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Relativistic wave equations for interacting, massive particles with arbitrary half-integer spins
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New relativistic wave equation®RWE) for massive particles with arbitrary half-integer spssteracting
with external electromagnetic fields are proposed. They are based on wave functions which are irreducible
tensors of rank & (n=s— %) antisymmetric with respect to pairs of indices, whose components are bi-
spinors. The form of RWE is straightforward and free of inconsistencies associated with the other approaches
to equations describing interacting higher spin particles.
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[. INTRODUCTION Third, unacceptable changes in the anticommutation rules
for field components can occur when interactions with an
Over the years many relativistic wave equatigRSVE) electromagneti¢or othe) field are introduced17] (see also
for the description of particles with arbitrary sgimave been [13]).
proposed and studied in detail by the field- or group- In the fourth place, modes of complex frequericg., the
theoretical methods¢see, e.g., Refd.1-11] and surveys in complex energy levelsmay appear for a system of higher
[12—-14). It turns out that the various proposed RWE arespin particle interacting with a strong external magnetic field
more or less equivalent as far as free particles are concernéfbr details se¢21)).
but differ essentially in the physically more relevant cases, Fifth, starting with spins RWE for a free particle and
i.e., whenever interactions of particles with an external elecintroducing to it interactions via minimal coupling a charged
tromagnetic or other field are taken into account. In fact itparticle is described whose gyromagnetic rafis equal to
has been discovered that several difficulties arise for RWHB/s instead of the desired=2 (see, €.9.[8]). The other
describing higher spin particles interacting with externalinconsistency of RWE with minimal interaction consists in
fields. They are related to several mutually dependent factthe absence of spin-orbit couplifg?2].
and can be briefly summarized as follows. Let us remark that the above mentioned difficulties are in
First, the wave function which is a solution of a given first addition to those which appear already in the free particle
order RWE describing a particle with higher spin(s  theory, namely, that the charge of integer spin particle and
>1/2) must necessarily have more components than arenergy of half-integer spin particle are indefinigee, e.g.,
theoretically requiredi.e., more than 2(&+1)]. Hence the [7,22]).
RWE should be provided with the appropriate number of In order to complete this brief survey let us mention the
constraints to ensure the right number of independent conmain disadvantages of the most frequently used approaches.
ponents of the wave function. While this requirement can be In the Bargman-Wigner formulatiofi5] in which the
met in the case of the RWE for free particles, the introducwave function has & bispinorial indices and satisfies the
tion of interactions with an external electromagnetic fieldDirac equation for each of them the main disadvantage con-
may cause a failure in this respect. It leads either to too mangists in the impossibility to introduce a minimal interaction
constraints on the components of wave function or to nobecause the resultant equations have trivial solutions only.
enough of thentfor details se¢15], [16] or [18]), orityields  The same is true for covariant systems of equations proposed
to an unacceptable restriction on the external field already Bakri[23].

discussed by Fierz and Pauli[ig] (see alsd16]). The alge- In the Bhabha approadi24] the corresponding equations
braic criteria which determine whether or not the above menadmit the minimal interactiof25]. But these equations de-
tioned difficulties will arise, can be found [i0]. scribe multiplets of particles with spins equal ®s

Second, the wave function describing a higher spin par—1, ... s, wheres,=3 or s,=0 for half-integer and inte-
ticle interacting with external fields can propagate acausallger spins, respectively.
since the corresponding RWE may not be hyperbolic or the The Lomont-Mose$26], Hagen-Hurley{27], and Dirac-
propagation speed of the wave function can be larger thatike equations with differential constraint&8] are causal in
that of the velocity of light in the vacuum. This phenomenonthe case of anomalous interaction, but yield complex ener-
which was first discovered to the surprise of theoreticians byies for a particle interacting with crossed electric and mag-
Velo and Zwanzigef15] in 1969(see however also paper by netic fields[14].
Johnson and Sudarshan [df7]) reopened the problem of The Weinberg equation9] for particles of spins con-
RWE once again—the problem that, after the papers ofain time derivatives of order £ and, as a result, admit
Salam and MathewEl9] and by Schwingef20] had been nonphysical solutions. For the recent analysis of these equa-
considered as completely solved. tions, see Ref(30].
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The relativistic Schrdinger equations without redundant fined and generates consistent equations for massless fields
componentg31] admit reasonable quasirelativistic approxi- with arbitrary spins.
mations[14], however, make troubles to introduce minimal  In Sec. Il we outline the Rarita-Schwinger the$86] for
interaction since they are formulated in terms of integro-particles of spirs=3 and discuss the troubles with interac-
differential operators. tion problems. It was noticed ifi37] that, contrary to the
These inconsistencies of RWE for particles with higherstatement of papei38] these troubles cannot be overcome
spin s are especially provoking due to the following well- With using the Singh-Hagen approa@] (for a simple proof
known experimental factsi) that many baryonic resonances S€€ Appendix A _ _
with spins equal ts=1%,%, ... up to2 have been found In Secs. llI-V we introduce a new formulation of equa-

and are well establishe®2]; (ii) that relatively stable and t@ons for part_icles with spirﬁ_ (which effectively are equa-
massive vector bosoms’™ andW- mediating weak interac- tions for parity doubletswhich are causal. The massless

tions were discovered and has been studied in great detaillér'nlt of these equations is discussed in Sec. V1. In Sec. Vi

. : We present equations for single particle states, causality as-
(iii) that there exists a number of composite systéeng., . . . .

exotic atoms[33], or excited states of the Helium nudlei pects of which are discussed in Appendix B.

whose energy states and other properties should be described
by the RWE for particles of higher spin.

