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A time dependent variational approach is considered to derive the equations of movement Xa$*the
model. The temporal evolution of the model is performed numerically in the frame of the Gaussian approxi-
mation in a lattice of #1 dimensions given nonhomogeneous initial conditiisch as bubblesfor the
classical and quantum parts of the field which expands. A schematic model for the initial conditions is
presented considering the model at finite fermionic density. The nonzero fermionic density may lead either to
the restoration of the symmetry or to an even more asymmetric phase. Both kinds of situations are considered
as initial conditions and the eventual differences in early time dynamics are discussed. In the early time
evolution there is strong energy exchange between the classical and quantum parts of the field as the initial
configuration expands. The contribution of the quantum fluctuations is discussed especially in the strong
coupling constant limit. The continuum limit is analyzed.
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I. INTRODUCTION thermalization, decoherence, formation of disoriented chiral
condensates, and phase transitions among others with non-
There are many motivations for the study of time depen-perturbative time dependent formalisms. Some examples can
dent nonperturbative methods in quantum field theorybe found in Refs[4—-15,1§. Some works have already been
(QFT). Some examples are immediately found in systemslone concerning the dynamics of nonhomogeneous configu-
with a strong coupling constant, spontaneously symmetryations in bosonic fields. In particular, Gaussian equations of
breaking, and which undergo phase transitions. Some of th@ovement were considered in Ref8,9,18 to study prop-
most interesting cases are present in the relativistic heavy ioerties of the large time dynamics in certain cases. Nonhomo-
collisions currently being prepared and performed at theyeneous field theory was also studied in R&B] to obtain
BNL Relativistic Heavy lon CollidefRHIC) which probe information relevant for particle production and thermaliza-
hadronic matter at very high densities and temperatures. Ition of nonequilibrium systems.
these cases a region of very high energy density starts ex- In the present work we extend, complement, and give a
panding(and “cooling”) just after the nuclei collision. These sounder picture of the work done in R¢fl5]. The main
systems are usually described by hydrodynamical modelaspects we study in the present work are the following. First
which are known to be quite reliabld]. However, an un- a schematic model for the formation of locally nonequilib-
derstanding of these models in terms of microscopic descripdum initial conditions(which expands with timeis devel-
tions with the underlying QFT degrees of freedom are ex-oped. As already proposed in Rgf5] we consider the pos-
pected to be derived, and are currently being investigated byibility that, due to some particular condition, the condensate
several groups. Many effects are expected to occur in thosemplitude (as well as the physical mass of the scalass
systems; for example, dynamical phase transitions should beither suppressed or enhanced in a localized region of space.
present in a reliable description. For this we consider th& ¢* model coupled to fermions at
Because of the extreme complexity of realistic theoriesfinite density in a one dimensional space. Depending on the
such as QCD, one is usually led to study effective modelkind of coupling, the model may experience either symmetry
which respect the major properties of the fundamental theoryestoration at high fermionic density or further symmetry
and which reproduce the main issues of this in some range dfreakdowng 16]. We look for dynamical consequences of
a relevant variabléas energy In the present work, however, the corresponding enhancement or suppression of the con-
a still more simplified version of the reality is considered in densate at the tree level and in the framework of the Gauss-
order to check qualitative effects. Thep* model is often  ian approximation. Although there are enormous differences
used as a test model, although its scalar field may be consithetween this simplé¢idealized model (the X ¢* mode) and
ered as the relevant degree of freedom for inflationary modthe realistic “fireballs” from RHIC, we believe that a study
els in cosmology?2]. In condensed matter and statistical me-of the influence of the present field theoretical degrees of
chanics it is also of interest3]. Furthermore it can be freedom is of interest. An idea somewhat similar to this one
identified to the mesonic sector of the linear sig@&N) was discussed in Rdf17] where the pressure due to a gas of
model in the largeN limit or without pions. pions, including a\ ¢* term in a static description, was con-
In the last decade quite a large amount of work has beesidered to drive an expansion of a “fireball.”
done in order to shed light on some of the subjects men- We have therefore the following picture. First we fix two
tioned above as well as on aspects related to the dissipatioparameters of the model, which will allow us to make mean-
ingful comparisons between tHéme dependenttree and
Gaussian levels. Second, it is assumed that the scalar field is
*Email: braghin@if.usp.br locally placed in a thermal bath and/or experiences an inter-
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action with a finite fermion density in that small region. whereH is the Hamiltonian.

These interactions—which change the ground state of the In the Gaussian approximation at zero temperature the
model—are switched off at=0, yielding nonequilibrium wave functionalV is parametrized by

initial conditions for the scalar field which are evolved in

time. The temporal evolution is performed within the tree 1 1

level and Gaussian approach equations, producing the expan- ¥ L[$(X)]1=Nexp — Zf dxdyde(x) (G (x,y)

sion of regions(bubbles endowed with high energy densi-

ties. . . >—

The work is organized as follows. In Sec. Il a time depen- +'2(X,Y))5¢(y)+IJ dx (x) 5¢>(X)],

dent variational method for pure state systems is described in

the Schrdinger picture, and the equations of movement are @
derived with a Gaussian trial wave functional. Some consid- — S
erations for the static and thermal case are made. The smafnere d¢(x,t)=4(x) — ¢(x.t); the normalization isN, the
amplitude motion case is investigated for homogeneous conAriational parameters are the condensaig(x,t)
figurations in order to provide some useful results for ana=(¥|¢|¥) and its conjugated Variabg(x,t):<\1r|w|\p>;
lyzing the relevance of one dimensional lattice simulationsguantum fluctuations are represented by the width of the
for a more realistic situation. In Sec. Il a numerical methodGaussianG(x,y,t) =(¥|#(x) ¢(y)|¥) and its conjugated
using a pure state generalized density matrix—the time deyariable (x,y,t).

