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u!„1,1… noncommutative gauge theory as the foundation of two-time physics in field theory

Itzhak Bars
CIT-USC Center for Theoretical Physics and Department of Physics, University of Southern California, Los Angeles,

California 90089-2535
~Received 14 June 2001; published 27 November 2001!

A very simple field theory in noncommutative phase space (XM,PM) in d12 dimensions, with a gauge
symmetry based on noncommutative u!(1,1), furnishes the foundation for the field theoretic formulation of
two-time physics. This leads to a remarkable unification of several gauge principles ind dimensions, including
Maxwell, Einstein and high spin gauge principles, packaged together into one of the simplest fundamental
gauge symmetries in noncommutative quantum phase space ind12 dimensions. A gauge invariant action is
constructed and its nonlinear equations of motion are analyzed. In addition to elegantly reproducing the first
quantized worldline theory with all background fields, the field theory prescribes unique interactions among the
gauge fields. A matrix version of the theory, with a largeN limit, is also outlined.
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I. INTRODUCTION

Two-time physics~2T physics! @1–9# is a device that
makes manifest many hidden features of one-time phy
~1T physics!. Until recently, most of the understanding in 2
physics was gained from studying the worldline formalis
This revealed ad12 dimensional holographic origin of cer
tain aspects of 1T physics ind dimensions, including, in
particular, higher dimensional hidden symmetries~conformal
and others! and new sets of duality-type relations among
dynamical systems. While the physical phenomena descr
by 1T or 2T physics are the same, the space-time poin
view is different. The 2T-physics approach ind12 dimen-
sions offers a highly symmetric and unified version of t
phenomena described by 1T physics ind dimensions. As
such, it raises deep questions about the meaning of sp
time.

A noncommutative field theory in phase space introdu
recently@9# confirmed the worldline as well as the config
ration space field theory@7# results of 2T physics, and sug
gested more far reaching insights. In this paper the appro
of @9# will be taken one step further by showing that it orig
nates from a fundamental gauge symmetry principle ba
on noncommutative u!(1,1). We will see that this phas
space symmetry concisely unifies many gauge principles
are traditionally formulated in configuration space separa
from each other, including the Maxwell, Einstein and hi
spin gauge principles.

All new phenomena in 2T physics in the worldline form
lation can be traced to the presence of an essential g
symmetry: sp(2,R) acting on phase space (XM,PM) @2#. The
2T feature of space-time~i.e., XM with two timelike dimen-
sions! is not an input, it is an outcome of the sp(2,R) gauge
symmetry. Yet this symmetry is responsible for the effect
reduction of thed12 dimensional two-time phase space
~a collection of! d dimensional phase spaces with one-tim
Each of thed dimensional phase spaces holographically c
tures the contents of thed12 dimensional theory, but the
do so with holographic pictures that correspond to differ
1T dynamics~different 1T Hamiltonians!.
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In the space of ‘‘all worldline theories’’ for a spinles
particle ~i.e. all possible background fields!, there is a sym-
metry generated by all canonical transformations@8#. These
transformations are above and beyond the local sp(2,R) on
the worldline. As observed in@9#, the gauging of sp(2,R) in
field theory~as opposed to worldline theory! gives rise to a
local noncommutative u!(1) symmetry in noncommutative
phase space that is closely connected to the general cano
transformations. In this paper, we will see that the lo
sp(2,R) combines with the localu(1) to form a non-Abelian
gauge symmetry described by the noncommutative Lie a
bra u!(1,1) that will form the basis for the gauge theo
introduced in this paper~following the notation in@10#, we
use the star symbol! in denoting noncommutative symmetr
groups!.

The u!(1,1) gauge principle completes the formalism
@9# into an elegant and concise theory which beautifully d
scribes 2T physics in field theory ind12 dimensions, while
resolving some problems that remained open. The resul
theory has deep connections to standardd dimensional gauge
theories, gravity and the theory of high spin fields@11#.
There is also a finite matrix formulation of the theory
terms of u(N,N) matrices, such that theN→` limit be-
comes the u!(1,1) gauge theory.

A. Symmetries in the worldline theory

The local symmetries that will play a role in noncomm
tative field theory make a partial appearance in the worldl
formalism. Therefore, for a self-contained set of argumen
we start from basic considerations of the worldline form
ism of 2T physics for a spinless scalar particle.

The spinless particle is described in phase space
XM(t),PM(t), interacting with all possible backgroun
fields. It is convenient to use the notationX1

M[XM and
X2M[PM , with i 51,2 referring toXi . We avoid introduc-
ing a background metric inD dimensions by definingX1

M

with an upper index andX2M with a lower index, and neve
raise or lower theM indices in the general setup, in th
definitions of gauge symmetries, or the construction of
action. Thus, the formalism is background independent
©2001 The American Physical Society01-1
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is not a priori committed to any particular signature o
space-time. The signature is later determined dynamically
the equations of motion. The worldline action has the fo
@6,8#

I Q5E dtF Ẋ1
MX2M2

1

2
Ai j ~t!Qi j ~X1 ,X2!G , ~1!

where the symmetricAi j 5Aji denotes three Sp(2,R) gauge
fields, and the symmetricQi j 5Qji are three sp(2,R) genera-
tors. An expansion ofQi j (X1 ,X2) in powers ofX2M in some
local domain,

Qi j ~X1 ,X2!5(s„f i j ~X1!…M1•••MsX2M1
•••X2Ms

,

defines all the possible background fields„f i j (X1)…M1•••Ms in
configuration space. The local sp(2,R) gauge transforma
tions are

dX1
M52v i j ~t!

]Qi j

]X2M
, dX2M5v i j ~t!

]Qi j

]X1
M

,

dAi j 5v̇ i j ~t!1@A,v~t!# i j . ~2!

The action I Q is gauge invariant, with local paramete
v i j (t), provided theQi j (X1 ,X2) satisfy the sp(2,R) Lie al-
gebra under Poisson brackets. This is equivalent to a se
differential equations that must be satisfied by the ba
ground fields„f i j (X1)…M1•••Ms @6,8#. The simplest solution is
the free case denoted byQi j 5qi j ~no background fields, only
the flat metrichMN)

qi j 5Xi
MXj

NhMN : q115X1•X1 , q125X1•X2 ,

q225X2•X2 . ~3!

Beyond the local sp(2,R) above, if one considers th
‘‘space of all worldline theories’’ of the typeI Q , there is a
symmetry that leaves the form of the action invariant@8#.
The symmetry can be interpreted as acting in the space o
possible background fields„f i j (X1)…M1•••Ms that obey the
sp(2,R) closure conditions. The transformations are given
all canonical transformations that act infinitesimally in t
form

d0X1
M52

]v0~X1 ,X2!

]X2M
, d0X2M5

]v0~X1 ,X2!

