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Expanding nonhomogeneous configurations of thelf4 model
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A time dependent variational approach is considered to derive the equations of movement for thelf4

model. The temporal evolution of the model is performed numerically in the frame of the Gaussian approxi-
mation in a lattice of 111 dimensions given nonhomogeneous initial conditions~such as bubbles! for the
classical and quantum parts of the field which expands. A schematic model for the initial conditions is
presented considering the model at finite fermionic density. The nonzero fermionic density may lead either to
the restoration of the symmetry or to an even more asymmetric phase. Both kinds of situations are considered
as initial conditions and the eventual differences in early time dynamics are discussed. In the early time
evolution there is strong energy exchange between the classical and quantum parts of the field as the initial
configuration expands. The contribution of the quantum fluctuations is discussed especially in the strong
coupling constant limit. The continuum limit is analyzed.
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I. INTRODUCTION

There are many motivations for the study of time dep
dent nonperturbative methods in quantum field the
~QFT!. Some examples are immediately found in syste
with a strong coupling constant, spontaneously symme
breaking, and which undergo phase transitions. Some of
most interesting cases are present in the relativistic heavy
collisions currently being prepared and performed at
BNL Relativistic Heavy Ion Collider~RHIC! which probe
hadronic matter at very high densities and temperatures
these cases a region of very high energy density starts
panding~and ‘‘cooling’’! just after the nuclei collision. Thes
systems are usually described by hydrodynamical mo
which are known to be quite reliable@1#. However, an un-
derstanding of these models in terms of microscopic desc
tions with the underlying QFT degrees of freedom are
pected to be derived, and are currently being investigated
several groups. Many effects are expected to occur in th
systems; for example, dynamical phase transitions shoul
present in a reliable description.

Because of the extreme complexity of realistic theor
such as QCD, one is usually led to study effective mod
which respect the major properties of the fundamental the
and which reproduce the main issues of this in some rang
a relevant variable~as energy!. In the present work, howeve
a still more simplified version of the reality is considered
order to check qualitative effects. Thelf4 model is often
used as a test model, although its scalar field may be con
ered as the relevant degree of freedom for inflationary m
els in cosmology@2#. In condensed matter and statistical m
chanics it is also of interest@3#. Furthermore it can be
identified to the mesonic sector of the linear sigmaO(N)
model in the largeN limit or without pions.

In the last decade quite a large amount of work has b
done in order to shed light on some of the subjects m
tioned above as well as on aspects related to the dissipa
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thermalization, decoherence, formation of disoriented ch
condensates, and phase transitions among others with
perturbative time dependent formalisms. Some examples
be found in Refs.@4–15,18#. Some works have already bee
done concerning the dynamics of nonhomogeneous confi
rations in bosonic fields. In particular, Gaussian equation
movement were considered in Refs.@8,9,18# to study prop-
erties of the large time dynamics in certain cases. Nonho
geneous field theory was also studied in Ref.@18# to obtain
information relevant for particle production and thermaliz
tion of nonequilibrium systems.

In the present work we extend, complement, and giv
sounder picture of the work done in Ref.@15#. The main
aspects we study in the present work are the following. F
a schematic model for the formation of locally nonequili
rium initial conditions~which expands with time! is devel-
oped. As already proposed in Ref.@15# we consider the pos
sibility that, due to some particular condition, the condens
amplitude ~as well as the physical mass of the scalars! is
either suppressed or enhanced in a localized region of sp
For this we consider thelf4 model coupled to fermions a
finite density in a one dimensional space. Depending on
kind of coupling, the model may experience either symme
restoration at high fermionic density or further symme
breakdowns@16#. We look for dynamical consequences
the corresponding enhancement or suppression of the
densate at the tree level and in the framework of the Ga
ian approximation. Although there are enormous differen
between this simple~idealized! model ~the lf4 model! and
the realistic ‘‘fireballs’’ from RHIC, we believe that a stud
of the influence of the present field theoretical degrees
freedom is of interest. An idea somewhat similar to this o
was discussed in Ref.@17# where the pressure due to a gas
pions, including alf4 term in a static description, was con
sidered to drive an expansion of a ‘‘fireball.’’

We have therefore the following picture. First we fix tw
parameters of the model, which will allow us to make mea
ingful comparisons between the~time dependent! tree and
Gaussian levels. Second, it is assumed that the scalar fie
locally placed in a thermal bath and/or experiences an in
©2001 The American Physical Society01-1
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FÁBIO L. BRAGHIN PHYSICAL REVIEW D 64 125001
action with a finite fermion density in that small regio
These interactions—which change the ground state of
model—are switched off att50, yielding nonequilibrium
initial conditions for the scalar field which are evolved
time. The temporal evolution is performed within the tr
level and Gaussian approach equations, producing the ex
sion of regions~bubbles! endowed with high energy dens
ties.

The work is organized as follows. In Sec. II a time depe
dent variational method for pure state systems is describe
the Schro¨dinger picture, and the equations of movement
derived with a Gaussian trial wave functional. Some cons
erations for the static and thermal case are made. The s
amplitude motion case is investigated for homogeneous c
figurations in order to provide some useful results for a
lyzing the relevance of one dimensional lattice simulatio
for a more realistic situation. In Sec. III a numerical meth
using a pure state generalized density matrix—the time
pendent Hartree Bogoliubov~TDHB! method, as develope
in Ref. @9#—is extended for the asymmetric case (f̄Þ0) in a
discretized space. This allows for an investigation of the te
poral evolution of a localized region of the space~lattice!
where a high energy density occurs. Next, in Sec. IV,
coupling the scalar field to a finite fermionic density syste
we are able to construct a model for initial conditions a
finite density. The possibility of symmetry restoration a
further asymmetric phase~s! is discussed and the tempor
evolution of corresponding configurations analyzed. Still
Sec. IV, we provide an alternative way of fixing the para
eters of the model in order to perform plausible comparis
between classical and quantum field systems. The nume
results for the early time evolution are presented in Sec
for different initial conditions and values of the free para
eters of the model. All the numerical examples shown in t
paper conserve total energy. Special attention is given to
strong coupling limit, and one example of the temporal e
lution of a deviation from a kink solution is exhibited. Th
continuum limit is discussed. The results are summarize
Sec. VI.

