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Casimir effect in 2D stringy black hole backgrounds

T. Christodoulakis,* G. A. Diamandis,† B. C. Georgalas,‡ and E. C. Vagenas§

Department of Physics, University of Athens, Panepistimioupolis, Illisia 157-71, Athens, Greece
~Received 9 July 2001; published 28 November 2001!

We consider the two-dimensional ‘‘Schwarzschild’’ and ‘‘Reissner-Nordstro¨m’’ stringy black holes as sys-
tems of Casimir type. We explicitly calculate the energy-momentum tensor of a massless scalar field satisfying
Dirichlet boundary conditions on two one-dimensional ‘‘walls.’’ These results are obtained using the Wald’s
axioms. Thermodynamical quantities such as pressure, specific heat, isothermal compressibility and entropy of
the two-dimensional stringy black holes are calculated. A comparison is made between the obtained results and
the laws of thermodynamics. The results obtained for the extremal (Q5M ) stringy two-dimensional charged
black hole are identical in all three different vacua used, a fact that indicates its quantum stability.
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I. INTRODUCTION

A significant tool for investigating the thermodynamic
properties of black holes is the Casimir effect. As is w
known, in 1948 Casimir@1# evaluated the electromagnet
energy localized between two conducting plates. The dis
bance to the electromagnetic vacuum induced by the
parallel plates is actually observable. The so-called Cas
effect @2# is viewed as a tractable model of field theoretic
effects associated with the geometry of space@3–5#.

In order to examine the analogous effects for non-triv
gravitational backgrounds we need the vacuum expecta
values of the energy-momentum tensor. There are many
cedures@6–9# for calculating the vacuum expectation valu
of the energy-momentum tensor such as dimensional re
larization@10–12#, the Green’s function method@13,14#, heat
kernel method@15,16#, zeta function regularization@17#,
point-splitting method@18–20#, and Pauli-Villars regulariza-
tion @21#.

We restrict the form of the renormalized energ
momentum tensor of a massless scalar field@22# ~without
employing the full theory of regularization! by using the
trace ofTmn and enforcing Wald’s axioms@23,24# which are

~1! The expectation values of the energy-momentum t
sor are covariantly conserved.

~2! Causality holds.
~3! In Minkowski spacetime, standard results should

obtained.
~4! Standard results for the off-diagonal elements sho

also be obtained.
~5! The energy-momentum tensor is a local functional

the metric; i.e., it depends only on the metric and its deri
tives which appear through the Riemann curvature ten
and the metric’s covariant derivatives up to second orde

In working this procedure a detailed expression for
renormalized energy-momentum tensor is obtained once
stringy two-dimensional ‘‘Schwarzschild’’~massive! @25,26#
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and ‘‘Reissner-Nordstro¨m’’ ~charged! @27,28# black hole
backgrounds are treated as systems of Casimir t
@6,29,30#.

The outline of this paper is as follows. In Secs. II and
the vacuum expectation value of the energy-momentum
sor is explicitly evaluated for the above mentioned strin
black hole backgrounds, respectively, in the Boulwa
vacuum ~labeled byh) @31#, the Hartle-Hawking vacuum
~labeled byy) @32–34# and the Unruh vacuum~labeled byj)
@35#. The energy density, pressure, energy and the co
sponding force between the two ‘‘Dirichlet walls’’ are calcu
lated asymptotically. The thermodynamical quantities s
cific heat, thermal compressibility and entropy exhibit
fictitious violation of the second thermodynamical law.
Sec. IV the results are discussed and conclusions are gi

II. ‘‘SCHWARZSCHILD’’ BLACK HOLE

The line element of the stringy two-dimension
‘‘Schwarzschild’’ black hole@36# which is a low-energy so-
lution of an effective string action@25,26# is given as

ds252g~r !dt21
dr2

g~r !
~1!

where the metric function is

g~r !512
M

l
e22lr ~2!

the radial coordinate take valuesr H,r ,1` and the event
horizonH is placed at the point

r H5
1

2l
lnS M

l D . ~3!

The line element~1! is written in ‘‘Schwarzschild’’ gauge.
In the conformal gauge which we are going to use in o

calculations the line element is given by

ds25V~x!~2dt21dx2! ~4!

the conformal factor is

V~x!5
1

11e22lx
~5!

where the conformal variable
©2001 The American Physical Society22-1
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x5
1

2l
ln@e2l(r 2r H)21# ~6!

takes values2`,x,1` and the corresponding conform
factor takes values

0,V~x!,1. ~7!