]X1
M

, ~4!

for any v0(X1 ,X2). Thend0Qi j is derived from Eq.~4! and
given by the Poisson bracketsd0Qi j 5$Qi j ,v0%. Under such
transformations the term*Ẋ1

MX2M is invariant, and the ac

tion I Q is mapped toI Q̃ where Q̃i j (X1 ,X2)5Qi j (X̃1 ,X̃2),
with X̃i5Xi1d0Xi . The new actionI Q̃ is in the space of all
theories of the formI Q since, by virtue of canonical trans
formations, the newQ̃i j satisfies the sp(2,R) algebra under
Poisson brackets if the oldQi j does. By taking advantage o
these symmetries all possibleQi j (X1 ,X2), i.e., all possible
12600
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background fields have been determined up to canon
transformations@8#. The solution will be recapitulated late
in this paper in Sec. II B.

B. Field equations from first quantized theory

Instead of using wave functions in configuration spa
c(X1

M), the quantum theory can be formulated equivalen
in phase space, a` la Weyl-Wigner-Moyal@12–14#, by using
distributions in phase spacew(X1

M ,X2M). The phase space
approach is natural in 2T physics, because the sp(2,R) as
well as the canonical transformationsv0(X1 ,X2) are phase
space symmetries that would be cumbersome to discus~if
not impossible! in configuration space. Therefore, we find
beneficial to discuss first quantization in terms of fields
phase space. Sometimes we will use the notationXm

[(X1
M ,X2M) with a single indexm that takes 2(d12) val-

ues. The fields in phase space will be functions of the fo
A(Xm). Products of fieldsA,B always involve the associa
tive noncommutative Moyal star product

~A!B!~X!5expS i

2
umn

]

]Xm

]

]X̃nD A~X!B~X̃!uX5X̃ , ~5!

whereumn5\dN
M« i j , with i 51,2, and« i j is the antisymmet-

ric sp(2,R) invariant metric~note that we have not used an
space-time metric in this expression!. The star commutator
between any two fields is defined by@A,B#![A!B2B!A.
The phase space coordinates satisfy@Xm,Xn#!5 iumn, which
is equivalent to the Heisenberg algebra for (X1

M ,X2M).
As shown in@9#, first quantization of the worldline theory

of Eq. ~1! is described by the noncommutative field equ
tions

@Qi j ,Qkl#!5 i ~« jkQil 1« ikQjl 1« j l Qik1« i l Qjk!, ~6!

Qi j !w50. ~7!

Equation~6! is the quantum version of the sp(2,R) condi-
tions required by the worldline theory. Its general soluti
was given in@8,9#, and will be recapitulated in Eqs.~40!–
~43! below. It describes Maxwell, Einstein and high sp
backgroundgauge fields~i.e., no dynamics!. Spinless matter
is coupled to these background gauge fields in Eq.~7!. The
general solution of this equation is a superposition of a ba
of fields w(X1 ,X2)5(nmcm

n wn
m(X1 ,X2) where@9#

wn
m~X1 ,X2!5E dDYcn~X1!!e2 iYMX2M!xm* ~X1! ~8!

5E dDYcnS X12
Y

2 De2 iYMX2Mxm* S X11
Y

2 D .

~9!

According to Weyl’s correspondence, thewn
m(X1 ,X2) are re-

lated to Hilbert space outer productswn
m;ucn&^xmu. Thew

equation~7! is equivalent to the sp(2,R) singlet conditions in
the Hilbert space,Qi j uc&50, whose solutions form a com
plete set of physical states$ucn&% that are gauge invarian
1-2
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u!(1,1) NONCOMMUTATIVE GAUGE THEORY AS THE . . . PHYSICAL REVIEW D 64 126001
under sp(2,R). The solution space$ucn&% is non-empty and
is unitary only when space-time has precisely two timel
dimensions, no less and no more@7,9#. In particular, for the
free theory~i.e., no backgrounds other than the flat met
hMN , thusQi j →qi j !, the $ucn&% form the basis for the uni-
tary singleton or doubleton representation of1 SO(d,2). Un-
like the cn(X1), the xm* (X1) are not restricted by Eq.~7!.
Therefore, it is reasonable to definew only up to noncom-
mutative u!

R(1) gauge transformations that act from the rig
w→w! exp!(2ivR), or to restrict it by an additional condi
tion on w from the right side. Thewn

m automatically satisfy
the following closure property under the triple product:

wn1

m1!~w†!m2

n2 !wn3

m35dm2

m1dn3

n2wn1

m3, ~10!

which follows just from the structureucn&^xmu for orthonor-
malized states. By fixing a u!

R(1) gauge symmetry,w can be
made Hermitian; in this case the set of$xm% is the same as
the $cn%. Evidently, there are other choices for the gau
fixing of the right side ofw.

Equations~6! and ~7! correctly represent quantum me
chanically the 1T physics of a spinless particle ind dimen-
sions interacting with background gauge fields, including
electromagnetic, gravitational and high spin gauge fields@9#.
Furthermore, the 2T physics formalism unifies differe
types of 1T field theories ind dimensions which holographi
cally represent the samed12 dimensional equations, an
therefore, in principle it uncovers hidden symmetries a
duality type relations among them~this has been explicitly
demonstrated in simple cases@1#!.

Much of the work in@9# was devoted to developing th
noncommutative field theory formalism and the symme
principles compatible with global and local sp(2,R) symme-
try. The goal was to find a field theory, and appropriate ga
principles, from which the free Eqs.~6! and~7! would follow
as classical field equations of motion, much in the same w
that the Klein-Gordon field theory arises from satisfyi
t-reparametrization constraints (p250), or string field
theory emerges from satisfying Virasoro constraints, e
This goal was partly accomplished in@9#, but as we will
explain, by only partially implementing the full gauge prin
ciples described by u!(1,1).

In the rest of the paper we will complete the goal of@9# by
spelling out the gauge principles, and constructing an es

1All the SO(d,2) Casimir operators for the singleton or doublet
representation are fixed; in particular, the quadratic Casimi
C2„SO(d,2)…512d2/4. There are many holographic solutions
the d12 dimensional differential equationsqi j cn(X1)50 in the
form of d dimensional fields, all of which realize the singleton
doubleton representation. One of the holographic solutions is
Klein-Gordon field in d dimensions which forms a well known
representation of the conformal group SO(d,2). Another one is the
hydrogen atom ind21 space dimensions, another one is the sca
field in AdSd , and still another one is the scalar field in AdSd2k

3Sk for anyk,d22, and more. They all realize the same SO(d,2)
representation with the same Casimir eigenvalues, but in diffe
bases@7#.
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tially unique elegant action that results in Eqs.~6! and~7! as
exact background solutionsof nonlinear equations of motion
Expanding the full equations of motion around any bac
ground solution provides consistent interactions and pro
gation for the fluctuating gauge fields. Among other ni
features, this theory seems to provide an action principle
high spin gauge fields.

