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Phase structure of a compactU(1) gauge theory from the viewpoint of a sine-Gordon model
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We discuss the phase structure of the four-dimensional conypgk} gauge theory at finite temperature
using a deformation of the topological model. Its phase structure can be determined by the behavior of the
Coulomb gagCG) system on the cylinder. We utilize the relation between the CG system and the sine-Gordon
(SG) model, and investigate the phase structure of the gauge theory in terms of the SG model. Especially, the
critical-line equation of the gauge theory in the strong-coupling and high-temperature region is obtained by
calculating the one-loop effective potential of the SG model.
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[. INTRODUCTION transitions are intimately connected through the equivalence
between the CG system and the SG model.

Recently the scenario of treating a gauge theory as a de- In our previous paperf9,12], we have investigated the
formation of the topological model has been proposed byhase structure of the compdd(1) gauge theory at finite
several author§1—3]. The motivation of this scenario is to temperature from the viewpoint of the behavior of the CG
investigate the confinement and the phase structure at zefystem on the cylinder. In particular, we could study its
temperature or finite temperature. In particular, we can calStrong-coupling and high-temperature region by using the
culate the expectation value of the Wilson lo@p zero tem-  Dehavior of the one-dimensional CG systgt8]. This result
perature or Polyakov loop(at finite temperatupeby consid- 1S consistent with the prediction in Refl4].
ering the topological model and so derive the linear In this paper we would like to mvesﬂgatg _the phase struc-
potential, which means the quark confineméni. The ture of the compadt(1) gauge theory at finite temperature
Parisi-SourlagPS dimensional reductiof] is very power- More quantitatively from the dl_fferenF aspect. We investigate
ful to study the topological model. This scenario can be alsdiS Phase structure from the viewpoint of the SG model by
applied to a compad (1) gauge theory. It is quite related to the use of the relationship betyveen the_CG system and the
QCD by the use of the Abelian projection, which is a par-SG model. The_one—lqop effective potential of the SG model
tially gauge fixing method6,7]. In the case of the compact enables us to investigate the phase structure 01_‘ the gauge
U(1) gauge theory the topological model becomes the two'gheory. at the high-temperature an@ strc_)ng—coupl!ng region.
dimensionalO(2) nonlinear sigma model (NLSM and we Especially, we can ev_aluate the crltlcal-lm_e equation.
can show that the confining phase exists in the strong- qupaper is orgamz_ed as follows. Sec_tlon Il is devoted to
coupling region at zero temperature and finite temperaturé rewew.of a deformauoln of the topological model. In Sec.
[8,9]. Il we discuss the equivalence betwgen the thermal SG

In the case of zero temperature, the confining-deconfining©d€! and the CG system on the cylinder. In Sec. IV the
phase transition of the compadt(1) gauge theory can be ne-lo_op effectlv_e_ pote_ntlal of t_he SG model is discussed.
described by the Berezinskii-Kosterlitz-ThoulesBKT) Espe_ually, the critical-line equatlon_ .Of th_e SG moo_lel can be
phase transitio10] in the O(2) NLSM, [8]. It is well obtained. We can evaluate the critical-line equation of the

known that theO(2) NLSM, has vortex solutions and is compactU(;) gauge theory at finite temperature from this
equivalent to several models, such as the Coulomt@&s result. Section V is devoted to the conclusion and discussion.

system, sine-Gordo{SG) model, and massive Thirring
(MT) model. In the compadt/(1) gauge theory the confin-
ing phase exists at the strong-coupling region due to the
effect of the vortex solution, which induces the linear poten- In this section we introduce the method of the decompo-
tial between the static charged test particles. The confiningition of the compacty(1) gauge theory into the perturba-
phase transition corresponds to the BKT phase transition itive deformation part and the topological model gaotpo-
the CG systen{10], or the Coleman transition in the SG logical quantum field theory (TQFT) sectof. The
model[11]. The CG system has a phase transition from eperturbative deformation part is topologically trivial but the
dipole phase to a plasma phase. The quantum SG mod@RQFT sector is nontrivial. The TQFT sector has the informa-
undergoes a phase transition from a stable vacuum to aion of the topological objects such as vortices and mono-
unstable vacuum at the certain critical coupling. Both phas@oles, which are assumed to play an important role in the
confinement or phase transition. The dynamics of the con-
finement is encoded in the TQFT sector. Therefore we can
*Email address: yoshida@phys.h.kyoto-u.ac.jp derive the linear potential by analyzing the TQFT sector
TAlso at Human Information Science Laboratories, ATR Interna-through the PS dimensional reductiis], which reduces the
tional, Kyoto, 619-0288, Japan.Email address: souma@atr.co.jp four-dimensional TQFT sector to the two-dimensioGgR)
NLSM,. If we consider the finite-temperature system then

