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Ising-like dynamical sighatures and the end point of the QCD transition line
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An increase in the size of coherent domains in the one compabéfield theory under the influence of a
uniformly changing external magnetic field near the critical end pbyt T, ,he =0 was proposed recently as
an estimate also for the variation of the chiral correlation length of QCD near its respective hypothetical end
point in the Tqcp-ocp Plane. The present detailed numerical investigation of the effective model suggests
that passing by the critical QCD end point with a realistic rate of temperature change will trigger large
amplitude oscillations in the temporal variation of the chiral correlation length. A simple mechanism for
producing this phenomenon is suggested.
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I. INTRODUCTION rium characterization of the second order transition, a finite
maximal correlation length is reached with a certain amount
The quality of our knowledge of the phase structure ofof supercooling. A substantial increase in the correlation
QCD at high temperature and finite baryon density is arlength will be a reliable signal for the existence of the critical
important benchmark for our understanding of strong interend point.
actions. A critical end point of the first order phase transition  Quantitative predictions for this phenomenon should rely
line in the T-u projection of the QCD phase diagram was on nonequilibrium field theory. For the moment it is hopeless
conjectured 1] to follow from the compatibility of the fol- to simulate directly the far from equilibrium behavior of
lowing observations. QCD matter. One recognizes however, that the mass af the
(i) Lattice simulationg2] indicate that the phase transfor- in this region is separated by a gap from the other mesonic
mation at zero chemical potential with realistic quark massegxcitations. Therefore, one arrives at the conclusion that an
is a crossover, characterized by an analytic variation of theffective dynamical theory of the longest wavelength excita-
thermodynamical potential with the temperature. tions in this region is in the same universality class as the
(i) At zero temperature there is a first order phase transitsing model. At present no quantitative matching is known
tion from the hadron phase to more exotic phases as a fungetween the original theory and its one-componkheffec-
tion of u [3] which continues as a first order line into the tive version. Still, universal features of the class A of critical
(T, ) plane. dynamics(in the classification of Hohenberg and Halperin
For the strong matter the significance of this end poin{6]) are expected to occtrr.
would be similar to that of the Curie point for ferromagnets. Recently Berdnikov and Rajagopd@R) [7] proposed an
Recently, some important progress was realized in théntuitive mapping. They approximately identify the magnetic
search for the &g, Te) location of the end point with non- field (h) of the Ising model with the temperature of the QCD
perturbative lattice studigfgt]. There is a chance in current [the Ising reduced temperatufe axis is nearly parallel to
heavy ion collision experiments that it can be observed exthe chemical potential axis of QQDThey checked that the
perimentally, since with increasing collision energy perresults are not sensitive to a moderate tilt in this mapping.
nucleon the central rapidity particle spectra explore regionsext, they proposed a dynamical equation which describes
of the phase diagram corresponding to a decreasing chemicdle evolution of the inverse correlation lengthe mass of
potential. An obvious class of the signatures would reflecthe & meson when the system passes through the critical
the increasing size of the coherent fluctuations in the ordegnd point of the Ising model with finite velocity under dif-
parametew field in the neighborhood of the end po[i8{. In ferent angles. This equation was shown to depend on a single
this region mostly ther field will be excited, since its mass nonuniversal parameter, proportional to the rate of change of
is the lightest near the critical end point in view of the the Ising magnetic field.
amount of explicit chiral symmetry breaking which keeps the  Finally, a semiquantitative correspondence was proposed
pions massive. This coherence should be reflected by thgetween the relevant QCD temperature rang&, (
statistics of the main decay products of théield, the pions. =180 MeV, Teezeout=120 MeV) and the dimensionless
Starting from equilibrium at som&,>T., and passing strength of the Ising magnetic fieldh{= — 0.2, =0.1).
with finite velocity near the end point, the system unavoid-The nonuniversal constant was varied in a wide range, since
ably slows out of equilibrium. In contrast with the equilib- it essentially relates the rate of cooling of the QCD matter to
the speed of the variation of the external fieldThe main

*Email address: mazsx@cleopatra.elte.hu

"Email address: patkos@Iudens.elte.hu IA more complete theory reflecting the direct influence of the
*Email address: sexty@cleopatra.elte.hu temporal variation of a conserved baryon number density omrthe
$Email address: szepzs@cleopatra.elte.hu field falls into class 7], and will be the subject of future study.