pendent Hartree BogoliuboW DHB) method, as developed  The Lagrangian for a scalar field with bare massm3
in Ref.[9]—is extended for the asymmetric casg#£0) ina  and quartic coupling constaitis given by

discretized space. This allows for an investigation of the tem-

poral evolution of a localized region of the spaattice) 1 ) , A 4

where a high energy density occurs. Next, in Sec. IV, by ﬁ(x)zz 9, (X) 9 P(X) — My h(X) _1_2¢(X) )
coupling the scalar field to a finite fermionic density system

we are able to construct a model for initial conditions at agrom this expression the corresponding Hamiltonkdris
finite density. The possibility of symmetry restoration andgptained. The action of the field operatérand its conju-
further asymmetric phats is discussed and the temporal gated momentumr in a functional Schidinger representa-

evolution of corresponding configurations analyzed. Still inon over a wave functionall’[ (x)]=(A(x)| W[ ¢]) are,
Sec. IV, we provide an alternative way of fixing the param-respectively,

eters of the model in order to perform plausible comparisons

between classical and quantum field systems. The numerical ~ _

results for the early time evolution are presented in Sec. V YL =)W ¢(3)]),

for different initial conditions and values of the free param- .

eters of the model. All the numerical examples shown in this 7| W[ p(X)]) == ()| W[ H(X)]). (4
paper conserve total energy. Special attention is given to the

strong coupling limit, and one example of the temporal evo-The average value of the Hamiltonian, which will be ex-
lution of a deviation from a kink solution is exhibited. The Plored in the numerical simulations, is given in terms of the
continuum limit is discussed. The results are summarized iiyariational parameters with the functional integrations

Sec. VI.

111 —
H=5 ZGfl(x,x)+42G2(x,x)+772(x)—AG(X,X)

II. GAUSSIAN APPROXIMATION

The time dependent variational approximation at the +m§(3(x,x)+%Gz(x,x)Jrm3<;$2+(VqS(x))2
Gaussian level has been studied for several years
[5,7,9,19,20. It provides a systematic method to study the N A
temporal evolution of a quantum field theoretical model +l—2¢4(X)+ §¢Z(X)G(X,X) . (5
given an initial condition by means of the equations of
movement. In spite of recent achievements in considerin
approximations beyond the Gaussidar example in Refs.
[11,21]) we want to address some unexplored features in th
time dependent Gaussian approach. J

Let us consider the time-dependent Dirac variational prin- i—U[p(X)]=HP[p(X)]. (6)
ciple with a trial Gaussian wave function@2,23. First the at
average value of an actidnis calculated with a given trial
wave functional V),

% the Schrdinger picture the wave functional evolves like
:;_}he Schrdinger equation

This equation is equivalent to the temporal evolution of the
variational parameters given initial conditions.
The variations of with relation to the variational param-

. eters(of the Gaussian wave functiongbroduce the equa-
sz dy¥|(ia—H)[P), @ tions of movement:
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Sl dissipation via particle production, Landau damping, colli-
WﬂﬁtG(X.y,t) sional relaxation at zero temperature; the relevance of the
e initial conditions for the dynamics was also investigated in
=2(G(x,z,1)2(z,y,t) +2(X,2,1)G(z,y,1)) some cases in early and late time evolufi6;v,9,15,25-2B
In particular, it was found that the Hartree approximation is

ol s well suited for the study of early-time dynamics.
5G(X,y,t)_>(9t (lelt)
A. Vacuum and renormalization
1 -2
= ( 22 (x,zH)%(2y,) —5G (x,y,t)) The state of minimum energy is found from the equations
of movement in the static casd=>3, =$=0. The equations
(F(x,y,t) +£$(x t)z) @) of motion reduce to the GAP equations which minimize the
2 2 ' effective potential. They can then be written as
Y _ _ Ay TR P
9, h(X,t) = — (X, 1) $(—¢> +my+ 5 G(u%) | =0,
Sm D rb( ( 6 2
ol — — A— 2 2 N = 2
——— — 9m(X,1) =T (XY, 1) p(y,1) +=h?(x,t pue=mo+ S ($°+G(u%)). (10)
sy *XO=Txy.De(y.t) + g (x.1) 2
wherel'(x,y,t) = — A+ (m3+ (A /2)G(x,x,1))8(x—y). Inthe ~ These equations provide the two phas¢* model: a sym-
x coordinate space the Gaussian width is written as metric phasdwhere there is only a zero condensdte 0)
and an asymmetric phase where the condensate is nonzero in
G B 1 8 the vacuum. From these equations, in the asymmetric phase,
(X,Y)—<X| mW) ( ) we find that

As is well known the static limit of this approximation pro- — 3u?
duces the “cactus” diagram resummatif24]. In Sec. lI, an = (13)

alternative way of writing these equations will be discussed

and evolved in time in a lattice for a class of nonhomoge-I spite of being written in terms of the bare counling con-
neous initial conditions. It corresponds to the time dependenf1 P 9 piing

Hartree Bogoliubov approximatici]. stant this value can be compared to the tree level value
By performing a Fourier transformation it is possible to =\ —6mg/A. In the former casgEq. (11)] the bare coupling
eliminate the variablesg ands. The equations in the asym- constant is fixed by the value of the renormalized coupling,

metric phase become as discussed below. o _
For a thermal environment, it dimensions, we can per-
G2 1 form a calculation similar to the one above, with a density
. Kk’ _1 —1 . . . . i )
Gy — TGkk' _EGkk' matrix with mixed states. This yields thermal fluctuation cor-

rections to the two point Green’s functida(x,x) which is
b b substituted for by
+ 2( k2+ m(2)+§G(X,X) + E(]ﬁ) Gkk’ = 0,

~ dk
N b b 3 © H<M2)=f 5o (9
et | K2+ mi+ 6¢2+§G(x,x))¢>k=o, (2m)
o] B

with G = (k|G(x,X)|k+q). These equations were gener- dk cot 2
alized for the out of equilibriuninonzero temperatureising :f d >
different methods in Refs[4,10,12,19,2] and they were (2) Ko p
studied extensively mainly by means of numerical calcula- dk 1 1
tions. The choice of initial conditions is entirely subordinate = f e —+f(k)). (12
to the approximation, in the sense that were it not Gaussian (2m)® k2 +pu?\2

one might have to consider three conditions instead of two

[23]. An analysis of these equations shows that initial condidn the above expressidi{k) is the Bose-Einstein occupation
tions (for homogeneou@ andg) are crucial for the time number. It is well known that these thermal fluctuations for
interval in which the system evolves toward the minimumthe asymmetric phase may restore the symmetry: the vacuum
and beyond as well as for the speed of the field evolutiorsolution of the condensaig, tends to become zero as tem-
[7,8]. Some other effects have been addressed, for examplperature increases. At very high temperaturés- ) the
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integral (12) in one spatial dimension can be expanded anchomogeneous asymmetric potential cases; this would not
the second expression of Eq4.0) can be written in one change the conclusiopd et us assume that, for some reason

spatial dimension as external to the model, the system experiences a small devia-
L . tion from the state of minimum. As discussed above, this can
A ha| b f t | th | bath and it b
2_ 2N . 2 ppen because of an external thermal bath and it can be
Mr=h =y 2[3,u+ Zw(ln(M/(4WT)+y))+O(T ): parametrized by a change in the physical mass, e,
(13 =0)=0.9u. This drives quantum fluctuations away from the