II. COMPACT U(1) GAUGE THEORY AS A
DEFORMATION OF A TOPOLOGICAL MODEL
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the two-dimensional space on which the reduced theory lives u-1
is the cylinder. 1=Apr [dU]]:[ S("AY )

A. Setup u-1 u-1
| =Aed AV ]| [dUIIT sco#Ay )
The action of the(compact U(1) gauge theory on the X

(3+1)-dimensional Minkowski space-time is given by

=Appf [dUIL] atomv,)

1
Suey=— 7| AP LIATF#AL &
= | [dU][dy][dy]
FLLAl=0,A,~3,A,. 2 f [dUl{d]ldv]
The partition function is given by x[dB]ex;{if d*x(B"V ,+ i;‘wa;ﬁ’)
sJ=f d*x(J*A,+I.C+IcC+JgB). (4 X(~i35Gar + r V77,8, (10)

Here we use the Becchi-Rouet-Stora-Tyu8RST) quanti- -
zation. Incorporating théanti)FP ghost fieldC(C) and the where we have defined the new BRST transformatigras
auxiliary field B, we can construct the BRST transformation _ 5

g, 5BV#=(9#7, ogy=0,

6gA,=3d,C, 6gC=0, - — . ~
et R dav=iB. BeB=0. (1)
55C=iB, &gB=0. ) . . :
When Eq.(10) is inserted, the partition function can be re-
The gauge fixing term can be constructed from the BRSTwritten as follows:
transformationsg as

SGF+FP:_ian %Gr s oA, CTBL 6 ZU(l)[J]=J [dUI[dC][dC][dBlexqiSrord 2, ,C,C,B]

+iIW[U;J]+3*Q,+IcC+IcC+IgB), (12
andGgr ;. p iS chosen as [U;J] pTIcCHIC+IgB), (12

Ger s rp= 0 %AMA“HCE , @) STQFTE—irSBEBf d*x %Qfﬁicg}, (13
where &g is the anti-BRST transformation, which is defined where
by
3:A,=d,C, 3:C=iB, dWivill= J [dV,][dyI[dyI[dp]
53C=0, 6zB=0, B+B=0. (8)

X exp{ iISpu) Vs 7,781
The above gauge fixing conditidi@) is convenient to inves-

tigate the TQFT sector. i f iy
"

We decompose the gauge field as ' (14

. Spu(l)[V,J,,’)/,’y,,B]Zf d4x<_ZFMv[V]F#V[V]
i

QH(X)EEU(X)&MUT(X), 9 . B
_i5BGGF+FP[V;u%%,3])a (15
where theg is the gauge coupling constant. Using the

Faddeev-Popov determinaftd A] we obtain the following .
unity: Ju=3,+1656Q, .
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T (Imaginary time direction) Furthermore, we can derive the Coulomb potentet
€ zero temperatudg 8] or Yukawa-type potentiglat finite tem-
perature using the hard thermal loop approximatic@j from
R the perturbative deformation part.

C. TQFT sector and PS dimensional reduction

When the gauge group is the compattl) the TQFT
sector becomes th®(2) NLSM, through the PS dimen-

FIG. 1. The rectangular Wilson loop. This includes the imagi- Sional reductior{5]. The four-dimensional TQFT sector ac-
nary time axis in order to study the confinement. tion

AN
L4

Contour C

The action(15) describes the perturbative deformation part Storr= 5355 f d*x
[24]. The actionSrqer is dg-exact and describes the topo-

logical model, which contains the information of the confine-
ment.

In what follows we are interested in the finite-temperatur
system(i.e., the system coupled to the thermal hatfhere-
fore we have to perform the Wick rotation of the time axis Srorr= ’7TJ' dszi(x)
and move from the Minkowski formulation to the Euclidean
one.

