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Horizon holography
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A holographic correspondence between horizon data and space-time physics is investigated. We find simi-
larities with the AdS-CFT correspondence, based on the observation that the optical metric near the horizon
describes a Euclidean, asymptotically anti–de Sitter space. This picture emerges for a wide class of static
space-times with a nondegenerate horizon, including Schwarzschild black holes as well as de Sitter space-time.
We reveal an asymptotic conformal symmetry at the horizon. We compute the conformal weights and 2-point
functions for a scalar perturbation and discuss possible connections with a conformal field theory located on
the horizon. We then reconstruct the scalar field and the metric from the data given on the horizon. We show
that the solution for the metric in the bulk is completely determined in terms of a specified metric on the
horizon. From the general relativity point of view our solutions present a new class of space-time metrics with
nonspherical horizons. The horizon entropy associated with these solutions is also discussed.
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I. INTRODUCTION

According to the holographic principle the informatio
about physics in space-time would be encoded on a lo
dimensional surface, the ‘‘holographic screen’’@1,2#. Given
the data on the screen we can reconstruct the events in
rest of space-time. A concrete realization of the holograp
description was found recently for string theory on anti–
Sitter ~AdS! space-time. Here the holographic screen is
timelike boundary of AdS and the holographic data are giv
in the form of a conformal field theory~CFT! living on the
screen@3–5#. According to the AdS-CFT correspondenc
these data are then enough to reconstruct the physics in
bulk of the anti–de Sitter space. For example, in order
reconstruct the space-time metric in the bulk one has
specify the metric on the screen. This metric in turn coup
to the stress energy tensor of the boundary CFT. The qu
tum expectation value of the dual stress tensor is ano
piece of the CFT data which is necessary for the reconst
tion. The explicit reconstruction of the metric is given in@6#.

In more general situations, when the bulk space-time
not necessarily asymptotically anti–de Sitter space, but h
horizon, the holographic information may be encoded on
horizon. In this paper we investigate this situation in so
detail. Concretely, we suggest that horizon holography m
be related to holography on AdS space by observing that
optical metric near an arbitrary static~nondegenerate! hori-
zon has the form of the direct product ofR ~time! and Eu-
clidean anti–de Sitter space. Therefore, some elements o
holographic AdS-CFT dictionary can be transcribed to
present case. Formulating this dictionary we proceed in
steps. First, we specify the data on the holographic scr
sufficient to reconstruct the physics in the bulk. Second,
would like to show that the holographic data can be
scribed in terms of some field theory, specifically a conf
mal field theory. In this paper we mainly concentrate on
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first step; that is, we analyze in detail the reconstruction
the matter fields and metric from the data on the horiz
Concerning the second step we compute the correlation fu
tions on the horizon along the same lines as in AdS-C
These correlation functions are indeed the same as expe
to arise in some conformal field theory. This computati
supports the proposed correspondence but further work
be required to firmly establish such a duality and to rev
the details of the underlying CFT. Unfortunately, in th
present situation we do not have a string theory formulat
of the problem as a guiding principle.

Another motivation for the present work is to understa
black hole entropy@7# as arising from some field theory liv
ing on the horizon. This was carried out explicitly for th
~211!-dimensional black hole in@8#. In more general situa-
tions one then has to investigate the general structure of
space-time metric near horizons and to reveal the co
sponding near-horizon asymptotic symmetries. This idea
peared in recent attempts to understand the black hole
tropy in terms of degrees of freedom at the horizon@9,10#.
By analyzing a general spherically symmetric metric w
horizon@10# or imposing certain fall-off condition@9# for the
metric coefficients near horizon one finds the presence
two-dimensional conformal symmetry. This could hint to
construction of a Hilbert space for quantum black holes a
representation of the conformal symmetry group at the h
zon. However, in order to incorporate the full dynamics ne
the horizon it is important to analyze the most general cl
of metrics admitting the interpretation in terms of horizo
and to find the corresponding symmetries. In this paper
give up the condition of spherical symmetry and propo
general form for the static metric with Killing horizon.~A
similar form was suggested earlier in@11# as a off-shell de-
scription of black hole metric near horizon.! Remarkably,
this metric still can be a solution to the Einstein equatio
We show this by expanding the metric near horizon and
serving that all terms of the expansion are uniquely de
mined by specifying arbitrary metric on the horizon~see@12#
for a related discussion for spherically symmetric metric!.
Since the metric on the horizon can be chosen arbitrarily
©2001 The American Physical Society23-1
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IVO SACHS AND SERGEY N. SOLODUKHIN PHYSICAL REVIEW D64 124023
solutions we have found present a new class of space-t
~with nonspherical horizons! of general relativity. Further-
more, the asymptotic symmetry near the horizon is con
mal but of different type than observed in@9,10#.

This paper is organized as follows. In Sec. II we analy
the optical metric, exhibit the Euclidean anti–de Sitter sp
near the horizon and compute the conformal weights
2-point functions on the horizon. In Sec. III we consider t
general form of the static metric with nondegenerate hori
and reveal the conformal asymptotic symmetry. The rec
struction of the scalar field is considered in Sec. IV and
reconstruction of the metric is carried out in Sec. V. T
entropy associated with the nonspherical horizon of our
lutions is discussed in Sec. VI. The conclusions are t
presented in Sec. VII. The reader mainly interested in ap
cation of our results to general relativity may go directly
Secs. III, V, and VI.

II. LOOKING THROUGH THE OPTICAL METRIC

We begin this section by finding adapted coordinates
exhibit the similarities of the geometry near event horizo
and Euclidean AdS spaces. We then compute some rele
correlation functions in these coordinates in the second p

A. Uncovering AdS space near the horizon

The key observation important for the present analysi
the universal appearance of the asymptotically anti–de S
space in the optical metric near the horizon. To see how
comes along let us for simplicity first consider
(d12)-dimensional static, spherically symmetric metric a
transform it to the optical metric

ds252 f ~r !dt21 f 21~r !dr21r 2dV (d)
2

5 f ~r !dsopt
2 , ~2.1!

wheredV (d)
2 is the standard metric on the unit sphereSd, in

this section we will useu to denote the various angle coo
dinates on Sd. In terms of the new variablez
52* r f 21(r )dr the optical metric may be written in th
form

dsopt
2 52dt21dsspt

2

dsspt
2 5dz21

r 2~z!

f ~z!
dV (d)

2 . ~2.2!