II. GAUSSIAN APPROXIMATION

The time dependent variational approximation at
Gaussian level has been studied for several ye
@5,7,9,19,20#. It provides a systematic method to study t
temporal evolution of a quantum field theoretical mod
given an initial condition by means of the equations
movement. In spite of recent achievements in conside
approximations beyond the Gaussian~for example in Refs.
@11,21#! we want to address some unexplored features in
time dependent Gaussian approach.

Let us consider the time-dependent Dirac variational p
ciple with a trial Gaussian wave functional@22,23#. First the
average value of an actionI is calculated with a given tria
wave functionaluC&,

I 5E dt^Cu~ i ] t2H !uC&, ~1!
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whereH is the Hamiltonian.
In the Gaussian approximation at zero temperature

wave functionalC is parametrized by

C@f~x!#5N expH 2
1

4E dx dydf~x!~G21~x,y!

1 iS~x,y!!df~y!1 i E dxW p̄~x!df~x!J ,

~2!

Wheredf(x,t)5f(x)2f̄(x,t); the normalization isN, the
variational parameters are the condensatef̄(x,t)
5^CufuC& and its conjugated variablep̄(x,t)5^CupuC&;
quantum fluctuations are represented by the width of
GaussianG(x,y,t)5^Cuf(x)f(y)uC& and its conjugated
variableS(x,y,t).

The Lagrangian for a scalar fieldf with bare massm0
2

and quartic coupling constantl is given by

L~x!5
1

2 H ]mf~x!]mf~x!2m0
2f~x!22

l

12
f~x!4J . ~3!

From this expression the corresponding HamiltonianH is
obtained. The action of the field operatorf and its conju-
gated momentump in a functional Schro¨dinger representa
tion over a wave functionalC@f(x)#5^f(x)uC@f#& are,
respectively,

f̂uC@f~x!#&5f~x!uC@f~x!#&,

p̂uC@f~x!#&52 id/df~x!uC@f~x!#&. ~4!

The average value of the Hamiltonian, which will be e
plored in the numerical simulations, is given in terms of t
variational parameters with the functional integrations

H5
1

2 F1

4
G21~x,x!14SGS~x,x!1p̄2~x!2DG~x,x!

1m0
2G~x,x!1

l

4
G2~x,x!1m0

2f̄21~“f̄~x!!2

1
l

12
f̄4~x!1

l

2
f̄2~x!G~x,x!G . ~5!

In the Schro¨dinger picture the wave functional evolves lik
the Schro¨dinger equation

i
]

]t
C@f~x!#5HC@f~x!#. ~6!

This equation is equivalent to the temporal evolution of t
variational parameters given initial conditions.

The variations ofI with relation to the variational param
eters ~of the Gaussian wave functional! produce the equa
tions of movement:
1-2
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EXPANDING NONHOMOGENEOUS CONFIGURATIONS OF . . . PHYSICAL REVIEW D 64 125001
dI

dS~x,y,t !
→] tG~x,y,t !

52„G~x,z,t !S~z,y,t !1S~x,z,t !G~z,y,t !…

dI

dG~x,y,t !
→] tS~x,y,t !

5S 2S~x,z,t !S~z,y,t !2
1

8
G22~x,y,t ! D

1S G~x,y,t !

2
1

l

2
f̄~x,t !2D ~7!

dI

dp̄~x,t !
→] tf̄~x,t !52p̄~x,t !

dI

df̄~x,t !
→] tp̄~x,t !5G~x,y,t !f̄~y,t !1

l

6
f̄2~x,t !

whereG(x,y,t)52D1„m0
21(l/2)G(x,x,t)…d(x2y). In the

x coordinate space the Gaussian width is written as

G~x,y!5^xu
1

A2D1m2
uy&. ~8!

As is well known the static limit of this approximation pro
duces the ‘‘cactus’’ diagram resummation@24#. In Sec. III, an
alternative way of writing these equations will be discuss
and evolved in time in a lattice for a class of nonhomog
neous initial conditions. It corresponds to the time depend
Hartree Bogoliubov approximation@9#.

By performing a Fourier transformation it is possible
eliminate the variablesp̄ andS. The equations in the asym
metric phase become

G̈kk82
Ġkk8

2

2
Gkk8

21
2

1

2
Gkk8

21

12S k21m0
21

b

2
G~x,x!1

b

2
f̄ DGkk850,

~9!

f̈̄k1S k21m0
21

b

6
f̄21

b

2
G~x,x! D f̄k50,

with Gkk85^kuG(xW ,xW )uk1q&. These equations were gene
alized for the out of equilibrium~nonzero temperature! using
different methods in Refs.@4,10,12,19,21# and they were
studied extensively mainly by means of numerical calcu
tions. The choice of initial conditions is entirely subordina
to the approximation, in the sense that were it not Gaus
one might have to consider three conditions instead of
@23#. An analysis of these equations shows that initial con
tions ~for homogeneousG and f̄) are crucial for the time
interval in which the system evolves toward the minimu
and beyond as well as for the speed of the field evolut
@7,8#. Some other effects have been addressed, for exam
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dissipation via particle production, Landau damping, co
sional relaxation at zero temperature; the relevance of
initial conditions for the dynamics was also investigated
some cases in early and late time evolution@6,7,9,15,25–28#.
In particular, it was found that the Hartree approximation
well suited for the study of early-time dynamics.

A. Vacuum and renormalization

The state of minimum energy is found from the equatio

of movement in the static caseĠ5S5 ḟ̄50. The equations
of motion reduce to the GAP equations which minimize t
effective potential. They can then be written as

f̄S l

6
f̄21m0

21
l

2
G~m2! D50,

m25m0
21

l

2
~f̄21G~m2!!. ~10!

These equations provide the two phaself4 model: a sym-
metric phase~where there is only a zero condensatef̄50)
and an asymmetric phase where the condensate is nonze
the vacuum. From these equations, in the asymmetric ph
we find that

f̄25
3m2

l
. ~11!