II. u !„1,1… GAUGE SYMMETRY

Global sp(2,R) transformations that treat (X1 ,X2) as a
doublet are generated by the freeqi j 5Xi•Xj . A complex
scalar field in phase spacew(X1 ,X2) can transform as a lef
module, right module, or diagonal module, as explained
@9#. For a left scalar module, the global sp(2,R) transforma-
tion is dspw52 iv i j (qi j !w) where v i j are global param-
eters. To turn sp(2,R) into a local symmetry, the threev i j are
replaced by arbitrary functions. Then the Hermitian com
nationv05 1

2 (v i j !qi j 1qi j !v i j ) acts from the left like a lo-
cal noncommutative phase transformationd0w52 iv0!w.
Therefore, local sp(2,R) acting on a scalar field from the lef
is closely related to a noncommutative local u!(1). In @9# it
is argued that this u!(1) acts onQi j (X1 ,X2) from both sides
d0Qi j 52 i @v0 ,Qi j #!, thereforev0(X1 ,X2) is precisely the
quantum version~all powers of\) of the canonical transfor-
mations, encountered in the worldline formalism, as sta
just following Eq.~4!.

On a tensor field, global sp(2,R) acts both on its
(X1

M ,X2M) dependence, as well as on its indices. For
ample, for a doublet

dglobal
sp wk5vklw

l2 iv i j ~qi j !wk!. ~11!

In turning these transformations into local transformatio
we find that we must have independent local parame
v i j (X1 ,X2) and v0(X1 ,X2) because closure cannot be o
tained with only the three parametersv i j (X1 ,X2). In fact,
there is no 3-parameter noncommutative sp(2,R), instead
there exists the local four-parameter noncommutat
u!(1,1) that has sp(2,R)5su(1,1) as a global subalgebra2

We can collect the 4 parameters in the form of a 232 ma-
trix, V i j 5v i j 1 iv0« i j , whose symmetric partv i j (X1 ,X2)

is

e

r

nt

2For local parameters in noncommutative space, the commut
of two transformations withv i j closes into a transformation tha
involves bothv i j and v0. The minimal noncommutative algebr
that includes sp(2,R) in the global limit is the 4-parameter sp!(2,R)
@10#. This is a subalgebra of the 4-parameter u!(1,1) and is obtained
from it by introducing a projection in the local space, such as
interchangeX1
X2, or mirror reflectionsX2→2X2 as in @10#.
Thus, sp!(2,R) is embeded in u!(1,1) by demandingv i j (X1 ,X2) to
be symmetric functions andv0(X1 ,X2) to be an antisymmetric
function under the projections. Closure is satisfied for the 4 p
jected functions. Thus, in principle, sp!(2,R) would have been the
minimal local symmetry to turn global sp(2,R) into a local symme-
try in noncommutative space. However, as we will see, the simp
cubic action that we will build for the gauge theory is not symm
ric under the parity-like projections. Therefore, the local symme
appropriate for our purposes is u!(1,1) rather than sp!(2,R).
1-3
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ITZHAK BARS PHYSICAL REVIEW D 64 126001
becomes sp(2,R) when it is global, while its antisymmetric
part generates the local subgroup u!(1) with the local param-
eterv0(X1 ,X2). To act on the doublet one of the indices
raised with the sp(2) metric« i j , dwk5Vk

l !w l5vk
l !w l

2 iv0!wk ; therefore, in matrix form we have

Vk
l 5vk

l 2 iv0dk
l 5S v122 iv0 v22

2v11 2v122 iv0
D . ~12!

This matrix satisfies the following Hermiticity conditions:

V†5«V«. ~13!

Such matrices close under matrix-star commutators to f
u!(1,1). It can be easily seen that, for closure under b
matrix and star products in commutators,v i j cannot be sepa
rated from thev0 and hence they are both integral parts
the local symmetry. The finite u!(1,1) group elements ar
given by exponentiation~using star and matrix products!:

U5e!
V , U215~2«!U†«5e!

2V . ~14!

We can now consider the gauge fields. In@9# it was ex-
plained thatqi j acting onw from the left defines a differen
tial operator that is appropriate for building the kinetic term
in the action. To turn these differential operators into co
riant differential operators, a gauge potentialAi j (X1 ,X2) was
introduced and added to the differential operators when
ing on w. Hence the covariant derivatives areQi j (X1 ,X2)
5qi j 1Ai j (X1 ,X2) acting from the left onw. TheseQi j were
shown to play the same role as the sp(2,R) generators en-
countered in the first quantized worldline theory. This w
appropriate for a scalar field, for which only u!(1) acts.
However, if we consider tensor fields, we must take cov
ant derivatives with respect to u!(1,1). Therefore we need t
add only one more gauge field or generator since u!(1,1) has
4 parameters. As we will see these will emerge from
following considerations.

We introduce a 232 matrixJi j 5Ji j 1 iJ0« i j that parallels
the form of the parametersV i j . There will be a close rela
tion between the fieldsJi j andQi j as we will see soon. When
one of the indices is raised, the matrix takes the form

J i
j5S J122 iJ0 J22

2J11 2J122 iJ0
D . ~15!

The Hermiticity of the fieldsJi j ,J0 is equivalent to the fol-
lowing u!(1,1) condition on this matrix:

J †5«J«. ~16!

Local gauge transformations are defined by the matrix-
products in the form

dJ5J!V2V!J or J85U21!J!U. ~17!

Then the matrix form and Hermiticity ofdJ or J8 are con-
sistent with the matrix form and Hermiticity ofJ.
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Next we consider matter fields. For our purpose we w
need to consider the noncommutative group U!

L(1,1)
3U!

R(1,1). Recall that we already had a hint that the ma
field admits independent gauge transformations on its
and right sides. In this notationJ transforms as the adjoin
under U!

L(1,1) and is a singlet under U!
R(1,1), thus it is in the

(1,0) representation. For the matter field we take the (1
2 , 1

2 )
representation given by a 232 complex matrixF i

a(X1 ,X2).
This field is equivalent to a complex symmetric tensorZi j
and a complex scalarw, both of which were considered in
@9#, but without realizing their U!

L(1,1)3U!
R(1,1) classifica-

tion. We defineF̄5«F†«. The U!
L(1,1)3U!

R(1,1) transfor-
mation rules for this field are

F85U21!F!W, F̄85W21!F̄!U ~18!

whereUPU!
L(1,1) andWPU!

R(1,1).
We now construct an action that will give the noncomm

tative field theory equations~6! and ~7! in a linearized ap-
proximation and prescribe unique interactions in its full ve
sion. The action has a resemblance to the Chern-Simons
action introduced in@9#, now with an additional field,J0,
while the couplings among the fields obey a higher gau
symmetry

SJ,F5E d2DX TrS 2
i

3
J!J!J2J!J1 i F̄!J!F

2V!~F̄!F! D . ~19!

The invariance under the local U!
L(1,1)3U!

