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A holographic correspondence between horizon data and space-time physics is investigated. We find simi-
larities with the AdS-CFT correspondence, based on the observation that the optical metric near the horizon
describes a Euclidean, asymptotically anti—de Sitter space. This picture emerges for a wide class of static
space-times with a nondegenerate horizon, including Schwarzschild black holes as well as de Sitter space-time.
We reveal an asymptotic conformal symmetry at the horizon. We compute the conformal weights and 2-point
functions for a scalar perturbation and discuss possible connections with a conformal field theory located on
the horizon. We then reconstruct the scalar field and the metric from the data given on the horizon. We show
that the solution for the metric in the bulk is completely determined in terms of a specified metric on the
horizon. From the general relativity point of view our solutions present a new class of space-time metrics with
nonspherical horizons. The horizon entropy associated with these solutions is also discussed.
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I. INTRODUCTION first step; that is, we analyze in detail the reconstruction of
the matter fields and metric from the data on the horizon.

According to the holographic principle the information Concerning the second step we compute the correlation func-
about physics in space-time would be encoded on a lowetions on the horizon along the same lines as in AdS-CFT.
dimensional surface, the “holographic scredi’;2]. Given  These correlation functions are indeed the same as expected
the data on the screen we can reconstruct the events in the arise in some conformal field theory. This computation
rest of space-time. A concrete realization of the holographigupports the proposed correspondence but further work will
description was found recently for string theory on anti—debe required to firmly establish such a duality and to reveal
Sitter (AdS) space-time. Here the holographic screen is thehe details of the underlying CFT. Unfortunately, in the
timelike boundary of AdS and the holographic data are giverpresent situation we do not have a string theory formulation
in the form of a conformal field theor¢CFT) living on the  of the problem as a guiding principle.
screen[3-5]. According to the AdS-CFT correspondence,  Another motivation for the present work is to understand
these data are then enough to reconstruct the physics in thigack hole entropy7] as arising from some field theory liv-
bulk of the anti—de Sitter space. For example, in order tdng on the horizon. This was carried out explicitly for the
reconstruct the space-time metric in the bulk one has tg2+1)-dimensional black hole ifi8]. In more general situa-
specify the metric on the screen. This metric in turn couplesions one then has to investigate the general structure of the
to the stress energy tensor of the boundary CFT. The quampace-time metric near horizons and to reveal the corre-
tum expectation value of the dual stress tensor is anoth&ponding near-horizon asymptotic symmetries. This idea ap-
piece of the CFT data which is necessary for the reconstrugeared in recent attempts to understand the black hole en-
tion. The explicit reconstruction of the metric is given|[ 6. tropy in terms of degrees of freedom at the hori6riL0].

In more general situations, when the bulk space-time iBy analyzing a general spherically symmetric metric with
not necessarily asymptotically anti—de Sitter space, but hasigorizon[10] or imposing certain fall-off conditiof9] for the
horizon, the holographic information may be encoded on thisnetric coefficients near horizon one finds the presence of
horizon. In this paper we investigate this situation in somewo-dimensional conformal symmetry. This could hint to a
detail. Concretely, we suggest that horizon holography mayonstruction of a Hilbert space for quantum black holes as a
be related to holography on AdS space by observing that theepresentation of the conformal symmetry group at the hori-
optical metric near an arbitrary statinpondegenerajehori-  zon. However, in order to incorporate the full dynamics near
zon has the form of the direct product Bf (time) and Eu-  the horizon it is important to analyze the most general class
clidean anti—de Sitter space. Therefore, some elements of tlig metrics admitting the interpretation in terms of horizon
holographic AdS-CFT dictionary can be transcribed to theand to find the corresponding symmetries. In this paper we
present case. Formulating this dictionary we proceed in tw@ive up the condition of spherical symmetry and propose
steps. First, we specify the data on the holographic screegjeneral form for the static metric with Killing horizottA
sufficient to reconstruct the physics in the bulk. Second, ongimilar form was suggested earlier [ihl] as a off-shell de-
would like to show that the holographic data can be description of black hole metric near horizorRemarkably,
scribed in terms of some field theory, specifically a confor-this metric still can be a solution to the Einstein equations.
mal field theory. In this paper we mainly concentrate on thewe show this by expanding the metric near horizon and ob-

serving that all terms of the expansion are uniquely deter-

mined by specifying arbitrary metric on the horiz@ee[12]
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solutions we have found present a new class of space-time® that the spatial pafB.2) of the optical metric takes the

(with nonspherical horizonsof general relativity. Further- asymptotic form

more, the asymptotic symmetry near the horizon is confor-

mal but of different type than observed|[i9,10]. dsf,=dZ+C?%*Prd0f, 2.3
This paper is organized as follows. In Sec. Il we analyze

the optical metric, exhibit the Euclidean anti—de Sitter spacavith C is some irrelevant constant. It is not difficult to see

near the horizon and compute the conformal weights anthat the metri¢2.3) is identical with the asymptotic metric of

2-point functions on the horizon. In Sec. Il we consider theEuclidean anti—de Sitter space. Note that the radius of the

general form of the static metric with nondegenerate horizoranti—de Sitter space |8, the inverse Hawking temperature

and reveal the conformal asymptotic symmetry. The reconef the horizon in the original metri¢2.1).

struction of the scalar field is considered in Sec. IV and the In general, the spatial metri@.2) approaches the metric

reconstruction of the metric is carried out in Sec. V. Theof anti—de Sitter space only asymptotically so that in the

entropy associated with the nonspherical horizon of our sosub-leading terms the metric will deviate from that of the

lutions is discussed in Sec. VI. The conclusions are themnti—de Sitter space. Interestingly, the horizon surface

presented in Sec. VII. The reader mainly interested in appliwhich is the bifurcation point in the metri@.1), is mapped

cation of our results to general relativity may go directly toto infinity of the anti—de Sitter space under the transforma-

