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A very simple field theory in noncommutative phase spax¥,PM) in d+2 dimensions, with a gauge
symmetry based on noncommutativg(1,1), furnishes the foundation for the field theoretic formulation of
two-time physics. This leads to a remarkable unification of several gauge princiglenrensions, including
Maxwell, Einstein and high spin gauge principles, packaged together into one of the simplest fundamental
gauge symmetries in noncommutative quantum phase spaté 2nhdimensions. A gauge invariant action is
constructed and its nonlinear equations of motion are analyzed. In addition to elegantly reproducing the first
quantized worldline theory with all background fields, the field theory prescribes unique interactions among the
gauge fields. A matrix version of the theory, with a lafddimit, is also outlined.
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I. INTRODUCTION In the space of “all worldline theories” for a spinless
particle (i.e. all possible background fieldghere is a sym-
Two-time physics(2T physic$ [1-9] is a device that metry generated by all canonical transformati8k These
makes manifest many hidden features of one-time physicgansformations are above and beyond the local &)(2n
(1T physics. Until recently, most of the understanding in 2T the worldline. As observed iff], the gauging of sp(R) in
physics was gained from studying the worldline formalism.field theory(as opposed to worldline thegrgives rise to a
This revealed al+2 dimensional holographic origin of cer- local noncommutative j{1) symmetry in noncommutative
tain aspects of 1T physics id dimensions, including, in phase space that is clo_sely connected to the general canonical
particular, higher dimensional hidden symmetfiesnformal transformauons. In.thls paper, we will see that the_ local
and othersand new sets of duality-type relations among 1TSP(2R) combines with the local(1) to form a non-Abelian
dynamical systems. While the physical phenomena describedfU9€ Symmetry described by the noncommutative Lie alge-

by 1T or 2T physics are the same, the space-time point o.l?ra u(1,1) .that. will form thg basis for the gauge theory
vi)(/ew is differgnt).l The 2T-physics approacgdlnlrz dimZn- introduced in this pape(following the notation in[10], we

sions offers a highly symmetric and unified version of the>¢ the star symbel in denoting noncommutative symmetry

. . . ; groups.

pheno_men_a described by_1T phy3|csdnd|mens_|ons. As The y(1,1) gauge principle completes the formalism of
S.UCh’ it raises deep questions about the meaning of SPa%% into an elegant and concise theory which beautifully de-
time. L ) i scribes 2T physics in field theory oh+2 dimensions, while

A noncommutative field theory in phase space introduceqggolying some problems that remained open. The resulting
recently[9] confirmed the worldline as well as the configu- theory has deep connections to standadimensional gauge
ration space field theor7] results of 2T physics, and sug- theories, gravity and the theory of high spin fielplkL].
gested more far reaching insights. In this paper the approacthere is also a finite matrix formulation of the theory in

of [9] will be taken one step further by showing that it origi- terms of ufN,N) matrices, such that thdl—co limit be-
nates from a fundamental gauge symmetry principle basegomes the 1(1,1) gauge theory.

on noncommutative §(1,1). We will see that this phase
space symmetry concisely unifies many gauge principles that
are traditionally formulated in configuration space separately
from each other, including the Maxwell, Einstein and high The local symmetries that will play a role in noncommu-
spin gauge principles. tative field theory make a partial appearance in the worldline
All new phenomena in 2T physics in the worldline formu- formalism. Therefore, for a self-contained set of arguments,
lation can be traced to the presence of an essential gaugee start from basic considerations of the worldline formal-
symmetry: sp(&R) acting on phase spacXX',Py,) [2]. The ism of 2T physics for a spinless scalar particle.
2T feature of space-timé.e., XM with two timelike dimen- The spinless particle is described in phase space by
siong is not an input, it is an outcome of the sgRp.gauge  X"(7),Pw(7), interacting with all possible background
symmetry. Yet this symmetry is responsible for the effectivefields. It is convenient to use the notatiof)'=x" and
reduction of thed+2 dimensional two-time phase space to X,y=Py, with i=1,2 referring toX;. We avoid introduc-
(a collection of d dimensional phase spaces with one-time.ing a background metric iD dimensions by defining(g’I
Each of thed dimensional phase spaces holographically capwith an upper index aniX,,, with a lower index, and never
tures the contents of thé+2 dimensional theory, but they raise or lower theM indices in the general setup, in the
do so with holographic pictures that correspond to differendefinitions of gauge symmetries, or the construction of an
1T dynamics(different 1T Hamiltoniang action. Thus, the formalism is background independent and

A. Symmetries in the worldline theory
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is not a priori committed to any particular signature of background fields have been determined up to canonical
space-time. The signature is later determined dynamically byransformationg8]. The solution will be recapitulated later

the equations of motion. The worldline action has the formin this paper in Sec. Il B.

[6,8]

. 1 .
XY Xou= SAT(NQ(X1.X0) |, (D)

IQ:J' dT

where the symmetrié\;; =A;; denotes three Sp(R) gauge
fields, and the symmetriQ;; = Q;; are three sp(R) genera-
tors. An expansion oQ;; (X;,X;) in powers ofX5y in some
local domain,

Qij(xbxz):Zs(fij(xl))MlmMSXZMl' -~ Xomg

defines all the possible background fie{dg(X;))"1 " Msin
configuration space. The local spR2, gauge transforma-
tions are

Qi
&XZM !

)

XM=~ wil(r =i
1

5X2M:w”(7')

SA =l (1) +[A, 0(7)]1. (2)

The actionlq is gauge invariant, with local parameters

'l(7), provided theQ;;(X;,X,) satisfy the sp(R) Lie al-

gebra under Poisson brackets. This is equivalent to a set
differential equations that must be satisfied by the back

ground fields(f;;(X;))M1"Ms[6,8]. The simplest solution is
the free case denoted Y =q;; (no background fields, only
J J
the flat metricyyn)
CIij:Xi'\AX]NﬂMN:

O11=X1- X1, Q= Xp- Xy,

)

Beyond the local sp(R) above, if one considers the
“space of all worldline theories” of the typég, there is a
symmetry that leaves the form of the action invari8L

Q2= Xz X5

B. Field equations from first quantized theory

Instead of using wave functions in configuration space
w(xgﬂ), the quantum theory can be formulated equivalently
in phase space, la Weyl-Wigner-Moyal[12—14, by using
distributions in phase spaaﬁ(x'f' ,Xom). The phase space
approach is natural in 2T physics, because the B)(2s
well as the canonical transformationg(X4,X,) are phase
space symmetries that would be cumbersome to dis@liss
not impossiblg in configuration space. Therefore, we find it
beneficial to discuss first quantization in terms of fields in
phase space. Sometimes we will use the notatidh
E(xgﬂ ,Xom) with a single indexm that takes 2¢+ 2) val-
ues. The fields in phase space will be functions of the form
A(X™). Products of fieldsA,B always involve the associa-
tive noncommutative Moyal star product

i d Jd
AxB)(X)=exp = M"—— —
( )(X) P(z X %

)A<X>B<$<>|x=x, (5)

Whereem”=ﬁ5'\N"sij , withi=1,2, ande;; is the antisymmet-
ric sp(2R) invariant metric(note that we have not used any
sPace-time metric in this expressjoThe star commutator

Detween any two fields is defined pp,B],=AxB—Bx*A.