R(1,1) transfor-
mations is evident.3 V(u) is a potential function with argu-

ment u5F̄!F. Although we will be able to treat the mos
general potential functionV(u) in the discussion below, to
illustrate how the model works, it is sufficient to consider t
linear functionV(u)5au, which implies a quadratic form in
the fieldF

V5aF̄!F, ~20!

wherea is a constant.
The form of this action is unique as long as the maximu

power of J is three. As we will see, when the maximu
power ofJ is cubic we will make the connection to the fir
quantized worldline theory. We have not imposed any con
tions on the powers ofF or interactions betweenJ,F, other
than obeying the gauge symmetries. A possible linear term
J can be eliminated by shiftingJ by a constant, while the
relative coefficients in the action are all absorbed into
renormalization ofJ,F. A term of the form

3More generally, the invariance under the local U!
R(1,1) could be

broken by various terms in the potentialV!(F̄!F) or by interac-
tions of F with additional fields from its right side.
1-4
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Tr„J!J! f (F!F̄)… that is allowed by the gauge symmetri

can be eliminated by shiftingJ→@J2 1
3 f (F!F̄)#. This

changes the termi F̄!J!F by replacing it with interactions

of J with any function of F̄,F that preserves the gaug
symmetries. However, one can do field redefinitions to de
a newF so that the interaction with the linearJ is rewritten
as given, thus shifting all complications to the functio
i

ts
ob

-

th

12600
e

V!(F̄!F). Therefore, with the only assumption being th
cubic restriction onJ, this unique action will explain the firs
quantized worldline theory, and will generalize it to an inte
acting theory based purely on a gauge principle.

It can be checked that the action is Hermitian thanks

the Hermiticity relations forJ,F,F̄ and cyclicity under the
trace and integral signs. Hermiticity is also evident by eva
ating the trace explicitly4
SJ,F5E d2DXS iJ11!J12!J222 iJ22!J12!J111
2

3
J0!J0!J012J0!J0

1~J11!J221J22!J1122J12!J12!!~J011!¿Tr~ iJ!F!F̄2V!
D .
st-

r

n.
,

in
d

sign

the

e
to
The equations of motion are

J!F52 iF!V8, J!J22iJ2F!F̄50 ~21!

whereV8(u)5]V/]u.

A. Solution and link to worldline theory

One can choose a gauge for the local U!
L(1,1)3U!

R(1,1)
in which the 232 complex matrixF is proportional to the
identity matrix

F i
a5d i

aw~X1 ,X2!. ~22!

ThenF̄a
i 52da

i w†. Thus, 6 gauge parameters are used up
eliminating 6 degrees of freedom fromF. For a genericw,
the surviving symmetry is a global diagonal spL1R(2,R)
times a local noncommutative u!

L(1)3u!
R(1). In this gauge,

the equations of motion become

J!w52 iw!V8~2w†!w!, J!JÀ2iJ¿~w!w†!1Ä0.
~23!

Rewriting the equations of motion in terms of componen
we can separate the triplet and singlet parts under the gl
spL1R(2,R)

Ji j !w50, J0!w5w!V8~2w†!w!, ~24!

~J011!!
2511w!w†2

1

2
Ji j !Ji j ~25!

1

2
J( i

k !Jj )k5 iJ i j !~J011!1 i ~J011!!Ji j . ~26!

More explicitly, in terms of components~usingJi
15Ji2 and

Ji
252Ji1) the left hand side of Eq.~26! reduces to commu

tators @J11,J12#! , @J11,J22#!, and @J11,J22#!. In fact, if in
Eq. ~26! J0 on the right hand side were absent, then
commutation relations among theJi j would be precisely
those of sp(2,R) as given in Eq.~6!. Then we should con-
n

,
al

e

sider a close relationship betweenJi j and Qi j . This is also
supported by the resemblance of Eq.~24! to Eq. ~7!. Indeed,
as we will see below, the relation is nontrivial and intere
ing.

The second equation in Eq.~24! can be written in the
form (J011)!w5w!@11V8(2w†!w)#. Applying (J011)
on both sides, using (J011)!

2 given by Eq.~25!, and apply-
ing Ji j !w50 as in Eq.~24!, we obtain an equation purely fo
w:

w!$@11V8~2w†!w!#!
2212w†!w%50. ~27!

It is straightforward to find all the solutions of this equatio
Thus consider anyw5lwn

m , wherel is a complex constant
andwn

m(X1 ,X2) is of the form of Eq.~8! which satisfies the
triple relation of Eq.~10! by construction. Then

w!w†!w5ulu2w. ~28!

Inserting such aw in the equation shows thatl must be a
solution of the equation

@11V8~2ulu2!#2212ulu250. ~29!

As an illustration, consider the example of the potential
Eq. ~20!, for whichV85a is a constant. For this case we fin
l56(a212a)1/2. It is evident that, up to u!

R(1) gauge trans-
formations, the solutions of Eqs.~24! and~27! are all physi-

4In this form we see that sp!(2,R) @as opposed to u!(1,1)# cannot
be used as the local symmetry, because all cubic terms change
under sp!(2,R)’s parity-like projections, Ji j (X1 ,2X2)
5Ji j (X1 ,X2), andJ0(X1 ,2X2)52J0(X1 ,X2), with simultaneous
interchange of factors in a star product@10#. It is interesting to note
that the action is invariant if the parity properties are exactly
opposite signs than those required by sp!(2,R). However, such con-
ditions could not be imposed onJ because then they would not b
compatible with gauge transformations rules that are required
have a symmetric action.
1-5
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cal states of the form~8! multiplied by anyulu that solves the
equation@the phase ofl can be absorbed away with a u!

R(1)
transformation#.

Next we solveJ0 formally from Eq. ~25!, J05211(1
1w!w†2 1

2 Ji j !Ji j )1/2, where the square root is understo
as a power series with all products replaced by star produ
UsingJi j !w505w†!Ji j andw!w†!w5ulu2w, we can sim-
plify each term in the series expansion and obtain the s
plified expression

J05211
V8~2ulu2!

ulu2
w!w†1S 12

1

2
Ji j !Ji j D 1/2

~30!

where Eq.~29! has been used. With this form ofJ0, all
equations involving it, including the last one in Eq.~24!, are
satisfied. Finally, replacing these results into Eq.~26! and
using againJi j !w505w†!Ji j , we find an equation involv-
ing only the gauge fieldsJi j , which we write in components
explicitly

@J11,J12#!5 i $J11,„12C2~J!…1/2%! ~31!

@J11,J22#!52i $J12,„12C2~J!…1/2%! ~32!

@J12,J22#!5 i $J22,„12C2~J!…1/2%! . ~33!

The right hand side is a star anti-commutator involving
expression

C2~J!5
1

2
Jkl!Jkl5

1

2
J11!J221

1

2
J22!J112J12!J12

~34!

which looks like a Casimir operator. However, since E
~31!–~33! are not the sp(2,R) Lie algebra one cannot hastil
claim that C2(J) is a Casimir operator. Indeed, if one a
tempts to derive the commutation relations betweenC2(J)
and Ji j by repeated use of Eqs.~31!–~33!, one finds that
@Ji j ,C2(J)#! becomes equal to†2Ji j ,$@12C2(J)#1/2%!

2
‡,

and thus obtains an identity. Therefore, these equations
not require thatC2(J) and Ji j commute. If they commute
one could renormalizeJi j by an appropriate factor to reduc
these equations to sp(2,R) commutation relations with the
normalization of generators as given by Eq.~6!. This is quite
interesting, as we will see below. Thus, generally Eqs.~31!–
~33! are not the sp(2,R) commutation rules.

Furthermore, if one computes the Jacobi identities by
peated use of Eqs.~31!–~33!, one finds

†J11,@J12,J22#!‡!1cyclic5
1

2
@Ji j ,†Ji j ,@12C2~J!#1/2

‡!#! .