Secs. Ill, V, and VI. tion z(r). This supports the idea that a holographic descrip-
tion in terms of a CFT on the boundary of anti—de Sitter
II. LOOKING THROUGH THE OPTICAL METRIC space mlght be applicable to horizons. The dual CFT theory

then would be living on the horizon surfage
We begin this section by finding adapted coordinates that The horizon in metri¢2.1) can be a black hole horizon or
exhibit the similarities of the geometry near event horizonsa cosmological horizon. The cosmological horizon appearing
and Euclidean AdS spaces. We then compute some relevaijif de Sitter space is of particular interest. In this case the
correlation functions in these coordinates in the second pargpatial part of the optical metric describes anti—de Sitter
space not just asymptotically but globally. The metric func-
A. Uncovering AdS space near the horizon tion in this case isf(r)=1—r?/1? so thatBy=1 (I is the

L . _.radius of de Sitter spageln terms of the new variable
The key observation important for the present analysis is_ — (12)In[(r +1)/(r —1)] we have that

the universal appearance of the asymptotically anti—de Sitter

space in the optical metric near the horizon. To see how this . 2 .
comes along let us for simplicity first consider a r(z)=I ta”hfa f—=I25inh2|—
(d+2)-dimensional static, spherically symmetric metric and (2)

transform it to the optical metric ) )
and the spatial part of the optical met(iz.2)

ds’=—f(r)dt?+f 1(r)dr’+r2dQf,

z
=f(r)ds (2.3 dsp=dZ*+17 sinkf £ d O,

pt’

whered(){y, is the standard metric on the unit sph&fein  is precisely the metric of anti—de Sitter space forzall
this section we will used to denote the various angle coor-
dinates on S%. In terms of the new variablez

— ["fY(r)dr the optical metric may be written in the B. Conformal dimensions and correlation functions

on the horizon

form
Consider now scalar perturbations in the backgro@hg)
dsgpt: —dt?+ dSSpt described by the field equation
5 (O-m?)¢=0, (2.9
r<(2) ,
dsf,=dZ+ —-dOf, . (2.2) _ _
P f(2) wherel[d is the wave operator for the metii2.1). This equa-

tion can be re-written as a field equation on the background
In the case of interest, when the metfi2.1) describes a of the optical metrid2.2). In order to see that we introduce a
space-time with a non-degenerate horizom=at . the met-  new field ¢, as follows:
ric function f(r) has a simple root at=r_, f(r)=(2/
Bu) (r—r.)+0(r—r_,)2 We interpret 2r3, as the inverse d=1(r)"pop:.
Hawking temperaturer 1 as defined with respect to the
Killing vector ¢,. The horizon surface> is the Then the equation fop,, reads
d-dimensional sphere of radius, . Forr close tor, we
have U optd)opt: mZ(Z) d’opta (2.9

(r—r,)~e 2@ f(z)~e 2¥Pn, where
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di2 [/ 2\ di2 In terms of the original scalar field=e??%1 ¢, this is the
<9z< (T) dz |+ r—er (2.6) generic behavior and corresponds to the presence of right-
and left-moving modes which always appear for any field
is the wave operator in terms of the optical met2c?), and  Propagating near a horizon. In the AdS-CFT pictifg( 6) is
dual to an operato© ", of conformal dimensiorh(,, .
Note that the operator@(iw) andO _,, have the same con-
formal dimensiorh,, .
. ) In order to adjust the prescription [&] for computing the
is an effective z-dependent mass term. 2-point functions of dual operators to the present case, let us
In the near horizon limitz—, the spatial part of the fjrst consider a hypersurface of constartZ as a boundary,
operator (2.6) is identical with the Laplace operator at afterwards we will take the limit of infinit&. In this limit the
asymptotic infinity of Euclidean anti—de Sitter space. Tohypersurface approaches the horizon light-cone. Considering
continue we split off the time dependence of the optical field,Eq_ (2.11) as a boundary condition near the horizon we apply
Dopt= e'“'¢,(z,0), so that, az— =, ¢, satisfies equation  Green’s formula

AAdquou: M2¢w1

f

— 2
Dopt_ —(91 + rT

2

2
d
(024 5 ff ot o0 27

m2(z)=m2f—<%

+ o
¢Opt(t,z,6)=f dt’fsddu(ﬁ’)edz”'gH(G&Z,<p(z’,t’,ﬁ’)
2 — 0

M?2= — 2—( d . (2.9

2B

This is the familiar equation for the scalar perturbations apwheredu(6) is the integration measure on the sphefe
pearing in the context of the AdS-CFT correspondence. Th&he boundary functiow(z’,t’, ") takes the form{2.11) and
unusual feature of Eq2.8) is the negative sign for the ef- .

fective mass square ter_m. This means that the perturbations G(t’tryzyzf,a,gf):f dwefuw(tft’)Gw(Z,Z,’0’01)
are tachyonic.Asymptotically, —o

_0Z'G(P(Z’1t’10,))z'=2’ (212

b~ X2 ( 0)erPr,  z—oo is Green’s function. Near the horizo8,, is a Green function
. _ of the operator(2.8) on anti—de Sitter and we can use the
and from Eq.(2.8) we find two possible roots fax ,, AdS expressiofi13]
d —(\,+d)2' 1B
+ _ = e 1%} H
)\(w)— 2 i'wﬂH . (29) Gw: C)\ = 5 oFa) (213
. ( cosh— —sinh— 0037)

In the context of the AdS-CFT correspondengg, are re- H B

lated to the conformal dimension of a dual operator in the . - .
CFT by P where vy is the geodesic distance between two poifitand

