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Casimir effect in 2D stringy black hole backgrounds
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We consider the two-dimensional “Schwarzschild” and “Reissner-Norastrstringy black holes as sys-
tems of Casimir type. We explicitly calculate the energy-momentum tensor of a massless scalar field satisfying
Dirichlet boundary conditions on two one-dimensional “walls.” These results are obtained using the Wald's
axioms. Thermodynamical quantities such as pressure, specific heat, isothermal compressibility and entropy of
the two-dimensional stringy black holes are calculated. A comparison is made between the obtained results and
the laws of thermodynamics. The results obtained for the extre@alN!) stringy two-dimensional charged
black hole are identical in all three different vacua used, a fact that indicates its quantum stability.
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I. INTRODUCTION and “Reissner-Nordstrm” (charged [27,28 black hole
backgrounds are treated as systems of Casimir type
A significant tool for investigating the thermodynamical [6,29,30. _ .
properties of black holes is the Casimir effect. As is well The outline of thls_paper is as follows. In Secs. Il and Il
known, in 1948 Casimif1] evaluated the electromagnetic he vacuum expectation value of the energy-momentum ten-
energy localized between two conducting plates. The disturs0" 1S explicitly evaluated for the above mentioned stringy

bance to the electromagnetic vacuum induced by the twgIaCk hcileb li)agké:]round;i rfhspe:ti\{tlelyi_' in k_the Boulware
parallel plates is actually observable. The so-called Casimi acuum (labeled byz) [31], the Hartle-Hawking vacuum

effect[2] is viewed as a tractable model of field theoretical Iabeleﬂ byv) [32_:’;4] and the Unruh vacuurtiabeled Eyf)
effects associated with the geometry of spge5]. [35]. The energy density, pressyre, energy arJd the corre-
In order to examine the analogous effects for non-trivialSpondlng force between the two "Dirichlet walls” are calcu-

L _lated asymptotically. The thermodynamical quantities spe-
gravitational backgrounds we need the vacuum expectatiogi;. heat, thermal compressibility and entropy exhibit a
values of the energy-momentum tensor. There are many prwitious violation of the second thermodynamical law. In

cedureg 69 for calculating the vacuum expectation value gec. |V the results are discussed and conclusions are given.
of the energy-momentum tensor such as dimensional regu-

larization[10—17, the Green’s function methdd 3,14, heat Il. “SCHWARZSCHILD” BLACK HOLE
kernel method[15,16, zeta function regularizatiofl7],
point-splitting method18—20, and Pauli-Villars regulariza-
tion [21].

We restrict the form of the renormalized energy-
momentum tensor of a massless scalar fi@#] (without )
employing the full theory of regularizatiprby using the ds’=—g(r)dt*+ a0 (1)
trace of T, and enforcing Wald's axiom3,24] which are

(1) The expectation values of the energy-momentum tenwhere the metric function is
sor are covariantly conserved.

The line element of the stringy two-dimensional
“Schwarzschild” black hole[36] which is a low-energy so-
lution of an effective string actiof25,2€ is given as

2

(2) Causality holds. g(r)=1— Me*“ )
(3) In Minkowski spacetime, standard results should be A
obtained. the radial coordinate take valueg<<r <+« and the event

(4) Standard results for the off-diagonal elements shoulgyqrizon 74 is placed at the point
also be obtained.

(5) The energy-momentum tensor is a local functional of 1 M
the metric; i.e., it depends only on the metric and its deriva- rH_ﬁln( )
tives which appear through the Riemann curvature tensor _ ) i )
and the metric’s covariant derivatives up to second order. The line elementl) is written in “Schwarzschild” gauge.

