
PHYSICAL REVIEW D, VOLUME 64, 125008
Tenacious domain walls in supersymmetric QCD

A. V. Smilga
SUBATECH, Universite´ de Nantes, 4 Rue Alfred Kastler, Boıˆte Postale 20722, Nantes 44307, France

~Received 19 June 2001; published 27 November 2001!

We study the structure of the tenacious~existing for all values of masses of the matter fields! Bogomol’nyi-
Prasad-Sommerfield domain walls interpolating between different chirally asymmetric vacua in supersymmet-
ric QCD in the limit of large masses. We show that the wall consists in this case of three layers: two outer
layers form a ‘‘coat’’ with the characteristic size;LSYM

21 and there is also the core with width;m21. The core
always carries a significant fraction of the total wall energy. This fraction depends onNf and on the ‘‘wind-
ings’’ of the matter fields.
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I. INTRODUCTION

The dynamics of supersymmetric gauge theories with
without additional matter multiplets has attracted the att
tion of theorists since the beginning of the 1980’s. It is ve
well known @1# that the pure supersymmetric Yang-Mil
~SYM! theory, as well as a class of theories involving ex
matter supermultiplets~SQCD!, based on the SU(Nc) gauge
group, involve Nc different chirally asymmetric vacuum
states characterized by the different phases of the gluino
densate

^Tr l2&5Se2p ik/Nc, k50, . . . ,Nc21. ~1!

It was argued recently@2# that on top ofNc chirally asym-
metric vacua~1!, a chirally symmetric vacuum with a zer
value of the condensate also exists.

The presence of different degenerate physical vacua in
theory implies the existence of domain walls—static fie
configurations depending only on one spatial coordinate~z!
which interpolate between one of the vacua atz52` and
another one atz5` and minimizing the energy functiona
As was shown in@3,4#, in many cases the energy dens
of these walls can be found exactly due to the fact that
walls present the Bogomol’nyi-Prasad-Sommerfield-~BPS-!
saturated states:

e5
Nc

8p2
u^Tr l2&`2^Tr l2&2`u, ~2!

where the subscript6` marks the values of the gluino con
densate at spatial infinities. The right side of Eq.~2! presents
an absolute lower bound for the energy of any field confi
ration interpolating between different vacua.

The relation~2! is valid assumingthat the wall is BPS
saturated. However, whether such a BPS-saturated do
wall exists or not is a nontrivial dynamic question which c
be answered only in a specific study of a particular theory
interest.

In Refs.@5,6# this question was studied in theories invol
ing Nf5Nc21 different quark and squark flavors.~Each fla-
vor corresponds to a pair of chiral supermultipletsSf andSf8
with opposite chiralities.! These theories are distinguished
the fact that the vacuum expectation values of squark fie
0556-2821/2001/64~12!/125008~7!/$20.00 64 1250
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give the mass toall gauge bosons of the group SU(Nc)
through the Higgs mechanism. Also, when the massm of the
matter fields is smallm!LSQCD, the effective coupling con-
stant is small and the dynamics of the theory can be analy
perturbatively.

In particular, the low energy dynamics of the theory in t
Higgs phase is described by the Affleck-Dine-Seiberg eff
tive Lagrangian for the composite chiral superfieldsMi j

52Si8Sj @1#. It has the Wess-Zumino nature with the sup
potential

W52
2~Nc2Nf !

3~det_M!1/(Nc2Nf )
2

m

2
Tr_M. ~3!

When writing Eq.~3!, we assumed that all quark/squark fl
vors are endowed with the same small massm. For future
purposes, we have leftNf as a free parameter~with the re-
striction Nf,Nc). From now on we setLSQCD51.

It is not difficult to see that the corresponding potential f
the scalar componentsm i j of Mi j ,

U~m i j ,m̄ i j !5(
i j

U ]W

]m i j
U2

, ~4!

hasNc degenerate supersymmetric minima. The chiral c
densate at the vacua is given by the relation

^Tr l2&vac5
16p2

Nc
W~vac!. ~5!

It has the form~1! with

S5
32p2

3 S 3m

4Nf
D Nf /Nc

. ~6!