¢’ on spheres”. Again, for A, and\, the function(2.13

decays in the same way for large Therefore, the complete
Tlopy. (2.10  Green’s function is the sum of two contributions. When both

pointsz andz’ are close to the boundary of AdS we have

N o

+ (w) _
h,=d+\)=

We see that the conformal weigmgw) are complex. So one
might worry about unitarity. Note however that, contrary to
the usual AdS-CFT correspondence, the conformal field
theory in questior(if it exists) lives on a Euclidean surface
3., and does not describe the time evolution of the system.
Near the horizon, the modes wikl), and\ ,, decay in the

Gw: e*(d/ZBH)(ZJrZ')(G;( 0, ar)elw(z+z')
+G:;(6, 0!)e—lw(Z+Z’))'

+ —

- N — w + N — @
same way so that we can not discard one of them as decayingc;;‘"(a' ) (1_Cos,y)h:, + Gu(0.07) (1—cosy)"e
faster than another. Therefore, the boundary condition near (2.14
the horizon(or, equivalently, near infinity of AdS spaceon-
tains both modes: In this limit Green’s formulg2.12) indeed gives the function

which satisfies the boundary conditi@11). It also leads to
im ¢op=@(t,z e)ze_(dﬂZBH)f+xdwe—lwt non-local relations between ande,,
op 149

Z—+® *

X(goot(a)elwz_,_@;(e)eﬂwZ)_ (2_1]) ‘P:;(a):_2|‘°J3ddl’~(9/)6;(9,9')<p;(6’)

- _ ’ + 2 + 2
INote, thatM? becomes positive whem is imaginary. This, in o (0) ZIwJde,u(H )G, (0,07) ¢, (07).
particular, happens for quasi-normal modes. (2.15
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We note in passing that, as a consequence of gk2 and 1 [+ 2
(2.17 the components of the Green’s functith14) should Weg[ ¢]= EJ dtfsddﬂ(e)(fﬁopte( Pr)
satisfy the consistency conditibn o

X (92( e( )qﬁopt))Z:Z
J’ du,(@")G (0 0”)6 (6” 0’)—' 25( )(0 6’)
d [} ’ [0} ’ 4 1 .

1 i : + +
—— 5| a0 [ dviotes et (0
(2.1 ©
Now, in order to compute the 2-point functions of dual op- u(D)¢-u(O)F -, (217
erators we have to evaluate the boundary actnon the  where the periods stand for contact terms which we will
solution (2.12. In terms of$,,; and the optical metric one discard in the following. The exponent W[ ¢] should be
has compared with the generating functional

<ex;{ J’de,u(ﬁ) Jf:dw(‘wa( 0)OL(6)+ ¢, ()0 ( 0))”

on the CFT side. Using Eq2.14 we then read off the cor- with conformal dimensiorm(iw) could enter in a dual descrip-

relation functions of the dual operators tion of the Hawking radiation in terms of a CFT. However,
we do not explore this possibility any further in this paper
. - 1 leaving this issue to a future work.
(0,0-,)=0G, x——= (3) Similarity to t Hooft's S-matrixWhen the horizon is
(sz> ’ two-dimensional §=2 in the above formulaswe may in-
2 troduce the functiorf (6, 0") = —Insir?(y/2) which, for 6
=46', is a solution to the equatiohfy=1/2R (R is the
b v o 1 curvature scalar o$2). For 6 close to#' it behaves as usual
(0,07,)=0"G, = on Green’s function in two dimension$g(6,6')=—In|6—¢'|>.
sin%) ! Then the kernel&~ can be written as
(2.18 G =exp(1+108y)fo(6,0")).

which are precisely the correlation functions expected arisgqor Schwarzschild black hole we have 8, =4GMuw,
on spheres® for operators with dimensioh,, andh,, re-  whereM is the mass of the black hole andis the energy of
spectively. a particle falling into black hole. The imaginary part of the
exponent inG* resembles the phase appearing in the two-
Remarks particle amplitude for the gravitational scattering in the eiko-

(1) Extra boundaryln the above computation of correla- nal approximatiorj14,15;

tion functions we neglected the presence of boundaries dif- -

ferent from the horizon. An extra boundary at infinity ap- S12=exp21Gp, P2 f(y1,Y2),

pears for instance when space-time is asymptotically flat or )

anti—de Sitter. Then the computation should also produce f(y1.y2)=—Inly1=y,l*,

2-point functions between different boundary components. . )
(2) Hawking radiationWe should also notice the appear- Wherep;- andy; are the momentum and transversal coordi-

ance of the inverse Hawking temperatytig in combination nate of particla. The horizon sphere with angle coordinates

with  in our formulas. Since» is the energy of the pertur- 6 indeed plays a role of a transversal space for a particle

S : « falling into a black hole. Moreover, according to Hg.15
bation it is tempting to speculate that the dual operatqrs P rg,late the in-going and out-going modesgat theqhorizon.

Therefore, this similarity may not be accidental and deserves
°This relation is valid for kernel&2.14) with anyh™ andh™ such a deeper analySIS' . .
thath*+h~=d. Most easily it can be proved in flat spa@phere (4)_ de _Sltt_er spaceOur Computat|on of the correlation
of infinite radius by doing the Fourier transformation of the ker- fUnctions is, in particular, applicable to de Sitter space. The
nels. Furthermore, in the particular case whare=d/2+ and ~ 2-Point functions2.18 are then defined on the cosmological
h-=d/2— %, the kernelss~ andG"* are respectively Dirichlet and horizon. Recently, there was some interest in quantum grav-
Neumann correlation functiofL3]. The proof of Eq.(2.16 in this ity and string theory on de Sitter spajde,17]. In particular,
case was explained to us by A. Barvinsky. some form of dS/CFT duality was proposed [iti7]. The
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conformal field theory in this proposal lives on a EuclideanThis, however, does not mean ti#atannot depend on The

space which is a hypersurface of infinite past in de Sitteinost general diffeomorphism leaving invariant the form
space. The computation of the 2-point functiond1d] for  (3.1) is then of the form

the CFT defined on infinite past of de Sitter has some simi-

larities with our computation in this section. In particular, the g=qt+s, &=pa(px), &=a(xp),
necessity of more general boundary conditions including
both modes witth™ and h™ also arises there. In spite of  @(p.X)=0Inp+ap(x) @33

these similarities the two CFT's are defined in different
space-time regions. It would be interesting to understand th
relation between these two approaches.