~35!

Under the assumption that the star product is associative
Jacobi identity is satisfied,5 and the left side of Eq.~35!

5It is also interesting to keep in mind the possibility of anomali
leading to non-associativity~e.g. magnetic fields@15#!. If we con-
sider a nonvanishing Jacobian, the mathematical structure of
~31!–~33! would be a Malchev algebra rather than a Lie algebra
12600
ts.

-

e

.

do

-

he

vanishes. Therefore associativity of the star product requ
the right hand side to vanish, but generally this is a wea
condition than the vanishing of@Ji j ,C2(J)#!.

To solve the nonlinear gauge field equations~31!–~33! we
will set up a perturbative expansion around a backgrou
solution

Ji j 5Ji j
(0)1gJi j

(1)1g2Ji j
(2)1••• ~36!

such thatJi j
(0) is an exact solution and then analyze the f

equation perturbatively in powers ofg. For the exact back-
ground solution we assume that1

2 Jkl
(0)!J(0)kl commutes with

Ji j
(0) , therefore the background solution satisfies a Lie al

bra. Then we can write the exact background solution to E
~31!–~33! in the form

Ji j
(0)5Qi j !

1

A11 1
2 Qkl!Qkl

~37!

whereQi j satisfies the sp(2,R) algebra of Eq.~6!

@Q11,Q12#!52iQ11, @Q11,Q22#!54iQ12,

@Q12,Q22#!52iQ22, ~38!

and 1
2 Qkl!Qkl is a Casimir operator that commutes with a

Qi j that satisfies the sp(2,R) algebra. The square root is un
derstood as a power series involving the star products
can be multiplied on either side ofQi j since it commutes
with the Casimir operator. For such a background, the ma
field equations~24! reduce to

Qi j !w50. ~39!

This is the matter field equation~7! given by the first quan-
tized theory. Its solution was discussed following Eq.~7!.

Summarizing, we have shown that our actionSJ,F has
yielded precisely what we had hoped for. The lineariz
equations of motion (0th power ing) in Eqs.~38! and ~39!
are exactly those required by the first quantization of
worldline theory as given by Eqs.~6! and~7!. There remains
to understand the propagation and self-interactions of
fluctuations of the gauge fieldsgJi j

(1)1g2Ji j
(2)1•••, which

are not included in Eqs.~38! and~39!. However, the full field
theory, without making the assumption thatC2(J) and Ji j
commute, includes all the information. In particular the e
pansion of Eqs.~31!–~33! around the background solutio
Ji j

(0) of Eq. ~37! should determine uniquely both the prop
gation and the interactions of the fluctuations involving ph
tons, gravitons, and high spin fields.

B. Explicit background solution

We record the exact solution to the background gau
field and matter field equations~38! and ~39!, which were
obtained in several stages in@7–9#. The solution is given by
fixing a gauge with respect to the u!

L(1). First, we choose the
gaugeQ115X1•X1. There is remaining u!

L(1) symmetry that
satisfies@X1

2 ,v0#!50. Using the conditions imposed onQ12

,

s.
1-6
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by the sp(2,R) conditions, one finds that the remaining sym
metry is sufficient to fix a gauge forQ125X1•X2. Thus, up
to u!

L(1) gauge transformationsv0(X1 ,X2), one can simplify
Q11,Q12 and take the most generalQ22 as follows:

Q115X1
MX1

NhMN , Q125X1
MX2M , Q225G~X1 ,X2!

~40!

where hMN is the flat metric ind12 dimensions, and the
general functionG(X1 ,X2) is assumed to have a power e
pansion inX2 in some domain

G~X1 ,X2!5G0~X1!1G2
MN~X1!@X21A~X1!#M

3@X21A~X1!#N1(
s53

`

Gs
M1•••Ms~X1!

3@X21A~X1!#M1
•••@X21A~X1!#Ms

.

~41!

The configuration space fields have the following interpre
tion: AM(X1) is the Maxwell gauge potential,G0(X1) is a
scalar,G2

MN(X1)5hMN1h2
MN(X1) is the gravitational met-

ric, and the symmetric tensors@Gs(X1)#M1•••Ms for s>3 are
high spin gauge fields.6 The sp(2,R) closure condition in Eq.
~38! requires these background fields to be orthogonal toX1

M

and to be homogeneous of degree (s22):

X1•]AM52AM , X1•]Gs5~s22!Gs , ~42!

X1
MAM5X1M1

h2
M1M25X1M1

Gs
M1•••Ms50. ~43!

The background fieldsA,G0 ,G2 ,Gs>3 determine all other
background fields„f i j (X1)…M1•••Ms up to u!

L(1) gauge trans-
formationsv0(X1 ,X2). The full solution of thed12 dimen-
sional equations~42! is given in @8# in terms of d dimen-
sional background fields for Maxwell, dilaton, metric, an
higher spin fields. Therefore Eqs.~38! holographically en-
capsulate all possibleoff-shellarbitraryd dimensional back-
ground gauge fields in ad12 dimensional formalism. In the
next section we will derive the dynamical equations of m
tion for the small fluctuations around the backgrounds.

The u!
L(1) symmetry of the typev0(X1 ,X2), when ex-

panded in powers ofX21A(X1), contains the configuration
space gauge transformation parameters for all of the ga
fields @8#

6There is noG1
M(X1) as the coefficient of the first power ofX2

1A, becauseAM(X1) is equivalent to that degree of freedom,
can be seen by re-expandingQ22 in powers ofX2 instead ofX2

1A. Note also inQ12 we really haveX21A, but A has dropped
because we chose to work in the gaugeX1•A50.
12600
-

-

ge

v0~X1 ,X2!5«0~X1!1«1
M~X1!@X21A~X1!#M

1(
s52

`

«s
M1•••Ms~X1!

3@X21A~X1!#M1
•••@X21A~X1!#Ms

.

~44!

SinceQ11,Q12 have been gauge fixed, the remaining part
u!

L(1) gauge symmetry should not change the form
Q11, Q12, so any surviving gauge parametersv0 should
satisfy @X1

2 ,v0#!5@(X1•X2),v0#!50; this requires the
gauge parameters«s>0

M1•••Ms(X1) to be homogeneous and o
thogonal toX1

M :

X1•]«s5s«s , X1M1
«s

M1•••Ms50. ~45!

The gauge transformation law of the gauge fie
dA,dG0 ,dG2 ,dGs>3 is given bydQ225 i @Q22,v0#!. From
this it is easy to see that«0(X1) is the gauge parameter fo
the Maxwell field,«1

M(X1) is the infinitesimal general coor
dinate reparametrizations of all tensor fields, a
«s>2

M1•••Ms(X1) are the gauge parameters for the high s

fields Gs11
M1•••Ms11 . The details of the gauge transformatio

are given in@8#. This shows that the familiar configuratio
space gauge principles, Maxwell, Einstein, and high spin,
unified in our approach as being a small part of the u!(1,1)
gauge symmetry. We will use this remaining u!