5 ground state and generates a dynamical evolution. In this
where y=0.57721 gndu is the mass at zero temperature. case it is possible to extract exact analytical solutions for the
Therefore the physical mass is reduced at high temperatureggation of movement. For this kind of initial condition one
pr=w?(T)<w?. This effect is also present in the conden- can linearize the Gaussian equations of motion using the
sate[by means of Eqs(10)] making possible the eventual following prescription for the solution:
restoration of the symmetry breakinat least at this level of
approximation [29]. G(m?,t)=Gg(u?) + 8G(t),

The renormalization of the time dependent appro@ch

continuum spacescan be done in the same way at zero andyhereG, (4 ?) is the value of the fluctuations which obey the
finite temperatures as well as out-of-thermodynamical equigap equation, andG(t) is the value of the small deviation
librium [10,19,20. No additional ultraviolet divergence is which evolves in time.

found due to the temporal evolution of the system or itS \yg presented analogue solutions for the free case in Ref.
_dep_arture from zero temperature or equmbnur_n. Renormal[g], choosing a plane wave prescription for the deviation
ization can therefore be performed by absorbing the diveryc 1) since an infinite system was considered. We found the
gences in the phy.sllcal magane d|mens]ona| .systerm the following solution for the deviatiordG(t) in d dimensions:
vacuum. By rewriting the GAP equations in terms of the

renormalized quantitiesn@,)\R) we can find the relation- 5

ship between the bare and physical quantities. These can be _M
. . . ; 8G(t)= , (15
written in one dimension as
1_)\| 3 2 I3C
) , A 2A
mg(1d)=mg+ 5—In| —],
8m\ m where
(14)
1 A
- d
8m3 |3=J dk 1 ,
)\R(ld)z)\ —)\ . (27T)d (2 /k2+M2)3
1+ (16)
167m3

| j d% cog2Vk?+ u’t)

We note that the coupling constant acquires only a finite 3c™ .

correction P “ Y 2m?® (2Vk%+u?)?
In a discretized space there is a natural regulétee lat- _ o ' .

tice spacing for which\ = 1/Ax). The integralg12) become ~ The integrall; is time independent and contains a log diver-

a summation and converge. As the limit to the continuum isgence in three dimensional space. It can be absorbed in the

taken the integrals tend to diverge and a redefinition of théenormalization of the mass and coupling constant. The inte-

bare quantities is needed. This will be discussed in Sec. V.gralls. also has a divergence &t 0 in three spatial dimen-
sions which also can be regularized. This problem was also

addressed in Ref$9,30]. In particular, the integrals can be
written in terms of generalized hypergeometric functions.

Before exhibiting numerical solutions of the equation of  |n one dimensional space, on the other hand, there are no
movement in a lattice let us perform an exercise which isyjtraviolet divergences for this case of temporal evolution.
useful for the understanding of results. For a certain class afjyen a finite initial condition(which is the deviation from
initial conditions it is possible to find analytical solutions for the vacuum value, proportional tm?— x?) the temporal
the equations of movement. First, we can see the relevane&olution is finite. This is very significant for the numerical
of the temporal evolution of a given initial condition irre- gojytions in a lattice: the temporal evolution of the system is
spectively to the regularization method for the local diver-independent of the regulator. This occurs due to the fact that
gences. We can also check that the study of the one dimefne static sector was separated from the dynamic evolution
sional model can provide information about the threeand the divergences only contributed for the redefinition of
dimensional case. _ the former. In other words, the regularization and renormal-
_ We therefore consider the symmetric phase of the modabation do not interfere in the temporal evolution. This is
(¢=0) assuming a particular kind of homogeneous initialchecked in Sec. V with numerical calculations in a one di-
conditions(exactly the same calculation can be done for non-mensional lattice.

B. Small deviations around the minimum
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Another interesting feature can be pointed out from these 1
solutions by rewriting them. In a one dimensional space the 7 (i)m(j))=F(i,j)+1 W?:ﬁRe(p(i,j)—K(i,j)),
time dependent integral can be written as (Ax

l(l)_@j‘”d _cos2yy) an (p()m(j))=2G(i k)2 (K,])+ ¢y,
¢ grx u yyz /_yz_,uz’ im0~ k(i])).

whereas in three spatial dimensions the same time dependep,t,(i)qg(m: 23.(i,K)G(K,}) + ;i
integral can be written as o o
=2Im(p(i,j)+ «(i,])), (22)

1) = d + . where F(i,j)=G(i,j) Y4+ 42 (i,k)G(k,)X(l,i). There-

* 87 w yyzvy —u? 2 fore we can already note that there are two different ways of
(18)  expressing the state of the system: by means of the general-

o _ ~ized density matrix elements or with the variational param-

The main difference between these two expressions is thgters discussed beforhey are completely equivalent de-

fact that in three dimensions there is one additional d'Ver’scriptions for the prescriptions used in this work

gence which occurs only &t=0. This also suggests that the  Next we discuss the dynamics of the generalized density

dynamics in one spatial dimension is not completely differ-matrix. The temporal evolution is governed by the Hartree-

ent from the dynamics in three dimensions for the cases UrBogoliubov energy, which can be parametrized in the follow-

der Study. |ng form:

(u2—m?) (szw cog2yt)  wNg(2ut)