1,
SQL+icC (19)

can be rewritten as th®@(2) NLSM, on the two dimensional
eSpace,

T 42
=—|d xd,U(x)d,U"(x),
g
B. Expectation values

We can define the expectation value in each sector using
the actionS,y(1) and Syorr. The expectation value of the
Wilson loop or Polyakov loop is an important quantity to
study the confinement. In the case of the Wilson 1&g, where we have omitted the ghost term. When we write the
the following relation: gauge group element a$(x)=€¢®, we obtain

QMEIEU(X)&MU(X)T,

(WelADuy= (W[ QW VI puay rorr STQFT:sz dZX&Mgo(X)aﬂgo(x). (19
g

=(WclQDrordWelVDpuy — (16)

If the gauge groupJ(1) is not compact, then the TQFT
is satisfied 8]. The contouC is rectangular as shown in Fig. Sector becomes the ordinary free scalar field theory on the
1. The Wilson loop expectation value is completely separate@¥0 dimensional space, which has no topological object. So
into the TQFT sector and the perturbative deformation partthe confining phase cannot exist. If tbg1) is compact, the
That is, we can evaluate the expectation value in the TQFfheory described by the actiofl9) is the periodic boson
sector independently of the perturbative deformation part. Ifheory. The angle variable(x) is periodic(mod 27), and so
fact, we can derive the linear potential by investigating the¢(X) is a compact variable. It is well known that the com-
TQFT sector. pactness plays an important role in the confinenj&gt. If

At finite temperature we must evaluate the correlator ofWe consider the system at finiteerg temperature, then the
the Polyakov loopsP(x). It can be evaluated in the same dimensionally reduced theory lives on the cylindéwo

way as the Wilson loop, due to the following relatigas ~ Plane.
shown in Fig. 2: We should remark here that the compactness also leads to

monopole configurations in the original gauge theory, which
is assumed to play an important role in the confinement. On

(P(x)PT(0)>U(1)=<WC>U(1). (17)  the other hand, the reduced theory has vortex solutions due
R
w Wilson loop P P.r
FIG. 2. The correlator of
A ¥ T i Polyakov loops. The expectation
]‘ value of a Wilson loopW is
equivalent to a correlator of the

Polyakov loopsP and P™.

Area  A(C) =RT: This part is cancelled.

Correlator of Polyakov loops
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TQFT sector Critical temperature
18w Tea
| | -
0O(2) NLSM 0O(2) NLSM ! I
on a 2-plane on a cylinder Dipole phase Plasma phase with Debye screening
Dipole dissociate
I equivalent I equivalent
FIG. 4. Two-dimensional Coulomb gas has two different phases.
Coulomb gas Coulomb gas Over the critical temperatur€-g= 1/8m, the system is the plasma
on a 2-plane on a cylinder

phase with Debye screening and so the mass gap exists. Below the
I equivalent [ equivalent Tc it is the dipole phase, in which Coulomb charges form dipoles.
The system has a long-range correlation and no mass gap.

sine-Gordon model sine-Gordon model
at zero temperature "~ atfinite temperature )
q
- o=|2m—| {, (23)
zero temperature finite temperature g

FIG. 3. The TQFT sector is equivalent to the two-dimensional

theory_through the PS qlimensional reduction. When the gaug@hereA=RT;, R=|x| andqis a charge of the test particles.
group is the compady (1) it becomes th®(2) NLSM,. The two- 1t i5 significant that the expression of the string tensi28)
dimensional space is a two plafet zero temperatuye®r a cylinder does not depend on the temperature explicitly, but on the
(at finite temperatupe It is well known that it is equivalent to the behavior of the CG system. Whether the string tension re-
several model. mains or vanishes is determined only by the behavior of the
_ ) CG system which consists of vortices. Thermal effect
to the compactness &J(1). It is quite natural that the tWo  changes the behavior of the topological objects. The change

configuration above are intimately connected, as suggestéd refiected to the linear potential. We also note that the string
in Ref. [8]. Therefore we can include the monopole effectiensiono is proportional toZ. The {—0 limit implies that

from the reduced theory and obtain the physical quantityhe self-energy of the vortex is infinity and we fail to include
such as a string tension through this sector which includegye effect of the vortex. Therefore the confining phase also
the unphysical degrees of freedom only. vanishes in the limit—0 as is expected.