whereq,s are constant and'(x,p) is subject to the con-
§traint

2

d.al(x,p)=——=gl(x,0)d: ag(X), 3.4
Ill. GENERAL METRIC AND ASYMPTOTIC p@ (X.p) == 7 g7 (X,p)djero(X) 34

SYMMETRIES o . S _ .
similar to the equation arising in the analysis of diffeomor-

What we have found in the previous section is that thephisms in anti—de Sitter spag22]. The functiona'(x,p) in
optical metric of a spherically symmetric space-time withEgs, (3.3) and (3.4) is assumed to be regular at the horizon
horizon is a direct product of time and a Euclidean spacg,=0) and moreover we impose the boundary condition that
which near the horizon asymptotically approaches anti—dgi(x,p=0)=0 (see[22]).

Sitter space. As we will show, this observation applies in fact ynder these diffeomorphisms the functioagx,p) and
to a more general class of metrics with a horizon. Motivatedgij(x,p) transform as follows:
by recent studyf18-20,8 on asymptotically anti—de Sitter

spaces we consider a general static ansatz of form £§0'=ai(x,p)¢9icr+ apd,o+2pd,a, (3.5
12dp? 1 . L:9ij=Vi(9j&) + Vi(gié") — a(gij— pd,8ij) — 2pd,ag; .
dSZZeu-(X,p) _dt2+ 4pg + ;gij(X,p)dX'dX' , £9ij INI] i\Yi 1) pIl) P (:;16)

The covariant derivative in Eq3.6) is with respect to the
a(x,p)=Inp+ 0o (x)+0(p), (3.)  metricgjj(x,p). The metric induced on a surface of constant

p (p=0 is the horizonis v;;(x,p) =e’(1/p)g;; . Under the
that is the functiore” has a simple root gi=0 correspond-  diffeomorphisms(3.3) it then transforms as
ing to the location of the horizon. For the spatial part of the
optical metric in Eq.(3.1) the horizon surface defined hy
=0 is the boundary at infinity. Provided the function
gij(X,p) is analytic neap=0 and approacheg);; (x) when
p=0, we find that the spatial metric in Eq3.1) indeed  Yi(X:P)- . . .
describes asymptotically anti—de Sitter spacepagoes to For g=0 Fhe diffeomorphisms(3.3 are_5|m|Iar _to the
zero. The parametdrin Eg. (3.1) determines the radius of those found in(22] for the case of AdS. Since(x) is not

this anti—de Sitter. The inverse Hawking temperature for théunction Ofp. the last term in Eq93.9 and(3.§ o!isappearg.
horizon as defined with respect o= 4, in the metric(3.1) On the horizon surfacep=0) the transformations of this

reads type act as conformal transformations,

Leyij= v 7jkak) + V) (@) + apd,yij, (3.7

where V() is the covariant derivative with respect to

L0 (0)(X) = ag(X)
B =1"%0,0],-0- (32 O
L:90yij (X) = = ao(X)g(0)ij (X)- (3.9
Hence, ife’~ p for small p, thenB,=1. The metric(3.1) is
the general form for a static metric with a Killing horizon.
This form was proposed earlier [A1] as off-shell form of

On the other hand, for the induced metsig(x,p) we find
from Eq. (3.7) that

the metric near an arbitrary, static black hole horizon. In the Loy (x)=0 3.9
next section we will prove that E¢3.1) is, in fact, valid also €7 ' '
on-shell by determining the functions(x,p) andgij(x,p)  j.e., the induced metric on the horizon does not change.
which solve the ¢+ 2)-dimensional Einstein equations.  Thus, in spite of the fact that the parameig(x) is function

First, let us however analyze thd { 2)-dimensional dif-  on thed-dimensional horizon surfacg, the transformation
feomorphisms which preserve the for(®.1). This is again (3.3 (with q=0) effectively acts as Weyl transform in the
motivated by the analysis done for anti-de Sitter spacyo-dimensional {,p) subspace orthogonal t&. The in-
Where the Conformal transformations in the boundary Origi'duced metric orE remains invariant under thlS
nate from a subset of diﬁeomorphisms in the b[ﬂ!ﬂ.,ZZ] The remaining diffeomorphisms in Eq33), param-

(see alsd6]). In general the diffeomorphisngscan be func-  gtrized byq lead to the transformations
tions of x, p and timet. However, at present we restrict

ourselves to the static case and assume djt=9,& =0. Leo=q(2+plnpd,o)
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L:9;j=09(—2gi;—Inpgijj+pInpd,g;) lwBud,(d(pd,oc—1)+pTr(g~1d,9)+pd,d,(4+14w

-1 2.2
Levii=qInpd,y; . (3.10 +2d(pd,oc—1)+2pTr(g~"3d,9))+4p°d5 ¢,
These infinitesimal transformations can be integrated to the +PVS¢>w+ gpgijgigaj ¢,—me’¢,=0. (4.5
finite transformations 2

Substituting the expansio@.4) into Eq. (4.5 and assuming
that all coefficients in the expansiod.2) are known we
solve Eq.(4.5 perturbatively at each order ip. It proves