The ADS effective Lagrangian has a Wilsonian nature in
sense that the characteristic mass of the Higgs field exc
tions it describes is of orderm, which is much smaller than
the mass of the heavy gauge bosons. It is important to
derstand, however, that it was derived under theassumption
that the relevant values ofum i j u are large. This is not true
near the chirally symmetric vacuum, where^m i j &50, and
©2001 The American Physical Society08-1



D

e

e
n
r,
ym

n-

ns
ng

ed
a

ric

es
o

e
ric

lly

n

m

ap-

ill

r.

s
, at
ly,

t
rsal
c-
ry.
in

e to
ry

’’
r

, it
ch

nd
bed
e

new
M

n-

A. V. SMILGA PHYSICAL REVIEW D 64 125008
there is no wonder that the latter is not seen in the A
effective Lagrangian framework~see@4# for a detailed dis-
cussion!.

Adopting the simplest ansatz

Mi j 5d i j X
2 and hencem i j 5d i j x

2 ~7!

and adding to the potential~4! the kinetic termu]mxu2, we
can obtain the BPS wall solutions which interpolate betwe
different chirally asymmetric vacua. For the theory withNc
52, Nf51, an analytic solution exists@4#. In other cases the
solutions can be found numerically~see Ref.@6# and Sec. III
of this paper!.

When the massm is not small, the lightest states in th
spectrum have glueball or glueballino nature and one can
write down a truly Wilsonian effective Lagrangian. Howeve
the situation is better here than, say, in pure nonsupers
metric Yang-Mills theory. In our case, thepotential part of
the effective Lagrangian is rigidly fixed by symmetry co
siderations. It is expressed in terms ofMi j and of the color-
less chiral superfield

S[F35
3

32p2
Tr$WaWa% ~8!

representing the gauge sector. The lowest component ofS is
proprotional to Trl2. Supersymmetry and the exact relatio
for the conformal and chiral anomalies dictate the followi
form of the superpotential@7#:

W5
2

3
F3@ ln~F3(Nc2Nf ) detM!2~Nc2Nf !#2

m

2
Tr_M.

~9!

However, the kinetic term of the Lagrangian is not fix
rigidly, even though the requirement of the absence of
extra dimensionful parameter imposes significant rest
tions. The simplest choice is

L kin5E d4u@F̄F1K~M̄,M!#, ~10!

where the Ka¨hler potentialK(M̄,M) is the same as in the
ADS Lagrangian. It is obtained from the term( i(S̄iSi

1S̄i8Si8) in the original SQCD Lagrangian, which describ
physics adequately for large values of moduli. The sum
Eq. ~10! and Re@*d2uW(F,Mi j )# is called the Taylor-
Veneziano-Yankielowicz~TVY ! effective Lagrangian.

Domain walls in supersymmetric QCD withNf5Nc21
were studied in the TVY framework in Refs.@4–6#. The
results are the following.

~1! On top of the chirally asymmetric vacua~1!, the sys-
tem also enjoys the chirally symmetric vacuum with^f3&
5^m i j &50.

~2! For any value of mass there are ‘‘real’’~i.e., without
essential complex dynamics! Bogomol’nyi-Prasad-
Sommerfield ~BPS! solutions interpolating between th
chirally symmetric vacuum and each chirally asymmet
one.
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~3! For small masses there are alsotwo differentcomplex
BPS wall solutions interpolating between adjacent chira
asymmetric vacua. In the limitm→0, one of these solutions
~the ‘‘upper BPS branch’’! goes over to the BPS solution i
the ADS effective Lagrangian. Another solution~the lower
BPS branch! passes near the chirally symmetric minimu
and is not described by the ADS Lagrangian.

~4! When the mass grows, the two BPS branches
proach each other. They fuse at some critical valuem* . For
m.m* , there is no BPS solution at all. A domain wall st
exists in the rangem* ,m,m** , but it is no longer BPS
saturated. Atm.m** , there are no such walls whatsoeve
We have studied the theories withNc52,3,4. The analysis
was later extended to largerNc ~up to Nc58) @8#. The criti-
cal valuem* falls off rapidly with increasingNc , while m**
is roughly constant.