L
ij:‘s?ji_

IIl. NUMERICAL METHOD: HARTREE-BOGOLIUBOV

N -

ol g

This section is an extension of the work developed is Ref. —Diy —Wiy

[9] for the time dependent Hartree-Bogoliubov approxima-
tion in the presence of @me and space dependgnbnden-
sate. The generalized Hartree-Bogoliubov density matrix cal
be defined, in a discretized space,[33%]

It is worth noting that this approximation, and consequently
the dynamics under study, is invariant under a unitary trans-
Yormation. Therefore it is possible to consider the general-
ized density matrix and Hartree-Bogoliuboii(;) energy in

another form, namely,
R —( P ) (19
T el Re—rRr, F-sM=r, (24
= —F=TR—=7, = =T —F=7,

where the average density matrices are written in terms of 22 22
th? av?rag$ Of, creatpq and annihilation pperatqrﬁj where the superscript means the transposed matrix, and
=3(ajaj +ajay) is Hermitian andk; ;= —(a;a;) is symmet- o iven b
ric. 9 y

For the calculation of this matrix, the creation and anni- 1 -1
hilation operators are written, indaspatial dimension lattice, T:( ) (25)
in terms of the field and its conjugate variable: 11

With these transformed matrices, one can check that a
a(j)= i{d,(j)(a)(d—l)/zﬂW(j)(ﬁ)(Hd)/z}, (20) Liouville—von Neumann type e(Eation is necessarily satis-
V2 fied only in the symmetric phase)&0):

L iRy =[F R 1. (26)

al(j)= E{m)(a)(d V2—im(j)(B) O, (D) e

This equation can be written in terms of the averaged quan-

tities[Egs.(22)]. By doing this exercise we have shown that

X : ! ) ) they are equivalent to Eg$7) in the zero temperature limit

S”'ﬁ]ble choice ;or tTem 'Sftn? I?,tt'lge Spactllng. _ without the condensate. When the classical field is taken into
e averaged values of the field variable, ) previ- account, Eq.(26) is still considered andp(x) acts as an

ously shown can be written in terms of the matrix elementsextemal (dynamical source to Eq(26). The time depen-
of the above generalized matriR. Using the notation of y q.<5). P

expressions7) and (19), at zero temperature we obtain dence of¢(t) is determined by the two last equations of set
(7). These last equations, in turn, depend on the fluctuations
which are evolved in Eq(26). We are currently extending

Relp(i,j)+«(i,j)), this method to finite temperature nonequilibrium systems

(Ax)d4-1 [16]. The numerical evolution of Eq(26) is obtained by

where @« and B are (dimensional normalization factors. A

($p(1)p(i)=G(i,j)+1 ¢>=
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diagonalizingR; ; and evolving the eigenvectors from which into the effective potential of the scalar field and modify the
the variational parameters.g.,G; ;) can be calculated. GAP equations. These averaged terms are given in terms of a
fermionic density:

IV. PARAMETERS OF THE MODEL AND INITIAL o
CONDITIONS (Elg(r)g(r)|E)=pg(r). (29)

In this section we complete the schematic model for jus-The densityp; can be calculated by fixing the chemical po-
tifying the initial conditions used in the evolution of the tential eventually at a given temperature. However it is not
equations of movement. The finite temperature effects werthe aim of this work to perform such a detailed dynamical
already discussed in the framework of the Gaussian approacelf-consistent microscopic description. Here we only want
and now we couple tha ¢* model to fermions at finite to provide a physical basis for the initial conditions of the
density. There are many possibilities for this coupling and wdime dependent model. By the minimization of the energy
discuss only a few cases which may lead either to the restalensity with respect to the one and two point functions of the
ration of the spontaneously broken symmetry or to a furthescalar field, we obtain the GAP equatidias finite fermionic
asymmetric model at high densities. We also provide someéensity which can be written as
remarks which are helpful for the choice of the sets of pa-

rameters: the physical magg and the coupling constant — ¢°
in the lattice. po=mo+ 5| G+ 5| +20pp1,
(30)
A. N ¢* coupled to fermions at finite density 2\
. o w?>—N—=|p+gaps=0.
We can couple the\¢* model to fermions yielding a 3 a

mechanism for placing the system in a finite fermion density

environment. This procedure may produce another mecha&Regularization of the ultraviolet divergences and the subse-
nism for the symmetry restoration. In the dynamical picturequent renormalization of the parameters of the model does
we suppose that the coupling of fermions to the scalar field igiot change qualitatively these equations.

switched off att=0 as a first approximation to the problem. ~ We fix a coupling constanta strong one\=235u7,

In part, this can be justified if one has a decreasing scalawhereu is the physical maggor a one dimensional system,
fermion interaction amplitude with relation to the self inter- but the conclusions do not change qualitatively for higher
action of the scalar field. If we consider an expanding finitedimensions. Solutions for these two expressiéios fixed
density environment“fireball” ) the density is expected to couplings have been sought for and the main conclusions
decrease as the system expands. As we will not be concernége to the introduction of the fermionic density dependence
with the fermion dynamics we will only consider the inter- through the couplingg, andg, are the following:

acting part of its Hamiltonian. (i) Keepingg,=0 andg,= + w/5 quite small. As can_be
The following Hamiltonian density terms for spin half seen in Eqs(30) there will exist no symmetric solutiogb
fermions coupled to the scalar field are considered: =0 at nonzero density. In fact as the density increases the

_ _ (rea) condensate value will increase. This leads to a still
Hi=gad () () P(X) + G’ (X P(X)(X), (270 more asymmetric phase.

(i) On the other hand for the same value of the other
where the coupling constants, and g, are dimensionless coupling, g,=+ u/5 but g,=0, the asymmetric phase will
only in 3+1 and 2+1 dimensions respectively. Neverthe- disappear whep=14u? and there will be no more conden-
less we are allowed to consider these as effective couplingsates. At nearly double densities the physical mass also dis-
of an effective theory. Eventually one would need other cou-appears.
plings as one considers higher energy processes. (i) If one assumes negative couplirgy<<O (and g,

The above couplings lead to changes in the equations o£0). In this case the condensate has increasing values for
the X ¢* model. In particular, we are interested in possiblenigher densities until a point where there is a complete dis-
effects in the minimum energy state of the model. For thisappearance of the asymmetric phase. This point coincides
we repeat the calculation of the GAP equation which is obwith a zero value for the mass from the GAP equatiop at
tained by the minimization of the Hamiltonian densifyg. =252
(5] in the framework of the Gaussian approximation. Con-  For finite temperature field theories, such @$N) or
sidering that the wave functional of the system now acquire®(N)XO(N) models, the spontaneous symmetry breakdown
a fermionic sectof=) (which may be a Slater determinant may be restored or not at high temperatui@®]. However,
and is a function of the chemical potenjiaue to the pres- we point out the possibility of there existing no restoration of

ence of fermions at finite density we write the symmetry or even further symmetry breakings at finite
densities. A more complete analysis of the finite density effec
[ULd)— |V p])X|E[#]). (28)  ts on scalar models will be shown elsewhgté].

