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BPS string solutions in non-Abelian Yang-Mills theories and confinement
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Starting from the bosonic part ofN52 super QCD with a ‘‘Seiberg-Witten’’N52 soft breaking mass term,
we obtain string BPS conditions for arbitrary semisimple gauge groups. We show that the vacuum structure is
compatible with a symmetry breaking scheme which allows the existence ofZk-strings and which has
Spin(10)→SU(5)3Z2 as a particular case. We obtain BPSZk-string solutions and show that they satisfy the
same first order differential equations as the BPS string for theU(1) case. We also show that the string tension
is constant, which may cause a confining potential between monopoles increasing linearly with their distance.
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I. INTRODUCTION

String ~and vortex! solutions@1# may have many impor-
tant applications such as their possible relevance for qu
confinement@2,3#, for galaxy formation@4,5# and for super-
conductors@6#. These solutions may also be relevant for
field theory formalism for the ‘‘fundamental’’ string or th
D-strings. Non-Bogomol’nyi-Prasad-Sommerfield~BPS!
string solutions in non-Abelian theories were first analyz
in @7,8#, for the particular case ofSO(10). There are various
motivations for looking for BPS solutions. First, becau
they appear naturally in supersymmetric theories, often
connection with dualities. Secondly, because they satisfy
order differential equations which are easier to solve than
second order equations coming from the equations of
tion. And finally because BPS~or almost-BPS! strings may
be relevant for confinement@3# ~for a recent review see@9#!.

The BPS solutions for monopoles in Yang-Mills-Higg
theories are known for an arbitrary semisimple gauge gr
broken by a scalar in the adjoint representation@10#. How-
ever for strings~and vortices!, the BPS solutions are onl
known for U(1) Yang-Mills-Higgs theories broken to aZ
exact symmetry group@11# ~see a review@12#! and for some
other particular examples~@13,14# and references therein!.
Our aim is thus to obtain the BPS string solutions in a Ya
Mills-Higgs theory with an arbitrary semisimple gauge gro
broken to a non-Abelian residual group.

In the paper of Seiberg and Witten@3#, the authors con-
sider anSU(2) N52 super Yang-Mills theory, and assoc
ated to the point in the moduli space where the monop
becomes massless they obtained an effectiveU(1) N52 su-
per QED with anN52 mass breaking term. In this effectiv
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theory, theU(1) is broken to aZ group, the theory develop
an Abelian string solution and as it happens Abelian confi
ment occurs. After this work, many interesting papers
peared@16# analyzing various related issues, considering
ther U(1) or U(1)N21 effective theories broken to discret
groups. Since we are considering a non-Abelian general
tion of Seiberg-Witten effective theory with a non-Abelia
unbroken group, our BPS string solution may have so
relevance for non-Abelian confinement. More precisely,
our theory the strings are associated to elements of aZk
group, rather than theZ group, and the breaking of gaug
symmetry by a scalar in the adjoint allows monopole so
tions to arise belonging to representations of~the dual! non-
Abelian unbroken symmetry@17#, rather thanU(1) singlets.

Keeping in mind that our results can be specifically a

plied to the symmetry breaking scheme Spin(10)→
126

SU(5)
3Z2, our BPS string solution may also have some appli
tions as a cosmic string.

We begin by obtaining, in Sec. II, the string BPS cond
tions considering the bosonic part ofN52 super QCD with
one flavor and with anN52 breaking mass term for th
scalar in the vector multiplet, similar to the case conside
by Seiberg-Witten@3#. Then, in Sec. III we show tha
the vacuum structure is compatible with a symme
breaking scheme considered by Olive and Turok@15#,
which allows the existence ofZk strings and which has

Spin(10)→
126

SU(5)3Z2 as a particular case. In Sec. IV, w
consider aZk-string ansatz and obtain the first order diffe
ential equations which are exactly the same as the ones
the BPS string in theU(1) theory. From this ansatz we ob
tain that the string tension is constant. This may ensur
confining potential between monopoles increasing linea
with their distance.