0556-2821/2001/64.2)/1250119)/$20.00 64 125011-1 ©2001 The American Physical Society



SZ. BORéﬁNYI, A. PATK()S, D. SEXTY, AND ZS. 4] PHYSICAL REVIEW D64 125011

result of Ref.[7] was a prediction for the variation of the [l. METHODS OF SOLVING AND ANALYZING THE

order parameteie.g.o’) correlation length with the variation EXACT CLASSICAL EQUATIONS

of h in the neighborhood of the critical end point. E i q icall ving the th
The variation of the correlation length during passage or setling up and numerically solving eory we

through the critical point was compared to its value taken af’Z??Bi[ef_'her;glﬁes S:Q;:arotl?tlfzgstispfgsg dISrgur previous pa-
the noncritical starting value, which corresponds to the equip ' Y P '

librium energy density of the QCD plasma produced in theles'g‘S 3;:;;2;%&:\225 Itg dreeg;'tzgc?geuds'gsg fdo'lrlgi':mn'
collision (T=T,). It is the relative increase in the correlation q 9 ' '

length at the freeze-out of the system= T+,ceze0ut) » Where t=ty/a,, X=Xg/ay,

most of the pions are coming from, which is the most impor-

tant issue. A factor of 2-3 increase was signaled, which is \ \

claimed to be observable under the accuracy of the present o= \[gaXCI)d, h= \[gafhd, 2

heavy ion experiments.

The aim of our present investigation is to check the acCuyherea, stands for the lattice spacing, the powers of which

racy of the first order relaxational dynamics assumed for thgye sed to scale dimensionful quantities. The dimensionless

inverse correlation length. For this we have integrated eXp,455 parameter of the thedmy|=a,|/my| was set to unity.

actly the equations of motion of the one-component classiCathg field equation in dimensionless variables is of the fol-
three-dimensional scalar fiel#t4(x,t) on lattices of sizeN lowing form:

=16-128:

. \ Op(t+ay) +Dp(t—a) — 2 (t) —af/a; > [Pnyit)
Pg(x,1)= (A=mH)Dy(x,t) = £ @300 —hg(t), (1) |

+ @, (1) — 2@ (1)]+a — P, + DP3—h(1)]=0.
and measured simultaneously the variation of the order pa- 3)
rameter and of the correlation length.

Although the hadronic system freezes outTafee,eout  There were a number of simple quantities routinely moni-
~120 MeV, which corresponds to=0.1 in the effective tored in each run. The first was twice the average kinetic
system, we have followed the variation of the correlationenergy per sitéalso called the kinetic temperature for non-
length and of the order parameter to higher valuel. dtis  equilibrium field configurations
enabled us to recognize the relevance of a second order dy-
namics in the effective equation of motion of these charac-
teristics.

It turns out that the order paramet{@®P) obeys an equa-
tion which is slightly more complicated than the one pro-the second, the trajectory of the homogene@B) mode:
posed by Halperin and Hohenberg for this class. It is for- L
mally analogous to the differential equation of a damped e _a oV
oscillator. In order to achieve good quantitative description (0= L3 ; (=P, ®)
of the OP trajectory obtained from the numerical simulations,
one has to take into account the effect of slowing out fromlits fluctuation
equilibrium while the system passes by the critical point.

Our paper is organized in the following way. In Sec. Il the 8D (1) =D2(x,t)V = (D (x,1)Y)? (6)
method of numerical solution of Eql) is briefly outlined.

The methods of analyzing the time evolution of the system?V@S also used. , _ o

are presented in more detail with special emphasis on the 1he thermalization algorithm, which led to the initial
determination of the spatial correlation length. In Sec. Il theState, consisted of two steps. First we set the initial energy
trajectories of the most important quantities characterizindjens'ty_by continuously comparing the desired and the mea-
the state of the system are mapped out in théa) and the sured kinetic temperatures. Depgr_ujmg Qn_the deV|at_|qn from
(OP,h) planes when passing at different distances by thdhe targetgd temperature an artificial fr|ct_|on or antlfr_|ct|on
critical Ising end point. In Sec. IV we present the results forl€'™M was introduced into E3). After reaching the required
the nonequilibriumh evolution of the correlation length for Kinetic energy density, in a second step the original form of
several values o~ *=dh/dt and compare them with the the dlsgret!zed nonlinear field equation was iterated untll_
estimates of BR. Finally, in Sec. V a quantitative phenom_thermr:ll|zat|0n was complete. Both steps were repeated until

enological interpretation of the measured order parametdf'® final kinetic temperature was just what we desired.
trajectory is offered. Our dynamical description is compared 1 he critical temperaturg, . was determlnezzd a=0 by

to the equation of motion proposed for this class by Halperifocating on theT, axis the maximum of5®“, or of the
and Hohenberg. Based on the proposed effective relaxationdPecific heat, and by finding the point separating zero and
dynamics we suggest also a simple way to account for theonzero expectation value regions of the ®P;The reduced
variation of the correlation length. Conclusions of our inves-temperaturer =(T¢— T¢ )/ To, . Was measured relative to
tigation are summarized in Sec. VI. Te =15 forL=32 andTy .=1.57 forL=064.

