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Scaling solutions and reconstruction of scalar field potentials
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Starting from the hypothesis of scaling solutions, the general exact form of the scalar field potential is found.
In the case of two fluids, it turns out to be a negative power of hyperbolic sine. In the case of three fluids the
analytic form is not found, but is obtained by quadratures.
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INTRODUCTION

In cosmological theories containing scalar fields with
self-interaction potentialV(w), it is sometimes possible to
reconstruct the required scalar field potential for a sim
cosmological solution. In the context of inflationary theo
this approach was used by various authors@1–10#, and was
primarily interested in the behavior of solutions containi
only scalar fields undergoing inflation. The more recent
vocation of a scalar field as a dark matter source respons
for accelerating the universe today, under the pseudonym
‘‘quintessence’’@11–15# is mathematically almost identica
but places different requirements on the solutions. In part
lar, it is of interest to find solutions which contain both pe
fect fluids and scalar fields. In this new context, interest
applications of the reconstruction approach were made
Chiba and Nakamura@16,17# and Sainiet al. @20#.

In this paper, we seek exact cosmological solutions fo
universe containing a perfect fluid and a scalar field. We s
from the assumption that the energy density of the sc
field scales as an exact power of the scale factor:rw

5K a2n , which is equivalent to imposing an equation
state linking the pressure and density, of the formpw5wrw,
with the constantw5n/321. For a flat Friedmann universe
it is then possible to find an explicit exact form of the pote
tial in terms ofn, H0, and Vm0. The form of the resulting
general solution has instructive features which will be d
cussed below.

DERIVATION OF THE POTENTIAL

Consider a cosmological fluid with two non-interactin
components: perfect-fluid matter and a scalar fieldw with
potentialV(w). In the flat universe case, we have the eq
tions

3H25G~rm1rw! ~1!

ẅ13Hẇ1V8~w!50 ~2!

rw5
1

2
ẇ21V~w! ~3!
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rm5Da2m, ~4!

where a(t) is the expansion scale factor,H5ȧ/a is the
Hubble expansion rate, and an overdot denotes differen
tion with respect to the comoving proper timet; G
58pG/c2 andV85dV/dw. The constantm depends on the
type of perfect fluid present.

We normalize the present value of the scale factor toa0
51, without loss of generality, and for brevity denote t
present matter-density parameter,Vm0 , by V0, and define

D53H0
2V0 /G. ~5!

If we make the assumption that

rw5Ka2n, ~6!

with n,m, so the scalar field can dominate at late times, a
define

K53H0
2~12V0!/G, ~7!

then from Eqs.~2!, ~3! and ~6! we obtain

ẇ25
Kn

3
a2n. ~8!

Since

dw

dt
5Ha

dw

da
, ~9!

we have

S dw

daD 2

5
K

3H0
2

An

V0an2m121~12V0!a2
, ~10!

which gives
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w~a!5EA12V0

G
An da

AV0an2m121~12V0!a2

5
2An

AG~m2n!
arcsinhSA12V0

V0
a(m2n)/2D 1w in .

~11!

Returning to the potential, we get from Eqs.~3! and ~9!

V5Ka2n2
1

2
ẇ25

3H0
2

G ~12V0!S 12
n

6Da2n. ~12!

The scale factor can be easily eliminated, eventually g
ing

V~w!5
3H0

2

G ~12V0!S 12
n

6D S 12V0

V0
D n/(m2n)

3FsinhS AGm2n

An
~w2w in!D G22n/(m2n)

. ~13!

This expression, in the case of dust (m53), coincides with
the one presented by@18# ~which is in turn a particular cas
of the treatment of@19#! as well as with the one by@20#. A
general discussion about exact solutions for Friedmann e
tions, which includes ours as a particular case, can be fo
also in @7,8,6#. In @18# and @19#, one can find explicit solu-
tions for a(t) andw(t), as well as an extensive discussio
We remark only that this form of potential is good for
tracker solution@13,14#. Indeed, straightforward computatio
of the functionG5V9V/(V8)2, introduced and discussed i
these papers, gives

G511
m2n

2n FsechS m2n

An
w D G 2

.1 ~14!

as required by the tracking condition.
Our derivation differs from@18–20# because it is simple

and is generalized to include all perfect fluid equations
state~other than then56 case, which would correspond to
pure scalar field with no potential!. Moreover, it proves tha
this form of V(w) is theuniquesolution, if condition~6! is
imposed.

