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Tenacious domain walls in supersymmetric QCD
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We study the structure of the tenacidesisting for all values of masses of the matter figlBegomol'nyi-
Prasad-Sommerfield domain walls interpolating between different chirally asymmetric vacua in supersymmet-
ric QCD in the limit of large masses. We show that the wall consists in this case of three layers: two outer
layers form a “coat” with the characteristic sizeA 1y, and there is also the core with widthm~*. The core
always carries a significant fraction of the total wall energy. This fraction dependi§ and on the “wind-
ings” of the matter fields.
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[. INTRODUCTION give the mass tall gauge bosons of the group SUY)
through the Higgs mechanism. Also, when the nrasx the
The dynamics of supersymmetric gauge theories with omatter fields is smalin<A socp, the effective coupling con-
without additional matter multiplets has attracted the attenstant is small and the dynamics of the theory can be analyzed
tion of theorists since the beginning of the 1980's. It is veryperturbatively.
well known [1] that the pure supersymmetric Yang-Mills  In particular, the low energy dynamics of the theory in the
(SYM) theory, as well as a class of theories involving extraHiggs phase is described by the Affleck-Dine-Seiberg effec-
matter supermultipletsSQCD), based on the SW) gauge tive Lagrangian for the composite chiral superfields;;
group, involve N, different chirally asymmetric vacuum =2§'S; [1]. It has the Wess-Zumino nature with the super-
states characterized by the different phases of the gluino copotential
densate
(Tr A2 =3e27kMNe  k=0,... N.—1. (1) We—— 2MNe=Np __ m_ 3
3(detM)1/(Nc—Nf) 2

It was argued recentlf2] that on top ofN, chirally asym-

metric vacua(l), a chirally symmetric vacuum with a zero When writing Eq.(3), we assumed that all quark/squark fla-

value of the condensate also exists. vors are endowed with the same small massFor future
The presence of different degenerate physical vacua in thgurposes, we have lel; as a free parametéwith the re-

theory implies the existence of domain walls—static fieldstriction Ny<N_). From now on we sel socp= 1.

configurations depending only on one spatial coordirizte It is not difficult to see that the corresponding potential for

which interpolate between one of the vacuazat—> and the scalar componenys;; of M;; ,

another one atr=c and minimizing the energy functional.

As was shown in3,4], in many cases the energy density _

of these walls can be found exactly due to the fact that the U(uij ,Mij)zz

walls present the Bogomol'nyi-Prasad-Sommerfi¢BPS) !

saturated states:

2

: 4

JW

I i

hasN. degenerate supersymmetric minima. The chiral con-
densate at the vacua is given by the relation

€=

ST A= (Tr A%, )]
8m 1672
(Tr A2 yac= =g~ W(vao). (5
where the subscript o marks the values of the gluino con- ¢
densate at spatial infinities. The right side of E2).presents
an absolute lower bound for the energy of any field configu
ration interpolating between different vacua. )
The relation(2) is valid assumingthat the wall is BPS _ 32w (S_m
saturated. However, whether such a BPS-saturated domain 3 \4N¢
wall exists or not is a nontrivial dynamic question which can
be answered only in a specific study of a particular theory offhe ADS effective Lagrangian has a Wilsonian nature in the
interest. sense that the characteristic mass of the Higgs field excita-
In Refs.[5,6] this question was studied in theories involv- tions it describes is of ordan, which is much smaller than
ing Ny=N.—1 different quark and squark flavor&ach fla-  the mass of the heavy gauge bosons. It is important to un-
vor corresponds to a pair of chiral supermultipl8tsand S¢ derstand, however, that it was derived underaksumption
with opposite chiralitieg.These theories are distinguished by that the relevant values d»hijl are large. This is not true
the fact that the vacuum expectation values of squark fieldsear the chirally symmetric vacuum, whefg;;)=0, and

1t has the form(1) with

Nj /Ng

(6
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there is no wonder that the latter is not seen in the ADS (3) For small masses there are ata® differentcomplex
effective Lagrangian framewortsee[4] for a detailed dis- BPS wall solutions interpolating between adjacent chirally

cussion. asymmetric vacua. In the limih— 0, one of these solutions
Adopting the simplest ansatz (the “upper BPS branch’”goes over to the BPS solution in
the ADS effective Lagrangian. Another solutigthe lower
M;;=68;X* and henceu;j = 5 x* (7)  BPS branch passes near the chirally symmetric minimum

and is not described by the ADS Lagrangian.