Moreover, in connection with the idea of unification of  We begin with the most popular formulation of RWE for
fundamental particle interactions and of quantum theory wittparticle of spini proposed by Rarita and Schwingg6].
gravity in contemporary particle physicse., in string theo- The wave function is a 16-component fourvector-bispinor
ries, supergravity, M theory, ejcmany interacting higher Pley With £=0,1,2,3 being a four-vector index and
spin particles or other objectg-brane$ have been intro- =1,2,3,4 a bispinor index which will be usually omitted.
duced and must be consistently descriltedd not only in  Then the RS equation can be written in the fdi36]
3+1 dimensions

II. RARITA-SCHWINGER EQUATION

In the present paper we propose new equations for (7P +m)y#=0,
chargedmassiveparticles with arbitrary half-integer spins
interacting with an electromagnetior othe external field. Yutt*=0, 2.9

In fact we propose two kinds of models: one for a single ) ) ) L

interacting particle and the second one for a pair of particled/N€re”, are the Dlrgc maﬁrlces_acitmg on the b|s#p|nor index

or more precisely for a parity doublet. Our approach is based’ tge f:JIIO\t/ylngtr\:va}/.. (1’%"? é(a)£§<r:_lt§]7%)(a)(<f) '/’g{) -

on wave functions with well defined tensorial and spinorial _~°" rai: Ing the Trs fo hqs( 1) with y, we obtain the

properties. Namely, our wave functions describing an inter0Mpatibility condition for the syster®.1):

acting massive particle with higher spiis an irreducible P=0 2.2

skew-symmetric tensor of rankn2with n=s— 3 each com- Pu ' '

ponent of which is a bispinor. The RS systen2.1), (2.2) can be rewritten as a single equa-
Our approach is simple and straightforward when going, ysteni2.), (2.2 gle eq

from, say,s=3 to a general half-integer spig is causal,

describes the anomalous interaction of a particle having spin F,=L =0 2.3
s and preferred valug=2 of the gyromagnetic ratio, has a B
suitable nonrelativistic limit, etc. with operatorL ,, of the form

The appearance of RWE which consistently describe pairs
of higher spin particlegparity doublety instead of single L, =(y"p,+mM)g,\— ¥.Pr— "\Put V(¥ P,— M)y, .

particles might be advantageous of our approach since most (2.4)
of above mentioned observed resonances with higher spins _ _ '
have been found to be parity doublé&?]. Mathematically, Reducing Eq(2.3) with y, andp, we get Eqs(2.1).

each of these RWE actually define a carrier space of irreduc- Equation(2.3) admits the Lagrangian formulation. The

ible representation of theompletePoincaregroup (i.e., the ~ corresponding Lagrangidn can be written as

Poincaregroup including discrete transformatiofs T and o

C) which, when considered as a representation space of the L=y*L 4", (2.5

proper Poincaregroup, corresponds to the carrier space of a

reducible representations isomorphic to a direct sum of tW(WhereE#: W‘Wo-

equivalent irreducible representations. Let us discuss now the RS equation with interaction. The
We shall restrict ourselves to massive interracting parminimal interaction with the external e.m. field can be intro-

ticles since for massless ones there are no-go theorems whigliced replacing

state that it is impossible to build a consistent theory of in-

teraction of such particles with electromagn¢8d] or gravi- p,—mT,=P,— €A, (2.6

tational [35] fields in space-time which is assymptotically

flat. However, we present a brief discussion of the massless the considered free equation. In order to be sure that this

limit of free particle equations which appears to be well de-change does not break the compatibility of our equations we
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have to make a chand@.6) in the Lagrangiar(2.5) whose  neous algebraic equations. Equating to zero the determinant
variation with respect tay* generates the following equa- Of matrix defining this system we obtain an algebraic equa-
tion: tion for n,. Then, if alln, satisfying this equation are real,
the system(2.7) is hyperbolic and if allny satisfy ngln2
(y'm, M)t — Y bt — bt (Y m,—mymyt <1 or n3—n?<0 where n?=n?+n3+nZ, the theory is
~0 2.7 causal[15,39.
' ' However it seems that the simplest way to prove acausal-
Contracting Eq(2.7) with y, and, we obtain two con- ity of Egs.(2.8), (2.10 is to choosead hc_>c_special solutions
ditions, namely of the form \If“_=p’_‘¢> and show_that it is acausal_. In the
eikonal approximation such solutions satisfy E210 iden-
Yt =1t"y, (2.8 tically provided Eq.(2.9) is satisfied. On the other hand, Eq.

(2.8) is reduced to the following form:
and

2ie

3 v_ — . TFvo _
77.Mlﬂ,u,:( ,yV7TV_ §m> fuiﬁ,,- (29) v,N 3m2 ’}/,,F n, d)—O (212)

Here Choosingn,=(n,0,0,0) we conclude that E¢2.12) ad-
mits nontrivial solutions for time-like, which evidently are
acausal. Moreover, it is possible to show that acausal solu-
tions appear even for very smabut nonzerp F*” [15].

Thus the minimally coupled RS equation admits faster-
with ys=7y0v1v2y3 and F*’=—(ile)[#",w°] is the than-light solutions and is not in this sense satisfactory. It

v 2ie T=uv T=uv 1 uvpo
fzﬁ’y’uF y F :E’ySS Fp,,.

strength tensor of the electromagnetic field. was shown in[40] that the RS equation with anomalous
Using conditions(2.8), (2.9), Eq. (2.7 reduces to the interaction is acausal todor the most recent analysis of this
form problem see Ref.37]).