In spite of being written in terms of the bare coupling co
stant this value can be compared to the tree level valuf̄
5A26m0

2/l. In the former case@Eq. ~11!# the bare coupling
constant is fixed by the value of the renormalized coupli
as discussed below.

For a thermal environment, ind dimensions, we can per
form a calculation similar to the one above, with a dens
matrix with mixed states. This yields thermal fluctuation co
rections to the two point Green’s functionG(x,x) which is
substituted for by

H̃~m2!5E dk

~2p!d
^f2&k

5E dk

~2p!d

11cothS bAk21m2

2 D
Ak21m2

5E dk

~2p!d

1

Ak21m2 S 1

2
1 f ~k! D . ~12!

In the above expressionf (k) is the Bose-Einstein occupatio
number. It is well known that these thermal fluctuations
the asymmetric phase may restore the symmetry: the vac
solution of the condensatef̄0 tends to become zero as tem
perature increases. At very high temperatures (T@m) the
1-3
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FÁBIO L. BRAGHIN PHYSICAL REVIEW D 64 125001
integral ~12! in one spatial dimension can be expanded a
the second expression of Eqs.~10! can be written in one
spatial dimension as

mT
25m22

l

4 S 1

2bm
1

1

2p
(ln„m/~4pT!1g…D1O~T2!,

~13!

whereg50.57721 andm2 is the mass at zero temperatur
Therefore the physical mass is reduced at high temperatu
mT

25m2(T),m2. This effect is also present in the conde
sate@by means of Eqs.~10!# making possible the eventua
restoration of the symmetry breaking~at least at this level of
approximation! @29#.

The renormalization of the time dependent approach~in
continuum spaces! can be done in the same way at zero a
finite temperatures as well as out-of-thermodynamical eq
librium @10,19,20#. No additional ultraviolet divergence i
found due to the temporal evolution of the system or
departure from zero temperature or equilibrium. Renorm
ization can therefore be performed by absorbing the div
gences in the physical mass~one dimensional system! in the
vacuum. By rewriting the GAP equations in terms of t
renormalized quantities (mR

2 ,lR) we can find the relation-
ship between the bare and physical quantities. These ca
written in one dimension as

mR
2~1d!5m0

21
l

8p
lnS 2L

m D ,

~14!

lR~1d!5lS 12
l

8pmR
2

11
l

16pmR
2

D .

We note that the coupling constant acquires only a fin
correction.

In a discretized space there is a natural regulator~the lat-
tice spacing for whichL51/Dx). The integrals~12! become
a summation and converge. As the limit to the continuum
taken the integrals tend to diverge and a redefinition of
bare quantities is needed. This will be discussed in Sec.

B. Small deviations around the minimum

Before exhibiting numerical solutions of the equation
movement in a lattice let us perform an exercise which
useful for the understanding of results. For a certain clas
initial conditions it is possible to find analytical solutions f
the equations of movement. First, we can see the releva
of the temporal evolution of a given initial condition irre
spectively to the regularization method for the local div
gences. We can also check that the study of the one dim
sional model can provide information about the thr
dimensional case.

We therefore consider the symmetric phase of the mo
(f̄50) assuming a particular kind of homogeneous init
conditions~exactly the same calculation can be done for n
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homogeneous asymmetric potential cases; this would
change the conclusions!. Let us assume that, for some reas
external to the model, the system experiences a small de
tion from the state of minimum. As discussed above, this
happen because of an external thermal bath and it can
parametrized by a change in the physical mass, e.g.,m(t
50)50.9m. This drives quantum fluctuations away from th
ground state and generates a dynamical evolution. In
case it is possible to extract exact analytical solutions for
equation of movement. For this kind of initial condition on
can linearize the Gaussian equations of motion using
following prescription for the solution:

G~m2,t !5G0~m2!1dG~ t !,

whereG0(m2) is the value of the fluctuations which obey th
GAP equation, anddG(t) is the value of the small deviation
which evolves in time.

We presented analogue solutions for the free case in
@9#, choosing a plane wave prescription for the deviati
dG(t) since an infinite system was considered. We found
following solution for the deviationdG(t) in d dimensions:

dG~ t !5
m22m2

2

I 3c

12lI 32
l

2
I 3c

, ~15!

where

I 35E ddk

~2p!d

1

~2Ak21m2!3
,

~16!

I 3c5E ddk

~2p!d

cos~2Ak21m2t !

~2Ak21m2!3
.

The integralI 3 is time independent and contains a log dive
gence in three dimensional space. It can be absorbed in
renormalization of the mass and coupling constant. The in
gral I 3c also has a divergence att50 in three spatial dimen-
sions which also can be regularized. This problem was a
addressed in Refs.@9,30#. In particular, the integrals can b
written in terms of generalized hypergeometric functions.

In one dimensional space, on the other hand, there ar
ultraviolet divergences for this case of temporal evolutio
Given a finite initial condition~which is the deviation from
the vacuum value, proportional tom22m2) the temporal
evolution is finite. This is very significant for the numeric
solutions in a lattice: the temporal evolution of the system
independent of the regulator. This occurs due to the fact
the static sector was separated from the dynamic evolu
and the divergences only contributed for the redefinition
the former. In other words, the regularization and renorm
ization do not interfere in the temporal evolution. This
checked in Sec. V with numerical calculations in a one
mensional lattice.
1-4
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Another interesting feature can be pointed out from th
solutions by rewriting them. In a one dimensional space
time dependent integral can be written as

I 3c
(1)5

~m22m2!

8p E
m

`

dy
cos~2yt!

y2Ay22m2
, ~17!

whereas in three spatial dimensions the same time depen
integral can be written as

I 3c
(3)5

~m22m2!

8p S m2E
m

`

dy
cos~2yt!

y2Ay22m2
1

pN0~2mt !

2 D .

~18!

The main difference between these two expressions is
fact that in three dimensions there is one additional div
gence which occurs only att50. This also suggests that th
dynamics in one spatial dimension is not completely diff
ent from the dynamics in three dimensions for the cases
der study.