The non-zero Christoffel symbols are

Gxt
t 5Gxx

x 5G tt
x 5

1

2V~x!

dV~x!

dx
5lF e22lx

11e22lxG . ~8!

The Ricci scalar is given as

R~x!54l2F e22lx

11e22lxG . ~9!

It is well known that the traceTa
a(x) of the energy-

momentum tensor vanishes classically for a conformally
variant theory. However in the semiclassical approximat
which is the case to be discussed here the trace is nonze
the regularization process and specifically in two dimensi
is given by@10,11,22,37#

Ta
a~x!5

R~x!

24p
. ~10!

Thus for the two-dimensional ‘‘Schwarzschild’’ black ho
background~1!–~3! the trace of the energy-momentum te
sor is

Ta
a~x!5

l2

6p F e22lx

11e22lxG . ~11!

Applying Wald’s first axiom, the conservation equation mu
be fulfilled by the regularized expectation value of t
energy-momentum tensor^Tn

m& reg[Tn
m :

Tn;m
m 50 ~12!

which ‘‘splits’’ in two equations:

dTt
x

dx
1G tx

t Tt
x2G tt

x Tx
t 50 ~13!
12402
-
n
in

s

t

dTx
x

dx
1G tx

t Tx
x2G tx

t Tt
t50 ~14!

and sinceTx
t 52Tt

x andTt
t5Ta

a2Tx
x , we get

dTt
x

dx
12G tx

t Tt
x50 ~15!

dTx
x

dx
12G tx

t Tx
x5G tx

t Ta
a . ~16!

Substituting the Christoffel symbols~8! into Eqs.~15!, ~16!
and solving them, we get respectively

Tt
x~x!5aV21~x!5a~11e22lx! ~17!

Tx
x~x!5V21~x!@H2~x!1b# ~18!

where

H2~x!5
1

2ExH

x dV~x8!

dx8
Ta

a~x8!dx8 ~19!

and the parametersa, b are constants of integration whil
the pointxH is where the event horizonH is placed. It can be
shown thatH2(x) for the stringy two-dimensional black hol
background~1!–~5! becomes

H2~x!5
l2

24p
2

l2

24p
„12V~x!…2. ~20!

Now the following limiting values ofH2(x) from Eq. ~20!
are obtained:

if x→2`~r 5r H! thenH2~x!50@V~x!50#

if x→1`~r→1`! then H2~x!5
l2

24p
@V~x!51#.

Keeping in mind that for any two-dimensional backgrou
the most general expression of the regularized ene
momentum tensor is
Tn
m5FTa

a~x!2V21~x!H2~x! 0

0 V21~x!H2~x!
G1V21~x!F2b 2a

a b G ~21!

we obtain

Tn
m5F l2

6p
@12V~x!#2V21~x!S l2

24p
2

l2

24p
@12V~x!#2D 0

0 V21~x!S l2

24p
2

l2

24p
@12V~x!#2D G1V21~x!F2b 2a

a b G
~22!
2-2
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where the stringy background~1!–~3! and relations~11!, ~20! have been used. In this expression the only unknowns are
parametersa andb; we hope to determine them imposing the third Wald’s axiom treating the two-dimensional ‘‘Schw
child’’ black hole as a Casimir system@6#. Two one-dimensional ‘‘walls’’ at a proper distanceL ~between them! are placed at
arbitrary pointsx1 andx2. The massless scalar field whose energy-momentum tensor we try to evaluate satisfies the D
boundary conditions on the ‘‘walls,’’ i.e.,f(x1)5f(x2)50.

The standard Casimir energy-momentum tensor in the Minkowski spacetime is already known@6,7#:

Tn
m5

p

24L2 F21 0

0 1G . ~23!

The two-dimensional ‘‘Schwarzschild’’ black hole is asymptotically flat, i.e. at infinity~towardsJ 1) is Minkowski spacetime,
so the constants of integrationa andb are evaluated demanding the regularized energy-momentum tensor given in Eq~22!
to coincide with the standard Casimir energy-momentum tensor~23! at infinity, i.e. x→1`, or equivalently settingV(x)
51.