It is, therefore, still current to search for consistent formu-

, " LA PO lations of RWE for a particle with spig and higher. They
(yym"+myygt—| mh= oy [17%,=0, (210 | pe described in Secs. IlI-VIL.

which together with Eq.(2.8) is equivalent to Eq.(2.7).

Equation(2.10 has a nonsingular matrix coefficient for the

time derivative and is called the “true motion equation.” The RSequation with spirg and its generalizations have
There are two important physical requirements whichbeen formulated in terms of fourvector-bispinor and symmet-

have to be imposed to any RWE for a particle of spin ric tensor-bispinor wave functions respectivgéd8.

Namely, that(a) the related Cauchy initial value problem  We shall propose here an approach valid for particles with

must possess a unique solution depending orsZ(®) ini-  arbitrary higher half-integer spirsin which the spins fer-

tial data functions, and th4b) the velocity of propagation of mionic field is described byp[#1vall#2val .- [unvnl__gn anti-

the wave solutions must not exceed the velocity of light ingymmetricirreducible tensor-spinor of rankn2 (n=s— 1)

IIl. EQUATIONS FOR PARITY DOUBLETS

vacuum. pe o N satisfying the condition
For F, F#"<2(3m/2e)* condition (a) for the the RS
equation is fulfilled due to the following facts. First, evolu- 7M17v1‘1'[w[“1vl] el =, (3.2

tion equation(2.10 is supplemented by constraif#.8). One

more constraint is generated by Eg.7) for u=0: ) . ]
where y, and vy, are the Dirac matrices. Moreover, field

Tatat (Yama—M) ypih,=0, (2.1)  Wwhavilleval - is supposed to satisfy the Dirac equation
wrt})ere ;u:;nmation is understood over the repeated indices (Y*py—m)Wlraralluaral - [raml = o, (3.2
a,b=1,2,3.
Relations(2.8) and(2.11) are compatible with Eq(2.10 A mere consequence of Eq8.1) and(3.2) is the follow-

and reduce the 16 components to 8 [i.e., 2(X+1) with ing relation:
s=3/2] independent ones.

However, th_e RS equation does not satisfy requirement yyar Wihelluaral - lwaval = g, (3.3
(b). To show this it is sufficient to consider Eq2.8)—(2.10
in the eikonal approximationW*= j exp(m,x"),7—»
wherey* are constants and, is a constant four-vector. This  'That is, the tensor antisymmetric with respect to permutatigns
actually means to substitute the characteristic four-vettor with »; and symmetric with respect to permutationg af , v;] with
to the covariant derivatives and keep only leading terms iriu;,v;] and, moreover, having zero all contractions vath, and
n,. Then Eq.(2.10 reduces to a system of linear homoge—aﬂivi“jvj, i,j=12,...n.
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We shall see that antisymmetric tensors are in many re-
spects more convenient for constructing RWEs than the usu-

ally used symmetric tensof8,8], since they more naturally
lead to causal equations.

In accordance with its definition, field[#1val - [#nvnl
transforms according to the representation

1

12

[D(s—3,0®D(0s—3)]2[D(3,006D(0,3)]
=D(s,000D(0s)®D(s—3,3)®D(3,5— %)
®D(s—1,0®D(0s—1) (3.4)

of the Lorentz group, so that it hass6omponents.
Relation (3.1) defines a static constraint, i.e., the con-

straint which does not involve derivatives. Expressing

poWOvalluzral - [nmnl in terms of derivatives with respect
to the space variables in E@3.3) we get the second, dy-
namical constraint.

PHYSICAL REVIEW D 64 125013

L:\I’[#V]L[MV][)\U]\P[)\U] y (37)

where

LU= 3 (y*p,—m)(g* 9"~ g*7g"™)
— (Y =YYy -y, (3.8
We notice that it is always possible to chose such La-
grangian which generates also simultaneously Bdl) (so

that validity of this equation is not necessary to be assumed
a priori). Fors=3/2 it has the form

LU = 3 (5P, —m)(g# 9"~ g"7g"™) + £ (p*y”
=Py (Y =YY (Y =y )
X(PMY = p7YN) + za(ymy = ¥ v v, p (VY7

— 77y, (3.9

Static constrain{3.1) suppresses the states corresponding

to the representatiori3(s—1,0) andD(0,s—1) and relation

(3.3 reduces half of the remaining states, so that we have
exactly 4(%+1) independent components, i.e., twice more

than necessary.
Equations(3.1)—(3.3) can be replaced by the following
equation:

Llravallugval - [eaval[N1o1][Ao02] - - [Nqorgl]

X oqling0,] - [ o]

E(’y}\p)\— m)\If[MlVl][MZVZ] oo [eprpl

1

— E : (y“lyvl— ,yVl,y,Ml) [oN ,),(T\P[)\(r][ﬂz,,z] o Learnl
2

=0, (3.5
where the symboE,, denotes the sum over permutations of
subindices (1,2 ..n) and tensor¥l#1vallxzval .- [uavnl g
supposed to satisfy relatig.1).

Contracting Eq(3.5 with y,y, we get an identity while
contraction(3.5) with p,, v, yields relation(3.3).