Recently@9#, theories with an arbitrary number of flavor
were analyzed along the same lines. It was found that
Nf,Nc/2, we have a completely different picture; name
there is only one complex BPS branch and it exists forany
value of mass. This finding was confirmed in@8#. A qualita-
tive explanation of this phenomenon was given in@9#. In
particular, the limitm→` was explored. It was noted tha
the profile of the wall acquires for large masses a unive
form, which can be found in the framework of the VY effe
tive Lagrangian for pure supersymmetric Yang-Mills theo

In addition, it was noticed that such ‘‘tenacious’’ doma
walls also exist in the theories withNf5Nc21, if one re-
laxes the requirement~7!. Assuming thatMi j is still diago-
nal, but its different components are not equal, one is abl
construct complex domain walls that persist for arbitra
large masses.

In this paper we make two remarks. We note that, whenm
is large, ‘‘tenacious’’ walls have a complex ‘‘matryoshka
structure. It involves the VY ‘‘coat,’’ for which heavy matte
fields decouple, and the core, where the modulim i j are
‘‘alive.’’ The core has small width;1/m, but, as the fields
m i j change rapidly there and the energy density is big
carries a significant fraction of the total wall energy, whi
we calculate.

Another remark is that the flavor asymmetric walls fou
in Ref. @9~b!# exist also at small masses and can be descri
in the framework of the ADS effective Lagrangian. W
present the simplest such asymmetric solution.

In the last section, we discuss the relevance of these
findings for the dynamics of pure supersymmetric Y
theory, including the toron controversy.

II. TENACIOUS WALLS AT LARGE MASSES

Let us consider first flavor-symmetric walls with the a
satz~7! for the moduliMi j . The superpotential~9! acquires
the form

W5
2

3
F3@ ln~F3(Nc2Nf )X2Nf !2~Nc2Nf !#2

mNf

2
X2.

~11!

The corresponding scalar field potential is
8-2
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TENACIOUS DOMAIN WALLS IN SUPERSYMMETRIC QCD PHYSICAL REVIEW D64 125008
U~f,x!5U]W

]f U2

1U]W

]x U2

54uf2 ln~f3(Nc2Nf )x2Nf !u2

1Nf
2U4f3

3x
2mxU2

. ~12!

We are set to study the wall which interpolates between
vacua:

f3: R
*
3 →R

*
3 e2p iN f /Nc; x2: r

*
2 →r

*
2 e2p iN f /Nc, ~13!

with

R
*
3 5S 3m

4 D Nf /Nc

, r
*
2 5S 3m

4 D Nf /Nc21

. ~14!

The BPS equations for the wall have the form

]zf5eid2f̄2 ln~f̄3(Nc2Nf )x̄2Nf !, ]zx5eidNfF4f̄3

3x̄
2mx̄G

~15!

with d5pNf /Nc2p/2. There is an integral of motion

Im@We2 id#5Re@We2 ipNf /Nc#5const. ~16!

The energy of the wall is

e52uW`2W2`u5
4NcR*

3

3
ue2p iN f /Nc21u5

8NcR*
3

3
sin

pNf

Nc
.

~17!

Note that the phase of the fieldsf andx must change along
the wall in such a way that the phase of the argument of
logarithm in Eq.~12! remains zero atz52` as it is atz
5`:

~Nc2Nf !D arg@f3#1NfD arg@x2#50. ~18!

For large masses the matter fieldx tends to get frozen in
such a way that the potentiallly large second term in Eq.~12!
vanishes:

x254f3/~3m!. ~19!

The effective potential for the light fieldf acquires the VY
form

UVY~f!5 4Nc
2uf2 ln~f3/R

*
3 !u2. ~20!

The potential~20!, as it is written, has only one minimum a
f35R

*
3 and notNc minima as we expect it to have. Th

resolution of this apparent paradox is well known@2#: one
should take different branches of the logarithm at differ
values off3. The branches are glued together1 at

f35R
*
3 exp$ ip~112k!/Nc%, k50, . . . ,Nc21.

1Glued potentials are not specific for supersymmetric theories
also appear in the Schwinger model@10#.
12500
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Each branch has its own vacuum with^f3&k5R
*
3 e2p ik/Nc.

Actually, one can see how the branches and the branch
appear in the framework of the TVY model. The point is th
the condition~19! cannot be satisfiedeverywhere: it would
contradict the requirement~18!. The only way for the solu-
tion to satisfy both contradicting requirements is the follo
ing: the relation~19! holds almost everywhere in the wall bu
for the narrow central region, where the fieldx changes rap-
idly such that

Dcorearg@x2#522p. ~21!