We obtained, therefore, another mechanism for consider-

With the fermionic wave functional one calculates the avering local variations of the condensaté:# ¢,. This allows
aged values of the interacting Hamiltonian terms which entefor scenarios in which one obtains nonhomogeneous con-
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figurations for scalar fields at finite fermionic densities andWriting the total energy density with Eq¢5) and (11) we
temperatures fixing the initial conditions. The situation inobtain a second degree polynomial expression for the cou-
which the condensate is suppressed is usually more acceptgaling constant. In terms of the bafeegularized quantities

We do not neglect the possibility of enhancing the condenthe corresponding solutions for the coupling constant as a
sate due to some different phenomena when the field intefunction of the(regularizedl energy density are given by

acts with matter.

YN e

B. Choice of parameters A= , (33
2G?

We consider static initial conditions. The initial “veloci-
ties” of the classical and quantum parts of the field are taken

to be zero in all examples shown below, where 6=8H,,.— G 1+2u2G. The renormalized version
_ L of H (as derived, for example, in R¢B4]) can also be used
2xG=0, 7wx¢=0, (31)  for this calculation. In one dimension there may have nega-
tive and complex solutions which do not seem to correspond
where the dot means time derivative. to meaningful stable minima of the effective potenfia6].

The X ¢* model has two parameters which must be fixed:This calculation could be meaningful even ir-3 dimen-
the mass and the coupling constant. We have chosen sorsins to the extent that the¢* model can be considered as
values to place the system in the scaling limit. With the lat-effective, and for which the cutoff can be fixed at some high
tice spacingAx=0.1 fm we considereddx<{(<L where energy scale. In this case the bare and renormalized quanti-
&=1/u is the correlation length and is the size of the ties can be related by Eq§l4) in one spatial dimension.
lattice. In this region the universal properties of the latticeThis is equivalent to placing the system in a lattice, which
model can, in principle, be described by a continuum fieldprovides us with a natural cutoff (Ak), and to performing
theory. As a rule, the physical mass was chosen tqube all calculations on it.
=100 MeV for the dynamical situations.

For the coupling constant, which has dimension fnin
one dimensional space, different values were chosen: from
A=1/12u?=0.021 fm 2 to A=600 fm 2=235Qu2. For We therefore have the following picture. First we fix two
low dimensions the. ¢* model is super-renormalizable and parameters of the model, which will allow us to make mean-
the coupling constant is larg83]. The smaller value was ingful comparisons between th@me dependenttree and
already considered to be in the nonperturbative redihig Gaussian levels. Second, it is assumed that the scalar field
We have found, however, that this is not the case for thdocally experiences an interaction with a finite fermion den-
examples shown in the present work. Indeed, we have founsity in a small region or has some contact with a thermal
that the dynamics for couplings with values up 10 bath. These interactions—which change the ground state of
=1 fm?=5/12u? are not substantially different from the the model—are switched off d@t=0 yielding nonhomoge-
tree level case in the early times dynamics. Numerical exheous(and nonequilibriuminitial conditions for the scalar
amples will be shown in Sec. V. field which are evolved in time. The temporal evolution is

In order to perform consistent comparisons between clagaerformed within the tree level and Gaussian approach equa-
sical and quantum dynamics as well as among different initions, producing the expansion of regidibsibbles endowed
tial conditions it is important to fix the parameters of the with high energy densities.
model. However, instead of fixing physical mass and cou-
pling, it is also possible to fix other variables such as the D. Initial conditions: finite density and temperature
energy density or particle number. For the sake of the argu-
ment, let us consider the simpler case of homogeneous SO|!flr-0
tions in the vacuum. At the tree leveGE 0) we obtain, in
vacuum,

C. The picture

First we suppose that the temperature varies continuously
m the center of the lattice, where there is a high energy
region, to the(zero temperatujevacuum. This constitutes an
out of equilibrium situation which can be implemented in a
3md lattice by the following configuration:

Hyac=— X (32

m2(x,t=0)= u’tant?

(39

X— L/Z)

Therefore we can fix, for example, the mass and the energy

density of the vacuum and calculate the corresponding cou-

pling constant. This can be useful for the study of the influ-The bubble of high energy density is centerecatL/2 (L

ence of the quantum effects because the inclusion of fluctud2€ing the size of the latti¢eand it has a size given bj

tions (perturbatively or notchange the ground state which is (which will be taken to be 0.5 fin At the center of this

defined by the mass and coupling cons{dr]. bubblem?=0 MeV which implies very high temperatures.
Let us consider a regularized energy denstty , . at the As the temperature also modifies the order parameter of the

Gaussian level which can be particularly well suited for themodel (¢) it may eventually yield a symmetry restoration.

lattice calculations. Fixing the physical mass we obt@in We will consider another kind of configuration given by
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0.8 e 69.14
— $tanh’(x-5)/05)
. |  (1+.2s6ch (x-5)/.5) 69.135
e: g Allg 69.13
(5 (=
. 69.125

69.12

r (fm) r (fm)

FIG. 2. Evolution of the energy density of the fieldassical

) FIG. 1. Examples of initial _field cor_wfiguration. The thi_df ,SOIid plus quantumat different times. The initial time mass configuration
line corresponds to the two point functi@(r,t=0) for the initial is given by Eq.(34) and\ = u2/12

condition[Eq. (34)] consideringu= 150 MeV. Thin solid and dot- ' '
ted lines correspond to the initial condensate configuration of Egs.
(35 and (36 with =0.2) respectively. V- NUMERICAL RESULTS