In the case of interest, when the metric~2.1! describes a
space-time with a non-degenerate horizon atr 5r 1 the met-
ric function f (r ) has a simple root atr 5r 1 , f (r )5(2/
bH)(r 2r 1)1O(r 2r 1)2. We interpret 2pbH as the inverse
Hawking temperatureTH

21 as defined with respect to th
Killing vector ] t . The horizon surface S is the
d-dimensional sphere of radiusr 1 . For r close to r 1 we
have

~r 2r 1!;e22z/bH, f ~z!;e22z/bH,
12402
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so that the spatial part~3.2! of the optical metric takes the
asymptotic form

dsspt
2 5dz21C2e2z/bHdV (d)

2 , ~2.3!

with C is some irrelevant constant. It is not difficult to se
that the metric~2.3! is identical with the asymptotic metric o
Euclidean anti–de Sitter space. Note that the radius of
anti–de Sitter space isbH , the inverse Hawking temperatur
of the horizon in the original metric~2.1!.

In general, the spatial metric~2.2! approaches the metri
of anti–de Sitter space only asymptotically so that in t
sub-leading terms the metric will deviate from that of t
anti–de Sitter space. Interestingly, the horizon surfaceS,
which is the bifurcation point in the metric~2.1!, is mapped
to infinity of the anti–de Sitter space under the transform
tion z(r ). This supports the idea that a holographic descr
tion in terms of a CFT on the boundary of anti–de Sit
space might be applicable to horizons. The dual CFT the
then would be living on the horizon surfaceS.

The horizon in metric~2.1! can be a black hole horizon o
a cosmological horizon. The cosmological horizon appear
in de Sitter space is of particular interest. In this case
spatial part of the optical metric describes anti–de Si
space not just asymptotically but globally. The metric fun
tion in this case isf (r )512r 2/ l 2 so thatbH5 l ( l is the
radius of de Sitter space!. In terms of the new variablez
52( l /2)ln@(r1l)/(r2l)# we have that

r ~z!5 l tanh
z

l
,

r 2

f ~z!
5 l 2 sinh2

z

l

and the spatial part of the optical metric~2.2!

dsspt
2 5dz21 l 2 sinh2

z

l
dV (d)

2

is precisely the metric of anti–de Sitter space for allz.

B. Conformal dimensions and correlation functions
on the horizon

Consider now scalar perturbations in the background~2.1!
described by the field equation

~h2m2!f50, ~2.4!

whereh is the wave operator for the metric~2.1!. This equa-
tion can be re-written as a field equation on the backgro
of the optical metric~2.2!. In order to see that we introduce
new fieldfopt as follows:

f5 f ~r !2d/4fopt .

Then the equation forfopt reads

hoptfopt5m2~z!fopt , ~2.5!

where
3-2
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hopt52] t
21S f

r 2D d/2

]zS S r 2

f D d/2

]zD1
f

r 2 Du ~2.6!

is the wave operator in terms of the optical metric~2.2!, and

m2~z!5m2f 2S d

4D 2

~ f ,r !
21

d

4
f f ,rr 1

d2

4r
f f ,r ~2.7!

is an effective,z-dependent mass term.
In the near horizon limit,z→`, the spatial part of the

operator ~2.6! is identical with the Laplace operator a
asymptotic infinity of Euclidean anti–de Sitter space.
continue we split off the time dependence of the optical fie
fopt5eıvtfv(z,u), so that, asz→`, fv satisfies equation

DAdSfv5M2fv ,

M252v22S d

2bH
D 2

. ~2.8!

This is the familiar equation for the scalar perturbations
pearing in the context of the AdS-CFT correspondence.
unusual feature of Eq.~2.8! is the negative sign for the ef
fective mass square term. This means that the perturba
are tachyonic.1 Asymptotically,

fv;xl~u!elz/bH, z→`

and from Eq.~2.8! we find two possible roots forl (v)

l (v)
6 52

d

2
6ıvbH . ~2.9!

In the context of the AdS-CFT correspondencel (v)
6 are re-

lated to the conformal dimension of a dual operator in
CFT by

h(v)
6 5d1l6

(v)5
d

2
6ıvbH . ~2.10!

We see that the conformal weightsh(v)
6 are complex. So one

might worry about unitarity. Note however that, contrary
the usual AdS-CFT correspondence, the conformal fi
theory in question~if it exists! lives on a Euclidean surfac
S, and does not describe the time evolution of the syste

Near the horizon, the modes withlv
1 andlv

2 decay in the
same way so that we can not discard one of them as deca
faster than another. Therefore, the boundary condition n
the horizon~or, equivalently, near infinity of AdS space! con-
tains both modes:

lim
z→1`

fopt5w~ t,z,u!5e2~dz/2bH!E
2`

1`

dve2ıvt

3„wv
1~u!eıvz1wv

2~u!e2ıvz
…. ~2.11!

1Note, thatM2 becomes positive whenv is imaginary. This, in
particular, happens for quasi-normal modes.
12402
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In terms of the original scalar fieldf5edz/2bHfopt this is the
generic behavior and corresponds to the presence of ri
and left-moving modes which always appear for any fie
propagating near a horizon. In the AdS-CFT picturewv

6(u) is
dual to an operatorO (2v)

6 of conformal dimensionh(v)
6 .

Note that the operatorsO (v)
6 andO (2v)

7 have the same con
formal dimensionh(v)

6 .
In order to adjust the prescription of@5# for computing the

2-point functions of dual operators to the present case, le
first consider a hypersurface of constantz5Z as a boundary,
afterwards we will take the limit of infiniteZ. In this limit the
hypersurface approaches the horizon light-cone. Conside
Eq. ~2.11! as a boundary condition near the horizon we ap
Green’s formula

fopt~ t,z,u!5E
2`

1`

dt8E
Sd

dm~u8!edz8/bH
„G]z8w~z8,t8,u8!