(4) When the mass grows, the two BPS branches ap-
oach each other. They fuse at some critical vaiye For
m>m,_, there is no BPS solution at all. A domain wall still
exists in the rangen, <m<m,, , but it is no longer BPS

. saturated. Am>m,, , there are no such walls whatsoever.
of this pape. We have studied the theories with.=2,3,4. The analysis

When the massn is not small, t_he lightest states in the \/¥as later extended to largd, (up toNg=8) [8]. The criti-
spectrum have glueball or glueballino nature and one cannql,| valuem, falls off rapidly with increasind\, , while m,

write down a truly Wilsonian effective Lagrangian. However, is roughly constant.

tr?lgtrsil:tu?atllr?n-l\l/filIzett:]eerotr]er?n tgip’c:\?e/’ 't?rgtjerﬁtir;?nzl:tpgfsym' Recently[9], theories with an arbitrary number of flavors
9 Y. ' P were analyzed along the same lines. It was found that, at

the effective Lagrangian is rigidly fixed by symmetry con- N;<N//2, we have a completely different picture; namely,

lséggrgﬁﬁglsélljt Er?izﬁjressed in terms.of;; and of the color- 0 o i only one complex BPS branch and it existsafioy

P value of mass. This finding was confirmed[BJ. A qualita-
tive explanation of this phenomenon was given[@]. In
3 . -
S=@3= Tr{W, W} (8)  particular, the limitm—-cc was explored. It was noted that

3272 the profile of the wall acquires for large masses a universal

_ . form, which can be found in the framework of the VY effec-
representing the gauge sector. The lowest compone&t®f tjye Lagrangian for pure supersymmetric Yang-Mills theory.

proprotional to TrA?. Supersymmetry and the exact relations  |n addition, it was noticed that such “tenacious” domain
for the conformal and chiral anomalies dictate the followingwalls also exist in the theories with;=N.—1, if one re-

and adding to the potentiatl) the kinetic term|d,,x|*, we
can obtain the BPS wall solutions which interpolate betweerbr
different chirally asymmetric vacua. For the theory Wil
=2,N;=1, an analytic solution exisf€]. In other cases the
solutions can be found numericallyee Ref[6] and Sec. IlI

form of the superpotentigi7]: laxes the requiremeri7). Assuming thatM;; is still diago-
nal, but its different components are not equal, one is able to
W:Eq)s[m(q)a(mcfmf) detM)— (N,— Nf)]—TTrM. construct complex domain walls that persist for arbitrary
3 2 large masses.
C) In this paper we make two remarks. We note that, wimen

is large, “tenacious” walls have a complex “matryoshka”

However, the kinetic term Of, the Lagrangian is not fixed gy,cqre. It involves the VY “coat,” for which heavy matter
rigidly, even though the requirement of the absence of aialds decouple, and the core, where the modui are

extra dimensionful parameter imposes significant restriczjive » The core has small width— 1/m. but, as the fields

tions. The simplest choice is wij change rapidly there and the energy density is big, it
o o carries a significant fraction of the total wall energy, which

ﬁkin:f d*o[ DD+ KM, M)], (100  we calculate.
Another remark is that the flavor asymmetric walls found

. i — ) ) in Ref.[9(b)] exist also at small masses and can be described
where the Kaler potentialkC(M, M) is the same as in the in the framework of the ADS effective Lagrangian. We

ADS Lagrangian. It is obtained from the ter®;(SS,  present the simplest such asymmetric solution.

+S/S/) in the original SQCD Lagrangian, which describes In the last section, we discuss the relevance of these new
physics adequately for large values of moduli. The sum ofindings for the dynamics of pure supersymmetric YM
Eq. (100 and R¢[d?0W(d,M;;)] is called the Taylor-  theory, including the toron controversy.
Veneziano-YankielowidZ'VY) effective Lagrangian.

Domain walls in supersymmetric QCD wit;=N.—1 Il. TENACIOUS WALLS AT LARGE MASSES
were studied in the TVY framework in Ref§4—6]. The . _ _ _
results are the following. Let us consider first flavor-symmetric walls with the an-

(1) On top of the chirally asymmetric vacia), the sys-  satz(7) for the moduliM;; . The superpotentidB) acquires
tem also enjoys the chirally symmetric vacuum wi@®)  the form
=(nij)=0.