III. NUMERICAL METHOD: HARTREE-BOGOLIUBOV

This section is an extension of the work developed is R
@9# for the time dependent Hartree-Bogoliubov approxim
tion in the presence of a~time and space dependent! conden-
sate. The generalized Hartree-Bogoliubov density matrix
be defined, in a discretized space, as@31#

Ri , j5S r i , j k i , j

2k i , j* 2r i , j* D , ~19!

where the average density matrices are written in term
the average of creation and annihilation operators:r i , j

5 1
2 ^aiaj

†1ai
†aj& is Hermitian andk i , j52^aiaj& is symmet-

ric.
For the calculation of this matrix, the creation and an

hilation operators are written, in ad spatial dimension lattice
in terms of the field and its conjugate variable:

a~ j !5
1

A2
$f~ j !~a!~d21!/21 ip~ j !~b!~11d!/2%, ~20!

a†~ j !5
1

A2
$f~ j !~a!~d21!/22 ip~ j !~b!~11d!/2%, ~21!

where a and b are ~dimensional! normalization factors. A
suitable choice for them is the lattice spacing.

The averaged values of the field variables (f,p) previ-
ously shown can be written in terms of the matrix eleme
of the above generalized matrixR. Using the notation of
expressions~7! and ~19!, at zero temperature we obtain

^f~ i !f~ j !&5G~ i , j !11 f̄ i
25

1

~Dx!d21
Re„r~ i , j !1k~ i , j !…,
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^p~ i !p~ j !&5F~ i , j !11 p i
25

1

~Dx!d11
Re„r~ i , j !2k~ i , j !…,

^f~ i !p~ j !&52G~ i ,k!S~k, j !1f̄ ip̄ i

522Im„r~ i , j !2k~ i , j !…,

^p~ i !f~ j !&52S~ i ,k!G~k, j !1p̄ if̄ i

52Im„r~ i , j !1k~ i , j !…, ~22!

where F( i , j )5G( i , j )21/414S( i ,k)G(k,l )S( l ,i ). There-
fore we can already note that there are two different ways
expressing the state of the system: by means of the gen
ized density matrix elements or with the variational para
eters discussed before.They are completely equivalent de
scriptions for the prescriptions used in this work.

Next we discuss the dynamics of the generalized den
matrix. The temporal evolution is governed by the Hartre
Bogoliubov energy, which can be parametrized in the follo
ing form:

1

2
Hi j [

dE

dRji
5S Wi , j Di , j

2Di , j 2Wi , j
D . ~23!

It is worth noting that this approximation, and consequen
the dynamics under study, is invariant under a unitary tra
formation. Therefore it is possible to consider the gene
ized density matrix and Hartree-Bogoliubov (Hi , j ) energy in
another form, namely,

R̃5
1

A2
tR

1

A2
tT, H̃5

1

A2
tH

1

A2
tT, ~24!

where the superscriptT means the transposed matrix, andt
is given by

t5S 1 21

1 1 D . ~25!

With these transformed matrices, one can check tha
Liouville–von Neumann type equation is necessarily sa
fied only in the symmetric phase (f̄50):

i Ṙ̃i , j5@H̃ i ,k ,R̃k, j #. ~26!

This equation can be written in terms of the averaged qu
tities @Eqs.~22!#. By doing this exercise we have shown th
they are equivalent to Eqs.~7! in the zero temperature limi
without the condensate. When the classical field is taken
account, Eq.~26! is still considered andf̄(x) acts as an
external ~dynamical! source to Eq.~26!. The time depen-
dence off̄(t) is determined by the two last equations of s
~7!. These last equations, in turn, depend on the fluctuati
which are evolved in Eq.~26!. We are currently extending
this method to finite temperature nonequilibrium syste
@16#. The numerical evolution of Eq.~26! is obtained by
1-5
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FÁBIO L. BRAGHIN PHYSICAL REVIEW D 64 125001
diagonalizingRi , j and evolving the eigenvectors from whic
the variational parameters~e.g.,Gi , j ) can be calculated.

IV. PARAMETERS OF THE MODEL AND INITIAL
CONDITIONS

In this section we complete the schematic model for j
tifying the initial conditions used in the evolution of th
equations of movement. The finite temperature effects w
already discussed in the framework of the Gaussian appro
and now we couple thelf4 model to fermions at finite
density. There are many possibilities for this coupling and
discuss only a few cases which may lead either to the re
ration of the spontaneously broken symmetry or to a furt
asymmetric model at high densities. We also provide so
remarks which are helpful for the choice of the sets of
rameters: the physical massm2 and the coupling constantl
in the lattice.

A. lf4 coupled to fermions at finite density

We can couple thelf4 model to fermions yielding a
mechanism for placing the system in a finite fermion dens
environment. This procedure may produce another mec
nism for the symmetry restoration. In the dynamical pictu
we suppose that the coupling of fermions to the scalar fiel
switched off att50 as a first approximation to the problem
In part, this can be justified if one has a decreasing sca
fermion interaction amplitude with relation to the self inte
action of the scalar field. If we consider an expanding fin
density environment~‘‘fireball’’ ! the density is expected t
decrease as the system expands. As we will not be conce
with the fermion dynamics we will only consider the inte
acting part of its Hamiltonian.

The following Hamiltonian density terms for spin ha
fermionsc coupled to the scalar field are considered:

HI5gaf~x!c̄~x!c~x!1gbf2~x!c̄~x!c~x!, ~27!

where the coupling constantsga and gb are dimensionless
only in 311 and 211 dimensions respectively. Neverth
less we are allowed to consider these as effective coupl
of an effective theory. Eventually one would need other c
plings as one considers higher energy processes.

The above couplings lead to changes in the equation
the lf4 model. In particular, we are interested in possib
effects in the minimum energy state of the model. For th
we repeat the calculation of the GAP equation which is
tained by the minimization of the Hamiltonian density@Eq.
~5!# in the framework of the Gaussian approximation. Co
sidering that the wave functional of the system now acqu
a fermionic sectoruJ& ~which may be a Slater determina
and is a function of the chemical potential! due to the pres-
ence of fermions at finite density we write

uC@f#&→uC@f#&3uJ@c#&. ~28!