1 .
Tian(D)= 3 2 PR(D); @
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A. Determination of the correlation length (3) We assumed the validity of the following approximate

The main goal of this paper is to give a quantitative in-&duation for short time intervals:
terpretation of the dynamical behavior of the correlation . 2 )
length as the system passes by the critical end point. There- ZO—AD+mey @ +eA"D =0, ®
fore we need an accurate measurement method for this quan- . . . o
tity, which is reliable in a dynamical system too. yvhereA is ur.1derstlood as lattice dlsgretlzatlon to the Laplac-
(1) The most straightforward way is to use the definition lan. Cozmparmg this to th_e real noplmear e_VOIl_"t'On we could
of the correlation function: fit Z,mg;¢, € for the short intervals in question in the follow-
ing way. A spatial fast Fourier transforfirFT) algorithm
C(A,t):(CID(x,y,erA,t)d)(z,y,z,t))—(a(t))z. (7) was applied to the field configu[ations generated by(Bp.
The temporal trajectory of eack mode was fitted to the
Here the overbar refers to the spatial average of some quafduation dictated by the Fourier transform of E§). The
tity at fixedt in a single sample, while the angular bracketscoefficients of the polynomial dt? also determine the time
stand for the average over the initial conditions. After checkdependent effective masfHere and in the followingk;
ing that C(A,t) truly behaves as- cosh(A—L/2)/&;], one  =2(sink/2) stands for the dimensionless lattice momen-
can extract the correlation lengéh. We refer to this charac- tum.] A lower bound for the length of the time interval in
teristic length as the “direct” length of correlation below.  which Eq.(8) is fitted comes from the consistency criterion
(2) The average linear size of the regions of the same sigthat the time interval we averaged over must be much greater
deviations from the space averajecan be taken to estimate than the resulting Ie; time scale. For out-of-equilibrium
the characteristic size of coherent fluctuations. Considefield configurations there is also an upper bound for the time

D (x t)—(I_D(t) At a given time a histogram was Constructedinterval which is set by the variation rate of the parameters
X ' r,h.

by scanning through the lattice for the number of occur-’ . . .
rences of site sequences with the same sign deviation frortr)l (4) For the two-point function related to the OP suscepti-

— ) ] ility [9] the relation
®(t), and of a given length\, parallel to the lattice axes.

The histogram showed perfect exponential dependence on
Its characteristic length defines the “grain siz&' Repeat- 5
ing this measurement for every configuration during the time (|Pwl%)

evolution, one obtains the functiaf(t). Jolds in equilibriun{10]. Replacing the ensemble average in

The correlation lengths defined by the above algorithm he d i fthe left hand side b ) kih
are different, of course. One expects, however, that both deffe denominator of the left hand side by averaging ovekthe

nitions capture the same feature of a field configuration an@nodesﬂ characterized by equdt? and using Ty e
there exist simple fungtlonal relationships between the_m. Ino |d, |2 for T we found that our system obeys E) for
order to find the relation of; to the standard correlation
length (or its inverse, the magswhich is usually measured
with method 5(see below, we studied the equilibrium sys-
tems at different values of the reduced temperature
tiéo%g'rlzc?ti)(;ng?-r(]?) th:sa\llgec})”rltggn fhcei}ezgl]bde ;rm? t:c:(\g O.Ir.]ﬁ efmd he coefficient of the fourth derivative correction term was

i ’ e . ..
elimination ofr leads to the relations.¢=g;(&;), well ap- checkeq to be negligible. " )
proximated by second order polynomials. In principle, one (5) Since most of the modes wittf>1 nicely follow the
ment between the results of the different methods away fromall modes(including k?<1), which yields the approximate

=Z m+ k2 +ek*+ 0(k%)] 9)

k?>1 without any time averaging. With these replacements

we could fit the value om?(h) continuously both near and

far from equilibrium. The wave function renormalization
onstant was found to be equal to 1 up to 0.5% in all cases.

equilibrium also. equality
2
B. Spectral determination of the mass oP _ i 2 1 (10)
3 2 2’
An algorithm for the reconstruction of the effective poten- T L™ k70 mgget Kk

tial from the real time evolution of a scalar field was pre- . 5 _ ) : ' .

sented in[8]. An effective equation of motion was fitted to With 6%~ denoting the field fluctuation as defined in E6).

the temporal variation of the order parameter. Its “force” [t measurement does not require the application of the time

term was interpreted as the derivative of the effective poten¢nsuming FFT. The value of the function on the right hand

tial with respect to the field. Then it was easy to identify theSlde can be tabulated and'E(q.O) IS 9“'Ck'y solved with

effective squared mass. help of a Iogk-up table plus interpolation for every measured
This time we further improved this algorithm. All spatial value of 6®<. _