As a result of such a change, the argument of the logari
in the effective theory~20! is multiplied by e22p iN f /Nc and
this exactly corresponds to crossing the branch cut and g
over to another branch of the glued potential.

This scenario works, indeed, in many cases. It is clea
seen from the numerical solutions of Refs.@9,8#. Take Figs. 1
and 2 of Ref.@9#. One can see that the variableR5ufu just
follows the solution of the effective VY theory. The variab
r5uxu is frozen according to Eq.~19! everywhere but in the
central region, where it undergoes a rapid change. The s
concerns the phaseb of the variablef vs the phasea of the
variablex.

To acquire further understanding, we plot in Fig. 1 t
Argand plots forf(z) and for the superpotentialW@f(z)# in
VY theory. W changes along a straight line due to the pro
erty ~16!. We see that the superpotential is discontinuous
the cut.

The value off3 on the cut is given by

~f3!05 R
*
3 heipNf /Nc, ~22!

whereh satisfies the condition

h~ ln h21!52cos
pNf

Nc
, ~23!

which is a corollary of Eq.~16!.
Now, in TVY theory with large but finitem there is no

discontinuity, but a narrow transitional region. Within th
core one can assume thatf3 is given by Eq.~22! and is
constant. It is convenient to introduce
d

FIG. 1. Argand plots for~a! f3/R
*
3 and ~b! W(f3)/R

*
3 for the

BPS domain walls in the effective VY theory;Nc53. W6 are the
values of the superpotential on the opposite sides of the cut.
8-3
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A. V. SMILGA PHYSICAL REVIEW D 64 125008
z5A 3m

4f3
x. ~24!

The equation describing the dynamics ofz in the core has the
universal form

]zz52 imS 1

z̄
2 z̄ D . ~25!

The solution to Eq.~25! with boundary conditionsz(6`)
51 can easily be found withMATHEMATICA . @See Fig. 2,
where it is plotted together with the right side of Eq.~24!
obtained from the numerical solutions of the BPS equati
in TVY theory for large but finitem.# The phaseg (z
[rze

ig) is changed by2p. There is an integral of motion

ln rz2
rz

2

2
cos~2g!5const52

1

2
. ~26!

In the center of the wall,g52p/2 and rz'0.52. We see
from Fig. 2 that, for large masses, the dependenceux(z)u
inside the core is indeed determined by Eq.~25!. Also, x(z)
satisfies the condition~19! in the coat.

Let us determine the fraction of the energy of the w
stored in its coat. It is given by the expression

f coat5
uW`2W1u1uW22W2`u

uW`2W2`u
, ~27!

whereW6 are the values of the superpotential at the oppo
sides of the core. A simple calculation using, again, the c
dition ~16! gives

f coat5
usin~pNf /Nc!2phNf /Ncu

sin~pNf /Nc!
. ~28!

Let us look at Eq.~23! determining the parameterh. At
Nf /Nc,1/2 it has two real roots. One of them (h1) is
smaller than 1 and the corresponding fraction~28! is also
less than 1. Another root (h2) lies within the range 1,h2
,e. For Nc,5, the corresponding fraction is greater than
which obviously means that this solution is not acceptab
But even forNc.5 when f coat as determined by Eq.~28! is
less than 1, the rooth2 does not correspond to any wa

FIG. 2. Dynamics of the the fieldrz(z) inside the core:Nc

53, m550 ~dotted!, Nc53, m5250 ~dashed!, m→` ~solid!.
12500
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solution in TVY theory. Again, the picture can be clarified b
drawing the Argand plot for the corresponding BPS solutio
in VY theory ~see Fig. 3!. The differencesW`2W1 ,W2

2W2` have now the opposite sign as compared to the p
vious case, and one can no longer pass fromW2 to W1

moving in the positivez direction.
If Nf /Nc51/2, h150. This corresponds to the wall pas

ing through the chirally symmetric vacuum in the middl
This is, indeed, the only way for different chirally asymme
ric vacua to be connected in the theory withNc52, Nf51
for large masses@5#. For Nf /Nc.1/2, the real rooth1 dis-
appears and there is no solution whatsoever.