With the fermionic wave functional one calculates the av
aged values of the interacting Hamiltonian terms which en
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into the effective potential of the scalar field and modify t
GAP equations. These averaged terms are given in terms
fermionic density:

^Juc̄~r !c̄~r !uJ&5r f~r !. ~29!

The densityr f can be calculated by fixing the chemical p
tential eventually at a given temperature. However it is n
the aim of this work to perform such a detailed dynamic
self-consistent microscopic description. Here we only w
to provide a physical basis for the initial conditions of th
time dependent model. By the minimization of the ener
density with respect to the one and two point functions of
scalar field, we obtain the GAP equations~at finite fermionic
density! which can be written as

m25m0
21

l

2
S G1

f̄2

2
D 12gbr f ,

~30!

S m22l
f̄2

3
D f̄1gar f50.

Regularization of the ultraviolet divergences and the sub
quent renormalization of the parameters of the model d
not change qualitatively these equations.

We fix a coupling constant~a strong one,l.235m2,
wherem is the physical mass! for a one dimensional system
but the conclusions do not change qualitatively for high
dimensions. Solutions for these two expressions~for fixed
couplings! have been sought for and the main conclusio
due to the introduction of the fermionic density dependen
through the couplingsga andgb are the following:

~i! Keepinggb50 andga51m/5 quite small. As can be
seen in Eqs.~30! there will exist no symmetric solutionf̄0
50 at nonzero density. In fact as the density increases
~real! condensate value will increase. This leads to a s
more asymmetric phase.

~ii ! On the other hand for the same value of the oth
coupling, gb51m/5 but ga50, the asymmetric phase wil
disappear whenr.14m2 and there will be no more conden
sates. At nearly double densities the physical mass also
appears.

~iii ! If one assumes negative couplinggb,0 ~and ga
50). In this case the condensate has increasing values
higher densities until a point where there is a complete d
appearance of the asymmetric phase. This point coinc
with a zero value for the mass from the GAP equation ar
.25m2.

For finite temperature field theories, such asO(N) or
O(N)XO(N) models, the spontaneous symmetry breakdo
may be restored or not at high temperatures@32#. However,
we point out the possibility of there existing no restoration
the symmetry or even further symmetry breakings at fin
densities. A more complete analysis of the finite density ef
ts on scalar models will be shown elsewhere@16#.

We obtained, therefore, another mechanism for consid
ing local variations of the condensate:f̄Þf̄0. This allows
for scenarios in which one obtains nonhomogeneous c
1-6
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EXPANDING NONHOMOGENEOUS CONFIGURATIONS OF . . . PHYSICAL REVIEW D 64 125001
figurations for scalar fields at finite fermionic densities a
temperatures fixing the initial conditions. The situation
which the condensate is suppressed is usually more acce
We do not neglect the possibility of enhancing the cond
sate due to some different phenomena when the field in
acts with matter.

B. Choice of parameters

We consider static initial conditions. The initial ‘‘veloci
ties’’ of the classical and quantum parts of the field are ta
to be zero in all examples shown below,

S}Ġ50, p}ḟ̄50, ~31!

where the dot means time derivative.
Thelf4 model has two parameters which must be fixe

the mass and the coupling constant. We have chosen s
values to place the system in the scaling limit. With the l
tice spacingDx50.1 fm we consideredDx!j,L where
j51/m is the correlation length andL is the size of the
lattice. In this region the universal properties of the latt
model can, in principle, be described by a continuum fi
theory. As a rule, the physical mass was chosen to bm
5100 MeV for the dynamical situations.

For the coupling constant, which has dimension fm22 in
one dimensional space, different values were chosen: f
l51/12m2.0.021 fm22 to l5600 fm22.2350m2. For
low dimensions thelf4 model is super-renormalizable an
the coupling constant is large@33#. The smaller value was
already considered to be in the nonperturbative regime@11#.
We have found, however, that this is not the case for
examples shown in the present work. Indeed, we have fo
that the dynamics for couplings with values up tol
.1 fm2.5/12m2 are not substantially different from th
tree level case in the early times dynamics. Numerical
amples will be shown in Sec. V.

In order to perform consistent comparisons between c
sical and quantum dynamics as well as among different
tial conditions it is important to fix the parameters of t
model. However, instead of fixing physical mass and c
pling, it is also possible to fix other variables such as
energy density or particle number. For the sake of the a
ment, let us consider the simpler case of homogeneous s
tions in the vacuum. At the tree level (G50) we obtain, in
vacuum,

Hvac52
3m0

4

2l
. ~32!

Therefore we can fix, for example, the mass and the ene
density of the vacuum and calculate the corresponding c
pling constant. This can be useful for the study of the infl
ence of the quantum effects because the inclusion of fluc
tions ~perturbatively or not! change the ground state which
defined by the mass and coupling constant@16#.

Let us consider a regularized energy densityHG,vac at the
Gaussian level which can be particularly well suited for t
lattice calculations. Fixing the physical mass we obtainG.
12500
ed.
-
r-

n

:
me
-

d

m

e
d

-

s-
i-

-
e
u-
lu-

gy
u-
-
a-

Writing the total energy density with Eqs.~5! and ~11! we
obtain a second degree polynomial expression for the c
pling constant. In terms of the bare~regularized! quantities
the corresponding solutions for the coupling constant a
function of the~regularized! energy density are given by

l5
2d6Ad224m4G2

2G2
, ~33!

where d58Hvac2G2112m2G. The renormalized version
of H ~as derived, for example, in Ref.@34#! can also be used
for this calculation. In one dimension there may have ne
tive and complex solutions which do not seem to corresp
to meaningful stable minima of the effective potential@16#.
This calculation could be meaningful even in 311 dimen-
sions to the extent that thelf4 model can be considered a
effective, and for which the cutoff can be fixed at some hi
energy scale. In this case the bare and renormalized qu
ties can be related by Eqs.~14! in one spatial dimension
This is equivalent to placing the system in a lattice, whi
provides us with a natural cutoff (1/Dx), and to performing
all calculations on it.