II. BPS STRING CONDITIONS IN NON-ABELIAN
YANG-MILLS-HIGGS THEORIES

Let us consider the Lagrangian in 311 dimensions
©2001 The American Physical Society12-1
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L5TrH 2
1

4
GmnGmn1

1

2
DmS†DmSJ 1

1

2
Dmf†Dmf

2V~S,f!, ~1!

with an arbitrary semisimple gauge group, whereS is a com-
plex scalar field in the adjoint representation andf is an-
other complex scalar whose representation we shall spe
below. As in theU(1) theory~for a review see@12#!, let us
consider a static field configuration with cylindrical symm
try not depending onx3 and the only nonvanishing compo
nent ofGmn beingG12[2B. The string tension is then

T5E d2xH 1

2
Tr @B21uDmSu2#1

1

2
uDmfu21V~S,f!J

>E d2xH 1

2
Tr @B21uD1Su21uD2Su2#1

1

2
uD1fu2

1
1

2
uD2fu21V~S,f!J . ~2!

Let us denote byr the distance from the string axis. In ord
for T to be finite, the field must tend to vacua configuratio
at r→`, satisfying the conditions

DmS5Dmf5O~1/r2!,

V~S,f!5O~1/r3!, ~3!

B5O~1/r2!.

Let D65D16 iD 2. Using the identity

@D6f#†@D6f#2uD1fu22uD2fu2

56@ i e i j ] i~f†D jf!1ef†G12f#,

and the fact that

E d2xe i j ] i~f†D jf!50

~which follows from the above boundary conditions! and
similar results for the scalarS, it results that

T5E d2xH TrF1

2
B21

1

2
uD7Su27

e

2
S†@B,S#G1

1

2
uD6fu2

6
e

2
~f†Bf!1V~S,f!J

>E d2xH 1

2
Ba

26
e

2
~Sb* i f bcaSc1f†Taf!Ba1V~S,f!J .

Note that we used the above identities with opposite si
for the fieldsf and S, in order to make contact with th
supersymmetric Lagrangian, as will become clear below.

Ya5
e

2
~Sb* i f bcaSc1f†Taf!1Xa ~4!
12501
ify

s

s

t

where

Xa52
me

2 S Sa1Sa*

2 D .

ThenT can be written as

T>E d2xH 1

2
@Ba6Ya#27XaBa2

1

2
Yb

21V~S,f!J
>E d2xH 7XaBa2

1

2
Ya

21V~S,f!J .

If V(S,f)2Ya
2/2>0, then

T>E d2x$7XaBa% ~5!

and the bound is saturated if and only if

D0f5D3f5D0S5D3S50, ~6!

D6f50, ~7!

D7S50, ~8!

Ba6Ya50, ~9!

V~S,f!2
1

2
Ya

250, ~10!

which are BPS equations for the string. The first conditio
~6! imply that W0505W3.

We shall consider

V~S,f!5
1

2
~Ya

21F†F !, F[eS S†2
m

e Df. ~11!

Then the BPS condition~10! implies thatF50. When m
50, this potential coincides with the one for the bosonic p
of N52 super QCD with one flavor~A2! ~see Appendix A!
if the scalarf250 of the hypermultiplet vanishes. The ca
mÞ0 clearly breaksN52 supersymmetry since it gives
bare mass toSa . This is akin to the situation considered b
Seiberg and Witten@3# where the authors obtained confin
ment by introducing a bare mass to the scalar in the ve
supermultiplet. ThisXa term is important in order to chang
the vacuum structure of the theory.

The equations of motion that follow from our Lagrangia
are

~DmGmn!a2
ie

2
~f†TaDnf2Dnf†Taf2Sb* i f abcD

nSc

1DnSb* i f abcSc)50,

DmDmfk1eYaTkl
a f2e2F S S2

m

e D S S†2
m

e DfG
k

50,
2-2
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DmDmSd1eYaS i f adcSc2
m

2
dadD2e2f†S S2

m

e DTdf50.

Let us check if the BPS equations for the string are con
tent with them. Acting with the covariant derivativeDi , i
51,2, on Eq.~9! and using the other BPS conditions it r
sults that

DmGa
mn1

ie

2 FDnf†Tdf2f†TdDnf2~DnS!b* i f dbcSc

1Sb* i f dbcD
nSc2

m

2
~DnSd2DnSd* !G50.