Fourier modes of the system are used for the reconstruction N @ddition, as a quick reference the so-called Hartree

of the dispersion relations. Three stages of the implementssquared mass estimai®? ., ce=— 1+ 3(®2+ 602) was

tion were worked out. also used. It proved useful in interpreting qualitatively the
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0.25 L —— reduced(lsing) temperature, which is defined through the
real rajoctory — average kinetic energy per site, slowly drops in the first part

oa L real trajectory ———-- ] of the crossover. However, having passed by the critical
point (h=0,r=0) a deterministic oscillation irr starts,
which survives the averaging over the ensemble of initial
thermal configurations. For comparison we have also dis-
played in Fig. 1 the reduced temperatures corresponding to
the equilibrium states belonging to the different values of the
energy densitye(h). The latter was determined by stopping
the variation ofh at a certain valuéy,,, and then relaxing
the system with fixech=hg;,, (and hence with conserved
energy to equilibrium. After the thermalization of this state
. 5 o025 was complete, we measured its equilibrium temperature.
h These runs were performed for every nonequilibrium trajec-
. . . tory for 40 equidistant intermediate values 6f;, e
FIG_. 1 The measured tra_JecFory in thelf) plane for two dif- (—0.2,0.2).
ferent |n|t|a_1l_ te_mperaturessohd lineg. The cro_sses show the re- Figure 1 clearly shows how the system slows out of equi-
duced equilibrium temperatureth) corresponding to energy den- i, A the critical point is approached, the thermaliza-
sity e(h). The size of the system was= 64, and the inverse rate of tion time scale grows above the time scateh@) of moving
change ot is a=100. . . .
in the phase diagram. Thus, in the second part of the cross-
R over two effects seem to be present. First, the spectral den-
effects in the motion of modes with differektand appar- sity of the configuration corresponds to the equilibrium at an
ently related to the presence of bsdependent common ef- earlier h value—this means an overcooling in QCD lan-
fective mass. guage. Second, the lolwimodes become highly excited and
After careful testing of the simplified procedures againstbegin to oscillate with a frequency determined by the effec-
the conceptually better founded methods in equilibrium wetive mass scale. The oscillation is synchronously present in
decided to use algorithm 5 throughout this paper. the entire spectrum, i.e. the kinetic energy of each “well-
Although the different algorithms were normalized t0 pehaving” (k%>1) mode oscillates coherently. The oscilla-
yield equal masses in equilibrium, it is not obvious that theytion is not due to any direct strong coupling between the
¥Vi|| agfete alfS(t)thE ﬁ)nolnequ”\/i\tl)riurr? l‘;rostSOVetr ?ﬁnnec"ingmodes, but is driven by the oscillation of the homogeneous
wo points of the (,h) plane. We shall return to the com- — . . .
parison of the nonequilibrium results obtained with di1‘ferentrnOde @) (see F'g' 2‘.3))' The UV modes adiabatically .fOI'
methods at the end of Sec. IV. low the §Iow oscillation of 'ghe order parametéee Fig.
2(b)), which enters parametrically through a common effec-
tive mass in the corresponding equation of each mode.
Ill. PASSING BY THE CRITICAL POINT One may define the error of the OP trajectories from dif-
ferent thermal initial conditions as the standard dispersion of

. . . . . ; the OP() values at fixed. This error comes out at0.007
numerically. A starting configuration was thermalized in thefor h<0 and ~0.02 for h>0. which is about 100 times

presence of the initial magnetic fielti{=—0.2), ?n S.L'Ch 2 smaller than the amplitude of the oscillations.
way that a predefined value of the average kinetic energy o mnarison the equilibrium OP values are also dis-
density was reached. This thermal state was taken for thﬁlayed in Fig. 2a). These values come from thermal solu-

initial configuratipn yvhen solving the field equation with an tions of Eq.(1) with the (r,h) values chosen from the equi-
external magnetic field tuned with constant velodity/dt. librium points of Fig. 1

With the parameters we used the correlation length of the The OP evolution displayed in Fig.(@ is by itself a

initial configuration was approximately equal to one Iattlcechallenge seeking quantitative interpretation. We shall elabo-

unit. . I rate on it in detail in Sec. IV.
In the present investigation the same range of the param-

etersr,dh/dt was covered as if7]. For each value of
r_,L,aE_(d h/dt) ~* runs with~ 20 different equilibrium con- IV. HOW LARGE DOES THE CORRELATION LENGTH
figurations were averaged. GROW?
An approximate idea of the part of the Ising phase dia-
gram explored in our numerical investigation can be given The main physical motivation of our investigation was to
by drawing the measured ) trajectories for different val- answer the question in the title of this Section. We have used
ues ofr,itia) @nda (see Fig. L the fast method described in Sec. Il for deducing the actual
Due to the time dependence of the external fdr¢® the  nonequilibrium value of the correlation length, that is, the
full energy densitye(t) is not conserved; we shall param- inverseoc mass.
etrize it ase(h). In principle, it might depend on the param-  In Fig. 3(a we display theh history of the correlation
etera too, but for the range investigated in this paper we didlength obtained on a 64lattice with an initial reduced
not experience ang dependence of the energy density. The(lsing) temperature;=0.083 for four values of tha param-