L(1) gauge
symmetry in the analysis of the equations of motion for t
small fluctuations of the gauge fields.

III. FLUCTUATIONS AND DYNAMICS
OF GAUGE FIELDS

We are interested in analyzing the perturbative expans
of Eqs. ~31!–~33! around any background solution. In pa
ticular, taking a hint from the form of Eqs.~40! and~41!, we
will investigate fluctuationsh(X1 ,X2) in the direction of
J22. More general fluctuations could also be considered,7 but
we will limit the current discussion to fluctuations around t
background fields we have identified in the previous secti
Those are fluctuations in the direction ofJ22. Thus, we con-
sider replacing any solution of the background fiel
A,G0 ,G2 ,Gs>3 by adding the fluctuations (A1gd (1)A),
(G01gd (1)G0), (G21gd (1)G2), (Gs>31gd (1)Gs>3) and
then expanding to first order ing. We already know from the
form of Eqs. ~40! and ~41!, and the gauge transformation
discussed above, that these fluctuations are directly relate

7The u!
L(1) symmetry was sufficient to gauge fix not onlyQ11 but

alsoQ12, because these had to obey the sp(2,R) algebra. However,
the Ji j obey a more general set of equations and therefore it is
clear whether one could gauge away more general fluctuat
around the background. There is certainly the freedom to take v
ishing fluctuations in the direction ofJ11, but it is not clear whether
fluctuations in the direction ofJ12 can also be eliminated by gaug
choices. This remains to be investigated.
1-7
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gauge fields for Maxwell, Einstein and high spin gauge sy
metries. We wish to analyze the perturbative expansion
Eqs.~31!–~33! in order to determine the equations of motio
for the fluctuations.

The Ji j including the fluctuations takes the form

J115
1

A11C2~Q!
!X1

2 , J125
1

A11C2~Q!
!~X1•X2!

~46!

J225
1

A11C2~Q!
!G1gh~X1 ,X2!1••• ~47!

whereh(X1 ,X2) is a general function whileG(X1 ,X2) de-
scribes a specific set of background fields that solve E
~42! and ~43!. In particular,G5X2

2 corresponds to the fre
flat background.C2(Q) is the quadratic Casimir operator fo
the sp(2,R) algebra of Eq.~38! satisfied by the background
and is given by

C2~Q!5
1

2
Qkl!Qkl5

1

2
~Q11!Q221Q22!Q11!2Q12!Q12

~48!

5
1

2
$X1

2 ,G%!2~X1•X2!!~X1•X2! ~49!

5X1
2G2

1

4 S ]

]X2
D 2

G2~X1•X2!22
1

4
~d12! ~50!

where, in the last line all star products have been evalua
As long as the background fields satisfy Eqs.~42! and ~43!
this C2(Q) commutes with the sp(2,R) generatorsQi j

5„X1
2 ,(X1•X2),G(X1 ,X2)…. The gauge field fluctuation

gh(X1 ,X2) up to first order ing will be treated perturba-
tively in solving the non-linear equations~31!–~33!. Unlike
the case ofJi j

(0) , in this analysis we will not assume tha
C2(J) commutes withJi j , and instead we will derive the
conditions thath(X1 ,X2) must satisfy to solve the equation
to first order ing. We will develop the equations in the gen
eral backgroundG(X1 ,X2) up to a point and eventually, fo
simplicity, specialize to the free backgroundG(X1 ,X2)
→X2

2.
First we compute 12C2(J) for theJi j in Eqs.~46!,~47! to

first order ing

12C2~J!512C2~J(0)!2
g

2
~J11

0 !h1h!J11
0 ! ~51!

5
1

11C2~Q!
2

g

2A11C2~Q!
!X1

2!h

2h!X1
2!

g

2A11C2~Q!
. ~52!

Next we compute the square root up to first order ing. Be-
cause of the orders of factors, this is a complicated exp
12600
-
of

s.

d.

s-

sion. In order to get a quick glimpse of the content of t
equations, for simplicity, we will proceed under the assum
tion

@C2~Q!,h#!50. ~53!

Then we get the simple expression

A12C2~J!5
1

A11C2~Q!
2

g

4
$X1

2 ,h%!1•••. ~54!

We now insertJi j in Eqs. ~31!–~33! and expand both side
up to the first power ing. The zeroth order terms cance
thanks to the properties ofJi j

0 , and the first power gives the
following equations that must be obeyed byh(X1 ,X2):

2
i

4
ˆX1

2 ,$X1
2 ,h%!‰!50 ~55!

2
i

2
ˆ~X1•X2!,$X1

2 ,h%!‰!5@X1
2 ,h#! ~56!

2
i

4
ˆG,$X1

2 ,h%!‰!5@~X1•X2!,h#!22ih. ~57!

We can show that the equation@C2(Q),h#!50 that was as-
sumed in arriving at these expressions has no additiona
formation beyond these equations. That is, if we useC2(Q)
as given in Eq.~49! and evaluate the commutator by repe
edly using Eqs.~55!–~57!, we find that@C2(Q),h#!50 is
identically satisfied. Hence, this is not an additional equat
to be taken into account.

To get a quick grasp of the nature of these equations,
will first make a few quick observations by assuming that
right hand side is zero, and in the next paragraph we w
analyze them by lifting this assumption. Thus, after insert
the information @X1

2 ,h#!50, and @(X1•X2),h#!52ih, we
can derive from the left hand side thatX1

2!H505H!X1
2,

and (X1•X2)!H505H!(X1•X2), and $G,H%!50, where
we have definedH5 1

2 $X1
2 ,h%!5X1

2h2]2h/(]X2)2 after
evaluating the star products. The equations satisfied byH are
similar to Eqs.~38! and ~39! satisfied by a scalar field in a
general background, in particular if we considerH similar to
w!w†. As we have already learned, the solution is of t
form H;(uc&^c8u, where the $uc&% satisfy the Klein-
Gordon equation in configuration space.

These remarks provide a quick indication that the fi
order equations~55!–~57! for h, or equivalently forH, rep-
resent Klein-Gordon type equations for the fluctuations
the gauge fields. In particular, it is worth emphasizing th
we have seen a first indication that the original action
cludes a kinetic term for the fluctuations, although the f
malism does not make this immediately apparent. This po
will become clearer in the component form discussed in
next paragraph.

Next, we proceed to investigate Eqs.~55!–~57! in compo-
nent formalism without the assumptions of the previous t
paragraphs. However, to make further progress we will s
1-8
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cialize to the free backgroundG5X2
2 and take the following

expansion in powers ofX2, thus defining the spin compo
nents of the fluctuating gauge fields in configuration spa

h5h0~X1!1h1
M~X1!X2M1h2

MN~X1! X2MX2N

1(
s53

`

hs
M1•••Ms~X1!~X2M1

•••X2Ms
!. ~58!

Up to factors of@11C2(Q)#1/2 we have redefinedhs
M1•••Ms

as the fluctuations for the gauge fields.8 In particular, up to
some factors,h1

M(X1) is the fluctuation of the Maxwell field
and h2

MN is the fluctuation of the gravitational metric. Th
equations of motion can now be written for the compone
by evaluating the star products in Eqs.~55!–~57!. This is
done in the Appendix. Thus,̂X1

2 ,$X1
2 ,h%!‰!50 gives in

component form

~X1
2!2hs

M1•••Ms2
~s12!~s11!

