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BPS string solutions in non-Abelian Yang-Mills theories and confinement
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Starting from the bosonic part &f=2 super QCD with a “Seiberg-WittenN=2 soft breaking mass term,
we obtain string BPS conditions for arbitrary semisimple gauge groups. We show that the vacuum structure is
compatible with a symmetry breaking scheme which allows the existencg.-sfrings and which has
Spin(10)—-SU(5)x Z, as a particular case. We obtain BESstring solutions and show that they satisfy the
same first order differential equations as the BPS string foultffe) case. We also show that the string tension
is constant, which may cause a confining potential between monopoles increasing linearly with their distance.
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. INTRODUCTION theory, theU(1) is broken to & group, the theory develops
an Abelian string solution and as it happens Abelian confine-
String (and vortex solutions[1] may have many impor- ment occurs. After this work, many interesting papers ap-
tant applications such as their possible relevance for quargeared 16] analyzing various related issues, considering ei-
confinemen{2,3], for galaxy formatior[4,5] and for super- therU(1) or U(1)N~? effective theories broken to discrete
conductorg6]. These solutions may also be relevant for agroups. Since we are considering a non-Abelian generaliza-
field theory formalism for the “fundamental” string or the tion of Seiberg-Witten effective theory with a non-Abelian
D-strings. Non-Bogomol'nyi-Prasad-SommerfieldfBPS  unbroken group, our BPS string solution may have some
string solutions in non-Abelian theories were first analyzedelevance for non-Abelian confinement. More precisely, in
in [7,8], for the particular case B O(10). There are various OUr theory the strings are associated to elements #f a
motivations for looking for BPS solutions. First, because9roup, rather than th& group, and the breaking of gauge
they appear naturally in supersymmetric theories, often ipYMMetry by a scalar in the adjoint allows monopole solu-
connection with dualities. Secondly, because they satisfy fird{OnS {0 arise belonging to representationgtaé dual non-
order differential equations which are easier to solve than th&°€lian unbroken symmetijA 7], rather thar(1) singlets.
second order equations coming from the equations of mo- Keeping in mind that our results can be splezglflcally ap-
tion. And finally because BP®r almost-BP$ strings may  plied to the symmetry breaking scheme Spin(:® U(5)
be relevant for confinemef8] (for a recent review seé)]). X Z,, our BPS string solution may also have some applica-
The BPS solutions for monopoles in Yang-Mills-Higgs tions as a cosmic string.
theories are known for an arbitrary semisimple gauge group \We begin by obtaining, in Sec. Il, the string BPS condi-
broken by a scalar in the adjoint representafid@i]. How-  tions considering the bosonic part Nf=2 super QCD with
ever for strings(and vortice the BPS solutions are only ©ne flavor and with alN=2 breaking mass term for the
known for U(1) Yang-Mills-Higgs theories broken to & scalar in the vector multiplet, s_lmllar to the case considered
exact symmetry grouflL1] (see a reviewj12]) and for some Py Seiberg-Witten[3]. Then, in Sec. Ill we show that
other particular example§13,14 and references thergin (he vacuum structure is compatible with a symmetry
Our aim is thus to obtain the BPS string solutions in a Yang-bre_aklng scheme C(_)nS|dered by Q“Ve and Tl_Jr[dkB],
Mills-Higgs theory with an arbitrary semisimple gauge groupWhICh a'l'g’g"’s the existence ofy strings and which has
broken to a non-Abelian residual group. Spin(10)— SU(5)XZ, as a particular case. In Sec. IV, we
In the paper of Seiberg and Witt¢B], the authors con- consider aZ,-string ansatz and obtain the first order differ-
sider anSU(2) N=2 super Yang-Mills theory, and associ- ential equations which are exactly the same as the ones for
ated to the point in the moduli space where the monopoléhe BPS string in thé&J(1) theory. From this ansatz we ob-
becomes massless they obtained an effedfigg) N=2 su-  tain that the string tension is constant. This may ensure a

per QED with arN=2 mass breaking term. In this effective confining potential between monopoles increasing linearly
with their distance.