0.15 fx-

01F

0.05

We have solved Ed3), the discretized version of E(l),
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FIG. 2. (a) OP trajectories for differenth/dt=a! values (=64, I,y =0.15). The equilibriumtg(h) curve is represented by
crosses(b) Temporal variation of the left hand side of E§) synchronized by the OP oscillation.

eter. The (,h) trajectory starting from thig; passes the which corresponds to a trajectory passing somewhat farther
closest by the critical end point {;,=0.007); see the lower away ;= 0.15; the upper curve in Fig,)1
curve in Fig. 1. Again, the equilibrium correlation length  The period of the oscillation in QCD temperature based
values obtained from analyzing long thermal time evolutionson the Tocp-h correspondence proposed([if] seems to be
with an identical method are displayed in the same plot. much smaller than the spread of the freeze-out temperature

When compared with the estimate [of] the most dra- estimates appearing in the literature. Therefore our main
matic difference is obvious: even the slowest variatiorhof qualitative result is that the expected increase in the coher-
considered by BR is in reality much too strong. The criticalence of the pion radiation might be missed if the actual
slowing down of the internal interactions pushes the systenfreeze-out happens at a temperature slightly beyond the
far out of the equilibrium state corresponding to the actuamaximum of the correlation length. Ideally, accurate mea-
magnetic field value. This is the reason that after passing theurements of the freeze-out temperatures of different meson
maximum of the correlation length, reached with the ex-species coupled te- might allow one to map out the varia-
pected “supercooling” inh, ¢ starts to oscillate and the cor- tion of its correlation length across the hypersurfaces of the
relation length very steeply drops to a minimum. This oscil-respective “last scatterings” as predicted by our analysis.
lation has opposite “phase” if compared to thésing) One can compare the exact nonequilibrigg,a) func-
temperature. A probable explanation for this phenomenon iton to the estimate of BR in more quantitative detail. The
that a shrinking correlation length means largemass and maximal values of the correlation length in units of the initial
hence an increase in the frequency of the microscopic oscilg, are in the range (2.5—-3.8). The amount of supercooling
lations of the UV modes. The energy of a weakly coupledis generically larger from the numerical solution of tfhé¢
UV mode—such as of a tuned linear oscillator—gets largedynamics, in comparison to the result of the first order dy-
with an increase of its frequency. namics conjectured ifi7].

The qualitative picture is the same in a wider neighbor- A good measure of the amount of physical supercooling
hood of the critical end point as one can see from F{§),3 as a function of thén velocity is offered by the shift in the

6

-
o

Y — ' a=25 —— +
L a=50 - i 55 a=50 -—-—
a=100 a=100
L a=150 | 5 a=150
equilibrium  + equilibrium
1 45
+ 4 r
L A i
35
&-' + +

3L
25
2L
15
1F

05 . 1 1 . . 1 1
02 -015 -01 -0.05 0 0.05 0.1 0.15 0.2 02 -015 -01 -0.05 0 0.05 0.1 0.15 0.2

(a) h (b) h

U
N W AR OO N OO

g

o

FIG. 3. Evolution of correlation length during a crossover compared to the equilibrium values alonghtheo{uite depicted in Fig. 1.
(L=64r; =0.083r; ,,=0.15.) Crosses give the results of equilibrium measurements.
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location of the first maximum of the correlation length, 35 "epectra - ¥
h(&max - This value turns out to scale with the velocity of the ~ average grain size -~
h variation: 3| direct cotrelation length -~

h(&max,a)=ca 25=00L (12) 25|

The values of ., themselves also follow a scaling formas . |
suggested in7] on the basis of dynamical scaling consider-
ations. We find numerically 15|

gma)&a)zcrao.zllto.ol. (12)

The value of this exponent agrees with the prediction of BR,
when it is applied to class A. Then their prediction for the 0- 02 015 ©01 005 ©0 005 041 045 02
exponent vyields »/B6/(1+zvIB6)=0.222, with v h

=0.630,8=0.326,6=4.8 and z=2+[6In(4/3)—-1]7n,7

B L . . FIG. 4. Comparison of the time dependence of the correlation
=0.0335[6]. When the initiakIsing) temperature is tuned to lengths determined by three different methods: the “direct” corre-

o . S o0 .
apprﬁachhth? C”UC?I ﬁomaw:cthm_z 3% frqm abO\Il_e’ '_t tulrns lation length, the average grain size and the inverse mass deter-
out that the form of the;(h) function remains qualitatively mined with spectral algorithms. Shown is the evolution during the

the same as describgd above. Ehealues at the first_ maxi-_ nonthermal crossover passing close to the Ising critical end point.
mum are about four times larger than those taken in the firsf_ =35y, =0.15a=100: for definitions see the text.

minimum following them.