The O(2) NLSM, is equivalent to the CG system as |, oyr previous papei9] we have investigated the phase
shown in Fig. 3. The partition function of the CG system iS¢ty cture of the compadti(1) gauge theory at finite tem-

given by perature using the behavior of the CG system on the cylinder.
The behavior of the CG system on the two plane is shown in
U o (2m)° Fig. 4. The behavior of the CG system on the cylinder would
Zec= ZO | 2,_1_[1 J dox;d%y;exp — — be analogous. We expect that the system undergoes the BKT-
n=0 (n)%= 9 like phase transition. In fact, the CG system causes the BKT-
like phase transition in the high-temperature region that be-
X 2 [A(xi—xj)+A(yi—yj)]—i2j A(xi—yj)D , haves as the one-dimensional system.

(20
IIl. EQUIVALENCE BETWEEN SG MODEL AND CG

where {=exp(—Sse) IS the chemical potential of the CG SYSTEM

system[25] and can be written in terms of the self-energy  The action of the SG model on the two platat zero
part of a vortexSees. This quantityf does not depend on the temperaturior the cylinder(at finite temperatuneis defined
physical temperaturdl in the original theory. TheA(x; by
—X;) expresses the Coulomb potential on the two pléate
zero temperatudeor on the cylinder(at finite temperatupe
NN

cos(ﬁqb —-11;. (29

The partition function is given by

The temperature of the CG system is defined by 4

1 m
Sse= f dzx[i(ﬁ,ﬁﬁ)z—T

g2
TCGE Q . (21)
The linear potential between the test charged particles is
induced by the effect of the vortices. The expectation value
of the Wilson loop(Polyakov loops’ correlatdris obtained Zgc= f [dp]exp(—Sso). (25
as follows(for details, see Ref8]):

<P(x)PT(O)>U(1)=<WC[Q])Ee*"A, (220 This can be rewritten as follows:
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Zeo=€" —(m*n) | d% E 1 (m_) f[dd)]e Jd2(112) (9, ¢)?
N

X f dzxcm(%(ﬁ)r

o 4
:e—(m“/)\)Jd?x i m
i=o 2n! | 2\

2n
% f dZX(ei(v‘T/m)d)_’_e*i(\e‘i/m)(b)

o 2, * 1 m4 2n
—eroni | HEO(m)z(g) | tag1

2n
_) j [dp]e [9x(12)@,9)?

n
x eI X120 f d2x;d2y, el (MmI0) = ()]
=1

Here, we note that

<efd2xa¢>SGEf [d¢]€XF{J d2x< — %(6M¢)2+J¢

=exp{f d2xd2yJ(x)A(x—y)J(y)},

|

(26)

whereA(x—vy) is the massless scalar field propagator,

dzp eip'(x_)’)

A(x—y)Ef (2m)? —p2

In particular, if we choose the external field as

J<x>=iJ—X2 qi8(x—x),
m =1

then we obtain

n
<H efdzxiqi¢(xi)>
SG

=1

(27)

(28)

PHYSICAL REVIEW D 64 125002

)\ n
ex;{——2 E djakA(X;—x) | for 2 g;=0,
2m= jk i=1

n

0 for >, q#0.
=1
(29)

If the net charge is not zero then the correlation function
vanishes because of the symmetry under the transformation

@ (X)— ¢(X)+const.

By the use of Eq(26), we obtain the following expression of
the partition function:

o 1 m4 2n N
Zsg~ Z (2—) H dedzyl

n i

A
Xex;{ e .Z'J[AX X)) +AYi—Yy;)]

. (30

—EJ A(xi—yp)

The factore™ (M"MJ¢ can be ignored because of the nor-

malization of the partition function. Thus we obtain the par-

tition function of the neutral CG system, whose temperature
is defined by

Teg=Mm?/\. (31)

This is equivalent to Eq21). The phase transition in the SG
model at the critical coupling, i.e., the Coleman transition,
corresponds to the BKT phase transition in the CG system.

The equivalence holds on the cylindge., in the finite-
temperature cageln this time, Eq.27) is replaced with the
propagator on the cylinder,

L ‘
A(X—y)~— 5 n;x In[ v (Xo—Yo—NB)*+ (X1 —Y1)?]