It is important to notice that Eq¥3.5 can be derived
from a Lagrangian of the form

L =W ol gvy) . Ligrg)
X LI#avallpaval - - [ravnlNioal[h20a] - - - [Npop]
XY o 0o, - Il » (3.6
with
L[,ulvl][;LZVZ] o [mprpllNgoqd[Nooo] . [Npop]

XW\ o1, - [N o,]

defined in Eq(3.5) and Wl - [kaml agssumed to sat-
isfy Eq. (3.D.
In the cases= 2 this Lagrangian is of the form

The corresponding propagator is given by

Y*Potm

Glrrlirel =
pyp* —m?

( MUNNVO _ MO V}\)_l_i( oAV
91" =g g™ + 5 (p*y

—m
=P Y (P YT =YY i(v"y”— YY)
6m
X(pMy"—pTyM) + i(7/““y”
12m

=YYy, PP (VY- 7”7”)}- (3.10

Let us remark that solutions of both our E¢3.10 and
those of Lomont and Mos€®6] (see alsd?27] and [28])
transform according to the same representation of the Lor-
entz group specified in E¢3.4), and in this respect the men-
tioned equations are equivalent. However, due to their differ-
ent forms they essentially differ in the interaction context.
Whereas our tensor-spinorial formulati¢®.5 seems to be
suitable and very convenient for systematic and consistent
introduction of various types of interactions, the Lomont-
Moses formulation is consistent for description of free par-
ticles only.

IV. MINIMAL AND ANOMALOUS INTERACTIONS

The minimal interaction with an external electromagnetic
field can be introduced by using replacemépt6) in the
Euler-Lagrange equatiof8.5). As a result we obtain

(yy 7 —m)Wlravallpzval - Tenval — i 2 (yH1y"1
4s
— Y 1yF1) gy y, W NIl r2val - ranl = 4.2

Contracting Eq/(4.1) with 7, v, and using Eq(3.1) we
obtain the following relation:
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[Nollpgvd] - [mn—1vn-1l i

T 'yU\If 171 n—1n-1 ige

: M ==, [WR=0, (4.9

ie

ZE(FM’_ 'yVy)\F(,V)\I’[)“T][“lVl]"'[“”‘1’}"‘1]. - . . .
whereg=3, i.e., is reciprocal t@, andS,,, are spin genera-

(4.2  tors of the Lorentz group which act on the tensor-bispinor

_ _ w2l in the following way:
In view of Egs.(3.1) and(4.2), Eq.(4.1) can be written as

4 Vol ... v, | )
(»y,u,n-ﬂ_m)\:[r[ﬂl luzval - - [unvl Sprrq,[_{_ﬂl/]: Z[ypyylr]q,LﬂV]+|(gpM\P[_EV]_g§M‘l’[fV]
ie
= _4Sm z ('y:"'n’y”n— ’)/Vn‘y/"n)(F)\o- — ng\I,[f,u] + goV\I,[fM])
2

— loallpgval - - [#n-1vn-al - i
Y 7()’Fa)\)q, S n—1%n—-11, 3i - Y | , -
43 =2 Ly e Sy y e

(4.10
Equations(4.1), (3.1, and(4.3) are suitable for description
of a particle with arbitrary half-integer sps We shall dis- Formula (4.9 generalizes the Zaitsev-Feynman-Gell-Mann
cuss these equations in detail for the simplest casé. equation for electrof41] to the case of particles with spin

However, the obtained results remain true for arbitmry It describes a charged particle whose gyromagnetic tgitso
For s=32 the corresponding tensor-spinor function hasl/s=3.
only one pair of indices and thus Ed4.3), (3.1) are reduced Following Pauli[42] we can generalize Ed3.5) to that
to the following form: with “anomalous” interaction by adding to it a term
_ LI#leol(F) linear in F~”, i.e., by changing
ie
Frr=(yumt—m) Wl — e (yty" =y y k) (Fy Wi LLenlpol | wlloo) () - Lurllool ()
+ VYo a PL7) (4.4) This term can be found as a linear combination of all
and antisymmetric tensors linear iR#”. The complete set of
such tensors can be derived in terms of ten§&tg!, g#7r,
yﬂ%q,[,w]zo' (4.5 g, and vectorsy” and is given by
Equation(4.4) is equivalent to the system L{dleal= oy Fre(gregro—grog™r),
v_ Agrluv] [uv] — .
Fl=ypm U —m A =0, (4.6 L[ZMV][PU]:|ysyhﬂ},apkasww'
and
L[ZW][PU] =FHrPQrT— FPQRT — FMUg[Vp] +FrogHe,
P =y ] ]
LLevilpol — Fatg VPO _EQVg ppo
3y =y o, ! v o
+FPg TV —F g UV, 4.1
:0, (4'7) 80( 80{ ( :D
where  FA'=FHrxiygert, For,  wlpl=pled Lol = proyhyr— Fueyry?—Froyty?
i%’}/SSMVpUF[pU]. + F,u.(r,yv,yp,

Solving Eq.(4.6) for w!**! and using Eq(4.7) we obtain

the following relation: L%MV][W] =yl FPAGPT— 37y, FPAGHT

ie

i A M (2N 7] v TN NP
wa_iywupm_mz \p[f’/]_g(yﬂyv YENFET QP+ y R,

— 77 F, =0, 4.8 Lipllerl = FRr(yPy? = y 7y )+ FPO(yRy = " y").
Formula(4.8) presents a nice second-order hyperbolic dif-Hence the general form aft*")(?}(F) can be written as
ferential equation whose solutiong*”! are causal. The ;
same is true for component!“" | expressed in terms of Lol (F)= S g [aloo]
wl# via relation (4.7), as well as for#[#*1 which is the = ’
sum of w41 and wixl
Let us remark that Eq4.8) can be expressed in the form where«,, are arbitrary constants.