The second maximum of appearing in our numerical improves as the system approaches the critical point. This is
solution very probably cannot be observed experimentallya clean argument for the independence of our results of the
since the fireball breaks up into noninteracting mesons beattice spacing. This conclusion is certainly true until the first
fore reaching the corresponding low temperature. maximum of the correlation length is reached. For the oscil-

The sensitivity of the results to the size of the system igatory motion a second order dynamics is relevant; therefore
also an important issue, since at present the linear size of thfe scaling behavior based @r-2 should be violated.
plasma droplet is estimated to be abogp.6Since we have The final question to be discussed in this section is to
choseng, for the lattice constant, one might expect to reachwhat extent the observed features of the time dependence of
the maximal allowed correlation length in a much smaller¢ depend on the algorithm used for its determination. In Fig.
lattice volume. We have tested the robustness of the above g typical time evolution is displayed for the three charac-
conclusions by varying the lattice size between 16 and 64eristic lengths introduced in Sec. Il. Using th@g
No important variation was seen when changing the size-g,(¢) relations determined in equilibrium we see very
from L =64 down toL =32, but a 20% drop in the maximum good agreement of all three before the system is slowed out
of ¢ appears when going down to=16. of equilibrium. Next all three enter an oscillatory regime,

The lattice we used in this investigation is rather coarseyith about the same amplitude, but with a certain “phase
(Jm|ay=1). The idea behind this choice is that we work nearshift.”
the critical point, in the scaling regime. At equilibrium when  This observation makes it more difficult to relate the lo-
the correlation length grows very large it is obvious that thecation of the first maximum i to the freeze-out tempera-
actual value of the lattice spacing cannot matter. Howeveryre. One has to work with that length which is coupled to
actually a factor of 3-5 increase was experienced “only,” Sothe microscopic mechanism producing a certain observable.
we have to check that thitynamicalscaling hypothesis For example, the high frequency part of thefield is prob-

., W s — vz ably well represented by a gas of particles with the effective
&(rh ) =N"E(Nr A" Hh, A7), frequency determined by the “susceptibility dispersion”
_ _ method 5 of Sec. Il. The decay products of these hard par-
®(r,h,t)=N"PD(\r,\PPh N7 ") (13 ticles will reflect this frequency. The softest part of the pion
) o ) . spectra probably comes from the coherent decay of the long-
is satisfied by the solution of E¢1). The observed dynami- g5t avelength components of the field configuration: there-
cal scaling behavior ofpax andh(émay) already suggests fore g characteristic coherence length closer to the “grain
that our system evolves in the scaling regime. As a directj;o” (method 2 will be followed.
proof for this, we have rescaled the reduced temperature, the
magnetic field and thea=dt/dh parameter in such a way V. THE EEFECTIVE ORDER PARAMETER DYNAMICS
that we could expect a factor of 2 increase in the correlation
length if the first equation of Eq13) is obeyed. The field In statistical physics noisy first order effective equations
has been rescaled as dictated by the second equation. Frare used for the longest wavelength hydrodynamical modes
the rescaled equations the evolution of the order parametéo describe relaxation phenomena. These equations have to
and of the inverse correlation length has been extracted. Bése written down for the order parameter fields and also for
fore the oscillation sets in the agreement with the expectacomposite objects which correspond to densities of con-
tions based on the scaling hypothesis is very convincing. Iserved quantitief5]. From this viewpoint it is not clear what
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FIG. 5. (a) Exact evolution of the OP and the solution of Efj4) for two values ofa. (b) Exact evolution of the correlation length and
its values estimated with the help of the effective OP trajectseg text for two values ofa. (L=64y;=0.15.)

could be the foundation for the proposal of BR to write downswitches on théa delay only wherh=0 (6°=0.094). In the
directly an equation for the relaxation of the inverse correlathird version the delay grows linearly from 0 to a final value

tion length.

that was fitted to the data. This last method produced the

We follow the more conventional path and discuss firstsmallest MS deviation &=0.0029); therefore below we
the effective dynamics of the order parameter. After presentshall present results obtained with this method. The represen-
ing considerable evidence for the validity of our approach tqative 52 values refer to a lattice with r;=0.15a=100.
the OP, we shall also be able to build upon it a quite naturahg expected the fitted slope of the linear shift—h’

interpretation of the observed behavior of the correlation_ const< (h—h

length.