II. BPS STRING CONDITIONS IN NON-ABELIAN
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1 1 + 1 N where
L=Tr —ZG" Gt EDMS D#S +§D#¢ D*¢
me

~V(S,¢), (1) Xa== 73

with an arbitrary semisimple gauge group, wh&iie a com-  ThenT can be written as

plex scalar field in the adjoint representation apds an-

other complex scalar whose representation we shall specify 5 )

below. As in theU (1) theory(for a review sed12]), let us f dx [BaiYa] + XaBa— 2Yb+V(S’ ®)
consider a static field configuration with cylindrical symme-

S,+S;
—

try not depending ox® and the only nonvanishing compo- 1

nent ofG,, beingG,,=—B. The string tension is then Zf dzx[ FXBa— §Y§+ V(S, q&)].
= | d? 1T B2+|D,S|? 1D 2+ V(S If V(S,¢)—Y2/2=0, th
- XE r[ +| " |]+§| ,u¢| +V( 1¢) ( !¢) ale=U, then

1 1 TZJ d’x{FX,B 5
= | x| 318+ D5+ 10,51+ 510101 B ®

and the bound is saturated if and only if

1
+ = 24+ :
Let us denote by the distance from the string axis. In order D.¢=0, (7)
for T to be finite, the field must tend to vacua configurations B
at p— oo, satisfying the conditions D.S=0, (8)
— - 2
D,S=D,¢$=0(1/p?), B, Y,=0, 9
V(S,¢)=0(1/p%), &)
V(S, —Y2 10
B=0(1/p?). (5.6)= (10
Let D.=D;*iD,. Using the identity which are BPS equations for the string. The first conditions
‘ 5 5 (6) imply that Wy=0=W,.
[D.¢]'[D.¢]—[D16|*~|D29| We shall consider

=*[i€;d(¢'D;p)+ed G,

V(S.8)= = (Y24 F'F) er<sT—ﬁ)¢. (11)
and the fact that ' 24 ' e

Then the BPS conditiorg10) implies thatF=0. Whenm

1 1 e
TR2.2ip_q2—=—at
2B +2|D+S| +28[B,S] +

j dZXEiJ 5i(¢TDJ¢) =0 =0, this potential coincides with the one for the bosonic part
of N=2 super QCD with one flavaiA2) (see Appendix A
(which follows from the above boundary conditignand if the scalar¢,=0 of the hypermultiplet vanishes. The case
similar results for the scal&, it results that m#0 clearly breakdN=2 supersymmetry since it gives a
bare mass t&,. This is akin to the situation considered by
:f dzx[Tr E|D+¢|2 Seiberg and Witteh3] where the authors obtained confine-
- ment by introducing a bare mass to the scalar in the vector
supermultiplet. This<, term is important in order to change
E(¢TB¢)+V(S ¢)] the vacuum structure of the theory.
2 The equations of motion that follow from our Lagrangian
are

1
fdz [ |32+ (sbn‘bcaS + ¢ Tah)Ba+V(S, d))] ie . . .
(D,G*)a= 5 (¢ TaD"¢—D "¢ Tadp—S;ifanD"S
Note that we used the above identities with opposite signs
for the fields¢ and S in order to make contact with the +D"Sif 2peSe) =0,
supersymmetric Lagrangian, as will become clear below. Let
Rl I
[ 5=

=0,
k

e a »_
Ya=5 (S}ifpcaSet ¢'Tadh) + X, @ Pubidretalag—e
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m Let us consideH; ,E, to be generators of a Lie algebra in
S— g) Tq¢=0. the Cartan-Weyl basis, withH'=H; and El=E_,,
Tr(HiH)) =6, TH(E,E_g)=26,5/a® and satisfying the
Let us check if the BPS equations for the string are consiscommutation relations
tent with them. Acting with the covariant derivatiV; , i

D,D*S;+eY,

g S s )—ezdﬁ
adcc 2 ad

=1,2, on Eq.(9) and using the other BPS conditions it re- [Hi *Ea]:aiEa’
sults that
o
ie : ; .. [E,.E_,]=a"H, aVE—Z.
D,Gy"+ > D"¢'Tydp— ' TqD"d—(D"S)yif 4pcSc a