(2) For any value of mass there are “reaf’e., without 2 3N — NN mN;
essential  complex  dynamics Bogomol’nyi-Prasad- W_§<I> [In(@3(e"RoX f)_(NC_Nf)]_TX '
Sommerfield (BPS solutions interpolating between the (11
chirally symmetric vacuum and each chirally asymmetric
one. The corresponding scalar field potential is
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2

2
——| =4]¢? In($3 MmNy 2N1) |2

IW IW
U(o,x)= 7% + o
4¢°
™

2

+N? (12

We are set to study the wall which interpolates between the

vacua:

¢ Ry RN MNey -y 2 p2 s ple?mNiMNe, (13)

with
3m Nf/NC 3m Nf/chl
Ri = T) ) Pi = (T) (14
The BPS equations for the wall have the form
G:¢=€"24% In($2MTNY ), ox=elNy| —=—my
X
(15
with 6= mN;/N;— m/2. There is an integral of motion
Im[We '%]=RgWe ' ™i/Nc]=const. (16)
The energy of the wall is
ANGRS 8N.R: N
— — —_ kul f/N . [ H
e=2|W,,—W_| 3 le c—1] 3 smN—c.
17

Note that the phase of the fieldsand y must change along
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FIG. 1. Argand plots fofa) ¢*/R3 and(b) W(4%)/R2 for the
BPS domain walls in the effective VY theori{.=3. W.. are the
values of the superpotential on the opposite sides of the cut.

Each branch has its own vacuum with?), = R2 @27 K/Ne,
Actually, one can see how the branches and the branch cuts
appear in the framework of the TVY model. The point is that
the condition(19) cannot be satisfiedverywhereit would
contradict the requiremerii8). The only way for the solu-
tion to satisfy both contradicting requirements is the follow-
ing: the relation19) holds almost everywhere in the wall but
for the narrow central region, where the figfdchanges rap-
idly such that
At:(Jrear(E[)(z] =2 (21)

As a result of such a change, the argument of the logarithm
in the effective theory20) is multiplied by e~ 27Nt/Nc and
this exactly corresponds to crossing the branch cut and going
over to another branch of the glued potential.

This scenario works, indeed, in many cases. It is clearly

the wall in such a way that the phase of the argument of thé€en from the numerical solutions of R€f3,8]. Take Figs. 1

logarithm in Eq.(12) remains zero ag=— as it is atz

=0

(N.—Np)A ard ¢3]+N;A ard x?]=0. (18
For large masses the matter fieldtends to get frozen in
such a way that the potentiallly large second term in(Eg)
vanishes:

X>=4¢3(3m). (19
The effective potential for the light fielgp acquires the VY
form

UVY(¢)= 4NZ¢? In(¢%R3)|2. (20)

The potential20), as it is written, has only one minimum at
#*=R3 and notN, minima as we expect it to have. The

resolution of this apparent paradox is well knoy&j: one

should take different branches of the logarithm at different

values of¢®. The branches are glued togethat

#*=R3 explim(1+2k)/N.}, k=0,...N.—1.

and 2 of Ref[9]. One can see that the varialite=| ¢| just
follows the solution of the effective VY theory. The variable
p=|x| is frozen according to Eq19) everywhere but in the
central region, where it undergoes a rapid change. The same
concerns the phage of the variableg vs the phaser of the
variable y.

To acquire further understanding, we plot in Fig. 1 the
Argand plots for¢(z) and for the superpotentisV] ¢(z)] in
VY theory. W changes along a straight line due to the prop-
erty (16). We see that the superpotential is discontinuous on
the cut.

The value ofg® on the cut is given by

(¢%)0= Ry me/ ™1/, (22)
where 7 satisfies the condition
7TNf
n(In—1)=—cos—, (23)
C

which is a corollary of Eq(16).
Now, in TVY theory with large but finitem there is no
discontinuity, but a narrow transitional region. Within the

1Glued potentials are not specific for supersymmetric theories angore one can assume that is given by Eq.(22) and is

also appear in the Schwinger modi&0D].

constant. It is convenient to introduce
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FIG. 2. Dynamics of the the fielgh,(z) inside the coreN,
=3, m=50 (dotted, N,=3, m=250 (dashe§l m— oo (solid).