O'(X,p)HO'(X,peq) +2q

_ q
gij(X,p) —e~9g;;(x,p®") that all terms of the expansid#.4) are uniquely determined
. provided the first terng{%)(x) is given. The same is true also
¥ij (X,p)— %ij(X,p%) (3.1)  for the ¢, sector where one has to fix the functigi)(x)

] on the horizon. The first two terms in E¢.4) are deter-
and results in simply replacing by p® in these functions. mined as follows:
The interpretation of this transformation is that it changes the

cézinégozl; gzttjh(%-lfgvm;g temperature. Indeed we find from ()= 4(1+TwBH) IwBH(d0(1)+Trg(1))¢£,°)
Bnt—eipyt. (3.12 + 72 40+ ggi(jo)aio'(o)aj $0— m2e70 ()],
IV. RECONSTRUCTION OF THE SCALAR FIELD (4.6)
In this section we consjder a scalar pertl_eration on a gen- 1 0B
eral background with horizon. The scalar field equation dD(x)=— g(da(l)Jr-|-rg(l))¢(wl)_ PR
(O-m?)d=0 (4.1) 1
is the same as in Sec. Il but now the background is given by X(2do*2 Trg(z)—Trg(zl))— 8(2+1wpy)

Eq. (3.1). To continue we suppose that the functiar(, p) 1
and gjj(x,p) in the metric(3.1) are given in terms of an X V(20)¢Eul)+vi(9'(11)f9j ‘f’goo))"‘i&i Trg(l)a'qﬁff)
expansion irp, i.e.,

d ‘ ,
o(X,p)=INp+ o) (X)+ou)(X)pt--- + 5 (61000 6L+ dio (1) ¢

9ij(X,p) = 9(0yij (X) T g1)ij(X)p+ - - -. (4.2

—gll O m2eroy( D+ N
Our purpose in this section is to understand what data one Sodide’)~MeEO (P oy
should specify on horizon in order to reconstruct the field (4.7)
everywhere in the bulk.
At fixed energyw the perturbation splits on two sectors At higher orders the expressions become more complicated
but the general structure of equation fiah coefficient is
D, =€ (p' P2 (x,p)+p Py (x,p)), (4.3  always of the form

which are theh! andh, sectors discussed in Sec. Il. They dWk(10By+K) + X[ D, 6% 2, ]=0

describe right- and left-moving waves at the horizon. For the (4.9
functions ¢, (x,p) and¥,(x,p) we then have the following
expansion: whereX, is a polynomial ing{”, p<k and their deriva-
tives. Thus, the coefficienbﬂ"(x) is completely determined
e W K by the previous coefficientg* 1), ¢ 2 4 and
‘f’w(X’P)_kZO b’ (X)p ultimately by the functiong®)(x). A separate analysis is
needed for zero-energyw(=0) modes. In this case some
% terms in Eq.(4.5) disappear. Moreover, instead of the expan-
b (xp)= > M) pk. (4.4)  sion(4.3,(4.4) we have
k=0
The two sectors decouple in the field equatidril). There- 30ne can see that for complew the has a pole af w
fore, we will restrict the consideration to thg, sector. The = _ 25T, k, wherek is integer. It is tempting to relate it with the
analysis for ¢, is similar. At fixed o the equation on quantization of imaginary part of frequenay for quasi-normal
¢.,(X,p) reads modes. This, however, needs a more careful analysis.

124023-6



HORIZON HOLOGRAPHY PHYSICAL REVIEW D64 124023

Do=(d)(X)+pdp)(X)+--+) where for convenience we separated the optical m&iig.
The metric (5.2) should describe a horizon ap
+Inp(h0)(X) +phay(X) - -). (4.9 =0, x', i=1,...d being the coordinates on the hori-

. . .. zon. This is specified by boundary conditions to be imposed
This time, ¢ and ¢ sectors couple to each other in the field on the functione(x,p). This, together with the analyticity

equation. Nt?]ver;he_less, speC||fyt|n|g t\évotfungtlmg)(lr()t and . _condition for the metricg;;(x,p) at p=0, leads us to the
#0)(X) on the horizon completely determines all terms 'nfollowing near-horizon expansion:

the expansiori4.9). In the first order inp we find
1 q a(X,p)=Inp+o)(X) +o@y(X)p+ -
hay(X)=— Z( Voot 59(0)%19(0)%j(0)~ m’e’ Oy |,

g9ij(X,p) = 9(0yij (X) T 91)ij(X)p+ - - -, (5.3
1 1 which we have already advocated in Sec. IV.
dy(x)=— 3 P1y(x)— 5(d0'(1)+Trg(l))(//(o)(X) We now show that specifying the functieng(x) and the

metric go)j(x) on the horizon surfac& uniquely deter-
d . mines the solution to the Einstein equatidbsl) in bulk for
V(20)¢(0)+ Eg'(lo)ai T(0)99(0) the class of metricés.2). Note also that assuming the expan-
sion (5.3) we explicitly break the invariance parametrized by
g in Eg. (3.3). As we have seen in Sec. lll the function
—mze"(0>¢(0)). (410 o(g)(x) is pure gauge and can be always removed by using
the diffeomorphisn{3.3) as is seen from Ed3.8). Thus, the
only real degrees of freedom living on horizon are those of

Thus, for each energy one has to specify a pair of func- . : ) )
tions ¢@(x) and () [b0)(X) andio(X) if @=0] on the metric funct|or'g(9)”.(x) or, equwalently, of the .|nduced
@ . @ , metric y(g);j(X) (this is in agreement with conclusion made
the horizon in order to reconstruct the scalar field every- ~ .~ 78l . s
: : . “ earlier in[10]). However, in the rest we will keep)(x)
where in the bulk. This set of functions forms the "holo- arbitrary in order to maintain the invariance under the con
graphic data” on the horizon. In the AdS-CFT correspon- y

dence in order to reconstruct a scalar field in the bulk one halg'Mal transformation(3.8). Note also thato(g)(x) and

to specify two functions on the boundary: a source couplecg(o.)”().() ar:e ‘;']at"?‘ on tlhehsurfac‘ia which is the ?ifﬁrcatilc:_n
to the dual CFT operator and the expectation value of th@oInt In the horizon light cone. By means of the Killing
dual operatof6]. The discussion in Sec. Il shows that for a YECtO" ¢t these data can be extended over the whole light-
fixed ©>0 the functions'@(x) and ¢© (x) [and yO(x) ~ CONe surface. _ _ o
and (© (x)] indeed form such holographic pair. In terms of the optical metriG 55 (5.2) the Einstein equa-