In working this procedure a detailed expression for the N the conformal gauge which we are going to use in our
renormalized energy-momentum tensor is obtained once tHgRiculations the line element is given by
stringy two-dimensional “Schwarzschild’massive [25,26] ds?=Q(x)(—dt®+dx?) (4)

N ®

the conformal factor is
*Email address: tchris@cc.uoa.gr
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1
= 2N (r—ry) _
X 2)\In[e H —1] (6)

takes values- o <x<+o and the corresponding conformal

factor takes values

0<Q(x)<1. (7)
The non-zero Christoffel symbols are
~2\x
TR ber=r
The Ricci scalar is given as
-2)x
R(x)=4\2 Too | 9

It is well known that the traceTi(x) of the energy

momentum tensor vanishes classically for a conformally in-

ENAS PHYSICAL REVIEW D64 124022

X
X

dx + FEXT;_ F:XT{: 0 (14
and sinceT= — T} and T{=T%— T}, we get
dT} .
W + Zrtht =0 (15)
X
d—xx +2IL =T, T, (16)

Substituting the Christoffel symbol8) into Eqgs.(15), (16)
and solving them, we get respectively

variant theory. However in the semiclassical approximation

which is the case to be discussed here the trace is nonz

the regularization process and specifically in two dimensions

is given by[10,11,22,37

R(x)

To(x)= py (10

TI(X)=aQ Y(x)=a(l+e ) (17)
] TX(X) =0 (X)[Hy(x)+ 8] (18)
where
ero in y )_ EJX dQ(XI)Ta ,)d , (19)
2(X =2) ax *(x")dx

and the parameters, B are constants of integration while
the pointx,, is where the event horizoH is placed. It can be
shown thatH »(x) for the stringy two-dimensional black hole

Thus for the two-dimensional “Schwarzschild” black hole background1)—(5) becomes

background(1)—(3) the trace of the energy-momentum t
sor is
)\2 —2\X

6

e

Talx)= 1+e 2

(11)

en-
A2 N2

= oam 227 17 Q00)

H(x) (20)

Now the following limiting values oH,(x) from Eg. (20)
are obtained:

Applying Wald's first axiom, the conservation equation must

be fulfilled by the regularized expectation value of
energy-momentum tenséirt) e, =T4:

T.,=0 (12
which “splits” in two equations:
dTy . .
—+ T T —T}T,=0 (13

dx

T50) = Q7 () H,(x)
0

14

we obtain

2

A . 2
617 00]=2 (%)

2

Fym E[l—ﬂ(x)]2

e |

Th=

4

0

the if x— —oo(r=ry) thenH,(x)=0[Q(x)=0]
2

if X— +o0(r—+0o0) then Hy(X) Q(x)=1].

:E[ (

Keeping in mind that for any two-dimensional background
the most general expression of the regularized energy-
momentum tensor is

0 a1 -B —«a
a-10H,00) M e g @
0 - -
-1
N2 )2 +Q7 (%)
nl<x><E—E[1—mx>]2> ©
(22
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where the stringy background)—(3) and relationg11), (20) have been used. In this expression the only unknowns are the
parametersy and B; we hope to determine them imposing the third Wald's axiom treating the two-dimensional “Schwarzs-
child” black hole as a Casimir systef]. Two one-dimensional “walls” at a proper distantgbetween themare placed at
arbitrary pointsx; andx,. The massless scalar field whose energy-momentum tensor we try to evaluate satisfies the Dirichlet
boundary conditions on the “walls,” i.e(X;) = ¢$(X,)=0.

The standard Casimir energy-momentum tensor in the Minkowski spacetime is already [&@vn

o
"

T:
"oo412

o 1l (23

o

The two-dimensional “Schwarzschild” black hole is asymptotically flat, i.e. at infittibyvards.7 ") is Minkowski spacetime,
so the constants of integratianand 8 are evaluated demanding the regularized energy-momentum tensor given(22Eq.
to coincide with the standard Casimir energy-momentum te(@®rat infinity, i.e. x— +c, or equivalently settind(x)
=1.