3m

=\/—=x. 24
' pPEN (24)
The equation describing the dynamics{dh the core has the
universal form
(1
aZ§=—|m(?—§). (25)

The solution to Eq{(25) with boundary conditiong (= «)
=1 can easily be found witimATHEMATICA. [See Fig. 2,
where it is plotted together with the right side of EG@4)

obtained from the numerical solutions of the BPS equations

in TVY theory for large but finitem.] The phasey (¢
=p.€'?) is changed by- 7. There is an integral of motion

2

Py 1
Inp,— gcos{Zy) =const— -.

5 (26)

In the center of the wally=—/2 andp,~0.52. We see
from Fig. 2 that, for large masses, the dependende)|
inside the core is indeed determined by EZp). Also, x(z)
satisfies the conditiofiL9) in the coat.

Let us determine the fraction of the energy of the wall

stored in its coat. It is given by the expression

(W, =W, [+|W_—W_|
fcoa= |W “W_ | )

(27)
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FIG. 3. The coat for a nonexisting walN(¢=3).

solution in TVY theory. Again, the picture can be clarified by
drawing the Argand plot for the corresponding BPS solutions
in VY theory (see Fig. 3 The differencesW,,—W, ,W_
—W_,, have now the opposite sign as compared to the pre-
vious case, and one can no longer pass f\dn to W,
moving in the positivez direction.

If N;/N.=1/2, »,=0. This corresponds to the wall pass-
ing through the chirally symmetric vacuum in the middle.
This is, indeed, the only way for different chirally asymmet-
ric vacua to be connected in the theory with=2, N;=1
for large massef5]. For N¢/N.>1/2, the real rootp, dis-
appears and there is no solution whatsoever.

If Ny=1 andN. is large,n~1—a/N, and

fl flavor, IargeNC%
coat

T <1 29
N_<’ (29

C

i.e., almost all energy is stored in the core. This agrees with
the analysis in Refl11], where the mechanism of regulariz-
ing the branch cut singularity by “integrating in” an extra
heavy field was first suggeste@he authors of 11] did not
analyze TVY theory, however, and restricted themselves to
discussion of toy modelsIf not only N but alsoN; is large,
the arguments dfl1] do not apply and ,.:is not necessarily
small. The argument based on analysis of the expre$2®)n
gives an explanation why flavor-symmetric walls do not exist
whenN; /N.>1/2 andmis large, which is complementary to
that in Refs[9].

It was noticed that, if the requiremefil) is relaxed, te-

whereW. are the values of the superpotential at the oppositd@cious domain walls exist even in the rarge/N>1/2.

sides of the core. A simple calculation using, again, the con

dition (16) gives

[sin(rN¢ /N¢) — m7N¢ /N
Slr( N¢ /NC)

(28)

coat—

Let us look at Eq.(23) determining the parametey. At
N¢/N.<1/2 it has two real roots. One of themy{) is
smaller than 1 and the corresponding fracti@®) is also
less than 1. Another rootsf,) lies within the range & #,

Consider the simplest cash =3, N;=2. Assume u;
=diag(x?,x3), x1# x»- A tenacious BPS solution with

3 ) 2 ) 4
Nardg*l=Aard il Aardxdl=-

(30)
exists. In the large mass Iimjﬁ stays frozen according to

Eqg. (19 everywhere while the field X% undegoes a rapid
change in the core, which is described by the universal equa-

<e. ForN.<5, the corresponding fraction is greater than 1,tion (25). Using the terminology of Ref9(b)], the field x,
which obviously means that this solution is not acceptablehas a nontriviawinding while x; has not. AsA ard ¢°] is
But even forN.>5 whenf .y, as determined by Eq28) is  the same in this case as in the theory wWitq= 3, N;=1, the
less than 1, the root), does not correspond to any wall Argand plots for¢® and W(¢°) in the effective VY theory
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are also the same and are given in Fig. 1. The wall exists fowhose dynamics is described by the ADS Lagrangian, a wide
arbitrary large masses. The fraction of the energy stored igentral region, where? is close to zero and there is only the

the coat is given by the same formul@8), with N¢ substi-  quadratic ternw |y x| in the effective potential, and two nar-

tuted by row (with the characteristic width Agocp transitional re-
Ny gions, where the fields® changes rapidly, while the matter
k=2 o) (31) field y stays effectively frozen.