C. The picture

We therefore have the following picture. First we fix tw
parameters of the model, which will allow us to make mea
ingful comparisons between the~time dependent! tree and
Gaussian levels. Second, it is assumed that the scalar
locally experiences an interaction with a finite fermion de
sity in a small region or has some contact with a therm
bath. These interactions—which change the ground stat
the model—are switched off att50 yielding nonhomoge-
neous~and nonequilibrium! initial conditions for the scalar
field which are evolved in time. The temporal evolution
performed within the tree level and Gaussian approach eq
tions, producing the expansion of regions~bubbles! endowed
with high energy densities.

D. Initial conditions: finite density and temperature

First we suppose that the temperature varies continuo
from the center of the lattice, where there is a high ene
region, to the~zero temperature! vacuum. This constitutes a
out of equilibrium situation which can be implemented in
lattice by the following configuration:

m2~x,t50!5m2tanh2S x2L/2

A D . ~34!

The bubble of high energy density is centered atx5L/2 (L
being the size of the lattice! and it has a size given byA
~which will be taken to be 0.5 fm!. At the center of this
bubblem250 MeV which implies very high temperatures
As the temperature also modifies the order parameter of
model (f̄) it may eventually yield a symmetry restoration

We will consider another kind of configuration given b
1-7
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FÁBIO L. BRAGHIN PHYSICAL REVIEW D 64 125001
f̄~x,t50!5f̄0tanh2S x2L/2

A D . ~35!

In the central region of the lattice the condensate is s
pressed. This can occur due to interaction with a finite d
sity medium. A unifying picture can be associated with t
above configurations. In high energy collisions there is
large amount of energy deposited in a small region, eve
ally causing the system parameters, such as particle ma
and condensate, to become modified. This energy exce
expected to propagate~expand! in space time.

An enhancement of the condensate due to the interac
with matter can also be assumed~it could correspond to fur-
ther symmetry breaking at high densities!:

f̄~x,t50!5f̄0F11a sech2S x2L/2

A D G , ~36!

where a is a real positive number which measures t
amount of energy excess deposited in the central regio
the lattice.

Finally, another kind of initial condition will be consid
ered. It corresponds to a deviation from the kink classi
solution to the equations of movement. The static kink so
tion of the classicallf4 model is given by@35#

f̄~x,t50!5f̄0 tanhS x2L/2

B D , ~37!

where B5A22/m0
2. In this casef̄(r 50)52f̄0 and f̄(r

510)5f̄0, wherer 50 and 10 are the borders of the lattic
This configuration can be seen as a wall which separ
regions with different vacua wheref̄56f̄0. It is stable at
the tree level and corresponds to a nontrivial topology ca
By considering antiperiodic boundary conditions we ha
chosen a deviation with relation to the kink solution:

f̄~x,t50!5f̄0 tanhS x2L/2

B D . ~38!

HereB was considered to beB.1/(4m). There is an energy
excess in the central region of the lattice, over the kink.

FIG. 1. Examples of initial field configuration. The thick sol
line corresponds to the two point functionG(r ,t50) for the initial
condition@Eq. ~34!# consideringm5150 MeV. Thin solid and dot-
ted lines correspond to the initial condensate configuration of E
~35! and ~36 with a50.2) respectively.
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V. NUMERICAL RESULTS

In Fig. 1 some of the initial conditions for the fields (G(r )
and f̄(r ) are shown. The thick solid line showsG
5G(m2(r ),t50) corresponding to a bubble of high energ
density which comes out from a zero mass region inside
vacuum~for m5150 MeV). The physical mass is given b
expression~34!:

m2~ t50!5m2tanh2S x2L/2

0.5 D , f̄~ t50!5f̄0 .

In this case, it is therefore assumed that the deviation of
mass in the center of the lattice but the condensate is
constant. The other two curves~thin solid and dotted lines!
correspond to nontrivial initial conditions for the condensa
@Eqs.~35! and ~36!#, and will be discussed later.

The first initial condition~34! is evolved for two different
values of the coupling constant,l5m2/12.0.02 fm22 and
600 fm22, for a physical massm5100 MeV. The resulting
evolution of the energy density configuration for low times
shown in Figs. 2 and 3. In Fig. 2 the energy density config
ration is exhibited at different time stepst50.1, 1.0, 2.0, and
3.5 fm as a function of the lattice points. The initial~higher!
energy bubble expands~by ‘‘waves’’! toward the extremities
of the lattice distributing the initial ‘‘potential energy’’ ove
the lattice and among classical and quantum degrees of
dom. For a much stronger coupling constant~Fig. 3!, the
energy density configurations are shown to expand in a m
‘‘concentrated way’’ than in the weaker coupling case. A
most no difference can be seen in what concerns the ex
sion velocities.

s.

FIG. 2. Evolution of the energy density of the field~classical
plus quantum! at different times. The initial time mass configuratio
is given by Eq.~34! andl5m2/12.

FIG. 3. The same as Fig. 2 withl5600 fm22.
1-8
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EXPANDING NONHOMOGENEOUS CONFIGURATIONS OF . . . PHYSICAL REVIEW D 64 125001
The following initial condition is considered for the ne
cases@Eqs.~35!#:

f̄~ t50!5f̄0tanh2S x2x0

0.5 D , ḟ̄50.

In this case the condensate is suppressed in the central re
of the discretized space-time. In Fig. 4 the evolution of
corresponding energy density is shown for a quite weak c
pling constantl50.6 fm22.2.36m2 without quantum fluc-
tuations, i.e., by means of the classical equation of motio
the third and fourth of Eqs.~7!. Two-peak waves expan
from the center of the lattice to the borders. The initial e
ergy density has a two-peak structure, which occurs du
the fact that the gradient term in the Hamiltonian density
the largest values@see Eq.~5!#. This figure can be compare
to the evolution of the complete system including quant
fluctuations which is shown in Fig. 5. The two point functio
G is considered to be in the vacuum value att50. Due to the
weakness of the coupling constant~the same as the one use
in Fig. 4! there is no visible difference between the figure
The main difference, which is quite large but not relevant
the dynamics, is the overall normalization of the energy d
sity. The inclusion of quantum fluctuations introduces a z
point energy whose effect on the dynamics is not relevant
a comparison between Figs. 4 and 5 shows. The above v
of the coupling constant still is in the~dynamical! perturba-
tive regime for this early time analysis. Comparison of th
weak coupling constant case (l.1/12m2) to other works

FIG. 4. Evolution of the energy distribution of the classical fie
for the initial configuration@Eq. ~35!# andl50.6 fm22.