DISCUSSION

The first interesting feature of Eq.~13! is that the slope~as
well as the amplitude! of V(w) depends onn. This means
that it is impossible to obtain a scaling solution, with t
same potential slope, when passing from a radiati
dominated (m54) epoch to a matter-dominated (m53) ep-
och. Even if we assume thatn changes in such a way that th
slope remains constant, the coefficient (12n/6) changes.
Moreover, the effective equation of state of the scalar fi
also changes and there is no physical mechanism for it to
12730
-
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nd

.

f

-

d
be

influenced in this way by the dominating type of matte
Although this situation seems to be unphysical, it is mer
an artifact of having sought a solution containing a sin
perfect fluid. The full solution must be found by includin
dust, radiation and scalar field from the outset, not by join
the radiation1 scalar solution to the dust1 scalar solution.
If this is done for the case of dust1 radiation1 scalar field,
with the same arguments as before, it is easy to derive

w5EAVw

G
An da

AV ra
n221Vdan211Vwa2

1w in ~15!

V5
3H0

2

G VwS 12
n

6Da2n, ~16!

FIG. 1. Early-time regime: the dashed curve is then51 scalar
field potential with dust (m53); the solid curve is then51 scalar
field potential with radiation (m54) and lies closer to the point
plotting the full numerical solution for dust plus radiation andn
51 scalar field potential.

FIG. 2. Late-time regime: the dashed curve is then51 scalar
field potential with radiation (m54); the solid curve is then51
scalar field potential with dust (m53) and lies closer to the point
plotting the full solution for dust plus radiation andn51 scalar
field potential.
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whereV r , Vd and Vw are the present values of the radi
tion, dust and scalar field density parameters, respectivel
V r1Vd1Vw51. These equations give a parametric rep
sentation ofV(w), which cannot be solved analytically wit
simple functions, but is otherwise perfectly well defined a
interpolates between the dust and radiation solutions
Eq. ~13!. In our universe today,V r!Vd , but at early times-
the radiation termV ra

n22 dominates the dust and cannot
dropped.

A numerical example illustrates the situation: let us
n51, Vw50.7, V r50.0001, Vd50.32V r , 3H0

251, G
51. Figure 1 shows that on the first part the ‘‘true’’ potent
fits well with Eq. ~13! andm54, while Fig. 2 shows that in
the late regime the fit should be done withm53.

The simple and attractive form of Eq.~13! is lost, al-
though it might be recovered by a suitable choice of
exponent, via some weighted mean ofV r andVd . But there
is no way of doing this other than a fit of the numeric
values. Moreover, there is no reason why the expon
should depend on the particular values ofV r andVd . Also,
since in this case the scaling feature of the solution is o
approximate, the tracker behavior could be affected.

Simple numerical evaluations~with the parameters within
the allowed range! show that the ‘‘true’’ potential is very
well approximated by
. A
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V5
a

wb
2g, ~17!

with a, b, g positiveconstants depending on the paramete
in particular,b'2n/(m2n). The negative additive term,g,
is an artifact of the approximation over a finite range ofw.
This result, already found by@18# for the dust case, show
that the inverse-power potential is effectively equivalent
Eq. ~13!, so that it is possible to apply to this situation all th
known results about tracker solutions. On this point, it
interesting to note that this approximation is very good o
the whole range ofa from zero to the present-day valu
(a051 according to our normalization!. The asymptotic ex-
ponential behavior of the hyperbolic potential is therefo
important only in the very far future and does not affect t
dominance of the scalar field now or its behavior in the
cent past.

As a final remark, we should stress that our arguments
based on the arbitrary assumption of Eq.~6!. We have shown
elsewhere@21# that other forms of exponential potential a
perfectly able to reproduce observational data, but of cou
in these casesw is not constant. It is interesting also to no
that, in one of the cases treated in that paper,w is almost
perfectly constant, and yet the form of the potential is su
stantially different from that of Eq.~13!.
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