Therefore we get

T A2

P

a=0 (24)

and the regularized energy-momentum tensor has been explicitly calculated

A2 A% N2
S _0-1 A o 2 0
so[1-000]-0 (x)(% 541~ 0(0] )
T =
v 0 Q,]_ )\2 )\2 0 )
(0| 54 5 (1= Q)]
. T A2\[-1 0
+Q7(x) _24|_2_E 0o 1 (25
|
where n denotes that the regularized energy-momentum tenthe detected negative enerBywill asymptotically be
sor has been calculated under the assumption that there are
no particles(vacuum stateat infinity (Boulware vacuum
Thus we have obtained the regularized energy-momentum
tensorT{"* as a direct sum L ™
E(L)=| pdx=——. (29
0 241

TS/”)MZTl;(gravitational)+T/1f(boundar)) (26)

where the first term denotes the contribution to the vacuum
polarization due to the non-trivial topology in which the con-
tribution of the trace anomaly is included and the secondhe corresponding force (i.e. the force due to the localized
term denotes the contribution due to the presence of the twenergy between the“walls”will be attractive as expected:
“Dirichlet walls.”

In the Boulware vacuum the detected negative energy
densityp will asymptotically[x— + o, or equivalently set-
ting Q(x)=1] be JE(L) T

oL B 24| 2

<0. (30)
a
_ T(ﬂ)t: o 2
Let us stress that the above formy®), and the ones that
follow regarding the different vacua, consider both the
“walls” at the asymptotic region. If one wishes to include
more specific effects of the background one has to place
(28) them at arbitrary pointg, andx;+L. Then the correspond-
241 2 ing energy will be

the detected pressupeis asymptotically

p: _Tg(”)x: —
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x1+L aT2[—-2 0 #T2[—-1 0
Ex,L=J’ Ti(x)dx i - _
(L) X1 () =120 2 6{0 1} (32
1 7 . .
- | |2 Setting T equal to the Hawking temperature of the two-
8\\eL2 67 dimensional “Schwarzschild” black hole, i.&,=\/27, the
Casimir energy-momentum tensor becomes
1 ()‘2 77 ) 2ALa—2)
—e | === |e e M
2
8N\ 67 /L ) a [—1 0} A2 [—1 0} -
—_—— + _
T\ A Vog2l 0 1| 24w 0 1]
o R —2NXq7_
24L+ 167Tlog[1+e ] 167Tlog[l
+e Aleg 2] (31)  Therefore we now obtain
yielding Eq.(29) asx;— + .
In the Hartle-Hawking vacuum the black hole is in ther- o _
mal equilibrium with an infinite reservoir of black body ra- B= a=0 (34)

diation at temperatur@ and the standard Casimir energy-
momentum tensof23) is modified by an additional term
[22]:

and the regularized energy-momentum tensor becomes

\? A2 \?
A _0-1 A o T 2 0
s-[1-0(0]-0 (x)(m 52 [1-000] )
T(U)M:
: 0 Q! NN 1-Q(x)]?
()| 54—~ 5z, 117 QX))
01| || TF 0 35
‘-
|57 o 1 (35
|
wherewv denotes that the regularized energy-momentum ten- L T G
sor has been calculated under the assumption that massless E(L,TH)ZJ' pdx= —(ﬁﬂLEL)
particles(black body radiationare detected at infinityto- 0
wards 7 ") (Hartle-Hawking vacuum Thus the regularized T wl_,
energy-momentum tensak”* is == (ﬁ+?TH> (39

TS/U)/L: T/;(gravitational) + Tl;(boundar)) + TlVL(bath) (36)

always attractive:
where the last term denotes the contribution to the vacuum

and the corresponding forde between the “walls” is not

polarization due to thermal bath at temperatlire F(L T = — (7E(|-.TH)) T +?\_2:_ ™
In this vacuum the asymptoticallyx— +, or equiva- oH aL T 2412 24w 241 2
lently settingQ)(x) =1] detected energy density and pressure H
are -
+ ETﬁ . (40)
T A2
p=TMN=—| ——+ (37 Itis clear that the corresponding force i
2412 24w P 9 1S
(a) attractive
¢ M )‘_2
p=-T”"= ( e 247,)- (38) L<%=% (41)