FIG. 5. Evolution of the energy distribution of the field with th
quantum fluctuations for the initial configuration@Eq. ~35!# and l
50.6 fm22.
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@11# suggests that the nonperturbative dynamics may
present for some kind of configurations but not for others
the early time analysis.

We consider now another type of initial condition. Th
value of the condensate is enhanced in the central regio
the lattice by means of Eq.~36!,

f̄~ t50!5f̄0F11asech2S x2L/2

A D G ,
wherea is a real number which will be assumed to be in t
range 0,a,0.5. It measures the energy of the bubble wh
is placed in the center of the lattice. It still has a size roug
given by A50.5 fm. Since the previous examples ha
showed thatl50.6 fm22.2.36m2 is not strong enough a
to yield nonperturbative quantum effects, we conside
stronger value (l560 fm22.236m2) for the next figures.
This configuration could correspond either to the case fr
Sec. IV, where the model is placed in a region with a fin
fermion density with a particular kind of coupling, or to
situation where external fields would ‘‘merge’’ in a conde
sate in that small region increasing its value and the resp
tive energy density@15#.

In Fig. 6 the classical energy density is shown for
initial condition given above witha50.2, which represents a
not very energetic bubble. The energy density evolves ne
in the same way as the case of Fig. 4~initial condition de-
fined by a suppression of the condensate instead of enha
ment!. There is a small difference which is related to t
relative amount of energy in each peak of the expand
waves at larger times~when t.3.5 fm). In the present cas
~enhancement of the condensate! the second peak is slightly
higher with relation to the configuration where the conde
sate is suppressed~Fig. 4!. By switching on quantum fluc-
tuations we obtain the temporal evolution shown in Fig.
The first issue we note is that between time steps 0.1 and
fm there is an ‘‘amplification’’ of the locally concentrate
energy density, leading to regions in which its value
smaller than the vacuum energy density. Theses regions
pand. These are local effects since the total energy is alw
conserved and given by the vacuum energy plus the in
bubble energy excess~positive!. Furthermore, these region
tend to disappear for larger times. Another important effec
that most of the expanding energy is now concentrated in
‘‘advanced’’ peaks, which arrive first in the extremes of t
lattice. This corresponds to an acceleration of the expan

FIG. 6. Evolution of the energy distribution of the classical fie
for the initial configuration@Eq. ~36!# with a50.2 and for l
560 fm22.
1-9
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FÁBIO L. BRAGHIN PHYSICAL REVIEW D 64 125001
@15#. For the preceding cases the energy density ‘‘bum
took nearlyDt.5 fm to arrive at the borders of the lattice
In the present case~Fig. 7!, this time is reduced to nearl
Dt.3.8 fm. As noted in Ref.@15# the energy density be
comes smoother when considering the quantum fluctuati
but this occurs only in the nonperturbative region of the c
pling constant. It is also possible to note that the cen
region of the lattice, where the bubble starts to expand, te
to assume energy density values close to that of the vac
as the energy moves toward the borders of the lattice. St
ger coupling constants therefore lead to the following qu
tum effect: there is an acceleration of the energy den
expansion. Although the two-peaked form of the expand
waves persists, the advanced peaks~those which arrived ear
lier at the borders of the lattice! are strengthened with rela
tion to the others. This is a clear indication that the expans
is faster, corresponding to a nonperturbative quantum eff

What happens if the initial energy density excess in
center of the lattice is increased? In Figs. 8 and 9 this
shown respectively for a classical system and for a ‘‘co
plete’’ ~classical plus quantum! field with the same set o
parameters as the preceding figures but consideringa50.5
in Eqs. ~36!. The coupling constant is in the rangel
560 fm22.236m2. The energy density excess is mu
higher than those considered before, as can be checke
comparing with Fig. 8. In this figure the temporal evolutio
of the energy density of the condensate without quan
fluctuations is shown. In spite of different normalization a
energy values the classical dynamics is not modified w
relation to Fig. 4@for which the initial condition was given
by the suppression of the condensate with Eq.~35!#. In Fig. 9
the dynamics of quantum fluctuations is taken into accou

FIG. 7. Evolution of the energy distribution of the field with th
quantum fluctuations for the initial configuration@Eq. ~36!# with
a50.2 andl560 fm22.

FIG. 8. Evolution of the energy distribution of the classical fie
for the initial configuration@Eq. ~36!# anda50.5.
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In this case we also note quite a large energy density am
fication in the beginning of the evolution, and the existen
of expanding regions in which the energy density is sma
than the value of the vacuum. These modify the two-pe
structure discussed above. Although the last step in suc
time evolution presents values for the energy density wh
may not be completely reliable due to numerical uncerta
ties the main issues are completely reliable because, as
emphasize, the total energy is conserved. The accelera
found above still is present. Moreover, it is interesting
note that there is little difference between the temporal e
lution of cases in which initial conditions are given in term
of a with different values, i.e., fora50.2 or 0.5 in the early
time dynamics.

For the examples shown above only the short time beh
ior was analyzed. These are such short time scales tha
boundary conditions are not even relevant. The large t
behavior was briefly studied for some cases in the str
coupling limit (l560 fm22). No equilibration was found
for larger time evolutions, i.e., the amplitude of the~classical
and quantum! oscillations do not tend to zero. There a
several other different approaches dealing with different
pects of the non-equilibrium field dynamics@13,18,21,36#.