It is obvious that one cannot account for the oscillatory

behavior of the order parameter experienced after passi

the effective OP equation with an “acceleration” term. For

ng
near the critical end point by just using a first order effective
dynamics. This means that our system actually leaves th
hydrodynamical regime. Therefore, we propose to complet

o), Clearly increases a5 gets smaller. The
value of the constant coefficient changes monotonically from
0.02 to 0.1 whiler; varies from 0.2 to 0.1.

The reconstruction of the measured OP trajectory turned
ut to be rather insensitive to the value of the relaxation rate
(h"). Furthermore, ndv’ dependence could be observed. In

the wide rangd”=0.01-0.6, an acceptable agreement of the

the effective free energy we use the simplest quadratic fornf€2l and the reconstructed OP trajectories was found.
which corresponds to an oscillator potential centered at the A nonperturbative, near equilibrium determination Iof

equilibrium value of the order paramefed]. We emphasize
that no noise is introduced.
The proposed linear equation is of the form

a*zd?(h)+a*lr(h')éT(h)+mgq(h')[qT(h)—Seq(h')]zo.
(14

In this fully deterministic equation an overdot means deriva
tion with respect toh. In view of the relationh=at, the

derivatives originally refer to the time. The determination of OP deduced from the full systemd

the h-dependent coefficient$neq=ggql,d_)eq follows the

methods described in previous sections. However, their va

ues are taken not at the actdmlbut at a somewhat smaller

valueh'’, which corresponds to an earlier equilibrium state.

This is the simplest way to incorporate the “slowing out of
equilibrium” phenomenon into the proposed equation.
The shifth—h' is established by optimizing the agree-

ment with the measured order parameter trajectory. Thre

was attempted by stoppinig at a certain valuég,, and

fitting the relaxation ofb toward equilibrium to an exponen-
tial rate. The estimate foF was found to be in the range
0.005-0.025, independently of anda. In a model investi-
gated previously we found that during the equilibration the
relaxation rate approaches its perturbative value strictly from
below[11].

Equation(14) was solved with the initial values for the

(h=-0.2).®(h
=—0.2). OP trajectories resulting from different realizations

pf the initial thermal ensemble give slightly different initial

conditions for Eq(14). This uncertainty sets the error of the
reconstructed trajectoryThe average variance of the solu-
tion of Eq.(14) is 03,~0.0001 forh<0 anda?,~0.0006 for
h>0.]

In Fig. 5@ we compare the true and the reconstructed OP
Wajectories. The quality of the agreement fluctuates some-

physical pictures for this shift were tested and benchmarke#hat, but its” value is less than 0.02 in the whdleT,a

by the mean-squar@MS) deviation of the reconstructed OP
trajectory from the measured on&?j. In the first one a

=50 region, considered in this paper. In principle one could
attempt to further improve the analytic interpretation of the

global delay parameter is introduced which acts with equafPP dynamics by introducing a memory kernel into the equa-
strength before and after reaching the neighborhood of théon for ®, but we believe that our proposed equation cap-

critical point (6°=0.0034). In the second version one

tures the essence of the actual OP dynamics.
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With this achievement, we can return to the discussion ofurbative effective potential was computed with self-
the nontrivial variation of the correlation length. We build consistent propagators on a finite lattice and we extracted
our description on our understanding of the order parametdrom it the position of the minimum and the second deriva-
dynamics. tive in this point along ther(h) route shown in Fig. 1. The

The evolution of the system is investigated in the closemass used in the propagators was determined from a one-
neighborhood of the critical point, in the so called scalingloop gap equation.
regime. In equilibrium, by choosing the scale fackor 1/r The expression for the two-loop effective potential on a
in Eq. (13) one finds the usual form of the scaling behaviorlattice is
of the correlation length and of the order parameter. In Fig. 1
we have shown the trajectory=r (h) of the evolution of the , (5)
system fort=ah. If this trajectory is simple enough, as in ~ 2'°°P

the left part of Fig. 1, a unique(¢) function can be ex- T w(k,p)

tracted, for instance, from the first relation, and after its sub- =Vtree(‘13)+p ; |09T

stitution into the second a functional relati@i®) is ob-

tained. One may then deduce the piecewise unique function AT? 1 2

dd(£)/dé€, which can be used to rewrite the effective equa- - 8LS| <« wz(lz,m

tion for ® [Eq. 14] into an equation fog(h). _ o
Motivated by this argument, we have plotté@) against B AD2T? Sy 5®)(k+p+aq)