(4.12
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A natural condition which can be imposed on F#” and derivatives oF#” with respect tok, as well, which
LI#»1leel(F) is that the equation with anomalous interactiondoes not happen in our approach.
should be compatible with relatiof8.1) which suppresses Takingk=2 we can get the gyromagnetic ragequal to
spin 3 states. Thesufficientconditions which guarantee this 2, i.e., to its “natural value’(see, e.g.[38)).
property ofL[#*1lro] gre

Yy, L7 (F) =0 4.13 V. FOLDY-WOUTHUYSEN REDUCTION
In order to analyze a nonrelativistic approximation of Eq.
and (4.15 it is convenient to make the Foldy-Wouthuysen reduc-
tion and express the corresponding Hamiltonian in a power
[wv][po] = . . .
Tyl (F)=0. (4.1 series of Iih. For this purpose we shall introduce the follow-

Substituting expressio.12) into the conditiong4.13 and ing notations:

(419 we obtain ¥ = column( W23 W yri2 WOl o2 03
2k
4a1=4a2=a3=a’4=— a5=a6=a7=0,

3" 5,,=14®S,,, =S+ -[¥7"],

wherek is so far an arbitrary parameter. Consequently the
equation with anomalous interaction is of the form A ( 0o =il 12)
: (5.9

N xp[/w]_i MoV VM plad]
(y*my—m) 6(7 Y=Y YTV
Se O)

- Sab=
;enl: 3 YaYoF U Fap el - prp e | " 8abc(0 Se

(4.15  Wherely,, lg, andl, are the 1X12, 6x6 and 4x4 unit
matrices, respectively, argl are 33 matrices elements of
Contracting Eq(4.15 with y,y, andw,y, we get again  which are 6.)2P=li€pc.
conditions (3.1) and (4_.2), whic_:h enable us to write.Eq. Then Eq.(4.16 multiplied by 5, reads
(4.195 as a system which consists @f.6) and the equation

J
1 i—V=HWV¥, 5.2
N W —m =y =yt W Jt 52
iek/1 ~ where
+ 3| 7 Ya¥oF VLI E Ll il | <o,
I R R R - I
(4.16 H="%0Yamat yom+eAy+ yo(1+iys02)7 (9S,,
Solving Eq.(4.6) for ‘Ir[j‘_vl and_ using Eq(4.16 we obztain _ia’u&v)F’”- (5.3
the second order equati@s.9) in which, howeverg=35(1
+K). To simplify calculations we suppose thapF2°/

Thus the anomalous interaction causes only one thlng@X <1, ab,c=123, and g=2. Then, trans-
namely, that the gyromagnetic ratipin Eq. (4.8) which in forming H-—H'= VHV*1+i(¢9V/at)V*1 where V
minimal interaction case was fixed and equal ®Hdécomes = exp(S,)exp(S,)exp(S,) with
arbitrary, but the form of the equation remains the same. The
possibility of changingg without changing the form of the

) . i I

equation seems to be an attractive feature of the proposed S1=— —vo(l+ioyys) y2m®
approach. m

We recall that even in the case of the Dirac equation in-
troduction of the anomalous interaction leads to a very es- Vs YoYs

. . . . . — My

sential complication of the theory. Indeed, the Dirac equation $;= —2( eS JERY) =i

: o ! T . ! am 8m?3
with minimal interaction is mathematically equivalent to
Zaitsev-Feynman-Gell-Mann equation, the explicit form of 95 Emv
which can be obtained from Eq4.9) by changingWw (] X | e(paEqt Eapa)—Zi% ,

—i,g— 2,5 —(i/2)c* o, where ¢ is a two-component

spinor ando* are the Pauli matrices. In the case of anoma- .

lous interaction the related second-order equafion, the _ E gab_c
analog of Eq.(4.9)] includes a second order polynomial in S3= 2 Yofabe
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and omitting terms of the order of b we finally obtairf p,Wiwi=0, (6.3
R w2 T el . e . . . It follows from Egs.(6.1) and(6.3) that
H' =1y, m+ﬁ_ﬁ_ﬁs'H +eAy+ ﬁs-(wXE SMVP(,’}/V\P[’)U]:O 6.4
e Y I
12m* ° Xy 6m? £ 1peP WP =0, (6.5
Here S denotes a vectory;,S,,S;) with Sa=%sabcébc, In other words field¥[#*] satisfies both the massless Dirac

Qap=3[S4.Sp]+ — 2s(s+1)8,5(s=3) is the quadrupole in- equation(6.2) and the Maxwell equation@.3) and (6.5).

teraction tensor, ané, and H, denote components of the  Condition(6.4) reduces the number of independent com-

electric and magnetic fields vectors. ponents of¥#” to 8 while relation(6.3) reduces this number
All terms of Hamiltonian (5.4) have a clear physical to 4. To prove that solutions of Eqé.2), (6.1) correspond

meaning. For positive energy solutions they have the follow+to helicities + 2 relations(4.10 and (6.5 should be used

ing interpretation:m+ 7%/2m-+eA, represents the Schro from which follow that

dinger Hamiltonian with the rest energy term7*/8m° the

relativistic correction to the kinetic %netgg/(n)§~ Hi is the 8.0 SO WA =§i8abc7a7bpc‘1’[“vl