2]z8Gw~z8,t8,u8!…z85Z , ~2.12!

where dm(u) is the integration measure on the sphereSd.
The boundary functionw(z8,t8,u8) takes the form~2.11! and

G~ t,t8,z,z8,u,u8!5E
2`

1`

dve2ıv(t2t8)Gv~z,z8,u,u8!

is Green’s function. Near the horizon,Gv is a Green function
of the operator~2.8! on anti–de Sitter and we can use th
AdS expression@13#

Gv.cl

e2(lv1d)z8/bH

S cosh
z

bH
2sinh

z

bH
cosg D (lv1d) , ~2.13!

whereg is the geodesic distance between two pointsu and
u8 on sphereSd. Again, for lv

1 andlv
2 the function~2.13!

decays in the same way for largez8. Therefore, the complete
Green’s function is the sum of two contributions. When bo
pointsz andz8 are close to the boundary of AdS we have

Gv5e2(d/2bH)(z1z8)
„Gv

2~u,u8!eıv(z1z8)

1Gv
1~u,u8!e2ıv(z1z8)

…,

Gv
2~u,u8!5

cv
1

~12cosg!hv
1 , Gv

1~u,u8!5
cv

2

~12cosg!hv
2 .

~2.14!

In this limit Green’s formula~2.12! indeed gives the function
which satisfies the boundary condition~2.11!. It also leads to
non-local relations betweenwv

1 andwv
2

wv
1~u!522ıvE

Sd
dm~u8!Gv

2~u,u8!wv
2~u8!

wv
2~u!52ıvE

Sd
dm~u8!Gv

1~u,u8!wv
1~u8!.

~2.15!
3-3
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We note in passing that, as a consequence of Eqs.~2.12! and
~2.17! the components of the Green’s function~2.14! should
satisfy the consistency condition2

E
Sd

dm~u9!Gv
2~u,u9!Gv

1~u9,u8!5
1

4v2 d (d)~u,u8!.

~2.16!

Now, in order to compute the 2-point functions of dual o
erators we have to evaluate the boundary actionWB on the
solution ~2.12!. In terms offopt and the optical metric one
has
-

ris

-
d
p-
t o
uc
s.
r-

-

r-

12402
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WB@w#5
1

2E2`

1`

dtE
Sd

dm~u!„fopte
~dz/2bH!

3]z~e~dz/2bH!fopt!…z5Z

52
1

2ESd
dm~u!E

2`

1`

dv iv„wv
1~u!w2v

1 ~u!

2wv
2~u!w2v

2 ~u!…1•••, ~2.17!

where the periods stand for contact terms which we w
discard in the following. The exponent ofWB@w# should be
compared with the generating functional
K expF E
Sd

dm~u!E
2`

1`

dv„w2v
1 ~u!O v

1~u!1wv
2~u!O2v

2 ~u!…G L
-
r,
er

l

e
o-
o-
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on the CFT side. Using Eq.~2.14! we then read off the cor
relation functions of the dual operators

^O v
1O2v

2 &5v2Gv
2}

1

S sin
g

2D 2hv
1

^O v
2O2v

1 &5v2Gv
1}

1

S sin
g

2D 2hv
2 ,

~2.18!

which are precisely the correlation functions expected a
on sphereSd for operators with dimensionhv

1 and hv
2 re-

spectively.

Remarks

(1) Extra boundary.In the above computation of correla
tion functions we neglected the presence of boundaries
ferent from the horizon. An extra boundary at infinity a
pears for instance when space-time is asymptotically fla
anti–de Sitter. Then the computation should also prod
2-point functions between different boundary component

(2) Hawking radiation.We should also notice the appea
ance of the inverse Hawking temperaturebH in combination
with v in our formulas. Sincev is the energy of the pertur
bation it is tempting to speculate that the dual operatorsO(v)

6

2This relation is valid for kernels~2.14! with anyh1 andh2 such
that h11h25d. Most easily it can be proved in flat space~sphere
of infinite radius! by doing the Fourier transformation of the ke
nels. Furthermore, in the particular case whereh15d/21

1
2 and

h25d/22
1
2 , the kernelsG2 andG1 are respectively Dirichlet and

Neumann correlation function@13#. The proof of Eq.~2.16! in this
case was explained to us by A. Barvinsky.
e

if-

r
e

with conformal dimensionh(v)
6 could enter in a dual descrip

tion of the Hawking radiation in terms of a CFT. Howeve
we do not explore this possibility any further in this pap
leaving this issue to a future work.

(3) Similarity to ’t Hooft’s S-matrix.When the horizon is
two-dimensional (d52 in the above formulas! we may in-
troduce the functionf 0(u,u8)52 ln sin2(g/2) which, for u
5u8, is a solution to the equationDS2f 051/2R (R is the
curvature scalar ofS2). For u close tou8 it behaves as usua
Green’s function in two dimensions,f 0(u,u8).2 lnuu2u8u2.
Then the kernelsG6 can be written as

G65exp„~16ıvbH! f 0~u,u8!….

For Schwarzschild black hole we havevbH54GMv,
whereM is the mass of the black hole andv is the energy of
a particle falling into black hole. The imaginary part of th
exponent inG6 resembles the phase appearing in the tw
particle amplitude for the gravitational scattering in the eik
nal approximation@14,15#:

S125exp„2ıGp1
2p2

1 f ~y1 ,y2!…,

f ~y1 ,y2!52 lnuy12y2u2,

wherepi
6 andyi are the momentum and transversal coor

nate of particlei. The horizon sphere with angle coordinat
u indeed plays a role of a transversal space for a part
falling into a black hole. Moreover, according to Eq.~2.15!
G6 relate the in-going and out-going modes at the horiz
Therefore, this similarity may not be accidental and deser
a deeper analysis.

(4) de Sitter space.Our computation of the correlation
functions is, in particular, applicable to de Sitter space. T
2-point functions~2.18! are then defined on the cosmologic
horizon. Recently, there was some interest in quantum g
ity and string theory on de Sitter space@16,17#. In particular,
some form of dS/CFT duality was proposed in@17#. The
3-4
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conformal field theory in this proposal lives on a Euclide
space which is a hypersurface of infinite past in de Si
space. The computation of the 2-point functions in@17# for
the CFT defined on infinite past of de Sitter has some si
larities with our computation in this section. In particular, t
necessity of more general boundary conditions includ
both modes withh1 and h2 also arises there. In spite o
these similarities the two CFT’s are defined in differe
space-time regions. It would be interesting to understand
relation between these two approaches.