Likewise the detected negative energy is (b) zero
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1 its spectrum distribution is purely thermal at the Hawking
L=o7 (42 temperaturd [40,41], the Unruh vacuum state can be iden-
H . . . . .
tified with the vacuum obtained after the two-dimensional
(c) repulsive “Schwarzschild” black hole has settled down to an “equilib-

rium” of temperatureTy. The standard Casimir energy-
momentum tensok23) will be modified by an additional

L> 2Ty 43 term [22]:
Thus if the last condition is satisfied the outer “wall” moves #_TrTﬁ -1 1 A1 01
towards infinity. It can be studied as a “moving mirror” = 1211 1| 48#| 1 1|’ (45)
creating particles. The energy rate detected at infinity can be
given by the second term in E(B9) The Casimir energy-momentum tensor is now given by
dE A2 L -1 0 21 -1
—=-—L=—1T} (44) =T +)\— 4
and this is(for the massless two-dimensional figtte rate at h
which the energy is radiatd®6,38,39. Therefore we get
The appearance of the repulsive nature of the correspond- 5 )
ing force will be discussed in Sec. IV. B= T 7‘_ az"_ (47)
In the Unruh vacuum an outward flux of radiation is de- 2412 48w’ 48

tected at infinity(towards 7). Since the two-dimensional
“Schwarzschild” black hole has been proven to radiate andand the regularized energy-momentum tensor becomes

A2 A2\
—[1-0X)]-Q (X)| 55=— 57=[1-Q(x)]? 0
"y 677[ 24w 2441
T =
v 0 Q_l )\2 )\2 1 Q 5
(x) Y E[ (x)]
T A? A?
o2 48w 481
+0 () (48)
A2 T A2
487 on 2 48w

where¢ denotes that the regularized energy-momentum ten- - A2

sor has been been calculated under the assumption that mass- p=-— T§f)x: — ( >+ —) . (51
less particles are detected at infinity due to the Hawking 24,2 A8

radiation of the two-dimensional “Schwarzschild” black
hole. Thus the regularized energy-momentum terE@H
becomes

Likewise for the detected negative energy

J"— q T A2
E(L,TH)— Op X=— ﬁ‘l‘@l_

B T 71'L_|_2
Tzt
(52

where the last term denotes the contribution to the vacuur@Nd the corresponding forde between the “walls™ is not

polarization due to Hawking radiation at temperatiige. always attractive:
In this vacuum the detected energy density and pressure

Tsjg)'u: Tﬁ(grauitational) + T':j(boundar)) + T':,L(radiation)

are asymptotically{ x— +c, or equivalently setting)(x) F(L T = — JE(L,TH)Y 7 +)\_2

=1] $H dL T, 24 2 48w
R TI (L (50 SN 53
L P TS 59
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The corresponding force will now be the entropy is

(a) attractive L

Scasimir= — ( ?

L
THZ—(1—2>)\. (62)

L<

2+ (54)

1
V2T, The entropy calculated here seems to violate of the second
thermodynamical law. This is not true since the entropy cal-
(b) zero culated here has not been obtained through a statistical
counting of microstates. The expressi(§®) is the part of
1 the thermodynamical entrop™™ due to the vacuum polar-
L= \/ETH (59 ization (virtual particle3—it does not need to have a statis-
tical interpretation—and so it is not forbidden to be negative
(c) repulsive [44].
Being more precise the thermodynamical entropy which
1 gives the contribution of quantum fieldsadiation and mas-
- . S o
L 2T (56)  sive fields is given as

STM=gSM4 63
Thus if the outer “wall” is placed at a distande such that So 63

ity. It can be studied as a “moving mirror” creating particles (statistical counting of microstatesvhich is absent here and
whose energy rate detected at infinity is given by the secongh our caseS,= Scaqimi; is @ quantity which gives the con-

term in Eq.(52): tribution of the vacuum polarization.
dE A2 L Finally the entropy of the two-dimensional Schwarzschild
=N T (57)  black hole is
dt 48w 12 H-
Son= Sciassicart s™ (64)

Thus as before this is for the massless two-dimensional field

the rate at which the energy is radia{&®,38,39. whereS;assicaliS the entropy from the classical gravitational
In this vacuum it will be interesting to calculate some action and the thermodynamical entrod{ is the one-loop

thermodynamical quantities and to consider these resultguantum correctiof45].

with respect to the laws of thermodynamics.