= Also “real” walls interpolating between the chirally sym-
o _ ~ metric and chirally asymmetric vacua consist of two layers: a
wherew; are the windings of the matter fields. They acquirenarrow one, where the fiel® changes rapidly, and a wide

values 0 or 1. A wall withk/N.<1/2 is tenacious. layer, where¢®~0 and only the matter field changes.
The ADS Lagrangian also admits flavor-asymmetric wall
[1l. TENACIOUS WALLS IN THE ADS LIMIT solutions. Consider the caseN.=3, N;=2, M;

. " . . =diag(X?,X?). The superpotential is
The main characteristic feature of the tenacious solutions 9(X1,X2) Perp

is that they persist for arbitrary large masses. But, of course, 2 m
they also exist in the small mass limit, where the system is W=~ —— — (X{+X3). (35)
described by the ADS effective Lagrangian with the super- 3XEX5 2

potential(3). The latter is obtained from E9) by freezing
the heavy fieldd so that the argument of the logarithm is
equal to 1.

Note that fractional powers in E3) do not give rise to a
new kind of glued potential. The point is that the domain
wall solutions always stay on the same sheet of the functiofp,o corresponding BPS equations
(3) and the problem of discontinuities associated with branch
cuts does not arise. Suppose, e.g., that 1. Then

Consider the wall where the phases of the fiejdsx3
change in opposite directions:

X%: pi _}pi e271'i/3; X%i pi_)pi e*47Ti/3' (36)

—il6)

dx1=¢ —3—2_mX1 )
W 2(Ne—1) mX2 - X1X2
- 3(X2)YNe-1) o (32
| y dxo=e '™ —=—mx, (37)
Let us choose the sheet whahgis real for real positivex?. ‘ 3;%2
Then a perfectly smooth BPS domain wall interpolating be- _
tweeny?=p?2 and y?=p2e?>™/Ne exists such that can be solved. The profiles gfi=|x;| and p,=|x.| are
presented in Fig. 4.
o, 2 21— U(No—1) 2 The presence of flavor-asymmetric domain walls is a
Aard x“]= - —2m  Aard(x) e V= rather remarkable and nontrivial fact. Note that their pres-
Cc

¢ (33) ence in the Wilsonian ADS Lagrangiassurestheir exis-
tence in SQCD. Flavor-symmetric and flavor-asymmetric do-
One can recall here that, although the theories Witk N, ~ main walls exist in the ADS limit for anyN; and any
—1 are somewhat nicer because all gauge fields becom@@mbination of windings. Lifting them up to TVY theory, we
heavy and we are in the Higgs weak coupling regime, the@bserve that, for low masses, the argument of the logarithm
mass of the lowest excitations is of ordar< Agocpfor any  in Eg. (9) is close to 1 and its phase to zero. Therefore, in
N¢, and the ADS effective Lagrangian always has a Wilso-contrast to the authors of R¢8(b)], we would not call “un-
nian nature. physical” the solutions withk>1 on the ground that the

The ADS Lagrangian does not describe, however, th@hase of the logarithm changes hy=27k>2 in the cen-
chirally symmetric sector, wherd®=0 and the effective tral region of the wall in the large mass limit. They are cer-
superpotential is just tainly physical at small masses when=0. Then A in-

creases with increasing mass up tek2for m—oo, but we
hir inv. m do not see in what respect the solution with=359° at
Werr (M)=— ETr M. (34 somewhat smaller mass is better than the solution at some-
what larger mass witkh =361°. Both solutions are smooth
The walls that penetrate into this sector also have, for smatnd do not have problems with discontinuities associated
masses, a multilayer matryoshka structure similar to thevith branch cuts(One should be very careful indeed when a
structure of tenacious walls in the large mass limit, discussedolution runs into such a discontinujtyJnlike the case of
above, but the role of the heavy and light fields is now re-flavor-symmetric walls atN{=N.—1 analyzed in Refs.
versed. [5,6], no phase transition in mass occurs here.

This especially concerns the “lower BPS branch” for the  In the caseN.=3, N;=2, k=1, we have three walls: two
flavor-symmetric nontenacious walls. As was shown in Secflavor-asymmetric walls and the flavor-symmetric one. For
VIl of Ref. [6], the wall in this case consists &ife layers:  arbitrary k and N, (Ny=N.—1), the number of different
two wide (with characteristic widthoe1/m) outer layers walls can be determined by adapting the arguments of Ref.
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1

FIG. 4. Asymmetric wall in the BPS limitN.=3, N;=2, k=1): the plots ofp,(z)/p, (left) andp,(z)/p, (right).