2
X1

2hMNhs12
MNM1•••Ms

1
~s14!~s13!

4
hKLhMNhs14

KLMNM1•••Ms50. ~59!

Similarly @X1
2 ,h#!52( i /2)ˆ(X1•X2),$X1

2 ,h%!‰! gives

2~s11!X1Nhs11
NM1•••Ms52

2

s
X1

(M1S X1
2hs21

M2•••Ms)

2
s~s11!

4
hMNhs11

MNM2•••Ms)D
2~s11!]NS X1

2hs11
NM1•••Ms

2
~s13!~s12!

4
hKLhs13

KLNM1•••MsD
~60!

and @(X1•X2),h#!22ih52( i /4)ˆX2
2 ,$X1

2 ,h%!‰! gives

8Recall that the power expansion ofG(X1 ,X2) did not haveG1
M

associated with the first power ofX2, since the Maxwell fieldAM

was introduced as an independent field instead ofG1
M . The fluctua-

tions of the Maxwell field appear gauge covariantly everywhere
the formX21gd (1)A. The various powers of this expression need
be expanded in powers ofg to first order. However, there is alread
one power ofg in front of hs

M1•••Ms since it is itself a fluctuation.
Therefore, allgd (1)A drop out to first order ing. However,gd (1)A
also appears in covariantizing the zeroth order quadratic termQ22

→(X21gd (1)A)2. The expansion of this term gives rise toh1
M

;d (1)A up to factors. Similarly, up to overall factors,hs
M1•••Ms is

proportional to the fluctuationd (1)Gs
M1•••Ms .
12600
:

s

~s222X1•]1!hs
M1•••Ms5

22

s~s21!
h (M1M2S X1

2hs22
M3•••Ms)

2
s~s21!

4
hMNhs

MNM3•••Ms)D
1

1

4
]1

2S X1
2hs

M1•••Ms

2
~s12!~s11!

4
hMNhs12

MNM1•••MsD .

~61!

These equations are purely in configuration spaceX1
M . The

first two equations may be interpreted as subsidiary con
tions, while the last one is a second order Klein-Gordon ty
equation. By construction, they are gauge invariant under
remaining gauge transformationsv0(X1 ,X2). Since we have
@C(Q),h#50, the remaining gauge symmetry also obeys

@C~Q!,v0#50 ~62!

in addition to Eq.~45!, hence they are a subset of the gau
transformations discussed in@8#. These gauge transforma
tions do not change the form ofJ11,J12, while they are
applied to the totalJ22 asdJ225 i @J22,v0#! from which the
transformation properties for the componentshs are ob-
tained.

Note that the double trace ofhs>4 is restricted by Eq.
~59!, an important fact for high spin gauge theories@16#. In
this connection, we may ask if the double trace would van
when the d12 dimensional system is holographical
viewed in d dimensions. As part of the reduction fromd
12 dimensions tod dimensions we need to impose the va
ishing of X1

2. Although X1
2hs

M1•••Ms does not vanish, it ap-

pears that (X1
2)2hs

M1•••Ms and hMNX1
2hs

MNM1•••Ms may con-
sistently be taken to vanish. Then at the end of
holographic reduction the double trace does indeed vanis
d dimensions.

The main point established in this section is that the f
non-linear equations contain information on the propagat
of the gauge fields. For simplicity, this was done under
assumption@C2(Q),h#!50. It is desirable to analyze the fu
form of the perturbative expansion without relying on th
assumption. Also, there still remains the completion of t
exercise to extract the full form of the kinetic terms a
interactions after the reduction to a holographic picture ind
dimensions. At that point it will be interesting to compa
our equations for the high spin gauge fields to those d
cussed in other formalisms. In previous investigations eq
tions of motion have been constructed ind53,4 dimensions,
including up to cubic interactions that satisfy a truncated~or
approximate! form of a high spin gauge symmetry@11#. But
the general interaction is not known, and furthermore
construction of an off-shell action has eluded all attempts.
contrast, our approach begins with a complete and uni
action ~modulo the cubic condition!. It is already clear that
our theory supplies both the propagation and all interacti

n
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ITZHAK BARS PHYSICAL REVIEW D 64 126001
of the gauge fields. It would be very interesting to investig
the relation between our approach and that of@11#. Related
aspects of high spin gauge fields are still under study in
theory, and we hope to report on this topic in a future pu
lication.

IV. MATRIX POINT OF VIEW

In some sense, our current noncommutative field theor
an infinite dimensional matrix theory, and it can be viewed
the largeN limit of a finite 2N32N matrix theory.

The fields Ji j (X1 ,X2) and J0(X1 ,X2) are constructed
from noncommutative d12 dimensional phase spac
(X1

M ,X2M). Using the Weyl correspondence, it is possible
replace (X1

M ,X2M) by quantum operators acting in a Hilbe
space, or equivalently by infinite dimensional matrices.
this sense, our theory is already a ‘‘matrix theory’’ for infini
dimensional matrices.

One can introduce a cutoff in the theory by replacing
matrices by finite matrices. The basic Heisenberg comm
tion rules between (X1

M ,X2M) cannot be obeyed by finite
matrices, but by taking special combinations of the ba
operators (X1

M ,X2M) one can confine oneself to quantitiesJi j

constructed from them, such thatJi j are finite matrices. For
example, this is the case on a periodic torus where fi
translations in phase spaceua5exp(ia•X1) and vb5exp(ib
•X2) are indeed represented by finite matrices that obey
algebrauavb5vbuavab whenvab5exp(2ia•b) is a root of
unity. Similar considerations apply to the fuzzy sphere
phase space@with (d,2) signature in our case#.

Therefore, it is possible to takeJi j andJ0 as functions of
only ua ,vb ~for a collection ofa’s andb’s!, or similar struc-
tures, and thus represent them as functions of finite matr
that are closely connected to phase space (X1

M ,X2M). We
expect then the non-commutative u!(1,1) to be approxi-
mated by the non-compact group u(N,N) such that the 2
32 noncommutativeJ gets replaced by the 2N32N matrix
representation of u(N,N). The four N3N blocks are then
identified with the HermitianJi j ,J0 just as in Eq.~15!. The
form of the action formally remains the same as Eq.~19!,
except for replacing integration by a trace over matric
Thus, the equations thatJ satisfies are also formally th
same, except for replacing star products with matrix pr
ucts.

We now face again the matrix analog of Eqs.~31!–~33!,
instead of star products. When12 JklJ

kl commutes withJi j it
is possible to constructQi j ,Q0 that satisfy the u(N,N) alge-
bra, as in Eq.~37!. However, the solution forQi j ,Q0 must
now be given in terms ofua ,vb . Indeed it is possible to
construct the u(N,N) algebra in terms of powers ofua ,vb or
similar structures, just like the examples that exist in
literature forU(2N) @17–26#. This would provide the matrix
analog of the background solution in Eqs.~40!,~41!.