Pauli coupling,— (€/2m?)S. (X E— E X ) is the spin-orbit

coupling, — (e/12m?)Q3"(JE, /dx,) is the quadrupole cou- 3

pling and —[e(s+ 1)/6m?]V - E is the Darwin coupling. =5 Y5¥07Pa¥ . (6.6)
Let us remark that all equations starting with E4.3) up

to Eq.(5.4) can easily be extended to the case vaithitrary In accordance with Eq$6.2) and(6.6) the eigenvalues of

half-integer spirs. As a result we obtain the quasirelativistic the related helicity operator coincide with eigenvalues of the
Hamiltonian (5.4) which is of the same form but witls  energy sign operator multiplied by 3. Thus solutions of
corresponding to appropriate spin matrices for the consideredgs. (6.2) and (6.1) belong to the carrier space of the
spins. ireducible  representation D*(3)®eD (3)eD* (-3
@D (— %) of the Poincargroup, whereD€(\) denotes rep-
VI. THE MASSLESS CASE resentation corresponding to energy ségand to helicityA.

. o . Imposing the additional constraints €1ys)¥!#1=0 or
It is well known that relativistic wave equations for mass- P g 1)

—i [l =0 it i i i
less particles with higher spins cannot be generally obtainegl:L |+753)\P _ 03It 'S pos_sﬂ:le 0 fd”fe this representation
from those for massive particles by taking the limit—0 to D_ (2)®D " (=2) or D (3)&D7(—3). In olther words,
[4]. Here we demonstrate that tensor-spinorial equation&elations(6.2) and(6.1) form a natural generalization of the
(3.1) and (3.5 have similiar properties like the Dirac equa- Massless Dirac equation to the case of spin
tion, namely, that they have a clear physical meaningrior ~ We note that the ansatz
=0 provic_;led some additional constraints are imposed on Wlurl = pugv— i s (6.7)
their solutions. '

. . . _ 3 . .
_We begin with spirs= 3. Taking Eq.(3.5) appropriate for  \herew* is a vector-spinor satisfying the condition ¥
this case, setting in in=0 and supposing that the condition — g reduces Eqg6.1), (6.2) to the massless RS equation for

o
v, W#l=0 (6.2 W

“pY#=0, Pyr=0.
is true, we obtain the equation 7 Pa &

Equation(6.7) is invariant with respect to the gauge trans-

y*p PH1=0 (6.2 formationW*— W+ de/dx, , wheree is an arbitrary solu-
_ _ i o tion of the massless Dirac equatigfip,¢=0.
which describes a massless field whose helicitiestafeand Analogously, starting with Eqg(3.1), (3.5) for arbitrary
energy signs arez1. This can be shown in the following spin we come to the following equations for the massless
way. _ ) ) field with spins=(2n+1)/2:
Reducing Eq(6.2) with v, and using Eq(6.1) we get the
condition yep W [kavalluzval - [l =
v, Wlevalluzval - [unval = g,

The only term in Eq(5.4) which is of order 1h?®, i.e., the term ) ]
74/8m?, should be present in as much as it is of the same ord@r 1/ Like solutions of Eqs(6.2) and(6.1), the related wave func-
as the last three ternis is the speed of light Using the Heaviside tion Wi#irllearal - leanl has only four independent compo-
units in whichh=c=1 leads to implicit dependence of the Hamil- nents corresponding to states with helicities and energy
tonian onc. signs = 1.
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VII. SINGLE PARTICLE EQUATIONS

As was shown, Eq€3.1) and(3.2) describe a doublet of
relativistic particles with spirs. In order to find the Poincare

and parity invariant equation for a single particle it is neces-

sary to impose o [#17llrzval - el gn additional condi-

tion which annuls half of the physical components. It can be

taken in the form
pM\P[le][/Lzyz] . --[F—n”nl:O‘ (71)

The resulting system, i.e., Eg8.1), (3.2), and(7.1), obvi-

ously satisfies all required invariance properties and de-

scribes a particle of arbitrary half-integer sgis 2n+ 1/2.
In the cases= 3 this system is reduced to the equations

(Y*pr—m)wl#1=0, (7.2)
Y.y, V=0, (7.3
p, Y=o (7.4

In the rest framep=(m,0,0,0) relation(7.4) reduces to
mW¥°d =0, which implies¥[°@=0. Thus Eq.(7.4) annuls

half of the components of the wave function. On the other

hand, in the rest frame conditidi@.3) can be written as

SV =5(s+1)V, (7.5

SZE’

where W =column(¥ 23 w3l pl12]) and S
=(S,3,531,S19) is the total spin for the tensor-spinor wave
function, components of which are given in E4.10.

The system of equation&.2)—(7.4) can be replaced by
one equivalent equation which is of the form

1
(Y oA = m) W4y, WM — yip, I — o) i

1 m
—y'ph—(yry - 7”7“)(5 P — 5) } e n At

0. (7.6

Indeed, reducing Eq(7.6) with y,y, andp,y, we get
the systen(7.2—(7.4). On the other hand, reducing EJ.6)
with 7y, and denotingy,¥[#"l by ¥# we obtain the RS
equation (2.3) as an algebraic consequence of E@.6).
However, Eq.(7.6) is not of the Euler-Lagrange type.

In order to find a Lagrangian generating E(j5.2)—(7.4)

PHYSICAL REVIEW D 64 125013

LCR: _\?[MV]pM\PV‘F 6MpV\I’[MV]

=15 (P 7Y (Pr— YsP° ) P

— WM pr— ¥sP> ) Y4 Y W) (7.9

Variation of Lagrangian(7.7) with respect toﬁf[ uv) and

@M yields two equations: namely,

(7ap=m)WiEd — vt prp kg Gyt — y k) (f
=2 Y, W) + 2 (v Y =y )
X (pr=m) 7y 7, ¥ =0 (7.9
and
(NPM M) WH— yE(f+my, ) — pty, W+ p, Wl
—(P*= P Y Ny, Y 1=0, (7.10

in which f denotes the expressign¥*—y,p*y,¥".
Reducing Eq(7.9) with y,y, we obtain condition(7.3).