In the next figures another kind of~nontrivial! initial con-
figuration is considered for the condensate. In this casef̄(r
50)52f̄0 andf̄(r 510)5f̄0, where 0 and 10 are the bo
ders of the lattice. This configuration can be seen as a w
which separates regions with different vacua wheref̄5

6f̄0. By considering antiperiodic boundary conditions w
have chosen a deviation with relation to the kink soluti
@Eqs.~38!# @35#:

f̄~x,t50!5f̄0 tanhS x2L/2

B D . ~39!

Here was considered to beB.1/(4m) and l560 fm22.
First, the evolution of the equations of movement for t
condensate without quantum fluctuations (G50) is per-
formed. In Fig. 10~a! the resulting classical field profile
„f̄(t)… at the pointsx55 and 10 fm are shown. The chang
of the field atf̄(x510,t) ~there is a ‘‘flip’’! is due to anti-
periodic boundary conditions, and occurs exactly at the ti
when the energy density bumps arrive at the border of
lattice. The field in the central region has a static and c

FIG. 9. Evolution of the energy distribution of the field with th
quantum fluctuations for initial configuration@Eq. ~36!# with a
50.5 andl560 fm22.
1-10
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EXPANDING NONHOMOGENEOUS CONFIGURATIONS OF . . . PHYSICAL REVIEW D 64 125001
stant value given att50. In Fig. 10~b! we show the energy
density expansion~it does not have a two-peak structure d
to the initial condition!. By switching on quantum fluctua
tions we obtain Figs. 11~a!–11~c!. In Fig. 11~a! a condensate
in the same points of the lattice as in Fig. 10~a! is shown.
The dynamics is similar but the field~at r 510 fm) ‘‘flips’’
to the other vacuum value faster. In Fig. 11~b! the deviation
of the quantum fluctuations with relation to the value in t
vacuum, at the same points@dG(t,r )5G(t,r )2G0# are

FIG. 10. Evolution of the energy distribution of the classic

field f̄(t,x) for the initial configuration @Eq. ~37!# and l
560 fm22.

FIG. 11. Evolution of the energy distribution of the field wit
the quantum fluctuations for the initial configuration@Eq. ~37!# with
l560 fm22.
12500
shown. They clearly exhibit the energy transfer between c
sical and quantum degrees of freedom. In particular, w
the ‘‘condensate flip’’ occurs, the quantum fluctuations a
enhanced in the corresponding point (r 510 fm). For the
energy density configurations, in Fig. 11~c!, there is no
strong effect with relation to the purely classical dynam
@seen in Fig. 10~b!#.

For Figs. 12 and 13 a different size of the bubble of su
pressed condensate is considered, with the initial condi
given by Eq.~35!. We have considered the half value, i.e
A50.25 fm. This yields a smaller region out of equilibrium
In Fig. 12 the temporal evolution of the energy density of t
classical condensate case is shown. In Fig. 13 the sam
shown for the classical plus quantum system. The concen
tion of energy density in the ‘‘advanced’’ peaks discuss
above~Figs. 5 and 7; also see Ref.@15#! is very visible in
Fig. 13. This indicates, again, an acceleration of the exp
sion with relation to the classical dynamics. Moreover, th
is the appearance of new bumps in the expansion due to
inclusion of the quantum dynamics in a finite~discrete! sys-
tem.

In the continuum limit the GAP equations and the equ
tions of movement present the ultraviolet divergences d
cussed in Sec. II. This is reproduced in the lattice calcu
tions and, to show that our results do reproduce feature
the continuum renormalized model, we have studied the li
of smaller lattice spacings down toDx50.02 fm. In order to
continue in the scaling limit the massm2 must be changed in
the same way as the GAP equations in the lattice, sinc
absorbs the UV infinities in the renormalization. The tw
point function scales as@33#

l

FIG. 12. Evolution of the energy distribution of the classic
field for the initial configuration@Eq. ~35!# with A50.25 fm.

FIG. 13. Evolution of the energy distribution of the field wit
the quantum fluctuations for the initial configuration@Eq. ~35!# with
A50.25 fm.
1-11
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G21→ 2k

~Dx!2ZR

„mR
21p21o~p4!…, ~40!

whereZR is the field renormalization factor@it is finite in the
(111)-dimensional case#. Results for the small lattice spac
ing limit are not visibly modified. The difference is found i
the normalizations~absolute values! of the two point func-
tion and of the energy density. By subtracting these value
the vacuum ones the results remain unchanged. In addi
that, the dynamics is not affected by these divergences,
by the regularization method. This was shown in Sec. II C
the particular case of initial conditions given by small dev
tions from the vacuum.

VI. SUMMARY

We have analyzed the temporal evolution of expand
nonhomogeneous configurations of thelf4 model consider-
ing two different approaches: the classical equations of m
tion and comparing its results to the equations of motion
the frame of the Gaussian variational approximation in a
11)-dimensional lattice. A schematic model for the mode
finite fermionic density has been drawn for the initial con
tions, and the equations of movement have been solved.
condensate may either disappear~symmetry restoration! or
become higher~no symmetric phase, with further symmet
breaking! at higher densities. The parameters of thelf4

model were fixed in order to allow a comparison between
classical and quantum field temporal evolution. We ha
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been able to study the influence of quantum fluctuations
the classical field dynamics for different sets of free para
eters. By varying the parameters of the model and the n
homogeneous initial conditions, we have carefully inves
gated the expansion of different field configurations in t
framework of the Gaussian approximation. The quant
fluctuations accelerate the expansion of a concentrated
figuration of the field. This effect is considerable for stro
coupling constants and particular cases of the initial con
tions, namely when there is an enhancement of the cond
sate ~stronger symmetry breaking! instead of suppression
~restoration!. However, no large differences were found f
these two different initial conditions in the early time dynam
ics. Closely related works were performed in Refs.@8,11,27#
for other initial conditions, as for instance a Gaussian c
figuration, and additional averaging over ensembles of m
fields ~which seems to lead to thermalization at long time!.
It is possible to conclude that the initial conditions play
important role in the temporal evolution. We have been c
cerned mainly with short time interval evolution, and oth
issues related to thermalization and equilibration have
been addressed extensively.
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