III. GENERAL METRIC AND ASYMPTOTIC
SYMMETRIES

What we have found in the previous section is that
optical metric of a spherically symmetric space-time w
horizon is a direct product of time and a Euclidean sp
which near the horizon asymptotically approaches anti
Sitter space. As we will show, this observation applies in f
to a more general class of metrics with a horizon. Motiva
by recent study@18–20,6# on asymptotically anti–de Sitte
spaces we consider a general static ansatz of form

ds25es(x,r)S 2dt21
l 2dr2

4r2 1
1

r
gi j ~x,r!dxidxj D ,

s~x,r!5 ln r1s (0)~x!1O~r!, ~3.1!

that is the functiones has a simple root atr50 correspond-
ing to the location of the horizon. For the spatial part of t
optical metric in Eq.~3.1! the horizon surface defined byr
50 is the boundary at infinity. Provided the functio
gi j (x,r) is analytic nearr50 and approachesg(0)i j (x) when
r50, we find that the spatial metric in Eq.~3.1! indeed
describes asymptotically anti–de Sitter space asr goes to
zero. The parameterl in Eq. ~3.1! determines the radius o
this anti–de Sitter. The inverse Hawking temperature for
horizon as defined with respect toj t5] t in the metric~3.1!
reads

bH
215 l 21r]rsur50 . ~3.2!

Hence, ifes;r for smallr, thenbH5 l . The metric~3.1! is
the general form for a static metric with a Killing horizon
This form was proposed earlier in@11# as off-shell form of
the metric near an arbitrary, static black hole horizon. In
next section we will prove that Eq.~3.1! is, in fact, valid also
on-shell by determining the functionss(x,r) and gi j (x,r)
which solve the (d12)-dimensional Einstein equations.

First, let us however analyze the (d12)-dimensional dif-
feomorphisms which preserve the form~3.1!. This is again
motivated by the analysis done for anti–de Sitter sp
where the conformal transformations in the boundary or
nate from a subset of diffeomorphisms in the bulk@21,22#
~see also@6#!. In general the diffeomorphismsj can be func-
tions of x, r and time t. However, at present we restric
ourselves to the static case and assume that] tj

r5] tj
i50.
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This, however, does not mean thatj t cannot depend ont. The
most general diffeomorphism leaving invariant the for
~3.1! is then of the form

j t5qt1s, jr5ra~r,x!, j i5ai~x,r!,

a~r,x!5q ln r1a0~x! ~3.3!

where q,s are constant andai(x,r) is subject to the con-
straint

]rai~x,r!52
l 2

4
gi j ~x,r!] ja0~x!, ~3.4!

similar to the equation arising in the analysis of diffeomo
phisms in anti–de Sitter space@22#. The functionai(x,r) in
Eqs. ~3.3! and ~3.4! is assumed to be regular at the horiz
(r50) and moreover we impose the boundary condition t
ai(x,r50)50 ~see@22#!.

Under these diffeomorphisms the functionss(x,r) and
gi j (x,r) transform as follows:

Ljs5ai~x,r!] is1ar]rs12r]ra, ~3.5!

Ljgi j 5¹ i~gjkjk!1¹ i~gikjk!2a~gi j 2r]rgi j !22r]ragi j .
~3.6!

The covariant derivative in Eq.~3.6! is with respect to the
metricgi j (x,r). The metric induced on a surface of consta
r (r50 is the horizon! is g i j (x,r)5es(1/r)gi j . Under the
diffeomorphisms~3.3! it then transforms as

Ljg i j 5¹ i
(g)~g jkak!1¹ i

(g)~g ikak!1ar]rg i j , ~3.7!

where ¹ i
(g) is the covariant derivative with respect t

g i j (x,r).
For q50 the diffeomorphisms~3.3! are similar to the

those found in@22# for the case of AdS. Sincea(x) is not
function ofr the last term in Eqs.~3.5! and~3.6! disappears.
On the horizon surface (r50) the transformations of this
type act as conformal transformations,

Ljs (0)~x!5a0~x!

Ljg(0)i j ~x!52a0~x!g(0)i j ~x!. ~3.8!

On the other hand, for the induced metricg i j (x,r) we find
from Eq. ~3.7! that

Ljg i j ~x!50, ~3.9!

i.e., the induced metric on the horizon does not chan
Thus, in spite of the fact that the parametera0(x) is function
on thed-dimensional horizon surfaceS, the transformation
~3.3! ~with q50) effectively acts as Weyl transform in th
two-dimensional (t,r) subspace orthogonal toS. The in-
duced metric onS remains invariant under this.

The remaining diffeomorphisms in Eq.~3.3!, param-
etrized byq lead to the transformations

Ljs5q~21r ln r]rs!
3-5
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Ljgi j 5q~22gi j 2 ln rgi j 1r ln r]rgi j !

Ljg i j 5q ln r]rg i j . ~3.10!

These infinitesimal transformations can be integrated to
finite transformations

s~x,r!→s~x,req
!12q

gi j ~x,r!→e22qgi j ~x,req
!

g i j ~x,r!→g i j ~x,req
! ~3.11!

and results in simply replacingr by req
in these functions.

The interpretation of this transformation is that it changes
definition of the Hawking temperature. Indeed we find fro
Eqs.~3.2! and ~3.11! that

bH
21→eqbH

21 . ~3.12!

IV. RECONSTRUCTION OF THE SCALAR FIELD

In this section we consider a scalar perturbation on a g
eral background with horizon. The scalar field equation

~h2m2!F50 ~4.1!

is the same as in Sec. II but now the background is given
Eq. ~3.1!. To continue we suppose that the functionss(x,r)
and gi j (x,r) in the metric ~3.1! are given in terms of an
expansion inr, i.e.,

s~x,r!5 ln r1s (0)~x!1s (1)~x!r1•••

gi j ~x,r!5g(0)i j ~x!1g(1)i j ~x!r1•••. ~4.2!

Our purpose in this section is to understand what data
should specify on horizon in order to reconstruct the fi
everywhere in the bulk.