¢ tions take the forrh

+_
12

V. RECONSTRUCTION OF THE METRIC ~ d o L
In this section we show that provided the metric on hori- Ras 4( 2VaVeo+VaoVeo)
zon is specified one can uniquely reconstruct metric every- d 1 (d+1)
where in bulk. For simplicity we consider the static case +Gpgl = (Vo)2+ SV20+e'———|. (5.9
only. The stationary and time-evolving cases are, however, of 4 2 L
great importance and we plan to approach these cases in a

separate publication. Since we are Iookigg for static sol~utlons, i.e’qg:&tgij
We start with the ¢+ 2)-dimensional bulk Einstein equa- =0, we find that R;=0 and —2V\V,c+V.oV,0c=0.
tions Hence, the {t) component of Eq(5.4) reduces to the equa-
tion
R 1RG d(dJrl)G A,B=(t,p,i) d 1 (d+1)
—_ = — s b= s ’| s ~ ~ +
ABT2TTRRT LT e : 7 (V024 ¥ +er o, (5.5

(5.9

where for generality we included a bulk cosmological con-1h€ remaining equatior($.4) can be represented in the form
stant Ax1/L2. Our consideration will cover all cases d

>0, A<O0, andA=0. The appropriate case can be recov- ”RW:_ ~ T mv=(p,i), (5.6)
ered by analytic continuation?— —L? in our formulas. 4

Our ansatz for the metriG,g is as in Eq.(3.1), i.e., where, in terms ofr(x,p) andgy (x.p) we have

) Badp2 o
ds’=e"®M| —dt*+ ———+ —g;;(x,p)dx'd¥ . .
4p p Our curvature conventions are as followRy, ;=d,I'},
_ +I8, s~ a—pandR,,=Rj,, . Note that it differs in sign from
=e7P)Ggd XA XE, (5.2 the one used ifi6,20).
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1 h
—Trgl -
(d+2) @ (d+2)
(d 1))

L2

= 2o 25 0t (0,0)? = 2, Ly2
Top= ~ 20,0~ S0+ (9,0) TW=" 2V 070 *5V070

+e%(0) (5.9

1 .
7= — 23,00~ ;&i0+ diod,o+ (9 19,9)l 00

betweeno 1y and g,y . Another relation comes from the’

4 term in the {j) component of Eq(5.6)

i :_2(9” _p& g'l)& U'+ai0'aj0'_2V~ngO'
B g ’ Y 5.7 291yij — (Trg(1)+ do(1))9(0yij

- . . ﬁH( (9100)919(0)= 2V (0)i V (0)} 7 (0) + Reoyi |
and for the Ricci tensor of optical metric we have

(5.10
~ d 1 . 1 o ) . : )
R,,=— v Eﬂp Tr(g '9,9)— ZTr(g d,9) Equatlons(5.9) and (5.10 are enough to determmg coeffi-
p cientso(1)(x) andgqy;(x). After some algebra we find that
~ 1 < x)——E 4R+ =3 _3)(V )?
Ryi=— 5@ (g ,9)~ V(g ™3,9))) ()=~ ZBRo B ©7()
(d 1) (d=2)(d+1) o
+— Voot ——z ¢

- d
Rij= Rij[g]_BHz[_gij —(d—2)d,9j

—0i; (9~ %9,9) +p(29°9— 29,99 13,9 ) .

1
4:3H( 9i0(0)7190)~ V(0)i ¥ (0)] U(O))

Equations  (5.6)—(5.9 look similar to the
(d+1)-dimensional Einstein equations analyzed[20,6]
for AdS space. The essential difference is that, in Eq.
(5.6) does not represent a contribution of
(d+1)-dimensional negative cosmological constant. Only x(
asymptotically, whenp—0, we have that—(d/4)m,,
= —(d/ﬁﬁ)éw, pnv=(p,i). That is why the solution to the (d 1)
Eqgs.(5.6) indeed describes a space asymptotically approach- +e7(0)
ing AdS space. However, already in the sub-leading terms

m,, deviates from the form dictated by the cosmological
constant. The complete systeli®.5—(5.8) describes a ' . -
coupled @1+ 1)-dimensional system of metrg; (x,p) and a tities. For example, the,_a(o) part of Eqs.(5.6) does not give
scalar fieldo(x,p). rise to any new equations omy) and g(1)j - An identity

Technically, we solve Eqg5.5—(5.8) in the same way as &PPears from i) part of Eq.(5.6):
in the case of AdS spad0,6]. One substitutes the expan- q
sion (5.3 into the field equations which can then be solved 4 j
order by order by matching the coefficients at fixed powers Vio¥ayi=(Trgy+ doqy) 29T 7090)19(0)-
of p. This leads to a set of equations sufficient to determine (5.13
the coefficientsr ) (x) andgyy;j(x). Compared to the AdS
case[6] we have one extra field(x,p) but there is also an As a check for our formulas one verifies that E§.13) is
extra equatior{5.5). So that, the total number of equations is indeed valid foro;)(x) and g1;;(x) given by Eqgs.(5.11)
enough to determine all unknown functions from the givenand(5.12 respectively. In fact, thed+ 2)-dimensional Bi-
holographic data. To the leading order, Egs5), (5.6) are  anchi identities imply the i) equation to all orders pro-
satisfied identically. This is a consequence of our choice ofided the pp), (ij) and ¢t) equations are satisfied. For
the leading term in the expansion of the scalar functioncompleteness we also give the transformation lawsofgy
o(x,p) (5.3. andg(;); under the remaining diffeomorphisni3.3). They