Thus Eqs(7.9) and(7.10 can be simplified to

(NP =m) W — piwrv e pr Pt 5 (yhy” =y yH)
X (f—2p,y,¥)=0 (7.10)

and

(NP M) PHE— y#(f+my, W) — pry W+ p, w#1=0,
(7.12

respectively.

Reducing Eq.(7.1) successively withy,, p,, and
P.7¥», and Eq(7.12 with y, andp,, , we obtain Eqs(7.2)—
(7.4) for ¥[#I and the conditiont#=0. In other words, the
equations of motion annul the auxiliary fieMf* and are
equivalent to the systerfY.2)—(7.4) describing a particle of
spin 3 and massn.

Taking into account relatiof7.3) it is convenient to rep-
resent?[#"! in the form

1

W= Y7 S (YA =y AR, (7.13
where y#” and A* is a vy-irreducible tensor and vector, re-
spectively. They satisfy the conditiong*”=— y"*, v, x*"
=0 andy,A”=0. In view of Eq.(7.3) we easily find that
rr=1ylr] and Ar= — y win,

Using variableg7.13 and introducing a minimal interac-
tion via replacemenp, by 7, we can write the related
equationg7.3), (7.11) and(7.12 in the following equivalent

>

one should add an auxiliary field. Using this old idea of Fierzigrm:

and Pauli[3] the desired Lagrangian is given by

L=LTS+LRS+LOR

(7.7

where LS is the Lagrangian of the tensor-spinor field de-

fined in Egs.(3.7), (3.9, LRSis the Rarita-Schwinger La-
grangian given in Eq2.5) andL R s the “crossed Lagrang-
ian” of the form

TP = AY) = (E— A+ (yy =y )
FMOY = 3 (A= Ay Wy W) =0,
(7.19

2y ) = m(yHAT =y AR) = (- W)E"=0,
(7.19
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where the following notations have been used: 7_—,L:(7Vp +m)"¢ﬂ_%yﬂp@x_g(pﬂ_%wyyp )Tp=0
(m- W' = TV — W E x oyt W, f =W (A1)
_ywkwyl dix B that f h ded class of

We show in Appendix B that for a rather extended class o F=p B —(v'D.—2m)&=0 Tr=0.
external fields Eqs(7.14 and(7.15 remain causal. Put = (7P, )¥=0. Yul

Equations(Al) are equivalent to the RS equations. In-

VIII. DISCUSSION deed, denoting in Eq2.1) %+ % y*y by * we easily find

o . _ _ that Eq.(Al) is an algebraic consequence of Eg.1) and
In the paper RWE for a massive interacting particle withyjce versa, because

arbitrary half integer spis has been proposed and especially
for s=3/2 discussed in detail.

RWE considered in Sec. Il are causal and free of most
inconsistences which are typical for equations for particles of _ _
spin greater than 1. Moreover, these equations have a physi- Fh=Fr+ 3y F.
cally suitable form in quasirelativistic approximation and are
able to describe mostly used interactions such as Pauli, spin- In contradistinction to the RS equation, it was stated in
orbit, quadrupole and Darwin couplings. We recall that ever{38] that the Singh-Hagen formulatiofAl) is causal pro-
such popular equations as the Kemmer-Duffin-Pefié8]  vided a nontrivial anomalous interaction is introduced. We
one does not describe the spin-orbit coupling in the framethink that this statement has no meaning since in the case of
work of the minimal interaction principlg22]. anomalous interaction proposed [B88] the Singh-Hagen

The other attractive feature of the tensor-spinorial wavesquations became inconsistent. This can be easily seen in the
equations consists in their hidden simplicity which can befollowing way. The equation proposed @8] has the form
recognized considering the second-order equatib®) for
;he physical qomponents. This equation can be easny solved Fr=(y"p,+m) P — Ly p, 9 — 2(pr— 2y y"p,) P
or many particular cases of the external fields as it was done
in [28,44 for the special case @f=1/s. We plan to present + aFﬁ”TpV:O, (A3)
these exact solutions elsewhere.

The considered equations have a reasonable zero mass . ~ ~ ~
limit for a free particle case and so can serve as a basis to /= P.¥"~(v'p,—2m)$=0, Yu*=0,
formulate consistent equations for massless fields with arbi-
trary spin. Such equations were discussed briefly in Sec. V\herea is a coupling constant.

Finally, introduction of anomalous interaction into the  Using relationgA2) we reduce Eq(A3) to the RS form
tensor-spinorial wave equations generates a surprisingly
small complexity of the theory in comparison with the case (y"m,+m)y*— y*a % — oy b+ y*(y " ,— m) y
of the minimal interaction. In this aspect the proposed equa-
tions are quite unique and are more convenient than even the +T#,=0, (A4)
Dirac equation.