Therefore we get

b5
p

24L2
2

l2

24p
, a50 ~24!

and the regularized energy-momentum tensor has been explicitly calculated

Tn
(h)m5F l2

6p
@12V~x!#2V21~x!S l2

24p
2

l2

24p
@12V~x!#2D 0

0 V21~x!S l2

24p
2

l2

24p
@12V~x!#2D G

1V21~x!S p

24L2
2

l2

24p D F21 0

0 1G ~25!
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whereh denotes that the regularized energy-momentum
sor has been calculated under the assumption that ther
no particles~vacuum state! at infinity ~Boulware vacuum!.
Thus we have obtained the regularized energy-momen
tensorTn

(h)m as a direct sum

Tn
(h)m5Tn(grav i tational)

m 1Tn(boundary)
m ~26!

where the first term denotes the contribution to the vacu
polarization due to the non-trivial topology in which the co
tribution of the trace anomaly is included and the seco
term denotes the contribution due to the presence of the
‘‘Dirichlet walls.’’

In the Boulware vacuum the detected negative ene
densityr will asymptotically @x→1`, or equivalently set-
ting V(x)51# be

r5Tt
(h)t52

p

24L2
~27!

the detected pressurep is asymptotically

p52Tx
(h)x52

p

24L2
~28!
12402
n-
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m
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the detected negative energyE will asymptotically be

E~L !5E
0

L

rdx52
p

24L
. ~29!

The corresponding forceF ~i.e. the force due to the localize
energy between the‘‘walls’’! will be attractive as expected:

F~L !52
]E~L !

]L
52

p

24L2
,0. ~30!

Let us stress that the above formula~29!, and the ones tha
follow regarding the different vacua, consider both t
‘‘walls’’ at the asymptotic region. If one wishes to includ
more specific effects of the background one has to pl
them at arbitrary pointsx1 andx11L. Then the correspond
ing energy will be
2-3
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E~x1 ,L !5E
x1

x11L

Tt
t~x!dx

52
1

8l S p

6L2
2

l2

6p D e22lx1

2
1

8l S l2

6p
2

p

6L2D e22lLe22lx1

2
p

24L
1

l

16p
log@11e22lx1#2

l

16p
log@1

1e22lLe22lx1# ~31!

yielding Eq.~29! asx1→1`.
In the Hartle-Hawking vacuum the black hole is in the

mal equilibrium with an infinite reservoir of black body ra
diation at temperatureT and the standard Casimir energ
momentum tensor~23! is modified by an additional term
@22#:
te
sl

u

r

12402
Tn
m5

pT2

12 F22 0

0 2G5
pT2

6 F21 0

0 1G . ~32!

Setting T equal to the Hawking temperature of the tw
dimensional ‘‘Schwarzschild’’ black hole, i.e.TH5l/2p, the
Casimir energy-momentum tensor becomes

Tn
m5

p

24L2 F21 0

0 1G1
l2

24p F21 0

0 1G . ~33!

Therefore we now obtain

b5
p

24L2
, a50 ~34!

and the regularized energy-momentum tensor becomes
Tn
(y)m5F l2

6p
@12V~x!#2V21~x!S l2

24p
2

l2

24p
@12V~x!#2D 0

0 V21~x!S l2

24p
2

l2

24p
@12V~x!#2D G

1V21~x!S p

24L2D F21 0

0 1G ~35!
wherey denotes that the regularized energy-momentum
sor has been calculated under the assumption that mas
particles~black body radiation! are detected at infinity~to-
wardsJ 1) ~Hartle-Hawking vacuum!. Thus the regularized
energy-momentum tensorTn

(y)m is

Tn
(y)m5Tn(grav i tational)

m 1Tn(boundary)
m 1Tn(bath)

m ~36!

where the last term denotes the contribution to the vacu
polarization due to thermal bath at temperatureTH .

In this vacuum the asymptotically@x→1`, or equiva-
lently settingV(x)51# detected energy density and pressu
are

r5Tt
(y)t52S p

24L2
1

l2

24p D ~37!

p52Tx
(y)x52S p

24L2
1

l2

24p D . ~38!

Likewise the detected negative energy is
n-
ess

m

e

E~L,TH!5E
0

L

rdx52S p

24L
1

l2

24p
L D

52S p

24L
1

pL

6
TH

2 D ~39!

and the corresponding forceF between the ‘‘walls’’ is not
always attractive:

F~L,TH!52S ]E~L,TH!