At fixed energyv the perturbation splits on two sectors

Fv5eıvt
„r ıvbH/2fv~x,r!1r2~ ıvbH/2!cv~x,r!…, ~4.3!

which are thehv
1 andhv

2 sectors discussed in Sec. II. The
describe right- and left-moving waves at the horizon. For
functionsfv(x,r) andcv(x,r) we then have the following
expansion:

fv~x,r!5 (
k50

`

fv
(k)~x!rk

cv~x,r!5 (
k50

`

cv
(k)~x!rk. ~4.4!

The two sectors decouple in the field equation~4.1!. There-
fore, we will restrict the consideration to thefv sector. The
analysis for cv is similar. At fixed v the equation on
fv(x,r) reads
12402
e

e

n-

y

e

e

ıvbHfv„d~r]rs21!1r Tr~g21]rg!…1r]rfv„41ı4v

12d~r]rs21!12r Tr~g21]rg!…14r2]r
2fv

1r¹g
2fv1

d

2
rgi j ] is] jfv2m2esfv50. ~4.5!

Substituting the expansion~4.4! into Eq. ~4.5! and assuming
that all coefficients in the expansion~4.2! are known we
solve Eq.~4.5! perturbatively at each order inr. It proves
that all terms of the expansion~4.4! are uniquely determined
provided the first termfv

(0)(x) is given. The same is true als
for the cv sector where one has to fix the functioncv

(0)(x)
on the horizon. The first two terms in Eq.~4.4! are deter-
mined as follows:

fv
(1)~x!52

1

4~11ıvbH! F ıvbH~ds (1)1Tr g(1)!fv
(0)

1¹ (0)
2 fv

(0)1
d

2
g(0)

i j ] is (0)] jfv
(0)2m2es(0)fv

(0)G ,
~4.6!

fv
(2)~x!52

1

8
~ds (1)1Tr g(1)!fv

(1)2
ıvbH

8~21ıvbH!

3~2ds (2)12 Trg(2)2Tr g(1)
2 !2

1

8~21ıvbH!

3F¹ (0)
2 fv

(1)1¹ i~g(1)
i j ] jfv

(0)!1
1

2
] i Tr g(1)]

ifv
(0)

1
d

2
~] is (0)]

ifv
(1)1] is (1)]

ifv
(0)

2g(1)
i j ] is (0)] jfv

(0)!2m2es(0)~fv
(1)1s (1)fv

(0)!G .
~4.7!

At higher orders the expressions become more complica
but the general structure of equation forkth coefficient is
always of the form3

fv
(k)k~ ıvbH1k!1X(k)@fv

(k21) ,fv
(k22) , . . . #50,

~4.8!

whereX(k) is a polynomial infv
(p) , p,k and their deriva-

tives. Thus, the coefficientfv
(k)(x) is completely determined

by the previous coefficientsfv
(k21) , fv

(k22) , . . . ,fv
(0) and

ultimately by the functionfv
(0)(x). A separate analysis is

needed for zero-energy (v50) modes. In this case som
terms in Eq.~4.5! disappear. Moreover, instead of the expa
sion ~4.3!,~4.4! we have

3One can see that for complexv the has a pole atI v
522pTHk, wherek is integer. It is tempting to relate it with the
quantization of imaginary part of frequencyv for quasi-normal
modes. This, however, needs a more careful analysis.
3-6
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F05„f (0)~x!1rf (1)~x!1•••…

1 ln r„c (0)~x!1rc (1)~x!1•••…. ~4.9!

This time,f andc sectors couple to each other in the fie
equation. Nevertheless, specifying two functionsf (0)(x) and
c (0)(x) on the horizon completely determines all terms
the expansion~4.9!. In the first order inr we find

c (1)~x!52
1

4 S ¹ (0)
2 c (0)1

d

2
g(0)

i j ] is (0)] jc (0)2m2es(0)c (0)D ,

f (1)~x!52
1

3
c (1)~x!2

1

6
~ds (1)1Tr g(1)!c (0)~x!

1
1

12S ¹ (0)
2 f (0)1

d

2
g(0)

i j ] is (0)] jf (0)

2m2es(0)f (0)D . ~4.10!

Thus, for each energyv one has to specify a pair of func
tions fv

(0)(x) andcv
(0)(x) @f (0)(x) andc (0)(x) if v50] on

the horizon in order to reconstruct the scalar field eve
where in the bulk. This set of functions forms the ‘‘holo
graphic data’’ on the horizon. In the AdS-CFT correspo
dence in order to reconstruct a scalar field in the bulk one
to specify two functions on the boundary: a source coup
to the dual CFT operator and the expectation value of
dual operator@6#. The discussion in Sec. II shows that for
fixed v.0 the functionsfv

(0)(x) andf2v
(0) (x) @andcv

(0)(x)
andc2v

(0) (x)# indeed form such holographic pair.

V. RECONSTRUCTION OF THE METRIC

In this section we show that provided the metric on ho
zon is specified one can uniquely reconstruct metric eve
where in bulk. For simplicity we consider the static ca
only. The stationary and time-evolving cases are, howeve
great importance and we plan to approach these cases
separate publication.

We start with the (d12)-dimensional bulk Einstein equa
tions

RAB2
1

2
RGAB52

d~d11!

2L2 GAB , A,B5~ t,r,i !,

~5.1!

where for generality we included a bulk cosmological co
stant L}1/L2. Our consideration will cover all cases:L
.0, L,0, andL50. The appropriate case can be reco
ered by analytic continuationL2→2L2 in our formulas.