The phase space coordinates satj$f{f',X"], =i 6™", which
is equivalent to the Heisenberg algebra ' X,y).

As shown in[9], first quantization of the worldline theory
of Eq. (1) is described by the noncommutative field equa-
tions

[Qij ,Quils =1 (e Qi +&ikQji + £ Qi+ £i1Qjk),  (6)
Qij*¢=0. (7)

Equation(6) is the quantum version of the spRj, condi-
tions required by the worldline theory. Its general solution

The symmetry can be interpreted as acting in the space of gf| 55 given in[8,9], and will be recapitulated in Eq$40)—

possible background fieldéf;;(X;))M+"Ms that obey the

(43) below. It describes Maxwell, Einstein and high spin

Sp(2R) closure conditions. The transformations are given byhackgroundgauge fieldgi.e., no dynamics Spinless matter
all canonical transformations that act infinitesimally in thejs coupled to these background gauge fields in &y. The
form general solution of this equation is a superposition of a basis

B dwo(X1,X3)

_ dwg(Xq,Xp)
KXoy 0

M_
50)(1 - 2M ™ 19X1M

. (4

for any wo(X1,X;). Then§,Q;; is derived from Eq(4) and
given by the Poisson brackefgQ;; ={Qj; ,wo}. Under such

transformations the terry‘iX'{"XZM is invariant, and the ac-
tion 14 is mapped tolp where Qij(X1,X2)=Q;j(X1,Xy),
with X;=X;+ §oX;. The new actiorig is in the space of all
theories of the form g since, by virtue of canonical trans-

formations, the nevﬁ)ij satisfies the sp(R) algebra under
Poisson brackets if the ol@;; does. By taking advantage of
these symmetries all possib@;;(X;,Xy), i.e., all possible

of fields ¢(X1,X5) =2 nmCmen(X1,X5) where[9]

®

2}

(€)

According to Weyl's correspondence, te€'(X,,X,) are re-
lated to Hilbert space outer produts™~ | n){ xml- The ¢
equation(7) is equivalent to the sp(R) singlet conditions in
the Hilbert spaceQij|¢>=0, whose solutions form a com-
plete set of physical statg$y,)} that are gauge invariant

iy
GDnm(XLXZ):f dPY (X)) xe™ Y KoMy (X )

Y\
=J dDYlpn(xl— §>e—'YMX2MX*m X;+
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under sp(&R). The solution spac€|,)} is non-empty and tially unique elegant action that results in E¢®). and(7) as

is unitary only when space-time has precisely two timelikeexact background solutioref nonlinear equations of motion.
dimensions, no less and no mdig9]. In particular, for the ~Expanding the full equations of motion around any back-
free theory(i.e., no backgrounds other than the flat metricground solution provides consistent interactions and propa-
7w, thusQi—q;), the{|,)} form the basis for the uni- gation for t_he fluctuating gauge fi_elds. Amqng o'ghe_r nice
tary singleton or doubleton representatio 0(d,2). Un-  features, this theory seems to provide an action principle for
like the ,(X4), the x*(X,) are not restricted by Eq7).  high spin gauge fields.

Therefore, it is reasonable to defigeonly up to noncom-

mutative §(1) gauge transformations that act from the right Il u,(1,1) GAUGE SYMMETRY

o— o* exp,(—iw"), or to restrict it by an additional condi-
tion on ¢ from the right side. Thep)' automatically satisfy
the following closure property under the triple product:

Global sp(2R) transformations that treatX(,X,) as a
doublet are generated by the freg=X;-X;. A complex
scalar field in phase spagg X,,X,) can transform as a left
module, right module, or diagonal module, as explained in
[9]. For a left scalar module, the global s@R® transforma-

_ ) tion is 6°Pp=—iw"(qij*¢) wWhere v are global param-
which follows just from the structur,)(xm| for orthonor-  eters. To turn sp(R) into a local symmetry, the thrag'! are
malized states. By fixing a{{i1) gauge symmetryp can be  replaced by arbitrary functions. Then the Hermitian combi-
made Hermitian; in this case the set{afi,} is the same as nation wy= %(w”*qij +qij*wij) acts from the left like a lo-
the {#,}. Evidently, there are other choices for the gaugecal noncommutative phase transformatiéfiy = —iwg* ¢.
fixing of the right side ofe. Therefore, local sp(R) acting on a scalar field from the left

Equations(6) and (7) correctly represent quantum me- s closely related to a noncommutative loca{Lj). In [9] it
chanically the 1T physics of a spinless particledimlimen- g argued that this i{1) acts orQ;j(X;,X,) from both sides
sions interactiljg with paquround gauge fi.elds, inclu.ding thegoQij = —i[wg,Qjj 1., thereforewo(Xy,X,) is precisely the
electromagnetic, gravitational and high spin gauge fit3ds  quantum versiortall powers offi) of the canonical transfor-

Furthermore, the 2T physics formalism unifies differentmations, encountered in the worldline formalism, as stated
types of 1T field theories id dimensions which holographi- jyst following Eq. (4).

cally represent the samet+2 dimensional equations, and  on a tensor field, global sp®) acts both on its
therefore, in principle it uncovers hidden symmetries a”d(x'i",XZM) dependence, as well as on its indices. For ex-
duality type relations among thefthis has been explicitly ample, for a doublet
demonstrated in simple casgld).

Much of the work in[9] was devoted to developing the b\SFobal‘Pk:wkIQDl_iwij(qij*‘Pk)- (11)
noncommutative field theory formalism and the symmetry
principles compatible with global and local spR?,symme-  In turning these transformations into local transformations
try. The goal was to find a field theory, and appropriate gaugeve find that we must have independent local parameters
principles, from which the free Eq5) and(7) would follow  w;(X;,X,) and wg(X;,X,) because closure cannot be ob-
as classical field equations of motion, much in the same wayained with only the three parametess; (X;,X5). In fact,
that the Klein-Gordon field theory arises from satisfying there is no 3-parameter noncommutative sRjf2,instead
7-reparametrization constraintsp{=0), or string field there exists the local four-parameter noncommutative
theory emerges from satisfying Virasoro constraints, etcy,(1,1) that has sp(R)=su(1,1) as a global subalgeﬁra.
This goal was partly accomplished [8], but as we will  we can collect the 4 parameters in the form of &2 ma-
explain, by only partially implementing the full gauge prin- trix, Qjj = wjj+iwgejj, whose symmetric pari;;(X;,Xy)
ciples described by ,(1,1).