If Nf51 andNc is large,h'12p/Nc and

f coat
1 flavor, largeNc'

p

Nc
!1, ~29!

i.e., almost all energy is stored in the core. This agrees w
the analysis in Ref.@11#, where the mechanism of regulariz
ing the branch cut singularity by ‘‘integrating in’’ an extr
heavy field was first suggested.~The authors of@11# did not
analyze TVY theory, however, and restricted themselves
discussion of toy models.! If not only Nc but alsoNf is large,
the arguments of@11# do not apply andf coat is not necessarily
small. The argument based on analysis of the expression~28!
gives an explanation why flavor-symmetric walls do not ex
whenNf /Nc.1/2 andm is large, which is complementary t
that in Refs.@9#.

It was noticed that, if the requirement~7! is relaxed, te-
nacious domain walls exist even in the rangeNf /Nc.1/2.
Consider the simplest caseNc53, Nf52. Assume m i j

5diag(x1
2 ,x2

2), x1Þx2. A tenacious BPS solution with

D arg@f3#5D arg@x1
2#5

2p

3
, D arg@x2

2#52
4p

3
~30!

exists. In the large mass limitx1
2 stays frozen according to

Eq. ~19! everywhere, while the field x2
2 undegoes a rapid

change in the core, which is described by the universal eq
tion ~25!. Using the terminology of Ref.@9~b!#, the fieldx2
has a nontrivialwinding, while x1 has not. AsD arg@f3# is
the same in this case as in the theory withNc53, Nf51, the
Argand plots forf3 andW(f3) in the effective VY theory

FIG. 3. The coat for a nonexisting wall (Nc53).
8-4
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TENACIOUS DOMAIN WALLS IN SUPERSYMMETRIC QCD PHYSICAL REVIEW D64 125008
are also the same and are given in Fig. 1. The wall exists
arbitrary large masses. The fraction of the energy store
the coat is given by the same formula~28!, with Nf substi-
tuted by

k5(
i

Nf

v i , ~31!

wherev i are the windings of the matter fields. They acqu
values 0 or 1. A wall withk/Nc,1/2 is tenacious.

III. TENACIOUS WALLS IN THE ADS LIMIT

The main characteristic feature of the tenacious soluti
is that they persist for arbitrary large masses. But, of cou
they also exist in the small mass limit, where the system
described by the ADS effective Lagrangian with the sup
potential~3!. The latter is obtained from Eq.~9! by freezing
the heavy fieldF so that the argument of the logarithm
equal to 1.

Note that fractional powers in Eq.~3! do not give rise to a
new kind of glued potential. The point is that the doma
wall solutions always stay on the same sheet of the func
~3! and the problem of discontinuities associated with bra
cuts does not arise. Suppose, e.g., thatNf51. Then

W52
2~Nc21!

3~X2!1/(Nc21)
2

m

2
X2. ~32!

Let us choose the sheet whereW is real for real positiveX2.
Then a perfectly smooth BPS domain wall interpolating b
tweenx25r

*
2 andx25r

*
2 e2p i /Nc exists such that

D arg@x2#5
2p

Nc
22p, D arg@~x2!21/(Nc21)#5

2p

Nc
.

~33!

One can recall here that, although the theories withNf5Nc
21 are somewhat nicer because all gauge fields bec
heavy and we are in the Higgs weak coupling regime,
mass of the lowest excitations is of orderm!LSQCD for any
Nf , and the ADS effective Lagrangian always has a Wils
nian nature.

The ADS Lagrangian does not describe, however,
chirally symmetric sector, whereF3[0 and the effective
superpotential is just

Weff
chir. inv.~M!52

m

2
Tr_M. ~34!

The walls that penetrate into this sector also have, for sm
masses, a multilayer matryoshka structure similar to
structure of tenacious walls in the large mass limit, discus
above, but the role of the heavy and light fields is now
versed.

This especially concerns the ‘‘lower BPS branch’’ for th
flavor-symmetric nontenacious walls. As was shown in S
VII of Ref. @6#, the wall in this case consists offive layers:
two wide ~with characteristic width}1/m) outer layers
12500
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whose dynamics is described by the ADS Lagrangian, a w
central region, wheref3 is close to zero and there is only th
quadratic term}ux̄xu in the effective potential, and two nar
row ~with the characteristic width}LSQCD) transitional re-
gions, where the fieldf3 changes rapidly, while the matte
field x stays effectively frozen.