[12]|\,‘7vl/here the number of solitons in the supersymmetrionasses and fewer thaﬁEC tenacious walls surviving for
CPN~1 model was calculatet[ The relevant effective super- large masseg§The number of the latter is equal (qtlc—l if

potential forCPN~? coincides[13] with the ADS Lagrang- o
ian in the framework of the diagonal anséf2.] Let us write k<N¢/2 and to zero otherwise — see H1).]
the superpotential as

IV. DISCUSSION

m e
W=— 5 ;1 Xi21 (38) For us, the main interest of the study of domain walls in
supersymmetric QCD is a hope of shedding light on the
where long-standing “toron controversy,” associated with the
vacuum structure of pure SYM theory. Two different inter-
def 4 pretations of the basic relatiqi) are possible.
xﬁcz - (1) The chiral symmetry L)1) of the free SYM action is

explicitly broken down o, due to anomaly. FurtheZZNC

is spontaneously broken down #,. The condensaté¢l)
plays the role of order parameter associated with this break-
The wall interpolates between the points with the values ofng.
the superpotentialv, andW, exp{2mik/N}. Now, for each (2) UA(2) is explicitly broken down t&Z, and the differ-
Xiz we have ent vacudl) lie in different sectors of the Hilbert space. The
integerk plays the same role in this case as the paramgter
2 or, better saidp changes within the range (G7.) and not
Aard xi]=2m N, 39 within the range (0,Z) as it does in standard QCD. This
implies the relevance of “torons”—configurations with frac-
with ;=0 or w;=1. Bearing in mind that\ arquN:chf] tipnal t_opological charges _which exist in a finite. four-
=0, there arek fields with w;=1 andN—k fields with o, ~ dimensional box16] and might stay relevant also in the
0. Altogether, there ar@EC possibilities. limit when the size of th'e box is sent to infinifg7]. All the .
. . : arguments for and against were discussed anew recently in
This was done in the framework of the diagonal ansatzpo¢ [4].
(7). Allowing for flavor rotations and assuming the mass ma- The first picture(complemented with the assumption that
trix to be diagonal, we obtain not a discrete set of walls, butthe chirally symmetric vacuum is an artifact of the VY ap-
continuqus families O.f SOIUtiQ(the wall mod_uli s_pac)e For roach and is not really therés standard. This necessarily
a generic mass matrix and if transverse dlrect.lon.s are co mplies the presence of physical domain walls interpolating
pactified, the degeneracy oLth|s moduli space is lifted, howy, 1 aan the vacua with different phases(BF{\2}). If the
ever, and we are left witiC, © isolated solutiong14]. Re-  second picture is correct, there are no such domain walls.
markably, this coincides with the estimate for the number of At the moment, one cannot say with certainty whether
walls in SYM theory compactified ofi?, obtained in Ref. these domain walls exist or not in pure SYM theory. There
[15] using D-brane arguments. areD-brane arguments in favor of their existerjd®], but it
We should emphasize again, however, that this countings important to try to resolve this field theory issue within the
does not work for the TVY model. In the theory witd;  field theory framework. In early workgs,6], it was shown
=N.—1, there are more tha@E‘° walls in the limit of small  that a certain type of wall present in supersymmetric QCD

3m [ %2
i=1

2l am indebted to T. ter Veldhuis, M. Shifman, and A. Vainshtein One of the arguments is the absence of the chirally symmetric
for the discussion of this point. state and irrelevance of torons.M=2 SYM theory[18].

125008-6



TENACIOUS DOMAIN WALLS IN SUPERSYMMETRIC QCD PHYSICAL REVIEW D64 125008

disappears in the large mass limit. The results of R&$] peratureT, by the same token as the spontaneously broken
and of the present work show that there are tenacious wallgontinuous chiral symmetry SUN;) X SUx(N;) is restored
which persist in the large mass limit. Note, however, that théin the standard massless QCD. If one assumed that complex
core of such a wall becomes very thin in this limit and thedomain walls decouple in the large mass limitd the pres-
energy density in the core becomes very large. We find thignce of the chirally symmetric vacuum were disregarded,
situation rather strange. The assumption that these walls withne would conclude that the chiral condensate retained a
narrow dense core are relevant for physics in pure SYMyonzero value for any temperatuas it does in QCD with
theory contradicts the common wisdom that heavy fieldgne Jight flavoy and there would be no phase transition.
should decouple in the limih— << and have no effect on the However, in the TVY model different chirally asymmetric
dynamics of the low energy sector. _ vacuacan communicate with each other with the chirally

We think that this general argument should work also insymmetric state as an intermediary. In practice, this means
this case, but, obviously, further study of this question isthat the chiral symmetry is duly restored at somein the
required. same way as it is in the standard scenario.