In the rest of the paper we will complete the goa] @fby

spelling out the gauge principles, and constructing an €ssen2ror |ocal parameters in noncommutative space, the commutator

of two transformations witho;; closes into a transformation that

involves bothw;; and wg. The minimal noncommutative algebra

1Al the SO(d,2) Casimir operators for the singleton or doubleton that includes sp(R) in the global limit is the 4-parameter gi2,R)

representation are fixed; in particular, the quadratic Casimir i§10]. This is a subalgebra of the 4-parametgflyl) and is obtained
C,(S0(d,2))=1—d?4. There are many holographic solutions of from it by introducing a projection in the local space, such as the
the d+2 dimensional differential equatiorg;¢,(X;)=0 in the interchangeX;=X,, or mirror reflectionsX,— —X, as in [10].
form of d dimensional fields, all of which realize the singleton or Thus, sp(2,R) is embeded in 1(1,1) by demanding;;(X;,X,) to
doubleton representation. One of the holographic solutions is thee symmetric functions andy(Xq,X,) to be an antisymmetric
Klein-Gordon field ind dimensions which forms a well known function under the projections. Closure is satisfied for the 4 pro-
representation of the conformal group SICX). Another one is the jected functions. Thus, in principle, §2,R) would have been the
hydrogen atom ird— 1 space dimensions, another one is the scalaminimal local symmetry to turn global sp), into a local symme-
field in AdSy, and still another one is the scalar field in AA$ try in noncommutative space. However, as we will see, the simplest
x S¢ for anyk<d—2, and more. They all realize the same 8} cubic action that we will build for the gauge theory is not symmet-
representation with the same Casimir eigenvalues, but in differentic under the parity-like projections. Therefore, the local symmetry
baseq7]. appropriate for our purposes ig(d,1) rather than sg2,R).

my Tyn2 M3_ oMy Jnp M3
P, * (@) * P = O O (10
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becomes sp(R) when it is global, while its antisymmetric ~ Next we consider matter fields. For our purpose we will
part generates the local subgroyg1) with the local param- need to consider the noncommutative groug(1J1)
eter wg(X1,X5). To act on the doublet one of the indices is X UR(1,1). Recall that we already had a hint that the matter
raised with the sp(2) metrie!l, So=Q\* = wi* ¢ field admits independent gauge transformations on its left
—iwgx @y ; therefore, in matrix form we have and right sides. In this notatiof transforms as the adjoint
under U(1,1) and is a singlet under{(1,1), thus it is in the
~|. a2 (1,0) representation. For the matter field we take the X
“wy; TwpTleg representation given by ax22 complex matrix®;*(Xy,X,).
This field is equivalent to a complex symmetric ten&gr
and a complex scalap, both of which were considered in
[9], but without realizing their &(1,1)x UR(1,1) classifica-
tion. We defined=e®'e. The U;(1,1)x UR(1,1) transfor-
Such matrices close under matrix-star commutators to fornmnation rules for this field are
u,(1,1). It can be easily seen that, for closure under both
matrix and star products in commutatoég; cannot be sepa-
rated from thewy, and hence they are both integral parts of
the local symmetry. The finite,(1,1) group elements are
given by exponentiatiousing star and matrix produgts

W12 iwo W22
| I |
Q = wy |w05k—

This matrix satisfies the following Hermiticity conditions:

QT=¢eQe. (13

®'=U"xDxW, @' =W xdxU (18)

whereU e U5(1,1) andWe UR(1,1).

We now construct an action that will give the noncommu-
0 . . 0 tative field theory equation&) and (7) in a linearized ap-
U=e,, U =(-¢)U'e=¢e, . (14 proximation and prescribe unique interactions in its full ver-
sion. The action has a resemblance to the Chern-Simons type
action introduced 9], now with an additional field,J,,

plained thatg;; acting on from the left defines a differen- e the couplings among the fields obey a higher gauge
tial operator that is appropriate for building the kinetic termsSymmetry

in the action. To turn these differential operators into cova-
riant differential operators, a gauge potenfigi(X,,X;) was
introduced and added to the differential operators when act-
ing on ¢. Hence the covariant derivatives a@;(X;,Xy)

=(0;; + Ajj(X1,X;) acting from the left onp. TheseQ;; were
shown to play the same role as the s@)2generators en- vV (5*(13))' (19)
countered in the first quantized worldline theory. This was *

appropriate for a scalar field, for which only, (1) acts.

However, if we consider tensor fields, we must take covari-The invariance under the locals{L,1)x U%(1,1) transfor-
ant derivatives with respect tq (,1). Therefore we need to mations is evidertt.V(u) is a potential function with argu-

add only one more gauge field or generator sindd 1) has  mentu=d«d. Although we will be able to treat the most
4 parameters. As we will see these will emerge from thegeneral potential functiow(u) in the discussion below, to
following considerations. illustrate how the model works, it is sufficient to consider the

We introduce a X2 matrix 7 = Jj; +iJosjj that parallels  |inear functionV(u) = au, which implies a quadratic form in
the form of the parameteiQ;; . There will be a close rela- he field®

tion between the field3; andQ;; as we will see soon. When
one of the indices is raised, the matrix takes the form V=ab#d, (20

We can now consider the gauge fields.[®] it was ex-

Sj@:J dZDXTr(—%j*j*j—j*j—e—iq_)*j*cp

i [J127 130 Jaz wherea is a constant.
Ji= —Jp —Jdp—idg) (15 The form of this action is unique as long as the maximum
power of 7 is three. As we will see, when the maximum
The Hermiticity of the fields);; ,Jo is equivalent to the fol-  power of 7is cubic we will make the connection to the first

lowing u,(1,1) condition on this matrix: quantized worldline theory. We have not imposed any condi-
tions on the powers ob or interactions betweely, ®, other
Tt=¢Je. (16) than obeying the gauge symmetries. A possible linear term in

J can be eliminated by shiftingZ by a constant, while the

Local gauge transformations are defined by the matrix-starelative coefficients in the action are all absorbed into a
products in the form renormalization of7,®. A term of the form

ST=T%Q—Qx7J or J=UYxmU. (17

3More generally, the invariance under the locdl(,1) could be

Then the matrix form and Hermiticity of.7 or 7' are con-  broken by various terms in the potentM](®x®) or by interac-
sistent with the matrix form and Hermiticity Qf. tions of @ with additional fields from its right side.
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Tr(j*j*f(cb*cb)) that is allowed by the gauge s symmetries V. (<D*(I>) Therefore, with the only assumption being the