2 2
5-In /—LIB\/COS}‘(F(Xl_yl))_CO{F(XO_yO)H- (32
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Here u is the infrared cutoff ang3 is the inverse of the m?

physical temperatur€ We remark that the SG model has the ~ Vo(¢c) =g o VN e /m)[ 1= In cog v\ e /m)],
physical temperature in common with the original gauge (36)
theory. It is because the cylinder is chosen as the two-

dimensional space when we use the PS dimensional reduc-

—_— 1 o
tion. If we use the complex coordinates=Xx; +ixXq,W=X; V(o) = ZJ' dxin[ 1 —exp — T MZ B0 B2,
—iXo,W'=y;+iyo, andw’=y;—iy,, then Eq.(32) is re- mpeJ0 .
written as

M?( o) =m?cog Y\ ¢ /m). (39)

The second equatiofi36) is the temperature-independent
part, and the third equatidi37) is the temperature-dependent

1 , 1 1 part which vanishes in the zero-temperature liffit>c .
+ ﬁRe(W”LW )- Em(i(“ﬁ)z)' (33 Also, the minimum of the potentiab.=0 is still stable un-
der one-loop quantum fluctuations at zero temperature. Tak-
Egng the second derivative of E435) with respect tog. at
¢.=0, we can evaluate a critical-line equatidi¥] as

2

1 ’
A(X_y) =— E |n|e(277/ﬁ)W_ e(27T/B)w

The propagator above involves the divergent term in th

limit w— 0O, but this is removed by the neutral condition

>iqi=0 [see Eq.(29)]. 2V
The parameters of the CG system in the previous section, m2(8)=m?+ FT(¢C:0)

g and {, can be related to those of the SG model, nrass a¢§

and the coupling constait. This relation is given by _

N
—m2 2 —
1287ng 4773/2§1/2 m m 2w f(lg) 0, (39)
=—0F m=———. (34) o o -
g 9 wherex=\/m?, B=pBm, andf(B) is defined by
Recall that the string tensiom~ ¢ vanishes ag—0 and — o 1

the confining phase disappears. We should note fhad f(ﬁ)Ef dx—= — - (40

meansm— 0 and\—0. That is, the SG model becomes free ° \/ﬁ2+x2[exp( \/,32+ x%)—1]

scalar field theory in this limit. This result is consistent with

the disappearance of the confining phase. That is, the critical-line equation is given by

A\ _
IV. 1-LOOP EFFECTIVE POTENTIAL OF SG MODEL AT 1- Ef(ﬂ) =0. (41)
FINITE TEMPERATURE

It is well known that the SG model at zero temperatureNOte that the parameters of the SG model can be replaced

undergoes the phase transition at certain coupling, which i&ith the ones of the compati(1) gauge theory using the
called the Coleman transitioii1]. The critical coupling is "€/ation(34). As the result, we obtain the relation
A/m?=87, at which the quantum SG model undergoes a 32102 3
phase transition from a stable vacuum to an unstable EZ 47 —:8i
vacuum. Moreover, the existence of a phase transition due to gT ' g° '
the thermal effect has been shown in Rdf6]. This transi-

tion would correspond to the BKT-like transition of the CG Thus the critical-line equation can be rewritten as follows:
system. Thus we can investigate the phase structure of the

compactU (1) gauge theory at finite temperature, at least in 472
the region where we can investigate the SG model reliably. 1-—
In particular, we can read off from E@34) that the weak- g
coupling region of the SG model corresponds to the strongthe numerical solutions of this equation at various fixed val-
coupling region of the gauge theory. That is, we can investiy og of¢ are shown in Fig. 5.

gate the phase structure of the gauge theory with the strong |, harticular, we can derive the simple relation betwaen
coupling from the perturbative study of the SG model. Thisgq T in the weak-coupling and high-temperature limit of

(42)

4773/2§l/2

o770 (43)

is the advantage of our method. Eq. (41). The critical temperatur@, is given b

We will discuss the one-loop effective action of the two- a- (4). P c!S 9 y
dimensional SG model at finite temperat(it®]. The effec- amd
tive potential is given by Te=—— (44)
Viiood @c) =Vol(de) +Ver(de), (35 Equations(34) and (44) lead to
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30 7 . . LemTT .
Coulomb 4 K
4 —1 A4
/ Coulomb
4 T
7
2
20 4 / 1
/
7 , Confini
/ // onfining
- ) e
) <1=0.1
/ // . v
/ = 9
10 | ¢ L 1
/ //7 FIG. 6. Phase structure of the compéiitl) gauge theory pre-
b / /// dicted in the Ref[14]. In the above discussion using the one-loop
/ //// £=0.01 effective potential of the SG model we could study the region en-
k//// Confining closed by the dashed line, in which we can especially obtain the
0 === ‘ ! : critical-line equation. Moreover, we might investigate the region
0 50 100 150 200

enclosed by the solid line. It is well known that this region is neatly
described by the Gaussian effective potent@EP), which is a
nonperturbative method and should include the physics beyond the

g

FIG. 5. The phase structure of the compligtl) gauge theory
obtained by the one-loop effective potential calculation in the sGPne-loop level.