This relation is consistent with the first equation of motion
m50. Similarly, from the BPS conditions we obtain

05D7D6f2eS S2
m

e DF

52DmDmf7eG12f2eS S2
m

e DF

52DmDmf2eYaTaf2eS S2
m

e DF

and

05D6D7Sd2eF†Tdf

52DmDmSd6e~G12S!d2eF†Tdf

52DmDmSd2 ieYaf adbSb2eF†Tdf.

Once again, this last relation is consistent with the equati
of motion only whenm vanishes. However this conditio
must be understood in the limiting casem→0 as we shall
discuss in the next section. Therefore it is only in this lim
that we can have BPS strings satisfying Eqs.~6!–~11!. One
can check that 1/4 of theN52 supersymmetry transforma
tions ~A7! vanish for field configurations satisfying the BP
conditions~6!–~11! in the limit m→0.

III. VACUA SOLUTIONS

The total energy for this theory is non-negative and
vanishes~vacuum! if and only if

Dmf5DmS5Gmn50, ~12!

V50⇔Ya5F50

in all spacetime. In order for the string to have finite tens
T, the fields atr→` must tend to vacuum configuration
Moreover, a necessary condition for the existence of str
solutions is that these vacua must break the gauge grouG
into Gf such that

P1~G/Gf!5Zk, ~13!

which allows the existence ofZk strings.
12501
s-

s

t

t

n

g

Let us considerHi ,Ea to be generators of a Lie algebra
the Cartan-Weyl basis, withHi

†5Hi and Ea
†5E2a ,

Tr(HiH j )5d i j , Tr(EaE2b)52dab /a2 and satisfying the
commutation relations

@Hi ,Ea#5a iEa ,

@Ea ,E2a#5av
•H, av[

2a

a2
.

MoreoverHi ula&5la
i ula&. A symmetry breaking satisfying

Eq. ~13! can be realized in the following way@15#: let lf be
an arbitrary fundamental weight and letSvac andfvac be two
scalars in the vacuum configuration. As is well known,
scalar in the adjoint representation of the formSvac}lf•H
breaks the gauge group into

G→GS5U~1!3K/Zl ,

where K is the subgroup ofG associated with the algebr
whose Dynkin diagram is given by removing the dot cor
sponding to af from that of G, U(1) is generated by
lf•H andZl is a subgroup ofU(1) andK and is generated
by

v05exp~2p izlf
v
•H !, z[

uZ~G!u
uZ~K !u

, ~14!

whereuZ(G)u is the order of the center ofG and uZ(K)u is
the order of the center ofK. This symmetry breaking patter
allows the existence of monopoles. If the theory has ano
scalarfvac}uklf&, k being an integer, the gauge groupG is
further broken into@15#

G→Gf5Zkl3K/Zl,GS

where Zkl is generated byv0
1/k and K is as before. Then

P1(G/Gf)5Zk . In order forfvac}uklf& we may consider
thatf belongs to the irrepRklf

with klf as highest weight.1

The symmetry breaking scheme Spin(10)→
126

SU(5)3Z2 con-
sidered by Kibbleet al. @5# for the cosmic string correspond
to a particular case of this general result.

Let us show that the vacuum conditions~12! admit solu-
tions of this form. Considerfvac5auklf& and Svac5v•H
wherea,vPR and ^klfuklf&51. The conditionYa50 is
equivalent to

1If k52, it can also be interesting to considerf belonging to the
symmetric part of the tensor product of two fundamental repres
tations with highest weightlf , @Rlf

3Rlf
#S[R2lf

sym.R2lf
. @For

SU(N), R2lN21

sym 5R2lN21
. For SO(10), R2l5

sym5126% 10 andR2l5

5126.# A physical motivation to considerfPR2lf

sym is because it
allows a Yukawa coupling with two spinors in the fundamen
representationRlf

, and this term gives rise to the mass term for t
spinors whenf has a nontrivial expectation value. In this case o
could also considerf as a difermion condensate as in the BC
theory.
2-3
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YaTa5
e

2 F ~f†Taf!Ta1@S†,S#2mS S1S†

2 D G50. ~15!

Using that

~f i* Tai jf j !Ta5Tr~ff†Ta!Ta5ff†

5~f†Hif!Hi

1
a2

2
~f†Eaf!E2a ,

from Eq. ~15! follows that

v5
ka2

m
lf .