The specific heat is given as lll. “REISSNER-NORDSTRO M” BLACK HOLE
c __E__ 7T_L To——[ =)\ 58 The line element of the stringy two-dimensional
V©ToaT 6 ) " 112 (58 “Reissner-Nordstim” (charged black hole[27,2§ in the

Schwarzschild gauge is given by
with V the “volume” between the two “walls,” i.e. the dis-

tancel in this case, and the isothermal compressibility is ds’=—g(r)dt>+g~*(r)dr? (65)
1 ( ) (12 L2 £g where
T lap), T \FY (59
H M Q2
. y . g(r)=1- e A +—e (66)
The negative values of the specific heat and the isothermal A 4\?

compressibility are a violation of the second law of thermo-

dynamics which require€,,=0 and ;=0 [42]. This ther- with 0<t<+o, r <r<+, r being the future event ho-
modynamical instability at least f&€,, is a common feature rizon of the black hole.

in black hole physics, using the semiclassical approximation. Following a parametrization analogous to the four-
This may be resolved by a more complete quantum treatmemtimensional case the metric function factorizes as

and the inclusion of back reaction effe¢#3].

The entropy of the stringy two-dimensional “Schwarzs- g(r)=(1-p_e M) (1-p,e™?\) (67)
child” black hole seen as a Casimir system is givepply-
ing the first thermodynamical lavby where
7TL L _ M 1 2 2
SCasimir:S(T=O)_<? TH:S(T=O)_(1_2))\ (60) pr=or T VM =Q (68)
and according to the third law of thermodynamics we can recognize immediately the “outer” event horizon
H* placed at the point.,. = (1/2\)In p.., while the “inner”
S—0 asT—0 (61)  horizonH ~ is at the pointr _=(1/2\)Inp_.

124022-6
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In the extremal casey=M) the two surfaces coincide in The Ricci scalar is given as
a single event horizon at the point

2(X(x)+ = 1)+ u(1—X(x))
(X(x)+1)?

(78)

eriln(;\A—)\). (69) R(x)=4\?

The line element65), (66) in conformal gauge is written and in the semiclassical approximation the trémeconfor-

ds?=Q(x)(—dt?+dx?) (7o) ma) anomaly for the stringy two-dimensional background
(65—(68) is
with the conformal factor
21 2(X(X)+ pu— 1)+ u(d—X
0 XOXCO+ 1) - Ta = o 2T L DERATID) 7
(X(x)+1)? ™ (X(x)+1)
0<Q(x)<1 (720  The conservation equatioii2) again “splits” in two equa-
tions
where the conformal variable
__1, p1 i[Q(x)TX]=o (80)
X—m NX(X+ w) ] (73 dx t
with —o<x<+o and the asymmetric variabh¢ is d 1/do)|_.
200 TRLR0T= 5| =5, | Tax) (81)
X=eM ) —1=— -1 (74)
P+
and by integration we obtain
0<X< 4o, (75)
2
The new parametes is given by o -1 KX)+D)
Ti(X)=a)™(x) a—X(X)(X(X)-f-,u) (82
pu=1— Z—_ (76)
v T =0 (0)[Ha(x) + 8]
The non-zero Christoffel symbols are (X(x)+1)2 o0 5] o
= X .
e e 1000 [OCHm) X1 ) XOOX00 + ) 2 HE
Xt xxT tt_ZQ(X) dx (1+X)2
(77 Using EQq.(19) H,(x) is now
|
A2 [X0) [(X+ pm)+X(1— 2(X+pu—1)+u(1—X
o0 o [ L W XA 20X = )+ p(A-X0] .