At the first nontrivial order Eq(5.5 gives the relation are

d
- ZBHg(O)ij

(d-1)
— V) + Voo

(5.12

Not all Einstein equations are independent, some give iden-
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a . expansion(5.3) are uniquely determined onagg,(x) and
L:0(1)(X) = ap(X) (1) (X) = Tgkb)aiaoﬁjﬂ(m 90yij(X) are specified on horizon.
Reconstructing the metric in the AdS-CFT correspon-
B2 dence[6] one has to specify the metric on the boundary and
L91)ij(X)=— TV(O)N(O)] ag. (5.14  the expectation value of the stress tensor of dual CFT. There-

fore, two terms in the expansion im of the bulk metric
remain undeterminedor more details segb]): the metric on
the boundarygyj(x) and the termg,q);;(x) related to the
value of the extrinsic curvature on the boundary. One might
1 , d have expected the same to happen in our case. However,
Trgo)=7Tr9u)* 7 (0(=40(2). (5.19 surprisingly only one tensayoy;(x) needs to be specified,
all the other terms in the expansion are then uniquely deter-
From this and the equation arising in this order from Eg.mined. This is due to the peculiar properties of the horizon

In the next order imp, the (pp) part of the Einstein equations
gives the relation

(5.5 we can determine (see alsq12] for the spherically symmetric casen particu-
1 lar, the (j) components of the extrinsic curvature vanish on
the horizon.
0'(2)21_6( - 3d0'(21)+ Tr g(21)_ 20'(1)Tr g(l))

B 2(d+1)

— 2| V2 g+ e’(0) o +..., VI. NON-SPHERICAL HORIZONS, UNIQUENESS
16| OO Tz @ AND ENTROPY

(5.16 The results obtained in the previous section may be inter-

sting for conventional general relativity. What we have
ound is solution to Einstein equations describing a space-
ime with a horizon with arbitrarynot necessarily spheri-

where the ellipses represent terms involving derivatives o
o0y which can be set to zero by a suitable diffeomorphismt

of the form (3.3). Then, from the i{) part of Eqs.(5.6) we cally symmetri¢ metric. It is worth reminding that in general

determine relativity the possible shape of the horizon is constrained by
1 the so-called uniqueness theorem proven by I§2&(for a
9(2)ii =E(4g(21)+ 9(0)(dodyy—Trofy)); review see[24]). According to this Theorem if the space-
time metric is
ﬁa (1) asymptotically flat;
_ E(dv(o)iv(o)jouyr V)iV Trowy) (2) has an event hqrizon; . .
(3) has no singularity on or outside the event horizon;
ﬁa (4) satisfies the vacuum Einstein equations
- 1—6(V(20)g(1)ij - V'(‘O)V(O)ig(l)kj— V'(‘O)V(o)jg(l)ki) then it is spherically symmetric and in empty space coincides
with the Schwarzschild metric.
R (5.17) In Sec. V we gave up the conditigf) since the solution

we have found is known explicitly only in vicinity of the
In higher orders the strategy remains the same but the ejorizon and apparently cannot be asymptotically flat at infin-
pressions become more complicated. However, the gener#y. Also, for the ansat£3.1) we cannot rule out singularities
structure of the equations on coefficientg, andgyy; can ~ outside the horizon. The only exception from the theorem

be easily analyzed. From E¢5.5) we find that known before is the so-called topological black hofa§]
(for a review seg26]). They are solutions to Einstein equa-
(d+2K) o9+ Trdug=Awl 70).9(0)» - - - T (k-1)9k-1)]- tions with cosmological constant. The horizon in this case is
a hypersurface of constant curvature which, after some iden-
The (pp) equation leads to tifications, can be made compact and topologically non-
trivial. However, in this case the horizon is still a maximally
Trggg+dow=Bulow):9) - - - o191 symmetric space. In the solution found in Sec. V the metric

on horizon can be arbitrary and it does not require any bulk
cosmological constant for its existence. So that it is a new
‘class of metrics describing space-times with horizon. It may
find applications, for instance, in the analysis of fluctuations
of the black hole horizon.

Finally, one may wonder whether it is meaningful to dis-
cuss thermodynamical properties of the configurations dis-
cussed in this paper. For instance, what is the horizon en-
tropy in this case? A standard method to determine the
and determines the coefficiegly);; . We see that no ambi- entropy is based on the first law and is not applicable in our
guity arises in this iteration process and all coefficients in thecase since the solution is known explicitly only locally near

Agy and By, are some functions of the coefficients
oy, 9¢), i<k and their derivatives. These equations deter
mine oy and Trgy in terms ofo ), gy, i<k. The (j)
equation takes the form

(2k99—9(0)Trgew)ij
=Cwiilo(0):9(0)» - - - T (k-1),Ik—1)]
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horizon. Therefore, its global characteristics like mass are An alternative method for computing the entropy is
not determined. Wald’s method of Noether chargg®7]. It would be interest-

The method which does work in this case is the method ofng to see if this method applies to the present situation.
conical singularity{11]. It consists in proceeding along the
following steps:

(1) go to Euclidean signature=1t.