On the other hand, from the conditionF50, it results that
v•lf5m/ke, which together with the previous relation lea
to

a25
mm

k2elf
2

.

Then,

fvac5auklf&,

mSvac5ka2lf•H, ~16!

Wm
vac50,

is a solution of the vacuum conditions~12! which satisfy
P1(G/Gf)5Zk .

Expanding the fields around this vacuum (S5Sq1Svac,
Wm5Wm

q 1Wm
vac, etc.! and considering

Wm
q 5Wm

fHaf
1 (

iÞf
Wm

i Ha i
1(

a
Wm

aEa ,

where Ha[av
•H, from the kinetic terms ofS and f one

finds the gauge particle mass terms

(
a.0

~lf•av!F ~a!4e2k2a4

4m2
1

e2a2k

2 GWamWm
2a

1
e2a2k2

2
WfmWm

f .

As we mentioned before, the BPS conditions are comp
ible with the equations of motion whenm vanishes. How-
ever, if we do this,a50 and there is no symmetry breakin
which is necessary in order for string solutions to exist. T
result is very similar to what happens for the BPS monop
~see for instance@18#!. In that case, one of the BPS cond
tions isV(f)5l(f22a2)2/450, which implies the vanish-
ing of the couplingl. ~Note that for the string and the mono
pole,Xa andV are terms which breakN52 supersymmetry
and which vanish for the BPS configurations.! However, that
condition must be understood in the Prasad-Sommerfi
12501
t-

s
e

ld

limiting casel→0 @19# in order to retain the boundary con
dition ufu→a as r→`, and to have symmetry breaking. I
our case, we have the same situation with a small differen
if one considersm→0, thena→0. We can avoid this prob-
lem by allowing m→` such thatmm, or equivalentlya,
remains constant, implying that the fieldf becomes infi-
nitely heavy. The same happens for the gauge fieldsWm

a in
which lf•avÞ0.

It is important to mention that if we takem50, Eq.~16! is
no longer a vacuum solution, but it is possible to consid
other vacuum solutions such thatP1(G/Gf)Þ0. However,
in this case, we were not able to construct a string ans
satisfying the BPS conditions.

IV. BPS STRING SOLUTIONS

The string must tend atr→` to vacuum solutions in any
angular directionw. Let us denotef(w)5f(w,r→`),
S(w)5S(w,r→`). Then, the vacuum conditions~12! imply
that this asymptotic field configuration must be related
gauge transformations from a vacuum configuration, wh
we shall consider Eq.~16!, i.e.,

Wi~w!5
21

ie
„] ig~w!…g~w!21, i 51,2,

f~w!5g~w!fvac,

S~w!5g~w!Svacg~w!21,

for someg(w)PG. Then, in order for the field configura
tions to be single-valued,g(2p)g(0)PGf . Without lost of
generality we shall considerg(0)51. We shall also conside
that G is simply connected~which can always be done b
going to the universal covering group!. Then, a necessar
condition for the existence of strings is thatg(2p) belongs
to a nonconnected component ofGf @7#. Let g(w)
5expiwM. Then, atr→`,

f~w!5aeiwMuklf&,

mS~w!5ka2eiM wlf•He2 iM w, ~17!

Wi~w!5
e i j x

j

er2
M , i , j 51,2.

A possible choice forM is

M5
n

k

lf•H

lf
2

,

with n being a nonvanishing integer defined modulok. From
Eq. ~17!, it is direct to see that for this choiceg(2p)
PGf . Indeed, since@20#

lf
2 5

1

2
af

2 uZ~K !u
uZ~G!u

,

we see from Eq.~14! that g(2p)5v0
n/k .
2-4
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Let us consider the ansatz

f~w,r!5 f ~r!eiwMauklf&,

mS~w,r!5h~r!ka2eiwMlf•He2 iwM, ~18!