Since there are many solutions of the type Eqs.~40!,~41!
we expect also many solutions forQi j ,Q0 as functions of
ua ,vb or some similar structures. The more general solut
of Eqs. ~31!–~33! for J’s that include propagation of th
gauge fields can then be investigated using finite ma
methods.
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V. OUTLOOK

We have learned that we can consistently formulate a fi
theory of 2T physics ind12 dimensions based on a ver
basic gauge principle in quantum phase space. We have
tatively shown that our equations, compactly written in pha
space in the form of Eq.~21!, seem to yield a new unified
description of various gauge fields in configuration spa
including Maxwell, Einstein, and high spin gauge fields i
teracting with matter and among themselves ind dimensions.

The underlying gauge principle is the noncommutat
u!(1,1), and the action that gives rise to the field equation
noncommutative phase space has the rather simple form
Eq. ~19!. As argued following Eq.~20!, the form of the ac-
tion is unique as long as it is restricted to the maximum cu
power of J. Then, all results are grounded purely in th
u!(1,1) gauge principle. With the only assumption being t
cubic restriction, the worldline approach is explained by t
field theory asexact background solutions. This essentially
unique action could now be taken as a starting point fo
classical as well as quantum analysis of theinteracting 2T-
physics field theory. At this time it is not known what wou
be the consequences of relaxing the maximum cubic po
of J.

Although the analysis of the classical field equations
motion so far has been rudimentary, it was sufficient
showing that the content of the theory is sensible while be
very rich and interesting from the point of view ofd dimen-
sions. As usual, the 1T-physics content of the theory can
obtained as various holographic images that come from
beddingd dimensions in various ways ind12 dimensions.
One of the better understood holographic images@27,7# is
the field theory ind dimensions in which the Klein-Gordon
matter field interacts with various gauge fields, including
teractions with the Maxwell field, dilaton, gravitational field
and high spin gauge fields.

The gauge fields propagate and have interactions am
themselves. It appears that our approach provides for the
time an action principle that should contribute to the reso
tion of the long studied but unfinished problem of high sp
fields @11,28,8,29#. We have shown that there is a kinet
term for the gauge fields although more study is needed
understand its contents better. The nature and detail of
interactions among the gauge fields can in principle be
tracted from ourd12 dimensional theory, but this remain
as an exercise for the future.9

This work can be generalized in several directions. One
these directions is supersymmetry, and one can consider
worldline and space-time supersymmetries.

9The nature of interactions for the high spin fields may depend
the background chosen forQi j . For example, according to previou
studies@11# there are no interactions in flat backgrounds, but th
are interactions in AdSd backgrounds, in particulard53,4. In 2T
physics, flat backgrounds or AdSd backgrounds both exist in the
samed12 dimensional theory as they emerge from different e
beddings ofd dimensions ind12 dimensions~see the last referenc
in @2# and @7#!. So it should be interesting to study such issues
detail with regard to high spin field interactions.
1-10
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In the case of worldline supersymmetry, local sp(2,R) is
replaced by local osp(nu2) wheren is the number of super
symmetries. This describes 2T physics for spinning partic
@3#. Local osp(nu2) on the worldline can be maintained
the presence of background fields, and this has been stu
to some extent@7#, but more work along the present paper,
build a noncommutative field theory, remains to be done.
may guess that the appropriate gauge group for the su
symmetric noncommutative field theory would be u!(nu1,1).
Therefore it would be interesting to take the same form
the action in Eq.~19! and repeat the analysis of the curre
paper for the noncommutative supergroup u!(nu1,1). It is
likely that the content of this theory is the spinning genera
zation of what we have discussed in this paper.

In the case of space-time supersymmetry, the world
action in the absence of background fields has been
structed@4,1#. The local symmetries are richer: in addition
local sp(2,R) they include ad12 dimensional version o
kappa supersymmetry and its bosonic generalizations.
the special supersymmetries osp(Nu4), su(2,2uN), F(4), and
osp(6,2uN) one obtains ad12 dimensional formulation of
the superconformal particle ind53,4,5,6 dimensions, re
spectively. For other supergroups one obtains brane co
tive coordinates in interaction with superparticle coordinat
giving unitary supersymmetric Bogomol’nyi-Prasa
Sommerfield ~BPS! states as the quantum states of t
theory. In particular, for osp(1u64) one obtains a toy M
model that embodies certain interesting features of M the
@4,1#.

The case of background fields in the presence of sp
time supersymmetry in the worldline theory remains to
constructed. We expect this to be a rather interesting
rewarding exercise, because kappa supersymmetry is b
to require the background fields to satisfy dynamical eq
tions of motion, as it does in 1T physics@30#. The supersym-
metric field equations thus obtained ind12 dimensions
should be rather interesting as they would include some l
sought field theories ind12 dimensions, among them supe
Yang-Mills and supergravity theories. Perhaps one may a
attempt directly the space-time supersymmetrization of
present approach, bypassing the background field form
tion of the worldline theory.

The matrix approach described above should eventu
be considered with space-time supersymmetry. It is conc
able that these methods would lead to a formulation of
variant M~atrix! theory @31#. In this context we expec
osp(1u64) to play a crucial role, as some of its attracti
features appear to be quite relevant to M theory@32,4,33,34#.
In future work we intend to pursue the types of issues t
are touched upon in this section.
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APPENDIX

Let h(X1 ,X2) be given by the expansion in Eq.~58!. We
compute explicitly

5X1
2h2

1

4
]2

2h5H ~A1!

5(
s50

` S X1
2hs

M1•••Ms2
~s12!~s11!

4
hMNhs12

MNM1•••MsD
3~X2M1

•••X2Ms
!. ~A2!

By applying the formula a second time we compu
1
2 $X1

2 ,H%!. Then the component form of Eq.~55! gives Eq.
~59!.

Next we compute the commutator

@X1
2 ,h#!52iX1•]2h ~A3!

52i (
s50

`

~s11!X1Nhs11
NM1•••Ms~X2M1

•••X2Ms
! ~A4!

and anticommutator

1

2
$~X1•X2!,H%!

5~X1•X2!H1
1

4
~]1•]2!H ~A5!

5(
s50

` S 1

s
X1

(M1Hs21
M2•••Ms)1

~s11!

4
]NHs11

NM1•••MsD
3~X2M1

•••X2Ms
!. ~A6!

We use them in computing the component form of Eq.~56!,
which gives Eq.~60!.

Finally we compute the commutator

@~X1•X2!,h#!5 i ~X2•]22X1•]1!h ~A7!

5 i (
s50

`

„~s2X1•]1!hs
M1•••Ms

…~X2M1
•••X2Ms

!

~A8!

and anticommutator

1

2
$X2

2 ,H%!

5X2
2H2

1

4
]1

2H ~A9!

5(
s50

` S 2

s~s21!
h (M1M2Hs22

M3•••Ms)2
1

4
]1

2Hs
M1•••MsD

3~X2M1
•••X2Ms

!. ~A10!

By inserting them in Eq.~57! we obtain the component form
given in Eq.~61!.
1-11
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