127 )y, (1+X)5

and the parameters, 8 are constants of integration while the poiat is where the “outer” event horizof{ * is placed.
Thus the quantityH,(x) becomes

)\2
Hz(X)ZE[,U«zJr Hy(x)] (85

with

4(1—2p+p?) . 42-3p+p?)  (u’—4u+4)

Hi)==— (1+X)3 (1+X)2

(86)

with the following limiting values:
if Xx— —o(X—0) then Hy(x)=0[H(x)=—pu?]
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)\2
if X—-+oo(X—+20) then Hy(x)=5,— [H1(0)=0].

Through the use of relation§9), (85), (86) for the stringy black hole backgroun@5)—(68) Eq. (21) becomes

A2 2(X(X)+ w— 1)+ w(1—X(x)) - A2
o = X001 1)2 —Q7(x) E)[MzﬂLHl(X)] 0
v 2
0 Q*(X)(E [1?+H(x)]
Q%) ;f ;:. (87)

In order to find the explicit form of the regularized energy-momentum tensor in the different vacua considered before we
follow the analysis of the previous section.

A. Boulware vacuum

In this vacuum there are no particles detected at infinify Y and the regularized energy momentum ten®a) should
coincide at infinity with the standard Casimir energy-momentum te(&)r
The constants of integration are

A AP 88
'B_E S a= (88)

and thus the regularized energy-momentum tensor is

A [ 2(X(x) + = 1)+ p(1—X(x)) N ( CAN
67 a 22 0
Tu_ | &7 (X(x)+ 1)? O710)| 54- [[w?+Hi(X)]
14 )\2
0 Ql(x)(ﬁ [M2+ Hl(X)]
1 = A\ |[-1 0
+Q75(x) oz 2a7% | 0 1 .

The detected energy density, pressure and energy are asymptdtically o, or equivalently setting)(x)=1] given by

m

—Tlmt— _ _—
p=T{"'= K (90)
p=—T=— (9D)

242

L T

E(L)—Jl) de——ﬁ. (92)
The corresponding force between the “walls” is attractive as expected

Fy—-EB_ ™ 03

In analogy with Eq.(31) the energy for arbitrary position of the “walls™{, x;+L) can be evaluated. The corresponding
expression is quite complicated and is not presented here but givéSZE@sx,— + .
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B. Hartle-Hawking vacuum
In this vacuum the stringy black hol€6)—(68) is in thermal equilibrium with an infinite reservoir of black body radiation
at temperaturd which is equal to the Hawking temperature of the stringy two-dimensional charged blacl4bple
N

T:TH

The regularized energy-momentum ten&®r) should coincide with the modified Casimir energy-momentum te(&r
The constants of integration are

w

A= oa 2’ @=0 (%9
and thus the regularized energy-momentum tensor is
A2 2(X(X) + = 1)+ (1= X(x)) ( A2
. — Q7 )| 5= |[wP+H(X)] 0
TWA— o (X(0+1)? 24m '
14 )\2 2
-1 o
0 Q <x)(24w [u®+Hi(0)]
01 T \|[—1 O
+ (X) )| o 1l (96)

The detected energy density, pressure and energy are asymp) zero
totically [x— +o, or equivalently settind)(x)=1] given

by 1
L=57- (102
SOOI G )‘_2 2 97)
P=Tt o2 24m (c) repulsive
1
) T\ L>—. 103
p:—Tf( )X:_(24|_2+E 2 (98) 2Ty ( )

5 Thus as in the case of two-dimensional “Schwarzschild”

- _( ™ AT ) black hole if the last condition is satisfied the outer “wall”
moves towards infinity. It can be studied as a “moving mir-
ror” creating particles whose energy rate detected at infinity