(2) Close Euclidean timer with arbitrary period The purpose of this paper was to initiate a systematic
27B, B+ By . Then there appears a conical singularity atstudy of holographic encoding on a static, nondegenerate,
horizon surfaceX with angle deficit 6=2n(1—a), o but otherwise arbitrary horizon. Our basic observation is the
=B/By. The Ricci scalar on such conical manifold has apresence of a universal near horizon structure conformally

VII. CONCLUSIONS

contribution from the singularity11] related toRX Euclidean anti—de Sitter space. This is best
described in terms of the optical metric. Moreover by ana-
R=4m(1-a)dy+Ry-1, (6.1 |yzing the diffeomorphisms compatible with this near hori-

zon structure we revealed the presence of an asymptotic con-
. L : formal symmetry. We also computed the 2-point functions
_ ES[)( 18“?&%? A th_e( I/Ellréstg;f—HllbeFrat acct)lr??hNeEi-(i:[ol\(lqicé:]a_l for a bulk scalar perturbation and found agreement with the
@ 2 TAAAOTO)IM, -y Ra=1 expected form for some conformal field theory located on the
space and apply the formula horizon. Although, in this paper we have concentrated on
_ . static space-times it is conceivable that our results can be
§=(ade=)Wer[Molla-s 6.2 extended to more general space-times.

to compute the entropy. Since the entropy comes entirely as N spite of these similarities with the AdS-CFT correspon-
a contribution of the conical singularity, only the metric neardence there are also important differences. Notably we find
the horizon is essential for the computing the entropy in thighat the conformal weights are complex. In Sec. Ill we made
method. some speculations about possible interpretations of this phe-
The analysis of papdrll] is quite general and requires nomenon, but other interpretations are possible and it would
only the knowing the metric in the fori.2) near horizon as be interesting to learn more about the CFT side and to whgt
an expansiori5.3).5 With this definition, the entropy is found €xtent the analogy with the AdS-CFT correspondence is
to be universally proportional to the horizon aree: complete. In particular, it would be interesting see if the

whereR,—, is the regular part of the curvature.

:fiddxm ho_rlzon entropy and Hawking radiation has a CFT represen-
tation in this case.

As Finally we showed that the metric as well as scalar fields

SBH:Ev (6.9 can be unambiguously reconstructed from the horizon data

by an iterative process in much the same way as in the
independently on the shape or topology of the horizon suranti—de Sitter case.
faceX.

ACKNOWLEDGMENTS
%In fact, the results of11] are even more general since they are ~ We would like to thank A. Barvinsky for helpful discus-

still valid when the coefficients in the expansith?3) are functions  sions. This work has been supported by the DFG-
of Euclidean timer. Stringtheorie Schwerpunktsprogramm SPP 1096.

[1] G. 't Hooft, in Salamfestschrift: A Collection of Talkg/orld [10] S. N. Solodukhin, Phys. Lett. B54, 213(1999.
Scientific Series in 20th Century Physics Vol. 4, edited by A.[11] D. V. Fursaev and S. N. Solodukhin, Phys. Rev5P) 2133

Ali, J. Ellis, and S. Randjbar-DaeniWorld Scientific, Sin- (1995.

gapore, 1998 gr-qc/9310026. [12] V. Dzhunushaliev, Int. J. Mod. Phys. & 551 (2000.
[2] L. Susskind, J. Math. Phy86, 6377(1995. [13] S. N. Solodukhin, Nucl. Phy$3539, 403(1999.
[3] J. Maldacena, Adv. Theor. Math. Phy%.231 (1998. [14] G. 't Hooft, Phys. Lett. B198 61 (1987; Nucl. Phys.B335
[4] S. Gubser, I. Klebanov, and A. Polyakov, Phys. Lett4B3 138(1990.

105(1998. [15] E. Verlinde and H. Verlinde, Nucl. PhyB371, 246 (1992.
[5] E. witten, Adv. Theor. Math. Phy®, 253(1998. [16] E. Witten, “Quantum Gravity In de Sitter Space,”
[6] S. de Haro, K. Skenderis, and S. N. Solodukhin, Commun. hep-th/0106109.

Math. Phys.217, 595 (2001). [17] A. Strominger, “The dS/ICFT  Correspondence,”
[7] J. D. Bekenstein, Phys. Rev.1)2333(1973; S. W. Hawking, hep-th/0106113.

Commun. Math. Physt3, 199 (1975. [18] C. Fefferman and C. R. Grahattlie Cartan et les Mathema-
[8] S. Carlip, Phys. Rev. 31, 632(1995. tiques d'aujord’hui(Asterisque, Paris, 1985p. 95.
[9] S. Carlip, Phys. Rev. LetB2, 2828(1999. [19] C. R. Graham and J. M. Lee, Adv. Mat87, 186 (1991).

124023-10



HORIZON HOLOGRAPHY PHYSICAL REVIEW D64 124023

[20] M. Henningson and K. Skenderis, J. High Energy Pt9%. [25] S. Aminneborg, I. Bengtsson, S. Holst, and P. Peldan, Class.

023(1998; Fortschr. Phys48, 125 (2000. Quantum Gravl3, 2707(1996; D. Brill, Helv. Phys. Acta69,
[21] J. D. Brown and M. Henneaux, Commun. Math. Phy84, 249 (1996; M. Banados, Phys. Rev. 57, 1068(1998; D.
207 (1986. Birmingham, Class. Quantum Gral6, 1197(1999.
[22] C. Imbimbo, A. Schwimmer, S. Theisen, and S. Yankielowicz,[26] R. B. Mann, “Topological black holes-outside looking in,”
Class. Quantum Graw.7, 1129(1999. gr-qc/9709039.
[23] W. Israel, Phys. Revl64, 1776(1967). [27] R. M. Wald, Phys. Rev. @8, R3427(1993; V. lyer and R. M.
[24] J. D. Bekenstein, “Black hole hair: twenty-five years after,” Wald, ibid. 50, 846(1994); T. A. Jacobson, G. Kang, and R. C.
gr-qc/9605059. Myers, ibid. 49, 6587 (1994).

124023-11