Our ansatz for the metricGAB is as in Eq.~3.1!, i.e.,

ds25es(x,r)S 2dt21
bH

2 dr2

4r2
1

1

r
gi j ~x,r!dxidxj D

5es(x,r)G̃ABdXAdXB, ~5.2!
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where for convenience we separated the optical metricG̃AB .
The metric ~5.2! should describe a horizon atr
50, xi , i 51, . . . ,d being the coordinates on the hor
zon. This is specified by boundary conditions to be impos
on the functions(x,r). This, together with the analyticity
condition for the metricgi j (x,r) at r50, leads us to the
following near-horizon expansion:

s~x,r!5 ln r1s (0)~x!1s (1)~x!r1•••

gi j ~x,r!5g(0)i j ~x!1g(1)i j ~x!r1•••, ~5.3!

which we have already advocated in Sec. IV.
We now show that specifying the functions (0)(x) and the

metric g(0)i j (x) on the horizon surfaceS uniquely deter-
mines the solution to the Einstein equations~5.1! in bulk for
the class of metrics~5.2!. Note also that assuming the expa
sion ~5.3! we explicitly break the invariance parametrized
q in Eq. ~3.3!. As we have seen in Sec. III the functio
s (0)(x) is pure gauge and can be always removed by us
the diffeomorphism~3.3! as is seen from Eq.~3.8!. Thus, the
only real degrees of freedom living on horizon are those
the metric functiong(0)i j (x) or, equivalently, of the induced
metric g (0)i j (x) ~this is in agreement with conclusion mad
earlier in @10#!. However, in the rest we will keeps (0)(x)
arbitrary in order to maintain the invariance under the co
formal transformation~3.8!. Note also thats (0)(x) and
g(0)i j (x) are data on the surfaceS which is the bifurcation
point in the horizon light cone. By means of the Killin
vector j t these data can be extended over the whole lig
cone surface.

In terms of the optical metricG̃AB ~5.2! the Einstein equa-
tions take the form4

R̃AB52
d

4
~22¹̃A¹̃Bs1¹̃As¹̃Bs!

1G̃ABS d

4
~¹̃s!21

1

2
¹̃2s1es

~d11!

L2 D . ~5.4!

Since we are looking for static solutions, i.e.,] ts5] tgi j

50, we find that R̃tt50 and 22¹̃ t¹̃ ts1¹̃ ts¹̃ ts50.
Hence, the (tt) component of Eq.~5.4! reduces to the equa
tion

d

4
~¹̃s!21

1

2
¹̃2s1es

~d11!

L2 50. ~5.5!

The remaining equations~5.4! can be represented in the form

R̃mn52
d

4
pmn , m,n5~r,i !, ~5.6!

where, in terms ofs(x,r) andgi j (x,r) we have

4Our curvature conventions are as followsRnab
m 5]aGnb

m

1Gsa
m Gnb

s 2a↔b andRmn5Rman
a . Note that it differs in sign from

the one used in@6,20#.
3-7
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prr522]r
2s2

2

r
]rs1~]rs!2

pr i522]r] is2
1

r
] is1] is]rs1~g21]rg! i

j] is

p i j 5
4

bH
2 ~gi j 2r]rgi j !]rs1] is] js22¹ i

g¹ j
gs

~5.7!

and for the Ricci tensor of optical metric we have

R̃rr52
d

4r2 2
1

2
]r Tr ~g21]rg!2

1

4
Tr~g21]rg!2

R̃r i52
1

2
„] i Tr~g21]rg!2¹ j~g21]rg! i

j
…

R̃i j 5Ri j @g#2bH
22Fd

r
gi j 2~d22!]rgi j

2gi j Tr~g21]rg!1r„2]r
2g22]rgg21]rg

1]rg Tr~g21]rg!…i j G . ~5.8!

Equations ~5.6!–~5.8! look similar to the
(d11)-dimensional Einstein equations analyzed in@20,6#
for AdS space. The essential difference is thatpmn in Eq.
~5.6! does not represent a contribution
(d11)-dimensional negative cosmological constant. O
asymptotically, whenr→0, we have that2(d/4)pmn

52(d/bH
2 )G̃mn , mn5(r,i ). That is why the solution to the

Eqs.~5.6! indeed describes a space asymptotically approa
ing AdS space. However, already in the sub-leading te
pmn deviates from the form dictated by the cosmologic
constant. The complete system~5.5!–~5.8! describes a
coupled (d11)-dimensional system of metricgi j (x,r) and a
scalar fields(x,r).

Technically, we solve Eqs.~5.5!–~5.8! in the same way as
in the case of AdS space@20,6#. One substitutes the expan
sion ~5.3! into the field equations which can then be solv
order by order by matching the coefficients at fixed pow
of r. This leads to a set of equations sufficient to determ
the coefficientss (k)(x) andg(k) i j (x). Compared to the AdS
case@6# we have one extra fields(x,r) but there is also an
extra equation~5.5!. So that, the total number of equations
enough to determine all unknown functions from the giv
holographic data. To the leading order, Eqs.~5.5!, ~5.6! are
satisfied identically. This is a consequence of our choice
the leading term in the expansion of the scalar funct
s(x,r) ~5.3!.

At the first nontrivial order Eq.~5.5! gives the relation
12402
y

h-
s
l

s
e

f
n

s (1)52
1

~d12!
Tr g(1)2

bH
2

~d12! S d

4
~¹ (0)s (0)!

21
1

2
¹ (0)

2 s (0)

1es(0)
~d11!

L2 D ~5.9!

betweens (1) andg(1) . Another relation comes from ther0

term in the (i j ) component of Eq.~5.6!

2g(1)i j 2~Tr g(1)1ds (1)!g(0)i j

5bH
2 S d

4
~] is (0)] js (0)22¹ (0)i¹ (0) js (0)!1R(0)i j D .

~5.10!

Equations~5.9! and ~5.10! are enough to determine coeffi
cientss (1)(x) andg(1)i j (x). After some algebra we find tha

s (1)~x!52
1

4
bH

2 R(0)1bH
2 S d~d23!

16
~¹ (0)s (0)!

2

1
~d21!

4
¹ (0)

2 s (0)1
~d22!~d11!

4L2 es(0)D
~5.11!

g(1)i j ~x!5
1

2
bH

2 S R(0)i j 1
1

2
R(0)g(0)i j D

1
d

4
bH

2 S 1

2
] is (0)] js (0)2¹ (0)i¹ (0) js (0)D

2
d

4
bH

2 g(0)i j

3S ~d21!

4
~¹ (0)s (0)!

21¹ (0)
2 s (0)

1es(0)
~d11!

L2 D . ~5.12!

Not all Einstein equations are independent, some give id
tities. For example, the (rr) part of Eqs.~5.6! does not give
rise to any new equations ons (1) and g(1)i j . An identity
appears from (r i ) part of Eq.~5.6!:

¹ (0)
j g(1)i j 5] i~Tr g(1)1ds (1)!2

d

2
~g(1)1s (1)g(0)! i

j] js (0) .