_ m wL_, is given by the second term in E(R9):
——(ﬁ-l-?TH). (99
dE_ \* @l
The corresponding force between the “walls” is not always Gt 222 L= 5 Th- (104
attractive:
5 This is the rate at which energy is radiated for the case of the
L A massless two-dimensional field.
F(L,Th)= oL = o2 oAt
T 241
C. Unruh vacuum
-7 T2 (100 In this vacuum an outward flux of radiation is detected at
242 6" infinity. Thus the stringy two-dimensional charged black hole
(66)—(68) radiates and its temperature when the system has
It is obvious again that the corresponding force is settled down to an “equilibrium” state is given as in E§4)
(a) attractive [46]. The regularized energy-momentum teng®r) should
now coincide at infinity with the modified Casimir energy-
L<i _T (107  Mmomenum tensof46).
2Ty Au The constants of integration are
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R S 10
B_24Lz s g (105

thus the regularized energy-momentum tensor is now given by

A2 [ 2(X(X)+ = 1)+ m(L—X(x \?
AT 2(X(0) +p—1) ,ui (X)) —\Q_l(X)(ﬁ L2+ Hy (0] 0
T(Ou_ X(x)+1) &
14 )\2
0 -1 = r,,2
0 (x)(%)m +H1(x)]
2 2
_m N N,
242 48w 481
+Q7Yx) . (106
N ™ A
487 24 2  48m
|
The detected energy density, pressure and energy are asymp- 1
totically [x— +c0, or equivalently settingd)(x)=1] given L= (112
by \/ETH
\2 (c) repulsive
p:T(f)t:_ L+_ 2 (107
t 242 48w 1
L> . (113
V2T,
(&)x ™ N,
p=—T"=— E + 287 M Thus if the outer “wall” is placed at a distande such that
(108 the last condition is satisfied then it will move towards infin-
ity. It can be studied as a “moving mirror” creating particles
whose energy rate detected at infinity is given by the second
L ™\ term in Eq.(109)
= N I erm in Eq. :
E(L,Th) fo pdx (24L 28, M L)
L dE_ 2 Ty (114
SN NG dt 4zt T 12
(24L+ 12TH)' (109

which is for the two-dimensional massless field the rate

The corresponding force between the “walls” is not alwayswhich the energy is radiated.
attractive: It is interesting to evaluate in this vacuum some thermo-

dynamical quantities and to examine these results with re-

JE(L,Ty) - A2 spect to the_l_aws of t_her_modynamics.
FILLTH)=—|——] =———+-—pu? The specific heat is given as
oL T 24 2 48w
H
JE L L
LR 110 Uiy i - AL v LU
- 24]_2 12 H ( )
and the isothermal compressibility is
and is thus 1((”_) (12)|_2 16
K==\ 7| =—|—|L"
(a) attractive T Lidp/, ™
1 - The comments made in the corresponding “Schwarzschild”
L< =2 — (111)  case also hold here.
\/ETH A The entropy of the stringy two-dimensional charged black
hole seen as a Casimir system using the first thermodynami-
(b) zero cal law is given by
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oL L be dominated by the attractive term due to the boundary
Scasimir= S(extrema)_(?) THZS(extrema)—(l—z))\M effects and not by the repulsive term of the radiation pres-
(117 sure. If the “Dirichlet walls” are placed at a distance ap-
proximately equal to the circumference of the Witten’s cigar
where Sieiremay 1S the entropy of the two-dimensional ex- the attractive term will be compensated by the repulsive term
tremal Q=M or equivalently x=0) black hole due to and the corresponding force will be zero. Finally if the “Di-
vacuum polarization. richlet walls” are placed at a distance larger than the circum-
The two-dimensional extremal black hole is shaw6]to  ference then the dominant term will be the repulsive term
be obtained as a regular limit of the stringy two-dimensionaly,e to the radiation pressure and the corresponding force
chargednonextremalblack hole. The results obtained in the acting on the “walls” will be repulsive.
case of the stringy two-dimensional “Schwarzschild” black \ye have concluded that the thermodynamical quantities
hale are those of the siringy two—dlmensmr}al charged bl,ad§pecific heat and thermal compressibility violate the second
hole When the parametgr approaches 1, i.e. the electric thermodynamical law since they obtain negative values. The
charge is z.ero(QZO) [46]. Therefore we expegt to ggt Eq. thermodynamical second law instability induced by the spe-
(62) by settinguu=1 to Eq.(117). In order to achieve this we cific heat is not suprising since it is a byproduct of the semi-