model. The critical-line Eq(43) can be numerically solved. The . . )
asymptotic line Eq(45) is also drawn with the dashed line. The model, we can include the effect of the vortex solution in

above graph shows that the confining phase vanishgs-il limit. terms of the cosine-type potential. Therefore the phase struc-

However, the result in the smajlregion is not valid. It is because ture that we have obtained in the SG model is not equivalent

the smallg means the largk and the one-loop approximation in the t0 the result in thed(2) NLSM,. Moreover, the SG model is

SG model is not reliable. a massive theory and the Coleman-Mermin-Wagner theorem
[18] is not an obstacle.

2§1/2
T.= .
¢ 732 9

(45) V. CONCLUSION AND DISCUSSION

We have discussed the phase structure of the compact
. . L U(1) gauge theory at finite temperature by using a deforma-
Equation(45) is drawn as the dashed line in Fig. 5. Note o of the topological model. The compactness of the gauge
again that the weak-coupling and high-temperature region igyoyp leads to a confining phase. In the case of zero tem-
the SG model corresponds to the strong-coupling and highserature, the phase transition of the gauge theory at certain
temperature region in the compad(1) gauge theory. The ¢ pling can be described by the Coleman transition in the
compact gauge theory is related to the SG model by a kind 0§ model. In the finite-temperature case we could investi-
S duality in our scenario. Thus we can reliably investigateyate the phase structure at sufficiently high temperature and
the strong-coupling region of the gauge theory since the ON&jery strong-coupling region by analyzing the one-loop effec-
loop effective potential is appropriate in the weak-couplingtjve potential of the SG model. We could consider the en-
region. . _ » closed region by the dashed line in Fig. 6. In this paper we
In conclusion, we have obtained that the critical temperayave used the one-loop effective potential, but we can also
ture is proportional to t_he coupling constant_ of the com_pac;Jse the Gaussian effective potenti@EP [19], which is
U(1) gauge theory in the strong-coupling and high-known as the nonperturbative method. For the SG model at

temperature region. This result is in good agreement with thggq temperature this is given by the following expression:
prediction in Ref[14]. In the {—0 limit the gradient in Eq.

(45) goes to zero. This fact implies that the confining phase 1—\/87 _
vanishes. Veer=me————[1—(cosyN ) Y1 Mem ] (a6)
Comment on the effective potential calculati@ur dis- A
cussion in this section is closely analogous to R&l.in — ) , )
which the critical temperature has been estimated by the caWnereA =A/m”. That is, as the coupling constant of the SG
culation of the one-loop effective potential in the TQFT sec-modelx — 8 the GEP becomes a straight line continuously.
tor. In the above discussion we have calculated the one-loopp N exceeds\ =8, which is the transition point of the
effective potential in the SG model. If we naively calculate Coleman transition, then the GEP has the maximum and the
the effective potential in th€©(2) NLSM, then we cannot system has no ground state. The GEP can describe the Cole-
obtain the phase structuf®,12]. Note that theD(2) NLSM, man transition at zero temperaty20,21], which cannot be
is equivalent to the SG model when we consider vortex sodescribed by the one-loop effective potential. Since the GEP
lutions. If we calculate the effective potential in tka¥2) does not depend on the perturbation theory it might be ap-
NLSM, we cannot include the effect of the vortex solution. propriate to investigate the phase structure at the weak-
However, once we go from th®(2) NLSM, to the SG coupling and low-temperature region in the gauge theory
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(i.e., the strong-coupling and low-temperature region in theso it seems difficult to predict the order of the transition
SG model which corresponds to the enclosed region by theobtained in the lattice gauge theory.

solid line in Fig. 6. This work is very interesting and will be It is also attractive to approach the phase structure from
discussed in another pla¢22]. the viewpoint of the massive Thirring mod&l3].

We should comment on the well-known results in the
compact Abelian lattice gauge theory. This theory at zero
temperature experiences the phase transition of the weak first
or strong second order. Unfortunately, our results suggest The authors thank K. Sugiyama, J.-l. Sumi, T. Tanaka,
that at high temperatures the phase transition is of the BKBnd S. Yamaguchi for useful discussion and valuable com-
type, and do not seem to correspond to the lattice results. Ounents. They also would like to acknowledge H. Aoyama for
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