~5.13!

As a check for our formulas one verifies that Eq.~5.13! is
indeed valid fors (1)(x) and g(1)i j (x) given by Eqs.~5.11!
and ~5.12! respectively. In fact, the (d12)-dimensional Bi-
anchi identities imply the (r i ) equation to all orders pro
vided the (rr), (i j ) and (tt) equations are satisfied. Fo
completeness we also give the transformation laws fors (1)
andg(1)i j under the remaining diffeomorphisms~3.3!. They
are
3-8
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Ljs (1)~x!5a0~x!s (1)~x!2
bH

2

4
g(0)

i j ] ia0] js (0)

Ljg(1)i j ~x!52
bH

2

2
¹ (0)i¹ (0) ja0 . ~5.14!

In the next order inr, the (rr) part of the Einstein equation
gives the relation

Tr g(2)5
1

4
Tr g(1)

2 1
d

4
~s (1)

2 24s (2)!. ~5.15!

From this and the equation arising in this order from E
~5.5! we can determine

s (2)5
1

16
~23ds (1)

2 1Tr g(1)
2 22s (1)Tr g(1)!

2
bH

2

16 S ¹ (0)
2 s (1)1

2~d11!

L2 es(0)s (1)D1•••,

~5.16!

where the ellipses represent terms involving derivatives
s (0) which can be set to zero by a suitable diffeomorphi
of the form ~3.3!. Then, from the (i j ) part of Eqs.~5.6! we
determine

g(2)i j 5
1

16
„4g(1)

2 1g(0)~ds (1)
2 2Tr g(1)

2 !…i j

2
bH

2

16
~d¹ (0)i¹ (0) js (1)1¹ (0)i¹ (0) j Tr g(1)!

2
bH

2

16
~¹ (0)

2 g(1)i j 2¹ (0)
k ¹ (0)ig(1)k j2¹ (0)

k ¹ (0) jg(1)ki!

1•••. ~5.17!

In higher orders the strategy remains the same but the
pressions become more complicated. However, the gen
structure of the equations on coefficientss (k) andg(k) i j can
be easily analyzed. From Eq.~5.5! we find that

~d12k!s (k)1Tr g(k)5A(k)@s (0) ,g(0) , . . . ,s (k21) ,g(k21)#.

The (rr) equation leads to

Tr g(k)1ds (k)5B(k)@s (0) ,g(0) , . . . ,s (k21) ,g(k21)#.

A(k) and B(k) are some functions of the coefficien
s ( i ) , g( i ) , i ,k and their derivatives. These equations det
mine s (k) and Trg(k) in terms ofs ( i ) , g( i ) , i ,k. The (i j )
equation takes the form

~2kg(k)2g(0)Tr g(k)! i j

5C(k) i j @s (0) ,g(0) , . . . ,s (k21) ,g(k21)#

and determines the coefficientg(k) i j . We see that no ambi
guity arises in this iteration process and all coefficients in
12402
.

f
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ral
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e

expansion~5.3! are uniquely determined onces (0)(x) and
g(0)i j (x) are specified on horizon.

Reconstructing the metric in the AdS-CFT correspo
dence@6# one has to specify the metric on the boundary a
the expectation value of the stress tensor of dual CFT. Th
fore, two terms in the expansion inr of the bulk metric
remain undetermined~for more details see@6#!: the metric on
the boundaryg(0)i j (x) and the termg(2d) i j (x) related to the
value of the extrinsic curvature on the boundary. One mi
have expected the same to happen in our case. Howe
surprisingly only one tensorg(0)i j (x) needs to be specified
all the other terms in the expansion are then uniquely de
mined. This is due to the peculiar properties of the horiz
~see also@12# for the spherically symmetric case!. In particu-
lar, the (i j ) components of the extrinsic curvature vanish
the horizon.

VI. NON-SPHERICAL HORIZONS, UNIQUENESS
AND ENTROPY

The results obtained in the previous section may be in
esting for conventional general relativity. What we ha
found is solution to Einstein equations describing a spa
time with a horizon with arbitrary~not necessarily spheri
cally symmetric! metric. It is worth reminding that in genera
relativity the possible shape of the horizon is constrained
the so-called uniqueness theorem proven by Israel@23# ~for a
review see@24#!. According to this Theorem if the space
time metric is

~1! asymptotically flat;
~2! has an event horizon;
~3! has no singularity on or outside the event horizon;
~4! satisfies the vacuum Einstein equations

then it is spherically symmetric and in empty space coinci
with the Schwarzschild metric.

In Sec. V we gave up the condition~1! since the solution
we have found is known explicitly only in vicinity of the
horizon and apparently cannot be asymptotically flat at in
ity. Also, for the ansatz~3.1! we cannot rule out singularitie
outside the horizon. The only exception from the theor
known before is the so-called topological black holes@25#
~for a review see@26#!. They are solutions to Einstein equa
tions with cosmological constant. The horizon in this case
a hypersurface of constant curvature which, after some id
tifications, can be made compact and topologically no
trivial. However, in this case the horizon is still a maximal
symmetric space. In the solution found in Sec. V the me
on horizon can be arbitrary and it does not require any b
cosmological constant for its existence. So that it is a n
class of metrics describing space-times with horizon. It m
find applications, for instance, in the analysis of fluctuatio
of the black hole horizon.

Finally, one may wonder whether it is meaningful to di
cuss thermodynamical properties of the configurations
cussed in this paper. For instance, what is the horizon
tropy in this case? A standard method to determine
entropy is based on the first law and is not applicable in
case since the solution is known explicitly only locally ne
3-9
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horizon. Therefore, its global characteristics like mass
not determined.