In Fig. 1 some of the initial conditions for the field&(r)

and ¢(r) are shown. The thick solid line show&
=G(m?(r),t=0) corresponding to a bubble of high energy
density which comes out from a zero mass region inside the

In the central region of the lattice the condensate is supyacuum(for w=150 MeV). The physical mass is given by
pressed. This can occur due to interaction with a finite denexpressior(34):

sity medium. A unifying picture can be associated with the

above configurations. In high energy collisions there is a

large amount of energy deposited in a small region, eventu- m?(t=0) = u’tant?
ally causing the system parameters, such as particle masses

and condensate, to become modified. This energy excess is o o
expected to propagatexpand in space time. In this case, it is therefore assumed that the deviation of the

An enhancement of the condensate due to the interactiomass in the center of the lattice but the condensate is kept
with matter can also be assumétcould correspond to fur- constant. The other two curvégin solid and dotted lings

H(x,t=0)= ¢otant?

A (39

X— L/2)

X—

e ) $(t=0)=o.

ther symmetry breaking at high densities correspond to nontrivial initial conditions for the condensate
[Egs.(35) and(36)], and will be discussed later.
_ _ x—L/2 The first initial condition(34) is evolved for two different
d(X,t=0)=¢po| 1+ asecﬁ< A ” (36)  values of the coupling constant=%/12=0.02 fm 2 and

600 fm 2, for a physical masg =100 MeV. The resulting
where a is a real positive number which measures the€volution of the energy density configuration for low times is
amount of energy excess deposited in the central region ¢fhown in Figs. 2 and 3. In Fig. 2 the energy density configu-
the lattice. ration is exhibited at different time steps 0.1, 1.0, 2.0, and
Finally, another kind of initial condition will be consid- 3.5 fm as a function of the lattice points. The init{aighey
ered. It corresponds to a deviation from the kink classicaenergy bubble expandby “waves”) toward the extremities
solution to the equations of movement. The static kink soluf the lattice distributing the initial “potential energy” over

tion of the classicak ¢* model is given by[35] the lattice and among classical and quantum degrees of free-
dom. For a much stronger coupling constéRig. 3), the
— — x—L/2 energy density configurations are shown to expand in a more
d(x,1=0)= ¢y tanl‘( B ) (37) “concentrated way” than in the weaker coupling case. Al-

most no difference can be seen in what concerns the expan-
where B=\/— 2/mZ. In this caseg(r=0)=—¢, and ¢(r  Sion velocities.
= 1O)=ZO, wherer =0 and 10 are the borders of the lattice.
This configuration can be seen as a wall which separate:
regions with different vacua Whergz i% It is stable at
the tree level and corresponds to a nontrivial topology caseq~ 243

By considering antiperiodic boundary conditions we have £
chosen a deviation with relation to the kink solution: o 24.05

24.35 . . . .

— t=0.11m
— t=10fm
oeeeee (=20 0
oo =35 fm

_ _ x—L/2 A
d(x,t=0)= ¢pgtan 5 | (39 24.2 — ‘ ‘ ‘ —
0 2 4 6 8 10

HereB was considered to b@=1/(4w). There is an energy
excess in the central region of the lattice, over the kink. FIG. 3. The same as Fig. 2 with=600 fm 2.
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2 0.002 —— ———
0.0001 | N eyl
8.1315e-20 | :
,lp —1e-04 [
£ -0.0002 [
- -0.0003 [
-0.0004 [ Y
-0.0005 [ .

-0.0006 : ' s '

0

. | . ! . L . L . L . r (fm)

r (fm) FIG. 6. Evolution of the energy distribution of the classical field

for the initial configuration[Eq. (36)] with «=0.2 and for A
FIG. 4. Evolution of the energy distribution of the classical field =60 fm 2.

for the initial configuratiof Eq. (35)] andA=0.6 fm 2.
[11] suggests that the nonperturbative dynamics may be
The following initial condition is considered for the next present for some kind of configurations but not for others in
casegEqgs.(35)]: the early time analysis.
We consider now another type of initial condition. The
value of the condensate is enhanced in the central region of

3=0 the lattice by means of Eq36),

d(t=0)= gpotant?

X—Xg

0.5

x—L/2
A

P(t=0)= | 1+ asecﬁ<

In this case the condensate is suppressed in the central region

of the discrgtized space—time._ln Fig. 4 the evqlution of thevvherea is a real number which will be assumed to be in the
corresponding energy density is shown for a quite weak CoUzpqa g o <0 5. It measures the energy of the bubble which

I = _2~ 2 I - - . - - .
![O“ntg con_stam}t;—o.G fm f?h2.3€|$u \.N'tTOUt qltj_antu][n ﬂut(? is placed in the center of the lattice. It still has a size roughly
uatons, I.€., by means of (né classical eéquation of mo Ion_given by A=0.5 fm. Since the previous examples have

the third and fourth of Eqs(7). Two-peak waves expand _ —2__ 2
from the center of the lattice to the borders. The initial en—ShOWEd thah=0.6 fm 2.36u is not strong enough as

. ; to yield nonperturbative quantum effects, we consider a
ergy density has a tyvo-peak structure, V\.’h'ch oceurs .due tgtronger value X=60 fm ?=236u?) for the next figures.
the fact that the gradient term in the Hamiltonian density hasl.hiS configuration could correspond either to the case from
the largest valuegsee Eq(5)]. This figure can be compared

. s . Sec. IV, where the model is placed in a region with a finite
to the evolution of the complete system including qu"’mtumfermion density with a particular kind of coupling, or to a

fluctuations which is shown in Fig. 5. The two point function situation where external fields would “merge” in a conden-

Gis Eon&defrz? to be 'P the vactl;lg valueato.tlr?ue to the d sate in that small region increasing its value and the respec-
weakness of the coupling constdtite same as the one used energy density15].