MoreoverH;|x,)=\5[\,). A symmetry breaking satisfying
=0. Eq. (13) can be realized in the following wdyL5]: let \ , be

an arbitrary fundamental weight and B£° and ¢'2° be two
This relation is consistent with the first equation of motion if Sc&lars in the vacuum configuration. As is well known, a

m=0. Similarly, from the BPS conditions we obtain scalar in the adjoint representation of the foBfi%\ ,-H
breaks the gauge group into

m
+S5ifapD"Sc— - (D"Sy—D"S)

0=D:Dt¢_e

i
S— E)F G—Gg=U(1)xXK/Z,

whereK is the subgroup of5 associated with the algebra

—-D,D ¢~ 9(312(15—9( S— ﬁ) E whose Dynkin diagram is given by removing the dot corre-
¢ sponding toa, from that of G, U(1) is generated by

A4 H andZ is a subgroup otJ(1) andK and is generated

=— DMDqu—eYaTaqb—e( S- %) F by
_|z(e)]

e

and vo=exp2mizhy-H),

0=D.D;Sy—eF'T
- d aé where|Z(G)| is the order of the center & and|Z(K)| is

=— DMD"“Sdie(Glzs)d—eFTTdcﬁ the order of the center df. This symmetry breaking pattern
allows the existence of monopoles. If the theory has another
= _DMD#Sd_ieYafadbSb_eFTTdd’- scalargbvacoc|k)\¢>, k being an integer, the gauge groGpis

further broken intd 15]
Once again, this last relation is consistent with the equations
of motion only whenm vanishes. However this condition G—G,=2Z XK/ZCGg
must be understood in the limiting case—0 as we shall
discuss in the next section. Therefore it is only in this limit where Z,, is generated bwi* and K is as before. Then,
that we can have BPS strings satisfying E@—(11). One  II;(G/G,)=Zy. In order for$**%|k\ 4,) we may consider
can check that 1/4 of thBl=2 supersymmetry transforma- that¢ belongs to the irreﬂkw with k\ , as highest weight.
. . ! i . S 126
ggzzi(tﬁ;)s\(gn_l(sfljc;; ftlstled”cn?ir:fgﬂ%tlons satisfying the BPS The symmetry breaking scheme Spin(20%U(5) X Z, con-
' sidered by Kibbleet al.[5] for the cosmic string corresponds
to a particular case of this general result.
Let us show that the vacuum conditiofis2) admit solu-
The total energy for this theory is non-negative and ittions of this form. Considew"*°=alk\ ;) and $"*°=v-H
vanishesvacuun) if and only if wherea,v e R and (k\ 4|k\ ,)=1. The conditionY,=0 is
equivalent to

IIl. VACUA SOLUTIONS

D,$=D,S=G,,=0, (12
V=0&Y,=F=0 1f k=2, it can also be interesting to considgtelonging to the

in all i | der for the string to h finite tensi symmetric part of the tensor product of two fundamental represen-
In all spacetime. In oraer 1or the string to have finite el’]SIOI’L[(,ijns with highest Weighkd,, [Rxd)XRxd)]sE RZ{'SJD R2>\¢- [For

T, the fields atp—c0 must ter_u_j to vacuum ponf|gurat|on§. SUN), RY™ =R, . For SO(10), RY™= 126310 andR,,
Moreover, a necessary condition for the existence of string’ hN—l_ | N-1T id 5 oym b 5
solutions is that these vacua must break the gauge ggoup — +281 A physical motivation to consideg <R\ is because it

into G(/) such that allows a Yukawa coupling with two spinors in the fundamental
representationRM), and this term gives rise to the mass term for the
Hl(G/G¢) =7y (13 spinors whenp has a nontrivial expectation value. In this case one
could also consider as a difermion condensate as in the BCS
which allows the existence & strings. theory.
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el . S+Sf limiting casex —0 [19] in order to retain the boundary con-
YaTa=5| (¢ Tag)Ta+[S',S]-m| — ) =0. (19  dition |¢p|—a asr—o, and to have symmetry breaking. In
our case, we have the same situation with a small difference:

Using that if one considersn—0, thena— 0. We can avoid this prob-
lem by allowing u—o such thatmgu, or equivalentlya,
(& Taij ) Ta=Tr(dd T) Ta= ¢’ remains constant, implying that the fielfl becomes infi-
nitely heavy. The same happens for the gauge fi\#ﬁsin
=(¢"Hip)H; which \ - a"#0.
o2 It is important to mention that if we take=0, Eq.(16) is
+ ?(¢TEa¢)Ew’ no longer a vacuum solution, but it is possible to consider

other vacuum solutions such thHt (G/G ) #0. However,
in this case, we were not able to construct a string ansatz

from Eq. (15) follows that satisfying the BPS conditions.

ka?
0= Ny IV. BPS STRING SOLUTIONS

The string must tend gi— « to vacuum solutions in any
angular directione. Let us denoted(¢)= d(@,p—°),
S(¢)=S(¢,p— ). Then, the vacuum conditiori&2) imply

On the other hand, from the conditidgh=0, it results that
v -\ 4= u/Ke, which together with the previous relation leads

to that this asymptotic field configuration must be related by
m gauge transformations from a vacuum configuration, which
2:—’u_ we shall consider Eq16), i.e.,
k?er?,
-1
Then, Wi(e)= F(aig(ﬁo))g(@)ila i=1,2,
vac:a k)\ ,
pr=aling) $(0)=9(¢) "
mS2=ka?\ - H, (16) ~
’ S(¢)=09(¢)S"9(¢) !,
anc:O
w ' for someg(¢) € G. Then, in order for the field configura-

is a solution of the vacuum conditiori¢2) which satisfy ~ tions to be single-valuegy(27)g(0) e G, . Without lost of
1,(GIGy)=Z,. generality we shall considgy(0)=1. We shall also consider
Expanding the fields around this vacuur8=(S"+ S that G is simply connectedwhich can always be done by

W, = W9 +W*, etc) and considerin going to the univer_sal covering _gro)J_pThen, a necessary
N ) g condition for the existence of strings is thgt27) belongs

to a nonconnected component &, [7]. Let g(¢)

Wi=WiH, + 2 WiHo+ 2 WiE,, —expigM. Then, atp—c,
— ioM
whereH ,=a"-H, from the kinetic terms ofS and ¢ one ¢(p)=ae?M[kn,),
finds the gauge particle mass terms mSg)= kaze”\""’)\d, He Me¢. %)
2 (Aga¥) ()fe’ica’ | ek oy~ j
‘a « « € X
o " 4m? 2 # Wi(e)=—5M, ij=12
ep
e?a’k?
Du\NP . . .
WEEW, . A possible choice foM is

As we mentioned before, the BPS conditions are compat- n
ible with the equations of motion whem vanishes. How- k )\fb
ever, if we do thisa=0 and there is no symmetry breaking,
which is necessary in order for string solutions to exist. Thiswith n being a nonvanishing integer defined modkldrom
result is very similar to what happens for the BPS monopoleEq. (17), it is direct to see that for this choicg(2)
(see for instanc§l18]). In that case, one of the BPS condi- €G,. Indeed, sincé20]
tions isV(¢) =\ (¢%—a?)?/4=0, which implies the vanish-
ing of the coupling\. (Note that for the string and the mono- 2
pole, X, andV are terms which breakl=2 supersymmetry ¢
and which vanish for the BPS configurationdowever, that
condition must be understood in the Prasad-Sommerfieldve see from Eq(14) thatg(277)=v3/k.