Also ‘‘real’’ walls interpolating between the chirally sym
metric and chirally asymmetric vacua consist of two layers
narrow one, where the fieldf3 changes rapidly, and a wid
layer, wheref3'0 and only the matter field changes.

The ADS Lagrangian also admits flavor-asymmetric w
solutions. Consider the caseNc53, Nf52, Mi j

5diag(X1
2 ,X2

2). The superpotential is

W52
2

3X1
2X2

2
2

m

2
~X1

21X2
2!. ~35!

Consider the wall where the phases of the fieldsx1
2,x2

2

change in opposite directions:

x1
2 : r

*
2 →r

*
2 e2p i /3; x2

2 : r
*
2 →r

*
2 e24p i /3. ~36!

The corresponding BPS equations

]zx15e2 ip/6F 4

3x̄1
3x̄2

2
2mx̄1G ,

]zx25e2 ip/6F 4

3x̄2
3x̄1

2
2mx̄2G ~37!

can be solved. The profiles ofr15ux1u and r25ux2u are
presented in Fig. 4.

The presence of flavor-asymmetric domain walls is
rather remarkable and nontrivial fact. Note that their pr
ence in the Wilsonian ADS Lagrangianassurestheir exis-
tence in SQCD. Flavor-symmetric and flavor-asymmetric d
main walls exist in the ADS limit for anyNf and any
combination of windings. Lifting them up to TVY theory, w
observe that, for low masses, the argument of the logari
in Eq. ~9! is close to 1 and its phase to zero. Therefore,
contrast to the authors of Ref.@9~b!#, we would not call ‘‘un-
physical’’ the solutions withk.1 on the ground that the
phase of the logarithm changes byD52pk.2p in the cen-
tral region of the wall in the large mass limit. They are ce
tainly physical at small masses whenD50. Then D in-
creases with increasing mass up to 2pk for m→`, but we
do not see in what respect the solution withD5359° at
somewhat smaller mass is better than the solution at so
what larger mass withD5361°. Both solutions are smoot
and do not have problems with discontinuities associa
with branch cuts.~One should be very careful indeed when
solution runs into such a discontinuity.! Unlike the case of
flavor-symmetric walls atNf5Nc21 analyzed in Refs.
@5,6#, no phase transition in mass occurs here.

In the caseNc53, Nf52, k51, we have three walls: two
flavor-asymmetric walls and the flavor-symmetric one. F
arbitrary k and Nc (Nf5Nc21), the number of different
walls can be determined by adapting the arguments of R
8-5
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FIG. 4. Asymmetric wall in the BPS limit (Nc53, Nf52, k51): the plots ofr1(z)/r ~left! andr2(z)/r ~right!.
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* *
@12#, where the number of solitons in the supersymme
CPN21 model was calculated.2 @The relevant effective super
potential forCPN21 coincides@13# with the ADS Lagrang-
ian in the framework of the diagonal ansatz~7!.# Let us write
the superpotential as

W52
m

2 (
i 51

Nc

Xi
2 , ~38!

where

XNc

2 5
def

2
4

3m )
i 51

Nc21

Xi
2

.

The wall interpolates between the points with the values
the superpotentialW* andW* exp$2pik/Nc%. Now, for each
x i

2 we have

D arg@x i
2#52pS k

Nc
2v i D ~39!

with v i50 or v i51. Bearing in mind thatD arg@) i 51
Nc x i

2#
50, there arek fields with v i51 andN2k fields with v i

50. Altogether, there areCk
Nc possibilities.

This was done in the framework of the diagonal ans
~7!. Allowing for flavor rotations and assuming the mass m
trix to be diagonal, we obtain not a discrete set of walls,
continuous families of solution~the wall moduli space!. For
a generic mass matrix and if transverse directions are c
pactified, the degeneracy of this moduli space is lifted, ho
ever, and we are left withCk

Nc isolated solutions@14#. Re-
markably, this coincides with the estimate for the number
walls in SYM theory compactified onT2, obtained in Ref.
@15# usingD-brane arguments.

