat Friedmann universe,
it is then possible to find an explicit exact form of the poten-then from Eqs(2), (3) and(6) we obtain
tial in terms ofn, Hy, and Q0. The form of the resulting
general solution has instructive features which will be dis-

p,=Ka ", (6)

cussed below. ¢2=ga‘”. (8
DERIVATION OF THE POTENTIAL .
Since
Consider a cosmological fluid with two non-interacting
components: perfect-fluid matter and a scalar figldvith de de
potential V(¢). In the flat universe case, we have the equa- E=Ha£, 9)
tions
3H?=G(pn+ p,) (1) wehave
. . 2
p+3HE+V (9)=0 @ de)”_ X n .o
da/  3H3 Qea" M2+ (1-Qg)a’
1.
Pe™ E(PZJFV(QD) ©®  Wwhich gives
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\/E(m_n) QO 50000 F
(1D ool
Returning to the potential, we get from Ed8) and (9) 30000 1
\‘ \
- 1. ) H(Z) n - 20000 g‘ \\\
V=Ka "= -¢p*=——(1-Qp)|1—=z]a™". (12 \
2 g 6 10000 .\ \\
E UL
. - . D R e et T 0}
The scale factor can be easily eliminated, eventually giv- 0.0002 0.0004 0.0006 0.0008 0-001
in
g FIG. 1. Early-time regime: the dashed curve is thel scalar
) e field potential with dustifn=3); the solid curve is the=1 scalar
V(o) = 0 1-00l 1- n|[1-Qp\" (m=n) field potential with radiation h=4) and lies closer to the points
()= g ( 0) 6 Qo plotting the full numerical solution for dust plus radiation and

—2n/(m—n)

X . (13

sinr< @m—gw—m

This expression, in the case of dush£ 3), coincides with
the one presented yt8] (which is in turn a particular case
of the treatment of19]) as well as with the one bj20]. A

=1 scalar field potential.

influenced in this way by the dominating type of matter.
Although this situation seems to be unphysical, it is merely
an artifact of having sought a solution containing a single
perfect fluid. The full solution must be found by including

dust, radiation and scalar field from the outset, not by joining
the radiation+ scalar solution to the dust scalar solution.

general discussion about exact solutions for Friedmann equg this is done for the case of dust radiation+ scalar field,
tions, which includes ours as a particular case, can be foungith the same arguments as before, it is easy to derive

also in[7,8,6. In [18] and[19], one can find explicit solu-

tions fora(t) and ¢(t), as well as an extensive discussion.

We remark only that this form of potential is good for a

tracker solutio 13,14]. Indeed, straightforward computation

of the functionI'=V"V/(V')?, introduced and discussed in
m—n

these papers, gives
sec
4 N

as required by the tracking condition.

Our derivation differs fronf18—-2Q because it is simpler
and is generalized to include all perfect fluid equations of
state(other than then=6 case, which would correspond to a
pure scalar field with no potentjalMoreover, it proves that

this form of V() is the uniquesolution, if condition(6) is
imposed.

>1 (14)

DISCUSSION

The first interesting feature of E¢L3) is that the slopéas

well as the amplitudeof V(¢) depends om. This means
that it is impossible to obtain a scaling solution, with the

Jnda

P Qg M+ 0a

2 + ‘Pin (15)

<P=f \/%\/Qra

(16)

2

——

e —%—e—9 o ¢ o o

same potential slope, when passing from a radiation-°* 06

dominated (h=4) epoch to a matter-dominatethE& 3) ep-

1.2 (p

FIG. 2. Late-time regime: the dashed curve is thel scalar

0.7 0.8 0.9 1.2

och. Even if we assume thatchanges in such a way that the field potential with radiation fi=4); the solid curve is tha=1

slope remains constant, the coefficient+{4/6) changes.

scalar field potential with dusin{=3) and lies closer to the points

Moreover, the effective equation of state of the scalar fielchlotting the full solution for dust plus radiation ant=1 scalar
also changes and there is no physical mechanism for it to bigeld potential.
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where(),, Q4 andQ, are the present values of the radia- o
tion, dust and scalar field density parameters, respectively, so V= = a7
Q,+Qy4+Q,=1. These equations give a parametric repre- ¢

sentation ofV(¢), which cannot be solved analytically with with o, 8, v positiveconstants depending on the parameters;

simple functions, but is otherwise perfectly well defined andi]n particular, 3~ 2n/(m—n). The negative additive termy,

interpolates betwgen the dust and radiation soll_mons 9% an artifact of the approximation over a finite rangegof
Eqg. (13). In our universe today), <4, but at early times-

- N 4 This result, already found b}18] for the dust case, shows
the radiation ternf),a"“ dominates the dust and cannot be yhat the inverse-power potential is effectively equivalent to
dropped. _ o Eq.(13), so that it is possible to apply to this situation all the
A numerical example illustrates the situation: let us setxnown results about tracker solutions. On this point, it is
n=1, Q,=0.7, Q,=0.0001, 04=0.3-Q,, 3H;=1, G interesting to note that this approximation is very good over
=1. Figure 1 shows that on the first part the “true” potential the whole range ofa from zero to the present-day value
fits well with Eq. (13) andm=4, while Fig. 2 shows that in (ay;=1 according to our normalizationThe asymptotic ex-
the late regime the fit should be done with= 3. ponential behavior of the hyperbolic potential is therefore
The simple and attractive form of E@l3) is lost, al- important only in the very far future and does not affect the
though it might be recovered by a suitable choice of thedominance of the scalar field now or its behavior in the re-
exponent, via some weighted mean(df and()4. But there  cent past.
is no way of doing this other than a fit of the numerical As a final remark, we should stress that our arguments are
values. Moreover, there is no reason why the exponerbased on the arbitrary assumption of Eg). We have shown
should depend on the particular valuesthf andQ 4. Also,  elsewherd21] that other forms of exponential potential are
since in this case the scaling feature of the solution is onlyperfectly able to reproduce observational data, but of course
approximate, the tracker behavior could be affected. in these casew is not constant. It is interesting also to note
Simple numerical evaluatior(svith the parameters within that, in one of the cases treated in that papeis almost
the allowed rangeshow that the “true” potential is very perfectly constant, and yet the form of the potential is sub-
well approximated by stantially different from that of Eq(13).
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