- cubic restriction on7, this unique action will explain the first
can be ehmmateﬂ by shifting/—[J=5f(®*®)]. This guantized worldline theory, and will generalize it to an inter-

changes the termbx 7*® by replacing it with interactions  acting theory based purely on a gauge principle.

of J with any function of®,® that preserves the gauge !t can be checked that the action is Hermitian thanks to
symmetries. However, one can do field redefinitions to definghe Hermiticity relations for7,®,d and cyclicity under the

a new® so that the interaction with the linegfis rewritten  trace and integral signs. Hermiticity is also evident by evalu-
as given, thus shifting all complications to the function ating the trace explicitfy

2
s _f dZDX i‘]ll*‘]lz*‘]ZZ_iJZZ*‘]]_Z*JllJ'_ §J0*J0*J0+2J0*J0
VA

+ Iy dpt Jopr 11— 20152 19)* (Jo+ L) +TT (I JrDx D — V)

The equations of motion are sider a close relationship betwedp andQ;; . This is also
o supported by the resemblance of E24) to Eq. (7). Indeed,
Tcb=—idxV', T*xJ-2iJ-dxd=0 (21) as we will see below, the relation is nontrivial and interest-

ing.
whereV' (u)=dV/du. The second equation in E424) can be written in the
form (Jo+1)*@=@*[1+V'(—¢*¢)]. Applying (Jo+1)
A. Solution and link to worldline theory on both sides, usinglg+1)? given by Eq.(25), and apply-

One can choose a gauge for the loc&(LJ1)x UR(1,1) ing Jijx¢=0 as in Eq(24), we obtain an equation purely for

in which the 2<2 complex matrix® is proportional to the
ently matrx e{[1HV (@' o) 2 1-pTg}=0. (@)
D=5 p(X1,X3). (22

It is straightforward to find all the solutions of this equation.
Thend' = — 5 o'. Thus, 6 gauge parameters are used up ifThus consider any=N\¢}', where\ is a complex constant,
eliminating 6 degrees of freedom frofh. For a generiap,  andep'(X;,Xy) is of the form of Eq.(8) which satisfies the
the surviving symmetry is a global diagonal-$F(2,R) triple relation of Eq.(10) by construction. Then
times a local noncommutative; (1)< u?(1). In this gauge,
the equations of motion become exo'xo=|\|%¢. (28)

Trep=—ipxV'(—p'xg), TxJ—2iJ+(e*¢")1=0. Inserting such ap in the equation shows that must be a
(23)  solution of the equation

Rewriting the equations of motion in terms of components,
we can separate the triplet and singlet parts under the global

s R(2R . . : -
FHER) As an illustration, consider the example of the potential in
Jj*@=0, Joxp=g*V'(— etxp), (24) Eq. (20),2for Whli/(;h V_’ = a.is a constant. Fgr this case we find
N==*(a“+2a)~~ Itis evident that, up to{(1) gauge trans-
formations, the solutions of Eq&24) and(27) are all physi-

[1+V'(—|r[?)]?—1—|\|?=0. (29

1 y
(J0+1)f=1+¢*¢T—§Jij*J” (25)

“In this form we see that $p2,R) [as opposed t0,({1,1)] cannot
E‘Jri*‘]i)k: iJij*(Jot1)+i(Jo+1)*J;;. (26) be used as the local symmetry, because all cubic terms change sign
under  sp(2R)'s  parity-like  projections, J;;j(Xy,—Xj)

.. . . 1_ 4 =J;;(X1,X3), andJo(Xq, —X3) = —Jo(X1,X;), with simultaneous
I\/éore explicitly, in terms 9f componentaising Ji =J;, and interchange of factors in a star prod{it0]. It is interesting to note
Ji=—1J;1) the left hand side of Eq26) reduces to COMMU-  that the action is invariant if the parity properties are exactly the
tators[Jy1,J1p]s, [J11,d20]4, @nd[J1g,d20]4. In fact, if in opposite signs than those required by(&R). However, such con-
Eq. (26) Jo on the right hand side were absent, then theditions could not be imposed ahbecause then they would not be
commutation relations among th; would be precisely compatible with gauge transformations rules that are required to
those of sp(R) as given in Eq(6). Then we should con- have a symmetric action.
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cal states of the fornf8) multiplied by any|\| that solves the vanishes. Therefore associativity of the star product requires
equation[the phase ok can be absorbed away with §@)  the right hand side to vanish, but generally this is a weaker
transformationh condition than the vanishing ¢8;; ,C5(J) ...

Next we solvel, formally from Eq. (25), Jo=—-1+(1 To solve the nonlinear gauge field equatigd®$)—(33) we
+¢*¢T_%Jij*\]ii)1/2, where the square root is understood Will set up a perturbative expansion around a background
as a power series ¥vith all produgrts replaczed by star productsolution
UsingJiixo=0=¢'xJ;; ande*¢'*xo=|\|“¢, we can sim-
plify gealc]:h(ﬁerm ir(fthe”serieéo eipar?sicjn |ar(fd obtain the sim- Ji :‘]i(1'0)+g‘]i(jl)“L‘ElzJi(Jz)Jr o (36)

plified expression (0) : .
such thatJj;’ is an exact solution and then analyze the full

i 12 equation perturbatively in powers gf For the exact back-
1=5Jij*J (80 ground solution we assume thal{@»J©K commutes with
Ji(jo), therefore the background solution satisfies a Lie alge-
where EQ.(29) has been used. With this form df,, all bra. Then we can write the exact background solution to Egs.
equations involving it, including the last one in Bg4), are  (31)—(33) in the form
satisfied. Finally, replacing these results into E26) and
using again);;* =0= '+ J;;, we find an equation involv-

V(= I\
Nk

Jo=—1+ expl+

1

) . ) o JO=Q x——— — —— (37

ing only the gauge field$;; , which we write in components g " 1

explicitly : V1+3Qq*QX
[J11,312],=1{311,(1— Cx(I))Y2, (3))  whereQ;; satisfies the sp(R) algebra of Eq(6)
[311.3220. = 2i{J12, (1= Co()) 3, (32 [Q11,Q12].=2iQu1,  [Q11,Q2].=4iQ1,,
[J12,925], =1{322, (1= C2()) "2}, . (33 [Q12,Q00], =2iQs0, (39)

The right hand side is a star anti-commutator involving theand%Qkper' is a Casimir operator that commutes with all

expression Qj; that satisfies the sp(R) algebra. The square root is un-
1 ! 1 derstood as a power series involving the star products and
Co(I) =5 d* 3" =5 duxJopt 5 Jaox J1a = Jagx Jio can be multiplied on either side @;; since it commutes