We should emphasize again, however, that this coun
does not work for the TVY model. In the theory withNf

5Nc21, there are more thanCk
Nc walls in the limit of small

2I am indebted to T. ter Veldhuis, M. Shifman, and A. Vainshte
for the discussion of this point.
12500
c

f

z
-
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-
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masses and fewer thanCk
Nc tenacious walls surviving for

large masses.@The number of the latter is equal toCk
Nc21 if

k,Nc/2 and to zero otherwise — see Eq.~31!.#

IV. DISCUSSION

For us, the main interest of the study of domain walls
supersymmetric QCD is a hope of shedding light on
long-standing ‘‘toron controversy,’’ associated with th
vacuum structure of pure SYM theory. Two different inte
pretations of the basic relation~1! are possible.

~1! The chiral symmetry UA(1) of the free SYM action is
explicitly broken down toZ2Nc

due to anomaly. Further,Z2Nc

is spontaneously broken down toZ2. The condensate~1!
plays the role of order parameter associated with this bre
ing.

~2! UA(1) is explicitly broken down toZ2 and the differ-
ent vacua~1! lie in different sectors of the Hilbert space. Th
integerk plays the same role in this case as the parametu
or, better said,u changes within the range (0,2pNc) and not
within the range (0,2p) as it does in standard QCD. Thi
implies the relevance of ‘‘torons’’—configurations with frac
tional topological charges which exist in a finite fou
dimensional box@16# and might stay relevant also in th
limit when the size of the box is sent to infinity@17#. All the
arguments for and against were discussed anew recent
Ref. @4#.

The first picture~complemented with the assumption th
the chirally symmetric vacuum is an artifact of the VY a
proach and is not really there! is standard.3 This necessarily
implies the presence of physical domain walls interpolat
between the vacua with different phases of^Tr$l2%&. If the
second picture is correct, there are no such domain wall

At the moment, one cannot say with certainty wheth
these domain walls exist or not in pure SYM theory. The
areD-brane arguments in favor of their existence@19#, but it
is important to try to resolve this field theory issue within t
field theory framework. In early works@5,6#, it was shown
that a certain type of wall present in supersymmetric QC

3One of the arguments is the absence of the chirally symme
state and irrelevance of torons inN52 SYM theory@18#.
8-6
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disappears in the large mass limit. The results of Refs.@9,8#
and of the present work show that there are tenacious w
which persist in the large mass limit. Note, however, that
core of such a wall becomes very thin in this limit and t
energy density in the core becomes very large. We find
situation rather strange. The assumption that these walls
narrow dense core are relevant for physics in pure S
theory contradicts the common wisdom that heavy fie
should decouple in the limitm→` and have no effect on th
dynamics of the low energy sector.

We think that this general argument should work also
this case, but, obviously, further study of this question
required.

The last comment concerns the dynamics of SYM the
at finite temperature. Even though supersymmetry is bro
by temperature,4 one can use temperature as a theoret
tool to distinguish between two different scenarios of t
chiral symmetry breaking in SYM theory mentioned abov
It is not easy, however.

In the first scenario~with walls!, the spontaneously bro
ken discrete chiral symmetry is restored at some critical te

4Contrary to what many people think, this breaking is not expli
but spontaneous@20#.
,

s.

l.

12500
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peratureTc , by the same token as the spontaneously bro
continuous chiral symmetry SUL(Nf)3SUR(Nf) is restored
in the standard massless QCD. If one assumed that com
domain walls decouple in the large mass limitand the pres-
ence of the chirally symmetric vacuum were disregard
one would conclude that the chiral condensate retaine
nonzero value for any temperature~as it does in QCD with
one light flavor! and there would be no phase transitio
However, in the TVY model different chirally asymmetri
vacuacan communicate with each other with the chiral
symmetric state as an intermediary. In practice, this me
that the chiral symmetry is duly restored at someTc in the
same way as it is in the standard scenario.

To conclude, decoupling of complex walls in the larg
mass limit implieseitherappearance of a new superselecti
rule for the parameterk and the relevance of fractional topo
logical charges in pure SYM theoryor the presence of the
chirally symmetric vacuum state. The TVY/VY approach f
vors the second possibility.
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