The method which does work in this case is the method
conical singularity@11#. It consists in proceeding along th
following steps:

~1! go to Euclidean signature,t5ıt.
~2! Close Euclidean timet with arbitrary period

2pb, b5” bH . Then there appears a conical singularity
horizon surfaceS with angle deficit d52p(12a), a
5b/bH . The Ricci scalar on such conical manifold has
contribution from the singularity@11#

R54p~12a!dS1Ra51 , ~6.1!

whereRa51 is the regular part of the curvature.
~3! Compute the Einstein-Hilbert actionWEH@Ma#

52@(12a)/4G#AS2(a/16pG)*Ma51
Ra51 on the conical

space and apply the formula

S5~a]a21!WEH@Ma#ua51 ~6.2!

to compute the entropy. Since the entropy comes entirel
a contribution of the conical singularity, only the metric ne
the horizon is essential for the computing the entropy in t
method.

The analysis of paper@11# is quite general and require
only the knowing the metric in the form~5.2! near horizon as
an expansion~5.3!.5 With this definition, the entropy is found
to be universally proportional to the horizon areaAS

5*SddxAg (0)

SBH5
AS

4G
, ~6.3!

independently on the shape or topology of the horizon s
faceS.

5In fact, the results of@11# are even more general since they a
still valid when the coefficients in the expansion~5.3! are functions
of Euclidean timet.
A

un
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An alternative method for computing the entropy
Wald’s method of Noether charges@27#. It would be interest-
ing to see if this method applies to the present situation.

VII. CONCLUSIONS

The purpose of this paper was to initiate a systema
study of holographic encoding on a static, nondegener
but otherwise arbitrary horizon. Our basic observation is
presence of a universal near horizon structure conform
related toR3 Euclidean anti–de Sitter space. This is be
described in terms of the optical metric. Moreover by an
lyzing the diffeomorphisms compatible with this near ho
zon structure we revealed the presence of an asymptotic
formal symmetry. We also computed the 2-point functio
for a bulk scalar perturbation and found agreement with
expected form for some conformal field theory located on
horizon. Although, in this paper we have concentrated
static space-times it is conceivable that our results can
extended to more general space-times.

In spite of these similarities with the AdS-CFT correspo
dence there are also important differences. Notably we
that the conformal weights are complex. In Sec. III we ma
some speculations about possible interpretations of this p
nomenon, but other interpretations are possible and it wo
be interesting to learn more about the CFT side and to w
extent the analogy with the AdS-CFT correspondence
complete. In particular, it would be interesting see if t
horizon entropy and Hawking radiation has a CFT repres
tation in this case.

Finally we showed that the metric as well as scalar fie
can be unambiguously reconstructed from the horizon d
by an iterative process in much the same way as in
anti–de Sitter case.

ACKNOWLEDGMENTS

We would like to thank A. Barvinsky for helpful discus
sions. This work has been supported by the DF
Stringtheorie Schwerpunktsprogramm SPP 1096.
’’

,’’
@1# G. ’t Hooft, in Salamfestschrift: A Collection of Talks,World
Scientific Series in 20th Century Physics Vol. 4, edited by
Ali, J. Ellis, and S. Randjbar-Daemi~World Scientific, Sin-
gapore, 1993!, gr-qc/9310026.

@2# L. Susskind, J. Math. Phys.36, 6377~1995!.
@3# J. Maldacena, Adv. Theor. Math. Phys.2, 231 ~1998!.
@4# S. Gubser, I. Klebanov, and A. Polyakov, Phys. Lett. B428,

105 ~1998!.
@5# E. Witten, Adv. Theor. Math. Phys.2, 253 ~1998!.
@6# S. de Haro, K. Skenderis, and S. N. Solodukhin, Comm

Math. Phys.217, 595 ~2001!.
@7# J. D. Bekenstein, Phys. Rev. D7, 2333~1973!; S. W. Hawking,

Commun. Math. Phys.43, 199 ~1975!.
@8# S. Carlip, Phys. Rev. D51, 632 ~1995!.
@9# S. Carlip, Phys. Rev. Lett.82, 2828~1999!.
.

.

@10# S. N. Solodukhin, Phys. Lett. B454, 213 ~1999!.
@11# D. V. Fursaev and S. N. Solodukhin, Phys. Rev. D52, 2133

~1995!.
@12# V. Dzhunushaliev, Int. J. Mod. Phys. D9, 551 ~2000!.
@13# S. N. Solodukhin, Nucl. Phys.B539, 403 ~1999!.
@14# G. ’t Hooft, Phys. Lett. B198, 61 ~1987!; Nucl. Phys.B335,

138 ~1990!.
@15# E. Verlinde and H. Verlinde, Nucl. Phys.B371, 246 ~1992!.
@16# E. Witten, ‘‘Quantum Gravity In de Sitter Space,

hep-th/0106109.
@17# A. Strominger, ‘‘The dS/CFT Correspondence

hep-th/0106113.
@18# C. Fefferman and C. R. Graham,Elie Cartan et les Mathema-

tiques d’aujord’hui~Asterisque, Paris, 1985!, p. 95.
@19# C. R. Graham and J. M. Lee, Adv. Math.87, 186 ~1991!.
3-10



cz

,’’

ass.

’’

.

HORIZON HOLOGRAPHY PHYSICAL REVIEW D64 124023
@20# M. Henningson and K. Skenderis, J. High Energy Phys.07,
023 ~1998!; Fortschr. Phys.48, 125 ~2000!.

@21# J. D. Brown and M. Henneaux, Commun. Math. Phys.104,
207 ~1986!.

@22# C. Imbimbo, A. Schwimmer, S. Theisen, and S. Yankielowi
Class. Quantum Grav.17, 1129~1999!.

@23# W. Israel, Phys. Rev.164, 1776~1967!.
@24# J. D. Bekenstein, ‘‘Black hole hair: twenty-five years after

gr-qc/9605059.
12402
,

@25# S. Aminneborg, I. Bengtsson, S. Holst, and P. Peldan, Cl
Quantum Grav.13, 2707~1996!; D. Brill, Helv. Phys. Acta69,
249 ~1996!; M. Banados, Phys. Rev. D57, 1068 ~1998!; D.
Birmingham, Class. Quantum Grav.16, 1197~1999!.

@26# R. B. Mann, ‘‘Topological black holes-outside looking in,
gr-qc/9709039.

@27# R. M. Wald, Phys. Rev. D48, R3427~1993!; V. Iyer and R. M.
Wald, ibid. 50, 846~1994!; T. A. Jacobson, G. Kang, and R. C
Myers, ibid. 49, 6587~1994!.
3-11