(34) with the Casimir operator. For such a background, the matter
field equationg24) reduce to

which looks like a Casimir operator. However, since Egs.
(31)—(33) are not the sp(R) Lie algebra one cannot hastily Qij*¢=0. (39)
claim thatC,(J) is a Casimir operator. Indeed, if one at-
tempts to derive the commutation relations betwé€giiJ)
and J;; by repeated use of Eq$31)—(33), one finds that
[Jij.C2(J)]. becomes equal td—J;; {[1—C,(3)]¥37],
and thus obtains an identity. Therefore, these equations
not require thatC,(J) andJ;; commute. If they commute,
one could renormalizd;; by an appropriate factor to reduce
these equations to spf@, commutation relations with the
normalization of generators as given by Eg). This is quite

I&giﬁgnﬂg&tﬁg: V(Vllzlzl)sc?gn?;ft\g iigzlii,lgsenerally Eg%)- are not included in Eq$38) and(39). However, the full field
>P L . theory, without making the assumption thas(J) and J;;
Furthermore, if one computes the Jacobi identities by re- includ I the inf ! | Ul hJ

eated use of Eq¥31)—(33), one finds commute, includes all the information. In particular the ex-

P ' pansion of Eqs(31)—(33) around the background solution
1 ’ y J{) of Eq. (37) should determine uniquely both the propa-
[11,[312,922]. ]+ eyelie=5[J;;,[37,[ 1= C(I)] L. gation and the interactions of the fluctuations involving pho-
(35  tons, gravitons, and high spin fields.

This is the matter field equatioiT) given by the first quan-

tized theory. Its solution was discussed following EQ.
Summarizing, we have shown that our actiSp, has

dyielded precisely what we had hoped for. The linearized

é)quations of motion (0th power ig) in Egs.(38) and(39)

are exactly those required by the first quantization of the

worldline theory as given by Eq6) and(7). There remains

to understand the propagation and self-interactions of the

fluctuations of the gauge fieldgJ("+g2J{’+- - -, which

Under the assumption that the star product is associative, the B. Explicit background solution

Jacobi identity is satisfietland the left side of Eq(35) )
We record the exact solution to the background gauge

field and matter field equation88) and (39), which were
51t is also interesting to keep in mind the possibility of anomalies,c_)b_ta'r]e‘j n seve_ral stages(if-9]. The s_olut|on is given by
leading to non-associativitie.g. magnetic field§l5]). If we con-  1XINg & gauge with respect to thé_@_l)' First, we choose the
sider a nonvanishing Jacobian, the mathematical structure of Eq§aUgeQ ;= X, - X;. There is remainingi(1) symmetry that
(31)—(33) would be a Malchev algebra rather than a Lie algebra. satisﬁes[Xf,wo]*=0. Using the conditions imposed @y,
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by the sp(2R) conditions, one finds that the remaining sym- wo(xl,Xz)=sO(X1)+s'i"(X1)[X2+A(X1)]M
metry is sufficient to fix a gauge fd@,,= X;- X,. Thus, up
to U5(1) gauge transformationsy(X4,X,), one can simplify
Q11,Q1, and take the most gener@l,, as follows:

Qu=XYXnun, Q1= X1'Xom, sz=G(X1,X2()) X[Xo+AXD) I, - - - [Xa+AXD) T
40

+3 el M)

(44)

where 7MN is the flat metric ind+2 dimensions, and the SiNc€Q11,Q12 have been gauge fixed, the remaining part of

L
general functiorG(X;,X,) is assumed to have a power ex- Us(1) gauge symmetry should not change the form of
pansion inX, in some domain Q11, Qq2, SO any surviving gauge parametesg should
satisfy [X],w0],=[(X1-X,),w0],=0; this requires the

gauge paramete&si";(')”Ms(Xl) to be homogeneous and or-

G(X1,Xz) = Go(X1) + G (Xy)[ Xz + A(Xy) I thogonal tox! :
- My---Ms_
><[x2~|-A(x1)]N+SZ3 Gz"l""\/‘s(xl) Xy des=Ses, Xiw g " =0. (45)

The gauge transformation law of the gauge fields

O0A,6Gy,6G,, 0G4 is given by 6Q,,=i[ Q2,,wq],. From
(41) this it is easy to see thaty(X,) is the gauge parameter for

the Maxwell field,slM(Xl) is the infinitesimal general coor-

dinate reparametrizations of all tensor fields, and
The configuration space fields have the following interpreta-ijé"Ms(xl) are the gauge parameters for the high spin
tion: Ay (X;) is the Maxwell gauge potentiaGy(X;) is a .
scalar,GYN(X;) = 7MN+h)N(X,) is the gravitational met-
ric, and the symmetric tensof&4(X;) M1 "Ms for s=3 are
high spin gauge fieldsThe sp(2R) closure condition in Eq.
(38) requires these background fields to be orthogonad'fio
and to be homogeneous of degree-@):

X[Xo+AXD) I, - [ Xt A(Xy) I

S

fields Gg"ji"MS“. The details of the gauge transformations
are given in[8]. This shows that the familiar configuration
space gauge principles, Maxwell, Einstein, and high spin, are
unified in our approach as being a small part of thélid)
gauge symmetry. We will use this remaining(l) gauge
symmetry in the analysis of the equations of motion for the
small fluctuations of the gauge fields.
X1 0Ap=—Ay, Xi-90Gs=(s—2)Gq, (42
Il. FLUCTUATIONS AND DYNAMICS

OF GAUGE FIELDS

Mp MMy My -Mg_
X AM_XlMth ' Z_XlMles =00 43 We are interested in analyzing the perturbative expansion

of Egs. (31)—(33) around any background solution. In par-

. ) ticular, taking a hint from the form of Eq$40) and(41), we
The background field&\,Go,G;,Gs-5 determine all other || investigate fluctuationsh(X;,X,) in the direction of
background fieldgf;; (X1))1~ s up to (1) gauge trans- 3, More general fluctuations could also be considéredt
formationsw(Xy,X5). The full solution of thed+2 dimen- e will limit the current discussion to fluctuations around the
sional equationg4?) is given in[8] in terms ofd dimen-  packground fields we have identified in the previous section.
sional baCkgrOUnd fields for MaXWG”, d“aton, metriC, and Those are fluctuations in the direction%_ Thus, we con-
higher spin fields. Therefore Eqé38) holographically en-  sider replacing any solution of the background fields
capsulate all possibleff-shellarbitraryd dimensional back- A,Gy,G,,Gs3 by adding the fluctuations A+gsMA),
ground gauge fields ind+2 dimensional formalism. Inthe (G, +gsMG), (G,+gsMG,), (Gest+gdPG.3) and
next section we will derive the dynamical equations of MO-then expanding to first order g\ We a|ready know from the
tion for the small fluctuations around the backgrounds. form of Egs.(40) and (41), and the gauge transformations