'_PhF'g' 4) tg%re IS no V'z'.blr? .d'ﬁerfnfe beLW(taentthel flgur;ats. In Fig. 6 the classical energy density is shown for an
th edmr?":nil ezer:ﬁe, V\\; IrCII Ins ?rl# ?iza:igi l]{”r:o rr? ervargj r?initial condition given above witlv= 0.2, which represents a

1€ dynamics, IS the overall normalization ot the energy den, ,, very energetic bubble. The energy density evolves nearly
sity. The inclusion of quantum fluctuations introduces a zer

oint ene hose effect on the dvnamics is not relevant n the same way as the case of Fig(iditial condition de-
bol rgy whos Y IS 1S vant, e by a suppression of the condensate instead of enhance-

a comparison between Figs. 4 and 5 shows. The above ValLﬂﬁenD. There is a small difference which is related to the

g{/thre Ci?rl:p“fn? t(;]c;nstaﬂt Sg'rlrl] IS '2 tlh@iiyn?:mlrcrz]a) F;ieftlri]rb?'thi relative amount of energy in each peak of the expanding
€ regime for this early imeé analysis. L.omparison ot this,, ., o5 4t larger timegvhent=3.5 fm). In the present case

H 2
weak coupling constant casa <:1/12.%) to other works (enhancement of the condengatee second peak is slightly
higher with relation to the configuration where the conden-

71.5 v sate is suppressedFig. 4). By switching on quantum fluc-
— czom tuations we obtain the temporal evolution shown in Fig. 7.
ot I The first issue we note is that between time steps 0.1 and 1.0
‘YE I fm there is an “amplification” of the locally concentrated
b 705 | | energy density, leading to regions in which its value is
) smaller than the vacuum energy density. Theses regions ex-
pand. These are local effects since the total energy is always
70 0 2 "‘ é é 10 conserved and given by the vacuum energy plus the initial

r (fm) bubble energy excegpositive. Furthermore, these regions
tend to disappear for larger times. Another important effect is
FIG. 5. Evolution of the energy distribution of the field with the that most of the expanding energy is now concentrated in the
guantum fluctuations for the initial configuratigq. (35)] and \ “advanced” peaks, which arrive first in the extremes of the
=0.6 fm 2. lattice. This corresponds to an acceleration of the expansion
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65.667 - 65.665 | ]

65.665 L L L ! 65.66 1 . . \ |
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FIG. 7. Evolution of the energy distribution of the field with the FIG. 9. Evolution of the energy distribution of the field with the
guantum fluctuations for the initial configuratid&q. (36)] with quantum fluctuations for initial configuratiofEq. (36)] with «
@=0.2 and\=60 fm 2. =0.5 and\=60 fm 2.

[15]. For the preceding cases the energy density “bumps’in this case we also note quite a large energy density ampli-
took nearlyAt=5 fm to arrive at the borders of the lattice. fication in the beginning of the evolution, and the existence
In the present cas€Fig. 7), this time is reduced to nearly Of expanding regions in which the energy density is smaller
At=3.8 fm. As noted in Ref[15] the energy density be- than the value of the vacuum. These modify the two-peak
comes smoother when considering the quantum fluctuations§tructure discussed above. Although the last step in such a
but this occurs only in the nonperturbative region of the coutime evolution presents values for the energy density which
pling constant. It is also possible to note that the centramay not be completely reliable due to numerical uncertain-
region of the lattice, where the bubble starts to expand, tendées the main issues are completely reliable because, as we
to assume energy density values close to that of the vacuuginphasize, the total energy is conserved. The acceleration
as the energy moves toward the borders of the lattice. Strorfound above still is present. Moreover, it is interesting to
ger Coup“ng constants therefore lead to the fo||owing quannote that there is little difference between the temporal evo-
tum effect: there is an acceleration of the energy densit;ution of cases in which initial conditions are given in terms
expansion_ A|though the two-peaked form of the expanding)f a with different values, i.e., foe=0.2 or 0.5 in the early
waves persists, the advanced pe@ksse which arrived ear- time dynamics.
lier at the borders of the lattit@re strengthened with rela- ~ For the examples shown above only the short time behav-
tion to the others. This is a clear indication that the expansiofPr was analyzed. These are such short time scales that the
is faster, corresponding to a nonperturbative quantum effecRoundary conditions are not even relevant. The large time
What happens if the initial energy density excess in théddehavior was briefly studied for some cases in the strong
center of the lattice is increased? In Figs. 8 and 9 this igoupling limit \=60 fm~?). No equilibration was found
shown respectively for a classical system and for a “com-or larger time evolutions, i.e., the amplitude of futassical
plete” (classical plus quantumfield with the same set of and quantum oscillations do not tend to zero. There are
parameters as the preceding figures but considerin@.5  Several other different approaches dealing with different as-
in Egs. (36). The coupling constant is in the range  Pects of the non-equilibrium field dynamif$3,18,21,36
=60 fm_zz 236#‘2 The energy density excess is much In the next ﬁgureS another kind OflontriVial) initial (En-
higher than those considered before, as can be checked figuration is considered for the condensate. In this chge

comparing with Fig. 8. In this figure the temporal evolution =)= — ¢, and ¢(r = 10)= ¢, where 0 and 10 are the bor-
of the energy density of the condensate without quantungiers of the lattice. This configuration can be seen as a wall
fluctuations is shown. In spite of different normalization and,, .-, separates regions with different vacua where

energy values the classical dynamics is not modified wit . L ..
gy y * ¢. By considering antiperiodic boundary conditions we

relation to Fig. 4{for which the initial condition was given h h deviati h relati he kink soluti
by the suppression of the condensate with @8)]. In Fig. 9 ave chosen a deviation with relation to the kink solution

the dynamics of quantum fluctuations is taken into account.EdS- (381 [35]:

_ — x—L/2

0.04 T T T T T — s ¢(X,t = 0) = (,'bo tan B . (39)

0.03 i T Tjég;m
— 002 ] Here was considered to bB=1/(4x) and A=60 fm 2.
£ 001 | ] First, the evolution of the equations of movement for the
e - condensate without quantum fluctuation&=0) is per-

0or / _ ) Lo formed. In Fig. 10a) the resulting classical field profile
-0.01 5 2 . "1 é s é T (¢(t)) at the pointsx=5 and 10 fm are shown. The change

‘ (fm) of the field at¢(x=10%) (there is a “flip”) is due to anti-
periodic boundary conditions, and occurs exactly at the time
FIG. 8. Evolution of the energy distribution of the classical field when the energy density bumps arrive at the border of the
for the initial configuratior{Eqg. (36)] and «=0.5. lattice. The field in the central region has a static and con-
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0.02 . .
:'Efg":ﬁ; FIG. 12. Evolution of the energy distribution of the classical
0.01 | A 1 vesim field for the initial configuratiofEq. (35)] with A=0.25 fm.
E o
- shown. They clearly exhibit the energy transfer between clas-
-0.01 | . sical and quantum degrees of freedom. In particular, when
0.02 . ‘ . the “condensate flip” occurs, the quantum fluctuations are
o 4 6 8 10 enhanced in the corresponding poimt=10 fm). For the

r (fm)

energy density configurations, in Fig. (t], there is no
strong effect with relation to the purely classical dynamics

FIG. 10. Evolution of the energy distribution of the classical [seen in Fig. 1()].

field #(t,x) for the initial configuration [Eq. (37)] and A

=60 fm 2.