®(t), both measured during the actual real time evolution of 12 % 5 T o?(kp)o¥(p,u)o(q.u)

the system. It turns out that a unique functional relation
&(®) can be recognized in the regime of monotonic OP evo-
lution (cf. Fig. 2a)). In the oscillatory OP regime first one
has to average thé=m_: values taken at different passes
through®. The function&(®) is extracted only after this
step. A very good fit valid for the whole evolution period of N AT
the form 2_ 2, Ny, M

(16)

where w?(k, 1) =k2+ u2. The mass was determined from
the one-loop gap equation

- 17

w?(k,pm)
£2=cd%p, =23, c=2 (15)
In view of Eq.(2) we putA=6.

was obtained, with the parameteslightly depending on the ~ The inaccuracy of the two-loop perturbation theory comes
velocity of theh variation. The agreement of the measuredoverwhelmingly from the fact that for the lattice spacing
£(h) function with the one reconstructed by mapping theconsidered in this paper the estimate of the c_r|t|cal tempera-
computed time evolution of the OP using the above relatiofureé exceeds the value numerically determined by us at
is quite spectaculafsee Fig. ). Imla,=1 by 25%. Repeating both the numerical and the

We conclude this section by discussing a more “theoretiPerturbative calculation withm|a,=0.5, the deviation di-
cal” approach to the determination &f, m.,, and®.,, by minishes to 5%. Despite all inaccuracies of the perturbation
observing that these quantities refer (lmeaj equilibrium  theory the solution of Eq(14) based on the perturbative
situations. In our very simple model their nonperturbativePotentialVy 40, turns out to follow the real trajectory quite
values were easily determined from the microscopic data. Ii§losely, although because of the ill-determined OP values the
the case of more realistic models, however, one may attemgeviation also has a systematic erréf40.014).
to use perturbative estimates for the masses, the damping For an alternative estimate @tq(h) we used Widom's
rates and the equilibrium order parameter. We have alsécaling form[14] as was done by BR. This yieldg,(h)
tested the quality of the reconstructed OP trajectory in thevalues close to the measured equilibrium correlation length.
present model when these coefficients were taken from pefthe solution of Eq.(14) fitted to the measured curve with
turbation theory. this coefficient is of only slightly lower quality than the fully

As is well known even a resummed perturbation theorynonperturbatively reconstructed on&0.0061).
fails in the vicinity of the critical temperature due to its bad

behavior in the IR regime. The divergence of thg correlatio_n VI. CONCLUSIONS
length and as a consequence also of the effective expansion
parameteh T¢ (see for exampl€l2]) excludes its use in the In this paper we have presented a detailed discussion of

scaling regime. In a finite system, however, with an IR cutoffthe real time nonequilibrium evolution of the classichf

L we could attempt to extract the equilibrium mass, the equifield theory when it passes near the critical end point in its

librium OP value and the damping rate of the OP using two<{r,h) phase diagram under the influence of a time dependent
loop lattice perturbation theory. The mass comes from thexternal magnetic field. The numerical investigation was fo-

second derivative of the effective potential at the minimum,cused on the variation of the correlation length. A quick but

the OP is the location of this minimum, and for the dampingaccurate method for determination of the instant nonequilib-

rate we use the formula derived t3]. The two-loop per- rium mass of theb field was employed, relying on the para-
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metrical relation of the spatial domain of coherence of fieldcumulative effect of the critical slowing down in the pro-
fluctuations to the mass. posed effective description.

For a wide range of the rate of variation of the magnetic The motivation for this investigation came from its pos-
field we experienced a slowing of the system out of the hysible relevance tar-meson dynamics in high energy heavy
drodynamical regime. This phenomenon was demonstrateign collisions [1]. The weakest point in taking the above
in the behavior of all quantities used for the characterizatiofeatures over into QCD is the lack of a quantitatively accu-
of the system: the average kinetic energy per site, the ordegte mapping between QCD and ¢ model in the T, )
parameter and the correlation length all showed oscillationg|ane. Still, our results can be compared in a useful way with
when the value of the external magnetic field moved beyon(ﬂhe scenario put forward |['|7] for the evolution near a hy-
the point of “supercooling.” pothetical critical QCD end point.

A simple effective equation was shown to describe this |n the context of heavy ion collisions, it would be inter-

dramatic feature of the OP evolution. The coefficients of theesting to see the effect of a coherently oscillating long wave-
second order differential equation written down for the ordenength ¢ background with variable correlation length on

parameter take their values from equilibrium. They can beransversal jet quenching.
determined from separate simulations, but perturbative esti-
mates also led to reasonable description of the OP evolution.
A more important feature of the effective equation is that the
coefficient functions should be computed for values of the
external magnetic field corresponding to some earlier stage The authors gratefully acknowledge important discussions
of the evolution. The gradual increase in this shift reflects thavith A. Jakova and G. Veres.
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