The (1) symmetry of the typavg(X;,X,), when ex-  discussed above, that these fluctuations are directly related to

panded in powers oK,+ A(X1), contains the configuration
space gauge transformation parameters for all of the gauge——

fields [8] "The (1) symmetry was sufficient to gauge fix not oy, but
alsoQ,,, because these had to obey the drfAlgebra. However,
the J;; obey a more general set of equations and therefore it is not
5There is noGR"(Xl) as the coefficient of the first power of, clear whether one could gauge away more general fluctuations
+A, becauseA (X,) is equivalent to that degree of freedom, as around the background. There is certainly the freedom to take van-

can be seen by re-expandii@, in powers ofX, instead ofX, ishing fluctuations in the direction df;;, but it is not clear whether
+A. Note also inQ,, we really haveX,+ A, but A has dropped fluctuations in the direction aj,, can also be eliminated by gauge
because we chose to work in the gauge A=0. choices. This remains to be investigated.
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gauge fields for Maxwell, Einstein and high spin gauge symsion. In order to get a quick glimpse of the content of the
metries. We wish to analyze the perturbative expansion oéquations, for simplicity, we will proceed under the assump-
Egs.(31)—(33) in order to determine the equations of motion tion

for the fluctuations.

The Jj; including the fluctuations takes the form [C2(Q),h].=0. (53
} 1 < 1 Xe %0 Then we get the simple expression
n= T—*A1 127 T T——————*( X1 A2
J1+C,(Q) 't V1+Cy(Q) 49 1 9.,
46 V1I-Co(d)= —— (X2 h},+---. (54
2(J) 1T c.0) 2 X1,h; (54)
Jop= *G+gh(Xq, X))+ - (47)  We now insertJ;; in Egs.(31)—(33) and expand both sides
V1+Ca(Q) up to the first power ing. The zeroth order terms cancel

thanks to the properties dﬂ , and the first power gives the

whereh(X;,X,) is a general function whil&(X;,X,) de- Sfollowing equations that must be obeyed hiX,,X,):

scribes a specific set of background fields that solve Eq
(42) and (43). In particular,G=X§ corresponds to the free i
flat backgroundC,(Q) is the quadratic Casimir operator for - Z{Xf,{Xz,h}*}*=0 (55)
the sp(2R) algebra of Eq(38) satisfied by the background,

and is given by

. . — X4 %2, 04 1 =DX . (56
Ca(Q)= EQkI*QKIZE(Qll* Q22+ Q22xQ11) — Q1% Q12
48 [
( ) _%{G!{Xz’h}*}*:[(xl'XZ)ah]*_Zih- (57)
1
:E{XZ’G}*_(Xl' Xo)*(Xy-Xz) (49 \ve can show that the equatip,(Q),h],=0 that was as-

sumed in arriving at these expressions has no additional in-
, 1 formation beyond these equations. That is, if we G$€Q)
G—(Xy-X3)*— Z(‘HZ) (50 as given in Eq(49) and evaluate the commutator by repeat-
edly using Egs(55—(57), we find that[C,(Q),h],=0 is
where, in the last line all star products have been evaluateddentically satisfied. Hence, this is not an additional equation
As long as the background fields satisfy E¢&2) and(43)  to be taken into account.
this C,(Q) commutes with the sp(R) generatorsQ;; To get a quick grasp of the nature of these equations, we
=(X2,(X1-X5),G(X1,X,)). The gauge field fluctuations Will first make a few quick observations by assuming that the
gh(Xy,X,) up to first order ing will be treated perturba- right hand side is zero, and in the next paragraph we will
tively in solving the non-linear equatiort81)—(33). Unlike ~ analyze them by Ih;ting this assumption. Thus, after inserting
the case ofJ{, in this analysis we will not assume that the information[Xy,h],=0, and[(X;-X;),h],=2ih, we
C,(J) commutes withJ;;, and instead we will derive the can derive from the left hand side thexH=0=HxX,
conditions thah(X;,X,) must satisfy to solve the equations and (X;-X;)*H=0=Hx*(X;-X;), and{G,H},=0, where
to first order ing. We will develop the equations in the gen- we have definedH=3{X3,h},=Xfh—3d?h/(9X,)? after
eral backgrounds(X;,X,) up to a point and eventually, for evaluating the star products. The equations satisfield bye
simplicity, specialize to the free backgrour@(X;,X,)  similar to Egs.(38) and (39) satisfied by a scalar field in a

1 2

Y2 _ |
=XiG 4<ax2

—>X§. general background, in particular if we considesimilar to
First we compute + C,(J) for theJ;; in Egs.(46),(47) to e*x@'. As we have already learned, the solution is of the
first order ing form H~Z|y)(y¢'|, where the{|)} satisfy the Klein-

Gordon equation in configuration space.

These remarks provide a quick indication that the first
order equation$55)—(57) for h, or equivalently forH, rep-
resent Klein-Gordon type equations for the fluctuations of
the gauge fields. In particular, it is worth emphasizing that

1-Cy(J)=1—-C,(JO)— g(ng*m hxJ9,) (51)

1 g
= - *Xi*h we have seen a first indication that the original action in-
1+C2(Q) 2V1+Cy(Q) cludes a kinetic term for the fluctuations, although the for-
malism does not make this immediately apparent. This point
— ha Xk 9 ' (52) will become clearer in the component form discussed in the
Y 2J1+C,(Q) next paragraph.

Next, we proceed to investigate E¢S5)—(57) in compo-
Next we compute the square root up to first ordegiBe-  nent formalism without the assumptions of the previous two
cause of the orders of factors, this is a complicated expregparagraphs. However, to make further progress we will spe-
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cialize to the free backgrour@= Xg and take the following

Maq---
expansion in powers oKy, thus defining the spin compo- (S—2—X;-d)hg*

nents of the fluctuating gauge fields in configuration space:
h=ho(X1) +hy' (X1)Xom+h3™N(X1) XomXon

+ 2 hg M) Xau, Xam)- (58)

Up to factors of 1+ C,(Q)]"? we have redefinetd)'* s

as the fluctuations for the gauge fiefts particular, up to
some factorsh'}"(xl) is the fluctuation of the Maxwell field,
and hY' is the fluctuation of the gravitational metric. The
equations of motion can now be written for the component
by evaluating the star products in Eq85)—(57). This is
done in the Appendix. Thus{X?,{X2,h},},=0 gives in
component form

PHYSICAL REVIEW D 64 126001

(Mle( X%hM3"'MS)