g]uueSttc?e\:at?L?uﬁ]nt;r)%?grig;tggﬁ 2)(;:2?12: ggglf 'rl]'ﬁkfxttheer??% o dy_c:lassical approximatio(one'-loop gravity.' This i.s the reason
namical entropy of the two-dimensional charged black hole"'® reach the same result in the four-dimensional black hole
is given now by phy5|c_s. The thermodynam|_cal _stab|I|ty is regained by
“freezing” the black hole which in the case of the two-
dimensional charged black hole means to reach extremality
L L (Q=M). The thermodynamical second law instability in-
Scasimir= _(?)THz - (1_2 A (118 duced by the negativity of the isothermal compressibility re-
flects the possibility of extracting energy from the vacuum.
This is the part of the thermodynamical entropy due to theThe thermodynamical entropy was evaluated in the Unruh
vacuum polarization as mentioned before. The statisticalvacuum and was shown to be negative. This is not a violation
mechanical pars>™ of the thermodynamical entropy is ab- of the second thermodynamical law since the thermodynami-
sent and since the entropy calculated here does not havecal (Casimij entropy calculated here—the statistical-
statistical interpretation is not prohibited to be negative.  mechanical part of entropy is absent—is due to the vacuum
polarization. Thus we have obtained the one-loop correction
IV. DISCUSSION (due to vacuum polarizationto the classical entropy ob-
tained from the corresponding classical gravitational action.
In this paper we have explicitly calculated in the stringy Same result can be easily obtained for the case of Hartle-
two-dimensional  “Schwarzschild” and  “Reissner- Hawking vacumm in contradistinction to the Casimir entropy
Nordstran” black hole backgrounds the regularized energy-of the Boulware vacuum which is zero since energy is tem-
momentum tensor of a massless scalar field satisfying thgerature independent.
Dirichlet boundary 'conditions. The regqlarized energy- |n the extremal case G=M) of the stringy two-
momentum tensor is separately treated in the Boulwaryimensional charged black hole the results obtained in the
Hartle-Hawking and Unruh vacua. In the Boulware VacuUMya tie-Hawking and Unruh vacua coincide with those of
the asymptoticially d”etected energy, energy density, pressutgape goylware vacuum. This is another argument which
acting on the “walls” and the corresponding force bet\’veenstrengthens our belief that extremal black holes are a stable

the “walls” where proved to be the same for both stringy : . : .
black hole background¢'Schwarzschild” and “Reissner- quantum mechanlcal end_mg point for the black holes in the
process of their evaporation.

Nordstran”). In the other two vacua the expressions ob- . . .
tained for the “Reissner-Nordsim’ black hole are seen to Finally we would also like to note that, for asymptotic
position of the “walls,” it is natural for the results to depend

approach the corresponding results for the “Schwarzschild )
case whenu—1, i.e. the electric charge is zer@0). We only on thg temperatute of the black hole; however for arbi-
have shown that the corresponding force between the “Diffary position of the “walls” the dependence of the energy on

richlet walls” is not always attractive: it can be attractive, the position is different for the two stringy two-dimensional
zero or repulsive depending on the distance between th!élack_hol_es studied in this work. Possible determinatios
“walls” being smaller, equal or larger of the inverse Hawk- g this differencg of the nature of a black hole through the
ing temperature of the black hole. This can be understood {Fasimir effect is very interesting and we have in mind to
we recall the semi-infinite Witten’s cigar which is an inter- c0me back with a future work.

pretation of an Euclidean black hole and which is asymptotic

to a cylindrical two-dimensional spacetime. The inverse tem-

perature of the Euclidean black hole can be viewed as the ACKNOWLEDGMENTS
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