For Figs. 12 and 13 a different size of the bubble of sup-
pressed condensate is considered, with the initial condition
given by Eq.(35). We have considered the half value, i.e.,

stant value given at=0. In Fig. 1Gb) we show the energy A=0.25 fm. This yields a smaller region out of equilibrium.
density expansiofit does not have a two-peak structure dueln Fig. 12 the temporal evolution of the energy density of the
to the initial condition. By switching on quantum fluctua- classical condensate case is shown. In Fig. 13 the same is
tions we obtain Figs. X&)—11(c). In Fig. 11(a) a condensate shown for the classical plus qguantum system. The concentra-
in the same points of the lattice as in Fig.(40is shown. tion of energy density in the “advanced” peaks discussed
The dynamics is similar but the fielgt r=10 fm) “flips” above(Figs. 5 and 7; also see R4fL5]) is very visible in

to the other vacuum value faster. In Fig.(ljlthe deviation Fig. 13. This indicates, again, an acceleration of the expan-
of the quantum fluctuations with relation to the value in thesion with relation to the classical dynamics. Moreover, there
vacuum, at the same poinfssG(t,r)=G(t,r)—Gg] are is the appearance of new bumps in the expansion due to the

inclusion of the quantum dynamics in a finii@iscrete sys-
tem.

0.2 T , . .
01 L 3 In the continuum limit the GAP equations and the equa-
- '0 / 1 tions of movement present the ultraviolet divergences dis-
J . cussed in Sec. Il. This is reproduced in the lattice calcula-
—0.1 ¢ ] tions and, to show that our results do reproduce features of
-0.2 0 zll . 8 the continuum renormalized model, we have studied the limit
t (fm) of smaller lattice spacings down fax=0.02 fm. In order to
continue in the scaling limit the mags® must be changed in
0.02 b N ] the same way as the GAP equations in the lattice, since it
0.01 17 ™ ™ absorbs the UV infinities in the renormalization. The two
3 0 1 point function scales d83]
-0.01
_002 . I . 6572 T T T T T
0 2 4 6 10 —o1m
t (fm) 65.71 { s
65.72 . . . 1 § 857 | .
. 6571 . E
“.‘E 65.7 | = 65.69 b
£ 6569 i ]
& 65.68 | 6568 LA A
6567 6567 L VAP N S £ ¥
0 0 4 6 10

FIG. 11. Evolution of the energy distribution of the field with
the quantum fluctuations for the initial configuratidfg. (37)] with

A=60 fm 2

r (fm)

r (fm)

FIG. 13. Evolution of the energy distribution of the field with
the quantum fluctuations for the initial configuratidfyg. (35)] with
A=0.25 fm.

125001-11



FABIO L. BRAGHIN PHYSICAL REVIEW D 64 125001

25 been able to study the influence of quantum fluctuations on
G 1- —2(m2R+ p%+o0(ph), (400  the classical field dynamics for different sets of free param-
(AX)°Zg eters. By varying the parameters of the model and the non-

homogeneous initial conditions, we have carefully investi-
gated the expansion of different field configurations in the
framework of the Gaussian approximation. The quantum
fluctuations accelerate the expansion of a concentrated con-
figuration of the field. This effect is considerable for strong

whereZy is the field renormalization factdit is finite in the
(1+1)-dimensional cageResults for the small lattice spac-
ing limit are not visibly modified. The difference is found in
the normalizationgabsolute valugsof the two point func-
tion and of the energy density. By spbtractlng these value_s_ bXoupling constants and particular cases of the initial condi-
the vacuum ones the results remain unchanged. In additio

that. the d > ¢ affected bv th di - tions, namely when there is an enhancement of the conden-
at, the dynamics Is not afiected by (nese diVErgences, 1.4y (stronger symmetry breakingnstead of suppression

by the r(_agularization 'T‘e.t.h°d- Thi_s.was §hown in Sec. Il C.for(restoratiom However, no large differences were found for
t_he particular case of initial conditions given by small deV'a'these two different initial conditions in the early time dynam-
tions from the vacuum. ics. Closely related works were performed in Ré&11,27
for other initial conditions, as for instance a Gaussian con-
VI. SUMMARY figuration, and additional averaging over ensembles of mean
ields (which seems to lead to thermalization at long ties

nonhomogeneous configurations of thé* model consider- t is possible to conclude that the initial conditions play an
ing two different approaches: the classical equations of molMPortant role in the temporal evolution. We have been con-

tion and comparing its results to the equations of motion irc€Med mainly with short time interval evolution, and other
the frame of the Gaussian variational approximation in a (11SSU€s related to therm_ahzatlon and equilibration have not
+1)-dimensional lattice. A schematic model for the model at?€€" addressed extensively.

finite fermionic density has been drawn for the initial condi-
tions, and the equations of movement have been solved. The
condensate may either disappésymmetry restorationor This work was supported by FAPESP-Brazil. F.L.B.
become highetno symmetric phase, with further symmetry wishes to thank F.S. Navarra for several interesting discus-
breaking at higher densities. The parameters of thé*  sions and a collaboration. The numerical calculations were
model were fixed in order to allow a comparison between thgerformed in the machines of the Laboratory for Computa-
classical and quantum field temporal evolution. We haveion of the University of Sa Paulo—LCCA-USP.

We have analyzed the temporal evolution of expandin
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