“s(s—1)" s-2

S(S_l) MNMa4---M
T2 7mnhg : )

1
+Za§(x§hgﬂr-“s

(s+2)(s+1) MNM;- - -Mg
T4 wnNllsy :

(61)

These equations are purely in configuration spﬁiﬂe The
girst two equations may be interpreted as subsidiary condi-
tions, while the last one is a second order Klein-Gordon type
equation. By construction, they are gauge invariant under the
remaining gauge transformationg(X4,X,). Since we have

(X?hg M

(st4)(s+3)
J’_ —

(

4

s+2)(s+1)

2 MNM; - --M
2 Xinvnhg, 5 s

nKLnMNhSKiTNMl‘ “Me=0. (59

Similarly [X3,h],= — (i/2){(X;- X,),{X2,h},}, gives

2(s+1)X;nh

NM;- Mg
s+1

2 M 21.My- M
:_gx(l 1<th521 o

_S(S+1) MNM,---Mg)
4 MNTs g

—(S+ l)(yN( X%hsNyll'”Ms

(s+3)(st2) KLNM; - - Mg
g ke

(60)

and[(X;-X,),h],—2ih=—(i/4){X3,{X2 h},}, gives

8Recall that the power expansion 6f(Xy,X,) did not haveG)’
associated with the first power of,, since the Maxwell fieldAy,

was introduced as an independent field instea@pt The fluctua-

[C(Q),h]=0, the remaining gauge symmetry also obeys
[C(Q),wo]=0 (62)

in addition to Eq.(45), hence they are a subset of the gauge
transformations discussed [8]. These gauge transforma-
tions do not change the form af;;,J;,, While they are
applied to the totall,, as 6J,,=i[J,,,wp], from which the
transformation properties for the componetits are ob-
tained.

Note that the double trace dfs-, is restricted by Eq.
(59), an important fact for high spin gauge theorjé§]. In
this connection, we may ask if the double trace would vanish
when the d+2 dimensional system is holographically
viewed ind dimensions. As part of the reduction froth
+ 2 dimensions tal dimensions we need to impose the van-
ishing of X2. Although X2h!"*"™s does not vanish, it ap-

pears that X3)2h't s and 7y X2hY"M M may con-
sistently be taken to vanish. Then at the end of the
holographic reduction the double trace does indeed vanish in
d dimensions.

The main point established in this section is that the full
non-linear equations contain information on the propagation
of the gauge fields. For simplicity, this was done under the
assumptiofiC,(Q),h],=0. Itis desirable to analyze the full
form of the perturbative expansion without relying on this
assumption. Also, there still remains the completion of this
exercise to extract the full form of the kinetic terms and
interactions after the reduction to a holographic picture in
dimensions. At that point it will be interesting to compare
our equations for the high spin gauge fields to those dis-

tions of the Maxwell field appear gauge covariantly everywhere incussed in other formalisms. In previous investigations equa-
the formX,+g&MA. The various powers of this expression need totions of motion have been constructeddis 3,4 dimensions,
be expanded in powers gfto first order. However, there is already including up to cubic interactions that satisfy a truncaied

one power ofg in front of hg"l”’MS since it is itself a fluctuation.

Therefore, allgs™A drop out to first order irg. However,g5™"A

also appears in covariantizing the zeroth order quadratic @sm

—(X,+g8MA)2. The expansion of this term gives rise kY’

~ WA up to factors. Similarly, up to overall factorgy'*
proportional to the quctuationﬁ(l)Gg"l‘ “Ms

M
M

sis

approximatg form of a high spin gauge symmetfg1]. But

the general interaction is not known, and furthermore the
construction of an off-shell action has eluded all attempts. By
contrast, our approach begins with a complete and unique
action (modulo the cubic condition It is already clear that
our theory supplies both the propagation and all interactions
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of the gauge fields. It would be very interesting to investigate V. OUTLOOK
the relation between our approach and thafldf|. Related . )
aspects of high spin gauge fields are still under study in Ou{h We have learned that we can consistently formulate a field

theory, and we hope to report on this topic in a future pub- eory of 2T p_hys_ics @rd+2 dimensions based on a very
lication. basic gauge principle in quantum phase space. We have ten-

tatively shown that our equations, compactly written in phase
IV. MATRIX POINT OF VIEW space in the form of Eq21), seem to yield a new unified
description of various gauge fields in configuration space,

In some sense, our current noncommutative field theory isncluding Maxwell, Einstein, and high spin gauge fields in-
an infinite dimensional matrix theory, and it can be viewed ageracting with matter and among themselved gfimensions.
the largeN limit of a finite 2NX 2N matrix theory. The underlying gauge principle is the noncommutative

The fields J;;(X1,X;3) and Jo(X;,X;) are constructed u,(1,1), and the action that gives rise to the field equations in
from noncommutative d+2 dimensional phase space noncommutative phase space has the rather simple form of
(X}, X,p). Using the Weyl correspondence, it is possible toEq. (19). As argued following Eq(20), the form of the ac-
replace Q(g/' ,Xom) by quantum operators acting in a Hilbert tion is unique as long as it is restricted to the maximum cubic
space, or equivalently by infinite dimensional matrices. InPower of J. Then, all results are grounded purely in the
this sense, our theory is already a “matrix theory” for infinite U«(1,1) gauge principle. With the only assumption being the
dimensional matrices. cubic restriction, the worldline approach is explained by the

One can introduce a cutoff in the theory by rep|acing thefield theory asexact background solution3 his essentially
matrices by finite matrices. The basic Heisenberg commutadnique action could now be taken as a starting point for a
tion rules between X),X,y) cannot be obeyed by finite classical as well as quantum analysis of theracting 2T-
matrices, but by taking special combinations of the basi®hysics field theory. At this time it is not known what would
operators 1(2/' X11) One can confine oneself to quantitigs be the consequences of relaxing the maximum cubic power
constructed from them, such thaf are finite matrices. For ) ) i )
example, this is the case on a periodic torus where finite Although the analysis of the classical field equations of
translations in phase spacg=exp(a-X,) andv,=exp(b motion so far has been rudimentary, it was sufficient for

-X,) are indeed represented by finite matrices that obey thghowi_ng that t_he cont_ent of the theor)_/ is SenSible vv_hile being
algebrau,v, = v U ., When w,,=exp(ia-b) is a root of V&Y rich and interesting from the point of view dfdimen-

unity. Similar considerations apply to the fuzzy sphere insion;. As usual,. the 1T—physic§ content of the theory can be
phase spachwith (d,2) signature in our cage obtained as various holographic images that come from em-

Therefore, it is p(,)ssible to takk; andJ, as functions of beddingd dimensions in various ways idJ.rz. dimensions.
only u,,vy, (for a collection ofa’s andb’s), or similar struc- One of the better understood holographic imafea 7] is

tures, and thus represent them as functions of finite matricetge field theory ind dimensions in which the Klein-Gordon

that are closely connected to phase spaxld Koy). We matter field interacts with various gauge f|eIds_, mcludlng in-
. . teractions with the Maxwell field, dilaton, gravitational field,
expect then the non-commutative,(d,1) to be approxi-

mated by the non-compact groupNy(N) such that the 2 and high spin gauge fields.