The last comment concerns the dynamics of SYM theory 1o conclude, decoupling of complex walls in the large
at finite temperature. Even though supersymmetry is brokepass limit implieseither appearance of a new superselection
by temperaturé,one can use temperature as a theoreticajyle for the parametek and the relevance of fractional topo-
tool to distinguish between two different scenarios of thelogical charges in pure SYM theonyr the presence of the
chiral symmetry breaking in SYM theory mentioned above.chjrally symmetric vacuum state. The TVY/VY approach fa-

It is not easy, however. vors the second possibility.
In the first scenaridwith walls), the spontaneously bro-

ken discrete chiral symmetry is restored at some critical tem-

ACKNOWLEDGMENTS
4Contrary to what many people think, this breaking is not explicit, | am indebted to D. Binosi, M. Shifman, A. Vainshtein,
but spontaneoul20]. and T. ter Veldhuis for illuminating discussions.
[1] V. Novikov, M. Shifman, A. Vainshtein, and V. Zakharov, (1999; (b) B. de Carlos, M.B. Hindmarsh, N. McNair, and
Nucl. PhysB229 407(1983; Phys. Lett.166B, 334(1986); I. J.M. Moreno, Nucl. Phys. BProc. Supp). 101, 330(2002).

Affleck, M. Dine, and N. Seiberg, Nucl. Phy®241, 493 [10] A. Smilga, Phys. Rev. 34, 7757(1996, Sec. Ill.
(1984; B256, 557 (1989; G. Rossi and G. Veneziano, Phys. [11] I. Kogan, A. Kovner, and M. Shifman, Phys. Rev.53, 5195

Lett. 138B, 195(1984; D. Amati, K. Konishi, Y. Meurice, G. (1998.
Rossi, and G. Veneziano, Phys. R&62 169(1988; M. Shif-  [12] K. Hori, A. Igbal, and C. Vafa, hep-th/0005247.
man, Int. J. Mod. Phys. A1, 5761(1996. [13] K. Hori and C. Vafa, hep-th/0002222.

[2] A. Kovner and M. Shifman, Phys. Rev. 86, 2396(1997. [14] A. Ritz, M. Shifman, and A. Vainshteifin preparation

[3] G. Dvali and M. Shifman, Phys. Lett. B96, 64 (1997); 407,
452E) (1997).

[4] A. Kovner, M. Shifman, and A. Smilga, Phys. Rev5B, 7978
(1997).

[5] A. Smilga and A. Veselov, Phys. Rev. Le®9, 4529 (1997);
Nucl. Phys.B515, 163(1998; Phys. Lett. B428 303(1998.

[15] B. Acharya and C. Vafa, hep-th/0103011.

[16] G. ‘t Hooft, Commun. Math. Phys81, 267 (1981).

[17] E. Cohen and C. Gomez, Phys. Rev. LB, 237(1984; A.R.
Zhitnitsky, Nucl. Phys.B340, 56 (1990; H. Leutwyler and
A.V. Smilga, Phys. Rev. 16, 5607 (1992.

[6] A. Smilga, Phys. Rev. 58, 065005(1998 [18] V.S. Kaplunovsky, J. Sonneschein, and S. Yankielowicz, Nucl.
[7] G. Veneziano and S. Yankielowicz, Phys. Leti38 231 Phys.B552, 209(1999; A. Ritz and A. Vainshteinibid. B566,
(1982; T. Taylor, G. Veneziano, and S. Yankielowicz, Nucl. 311 (_2000'
Phys.B218 493(1983. [19] E. Witten, Nucl. PhysB507, 658 (1997).
[8] D. Binosi and T. ter Veldhuis, Phys. Rev.a3, 085016(200).  [20] See V.V. Lebedev and A.V. Smilga, Nucl. Phy8318 669
[9] (a) B. de Carlos and J.M. Moreno, Phys. Rev. L&8, 2120 (1989, and references therein.

125008-7