Wi~w,r!5g~r!M
e i j x

j

er2
→B~w,r!5

M

er
g8~r!,

W0~w,r!5W3~w,r!50, ~19!

with the boundary conditions

f ~`!5g~`!5h~`!51,

in order to recover the configuration~17! at r→` and

f ~0!5g~0!50

in order to eliminate singularities atr50.
Putting this ansatz in the BPS conditions~7!–~10!, from

the first order differential equations it results that

h~r!5const51,

f 8~r!56
n

r
@12g~r!# f ~r!,

g8~r!57
e2a2rk2lf

2

2n
@ u f ~r!u221#,

which are exactly the same differential equations which
pear in theU(1) case. These equations do not have anal
solutions, however their existence has been proven and s
of their properties have been analyzed~see for instance@21#!.

It is important to emphasize that the BPS conditions o
hold whenm→0 and formÞ0 the string becomes non-BP
as has been already pointed out in@22# for the G5U(1)
case.

Using the ansatz~18!, it is straightforward to obtain the
BPS bound for the string tension~5!

T5pa2unu,

which once more coincides with theU(1) result. Since the
tension is constant, it may cause a confining potential
tween monopoles increasing linearly with their distan
which is an interesting behavior since it may produce qu
confinement in a possible dual theory.

V. CONCLUSIONS

In this paper we showed the existence of BPSZk-string
solutions for arbitrary semisimple gauge groups broken
non-Abelian groups. In order to obtain these solutions
considered the bosonic part ofN52 SQCD with one flavor
and aN52 breaking mass term. We showed that BPS c
ditions are compatible with the equations of motion only
m→0. We must also takem→`, with mm fixed, in order to
allow gauge symmetry breaking, wherem is theSbare mass
12501
-
ic
me

y

e-
,
k

o
e

-

and m is the f bare mass. We found vacua solutions co
patible with the existence of string solutions and we we
able to construct these string solutions satisfying the B
conditions. Since our theory is a non-Abelian generalizat
of Seiberg-Witten effective theory, we hope that our BP
string solution may have some relevance for non-Abel
confinement. In particular, since in our theory the breaking
gauge symmetry bySallows for monopole solutions belong
ing to representations of~the dual! non-Abelian unbroken
symmetry and the string solutions are associated to elem
of a Zk group, we expect that monopole bound states w
properties more similar to the ones of quark bound state
QCD may appear in our theory. An indication of the ex
tence of these monopole bound states comes from the
that in our theory the BPS string tensions are constant wh
may give rise to a potential between monopoles increas
linearly with their distance. It would be interesting if on
could find monopole bound solutions~in the classical theory!
similar to the breathers in sine-Gordon theory.
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APPENDIX A: NÄ2 SQCD POTENTIAL

Using Sohnius’ conventions@23# and consideringS5M
1 iN, the bosonic part for the potential ofN52 super Yang-
Mills theory with one hypermultiplet can be written as

V~S,fm!5
e2

8 H ~Sb* i f bcaSc!
21~fm

† smn
p Tafn2vpda0!2

1
4m2

e2
fm

† fm2
4m

e
fm

† ~S1S†!fm

12fm
† $S†,S%fmJ , ~A1!

wheresp are the Pauli matrices and the termsvpda0 are the
Fayet-Iliopoulos that may exist associated to a possibleU(1)
factor2 with a generator we shall denoteT0. This expression
can be rewritten as

V~S,fm!5
1

2
„~da

1!21~da
2!21~Da!21Fm

† Fm…, ~A2!

2The coupling constant for a possibleU(1) factor is not necessar
ily the same as the non-Abelian part, but for notational simplic
we shall consider the same constante.
2-5
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where

Da5
e

2
~Sb* i f bcaSc!1da

3 , ~A3!

da
p5

e

2
~fm

† smn
p Tafn2vpda0!, p51,2,3, ~A4!

F15eS S†2
m

e Df1 , ~A5!

F25eS S2
m

e Df2 . ~A6!
7

e

r o

12501
From this expression it is easy to see that we recover
~11!, for m→0, when one putsf250.

Let us denote byc andlm,m51,2, the pseudo-Majoran
spinors belonging to the vector supermultiplet and to
hypermultiplet respectively. TheirN52 supersymmetry
transformations are given by@23#

dlm5
i

2
Gmngmnjm2gmDm~M1g5N!jm2 ie@M ,N#g5jm

1 i jnsnm
p dp, ~A7!

dc52@ igmDm1e~M1g5N!2m#jmfm ,

wheregmn[ i @gm,gn#/2 and where thejm are supersymme
try parameters.
.
nd

p,
-
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