We do not discuss specific kind of difficulties connectedwhere
with the complex energy eigenvalues for the case of interac-
tion with the constant magnetic field provided the gyromag- THY= a(F*'— 3F# g, y7). (A5)
netic ratiog of the particle is equal to P21]. This problem
arises also for the tensor-spinorial wave equation, but it can |t is easy to show that in contrast with EQ.7), Eq. (A4)
be overcome using the approach proposefhb. does not include required eight constraints but only four of

For completeness notice that single particle equations fofhem, Indeed, reducing E¢A4) with y, and 7, we obtain
spin § considered in Sec. VIl correspond to the Harish-the correct number of constraints only for the ca$8=0

Chand[a index 4 anq thus belong to the clgss_described t{)llo], which is compatible with Eg(A5) only for the trivial
Labonte[46]. We believe that our tensor-spinorial formula- 5,omalous interactionF“"=0

tion (7.6)—(7.12 and(7.14), (7.15 forms an appropriate ba-

sis for the theory of interacting particles of arbitrary half-
integer spin and its various applications. APPENDIX B: CONSISTENCY OF EQUATIONS FOR

SINGLETS

.7:=%yﬂ.7:“, Fr=Fr—Lyry FN
(A2)

Let us show that for some class of external fields Egs.
(7.14), (7.15 are consistent, i.e., include the correct number
of constraints and are hyperbolic. To do this we will use also

A specific formulation of the RS equations was used bydifferential and algebraic consequences of these equations.
Singh and Hagem8] who introduced an additional scalar-  Contracting Egs(7.14, (7.19 with y, and y,y, and
bispinor field ¢+ such thaty* and ¢ satisfy the following using Egs. (7.14, (7.15 we come to the equivalent
system: v-irreducible set of equations:

APPENDIX A: INCONSISTENCY OF SINGH-HAGEN
EQUATIONS
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(- W) — (- A7+ 2my» + 2 (yHy" — y¥yH) where C,=F**F ,, is an invariant of the electromagnetic
i field.
X(f+3my, ¥")=0, (B1) Now we are ready to analyze the constraint context of
N N Egs.(7.14) and(7.15. First we note that the considered sys-
NTH(VHE=AR) = 7hy, W+ m(2W# — A¥) tem includes nine dependent variablesch being a four-
+ (L +my, TN =0, (B2) component spindr To describe a particle of spid it is

sufficient to have eight degrees of freedom and so we need
seven constraints which do exist. Six of them are presented

v YN R N A TYy M=
2m X AR 2MOE S A =y B M W =0, s (714 for u,v=1,2.3 and Eq(BT) for u=1,2.3,

(B3) The seventh constraint is easily obtained from Bp) for
m, A" 2~ 3my, W =0. (B4 ~#=0andEq (B4
The other(differential) consequences can be found by re- 27X %= yam AL+ YO Ayt 2my, UM+ F)

ducing Egs(B1)—(B3) with p,, . In this way we obtain from

0_ pA0\ _
Egs.(B2), (B3) the following two relations: +2m(¥e-AT=0.

\E 2 N_ o BElo _ _ The next task is to find the true motion equations. They

NI BMEy =2 PV = A =0 (BY) are given by Eq(7.14 for n=1,2,3p=0, by Egs.(B3),

and (B9) for u=1,2,3 and by Eq(B10). The related matrix with
time derivatives is nonsingular provided
mi=i(nFGA-V,)+3Fx").  (B6)
C,#0 or (and F%=0. (B11)
One more consequence can be obtained reducin¢BHg.

with 7, acting on Eq(B2) by y, 7" and adding the result-

; On the other hand, iC,=0 andF%=0 then relation
ant expressions together. We get

(B7) for =0 reduces to the constraint expressing via
other variables and so that in this case we do not need a
motion equation for°.
To investigate causality we consider the true motion equa-
Reducing Eq(B?) once more Wlthﬂlu we obtain a scalar tions in the eikonal approximation. Substituting the charac-
consequence teristic four-vectom, to the covariant derivatives and keep
only leading terms im, we come to the following system:

mPWH+ Lt +i(FAo— Fy y, Fr) (¥ ,—A,) =0.
(B7)

i . ~
2 vI|f_ _; o
(m - 1_27M?’VFM ) f=—i WAF)\ (V,—A;). (B8 n“(P’—A")—n"(T+*—A*)=0,
(B12)
Applying operatory, 7* to Eq.(B7) and using Eqs(B2), 2n,x*" + yn*A#=0,
(B5) we come to one more consequence

. i
+ Ig(’)’”’)’)\’ﬁ}\— ) ,y}\ﬁ)\tr(\lfg m2( ‘y}\n)“lf”— nﬂy}\\[’)\) + 5( ')’M'Y)\n)\_ n“)

i
mz( ')’)\7T)\\I’M_ §7TM')/)\\I,)\

6

- Ao _ —
_Ag)_i’)’)\ﬂ)\FMU(\PU—AU)‘f' X‘)/)\F (\I,U Ao) 0!

F*hy,f=0. (B9
Finally, contracting Eq(B7) with F#*#, and using Eq. m?F“n, W, — I§Ff‘"nx7/Mya"|f“"(\lfl,—Ag)
(7.15 we get the following important condition:
_ —iysCon,¥7=0.
i ~
MEF R W — §FMWW#7AFM(\P"_A”) Settingn,=(n,0,0,0) in Eq.(B12) we easily find thaty*”
=A#=V#=0 providedn, and C, are not equal to zero.
Thus Egs.(7.14), (7.15 are causal provided the external
electromagnetic field satisfies the covariant relatty 0.
We remind that acausality of the RS equation is caused by
X(V,—A,)=0, (B10) noncovariance of its hyperbolicity conditida7].

2 J -
~iy5Co(m, W7~ 2 —3my, W)~ F’“( —Fr
ox
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