, 1Z(K))|
“Jze)

1
2
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Let us consider the ansatz and u is the ¢ bare mass. We found vacua solutions com-
. patible with the existence of string solutions and we were

d(@.p)=f(p)e'?Malkn ), able to construct these string solutions satisfying the BPS

_ . conditions. Since our theory is a non-Abelian generalization

mS¢,p)=h(p)ka’e'*M ;- He oM, (18 of Seiberg-Witten effective theory, we hope that our BPS

string solution may have some relevance for non-Abelian

€jx! confinement. In particular, since in our theory the breaking of

Wi(e.p)=0g(p)M ?HB(%"): ggl(p)' gauge symmetry b$ allows for monopole solutions belong-
p ing to representations dthe dual non-Abelian unbroken
Wo(¢,p)=Ws(¢,p)=0, (19) symmetry and the string solutions are associated to elements
of a Z, group, we expect that monopole bound states with
with the boundary conditions properties more similar to the ones of quark bound states in
QCD may appear in our theory. An indication of the exis-
f(w)=g(0)=h(>)=1, tence of these monopole bound states comes from the fact
. ] ) that in our theory the BPS string tensions are constant which
in order to recover the configuratida?) at p—c and may give rise to a potential between monopoles increasing
£(0)=g(0)=0 linearly with their distance. It would be interesting if one

could find monopole bound solutiofis the classical theody

in order to eliminate singularities at=0 similar to the breathers in sine-Gordon theory.

Putting this ansatz in the BPS conditiof®—(10), from
the first order differential equations it results that ACKNOWLEDGMENTS
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which are exactly the same differential equations which ap-

h(p)=const=1,

2a2pk2)\2
o'(p)=F—— —[lf(p)*-1],

pear in theU(1) case. These equations do not have analytic APPENDIX A: N=2 SQCD POTENTIAL
solutions, however their existence has been proven and some . . o
of their properties have been analyZsde for instancg21]). Using Sohnius’ conventionf23] and considerings=M

It is important to emphasize that the BPS conditions only*+iN, the bosonic part for the potential bf=2 super Yang-
hold whenm— 0 and form#0 the string becomes non-BPS Mills theory with one hypermultiplet can be written as
as has been already pointed out[R2] for the G=U(1)
case.

Using the ansatzl18), it is straightforward to obtain the
BPS bound for the string tensidb)

2
V(S, ém) :%[ (S; ifbcasc)z"_((bxwo'gm-ra(bn_ vp530)2

4,u,2 4u
T=ma?n|, o Pmdn o Sn(SHS

which once more coincides with tHé¢(1) result. Since the

tension is constant, it may cause a confining potential be- +2¢T{S’r St (A1)
tween monopoles increasing linearly with their distance, me "

which is an interesting behavior since it may produce quark

confinement in a possible dual theory. whereo® are the Pauli matrices and the termsd,o are the
Fayet-lliopoulos that may exist associated to a possitile)
V. CONCLUSIONS factor with a generator we shall denofg. This expression

can be rewritten as
In this paper we showed the existence of BBSstring

solutions for arbitrary semisimple gauge groups broken to
non-Abelian groups. In order to obtain these solutions we
considered the bosonic part Nf=2 SQCD with one flavor
and aN=2 breaking mass term. We showed that BPS con=————
ditions are compatible with the equations of motion only if ?The coupling constant for a possililg1) factor is not necessar-
m— 0. We must also takg— o0, with mu fixed, in order to ily the same as the non-Abelian part, but for notational simplicity
allow gauge symmetry breaking, whareis theSbare mass we shall consider the same constant

V<s,¢>m>=%((d;>2+(d§>2+<Da>2+FInFm), (A2)
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where From this expression it is easy to see that we recover Eq.
(12), for m—0, when one putg,=0.
e Let us denote byy and\™,m= 1,2, the pseudo-Majorana
Da= Q(SﬁifbcaScHdi, (A3)  spinors belonging to the vector supermultiplet and to the
hypermultiplet respectively. TheiN=2 supersymmetry
transformations are given 4@3]

e
di= S (dhohaTabn—vpda0). P=123,  (A4) L o o .
ONT=5G Ly €= yHD (M + ysN) €7 — e[ M, N] ys&
ign P 4P
F1=e( S-2) . (a5) e A7
oyY=—[iy*D,+e(M+ ysN)— u]é" b,
F2=e< S ﬁ) by, (A6) where y*’=i[ v*,y"]/2 and where thé™ are supersymme-
e try parameters.
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