. . The gauge fields propagate and have interactions among
X2 noncommutativey gets replaced by theNex 2N matrix : .
representation of I{,N). The four NX N blocks are then themselves. It appears that our approach provides for the first

) > . . . ; time an action principle that should contribute to the resolu-
:cdentm?dhwnh the I-f|erm|t||larﬂij "]O_JUSt r?s in Eq(15). The tion of the long studied but unfinished problem of high spin
orm of the act|or_1 ormally remains the same as EKB),_ fields [11,28,8,29. We have shown that there is a kinetic
except for replac_:lng Integration by a trace over Matrices o m for the gauge fields although more study is needed to
Thus, the equ?tmns Ith"‘.‘f safisfies ‘a“e also ;ormal!y thed understand its contents better. The nature and detail of the
same, except for replacing star products with matrix prodyqractions among the gauge fields can in principle be ex-

ucts. . : . i
. . tracted from ourd+2 dimensional theory, but this remains
We now face again the matrix analog of E¢31)—(33), as an exercise for the futufe Y
. kl » . .
instead of star products. Whed,J' commutes withy; it This work can be generalized in several directions. One of

is possible to constru@;; ,Q that satisfy the Ui,N) alge- o6 girections is supersymmetry, and one can consider both
bra, as in Eq(37). However, the solution foQ;;,Qo Must 4gline and space-time supersymmetries.
now be given in terms ofi,,v,. Indeed it is possible to

construct the u{l,N) algebra in terms of powers of, ,v, or
similar structures, just like the examples that exist in the o
literature forU (2N) [17-26. Th's WO_UId provide the matrix the background chosen f@Q;; . For example, according to previous
analog of the background solution in E¢40),(41). studies[11] there are no interactions in flat backgrounds, but there
Since there are many solutions of the type H@6),(41)  are interactions in AdSbackgrounds, in particulad=3,4. In 2T
we expect also many solutions f@;; ,Qo as functions of  physics, flat backgrounds or Agackgrounds both exist in the
Ua,Up OF some similar structures. The more general solutionsamed+2 dimensional theory as they emerge from different em-
of Egs. (31)—(33) for J's that include propagation of the beddings ofi dimensions ird+2 dimensiongsee the last reference
gauge fields can then be investigated using finite matrixn [2] and[7]). So it should be interesting to study such issues in
methods. detail with regard to high spin field interactions.

The nature of interactions for the high spin fields may depend on
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In the case of worldline supersymmetry, local s®Ris  U.S. Department of Energy under Grant No. DE-FGO03-
replaced by local osp(2) wheren is the number of super- 84ER40168, and by the National Science Foundation under
symmetries. This describes 2T physics for spinning particle§&rant No. PHY99-07949.

[3]. Local ospf|2) on the worldline can be maintained in

the presence of background fields, and this has been studied APPENDIX

to some extent7], but more work along the present paper, to
build a noncommutative field theory, remains to be done. We
may guess that the appropriate gauge group for the supe?
symmetric noncommutative field theory would bgni1,1).
Therefore it would be interesting to take the same form of
the action in Eq(19) and repeat the analysis of the current o
paper for the noncommutative supergrougnjl,1). It is ZE x2pM1 - Ms_ (s+2)(st+1) 77 RMNMy: Mg
likely that the content of this theory is the spinning generali- = 4 MNTs+2
zation of what we have discussed in this paper.

In the case of space-time supersymmetry, the worldline X(Xam, - 'XZMS)'
action in the absence of background fields has been con- . .
structed 4,1]. The local symmetries are richer: in addition to I13y zapplylng the formula a second time we compute
local sp(2R) they include ad+2 dimensional version of z1X1.H}.. Then the component form of E¢5) gives Eq.
kappa supersymmetry and its bosonic generalizations. FdPY)-
the special supersymmetries osipg), su(2,2N), F(4), and Next we compute the commutator

Let h(X;,X,) be given by the expansion in E(8). We
ompute explicitly

_y?2 _1 21
=Xih— 7 93h=H (A1)

(A2)

osp(6,2N) one obtains al+ 2 dimensional formulation of [Xf,h]*=2ixl-&2h (A3)
the superconformal particle id=3,4,5,6 dimensions, re- o
spectively. For other supergroups one obtains brane collec- =2i > (s+ 1)X1Nh§+'\"ll"'MS(X2M o Xom) (AD)
tive coordinates in interaction with superparticle coordinates, s=0 ! s
giving unitary supersymmetric Bogomol'nyi-Prasad- d ani
Sommerfield (BPS states as the quantum states of the@Nd anticommutator
theory. In particular, for osp(64) one obtains a toy M E X Xo) H
model that embodies certain interesting features of M theory 2{( 1°X2), H}
[4,1].
The case of background fields in the presence of space- v 1 _
time supersymmetry in the worldline theory remains to be =Xy XH+ 5 (91 92)H (AS5)

constructed. We expect this to be a rather interesting and

rewarding exercise, becausc_a kappa supersymmetry is bound — 2 EXELMlHM_Zi"MS)_i_ (s+1) &NHNy11~'-MS

to require the background fields to satisfy dynamical equa- $=0 \S s 4 s

tions of motion, as it does in 1T physif30]. The supersym-

metric field equations thus obtained o2 dimensions X(Xam, - Xam)- (AB)

should be rather interesting as they would include some lon
sought field theories id+ 2 dimensions, among them super-
Yang-Mills and supergravity theories. Perhaps one may als
attempt directly the space-time supersymmetrization of the

g\le use them in computing the component form of ),
Which gives Eq.60).
Finally we compute the commutator

present approach, bypassing the background field formuld{X1-X2),h].=i(Xz-d=X;-d1)h (A7)
tion of the worldline theory. o
The matrix approach described above should eventually =i ((s— X1~al)h2"1"'MS)(X2M1- - Xom)
s=0 s

be considered with space-time supersymmetry. It is conceiv-

able that these methods would lead to a formulation of co- (A8)
variant Matrix) theory [31]. In this context we expect gnq anticommutator
osp(164) to play a crucial role, as some of its attractive 1
features appear to be quite relevant to M thd@3,4,33,34. Z{X2 H},
In future work we intend to pursue the types of issues that 2
are touched upon in this section. 1
=x§H—Za§H (A9)
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