]L D
TH

52
p

24L2
1

l2

24p
52

p

24L2

1
p

6
TH

2 . ~40!

It is clear that the corresponding force is

„a… attractive

L,
1

2TH
5

p

l
~41!

„b… zero
2-4
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L5
1

2TH
~42!

~c! repulsive

L.
1

2TH
. ~43!

Thus if the last condition is satisfied the outer ‘‘wall’’ move
towards infinity. It can be studied as a ‘‘moving mirror
creating particles. The energy rate detected at infinity can
given by the second term in Eq.~39!

dE

dt
5

l2

24p
L5

pL

6
TH

2 ~44!

and this is~for the massless two-dimensional field! the rate at
which the energy is radiated@36,38,39#.

The appearance of the repulsive nature of the corresp
ing force will be discussed in Sec. IV.

In the Unruh vacuum an outward flux of radiation is d
tected at infinity~towardsJ 1). Since the two-dimensiona
‘‘Schwarzschild’’ black hole has been proven to radiate a
te
a

in
k

u

su

12402
e

d-

d

its spectrum distribution is purely thermal at the Hawki
temperatureTH @40,41#, the Unruh vacuum state can be ide
tified with the vacuum obtained after the two-dimension
‘‘Schwarzschild’’ black hole has settled down to an ‘‘equilib
rium’’ of temperatureTH . The standard Casimir energy
momentum tensor~23! will be modified by an additional
term @22#:

Tn
m5

pTH
2

12 F21 1

1 1G5
l2

48p F21 1

1 1G . ~45!

The Casimir energy-momentum tensor is now given by

Tn
m5

p

24L2 F21 0

0 1G1
l2

48p F21 21

1 1 G . ~46!

Therefore we get

b5
p

24L2
2

l2

48p
, a5

l2

48p
~47!

and the regularized energy-momentum tensor becomes
Tn
(j)m5F l2

6p
@12V~x!#2V21~x!S l2

24p
2

l2

24p
@12V~x!#2D 0

0 V21~x!S l2

24p
2

l2

24p
@12V~x!#2D G

1V21~x!F 2
p

24L2
1

l2

48p
2

l2

48p

l2

48p

p

24L2
2

l2

48p

G ~48!
wherej denotes that the regularized energy-momentum
sor has been been calculated under the assumption that m
less particles are detected at infinity due to the Hawk
radiation of the two-dimensional ‘‘Schwarzschild’’ blac
hole. Thus the regularized energy-momentum tensorTn

(j)m

becomes

Tn
(j)m5Tn(grav i tational)

m 1Tn(boundary)
m 1Tn(radiation)

m

~49!

where the last term denotes the contribution to the vacu
polarization due to Hawking radiation at temperatureTH .

In this vacuum the detected energy density and pres
are asymptotically@x→1`, or equivalently settingV(x)
51#

r5Tt
(j)t52S p

24L2
1

l2

48p D ~50!
n-
ss-

g

m

re

p52Tx
(j)x52S p

24L2
1

l2

48p D . ~51!

Likewise for the detected negative energy

E~L,TH!5E
0

L

rdx52S p

24L
1

l2

48p
L D52S p

24L
1

pL

12
TH

2 D
~52!

and the corresponding forceF between the ‘‘walls’’ is not
always attractive:

F~L,TH!52S ]E~L,TH!

]L D
TH

52
p

24L2
1

l2

48p

52
p

24L2
1

p

12
TH

2 . ~53!
2-5
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The corresponding force will now be

„a… attractive

L,
1

A2TH

5A2
p

l
~54!

„b… zero

L5
1

A2TH

~55!

„c… repulsive

L.
1

A2TH

. ~56!

Thus if the outer ‘‘wall’’ is placed at a distanceL such that
the last condition is satisfied then it will move towards infi
ity. It can be studied as a ‘‘moving mirror’’ creating particle
whose energy rate detected at infinity is given by the sec
term in Eq.~52!:

dE

dt
5

l2

48p
L5

pL

12
TH

2 . ~57!

Thus as before this is for the massless two-dimensional fi
the rate at which the energy is radiated@36,38,39#.

In this vacuum it will be interesting to calculate som
thermodynamical quantities and to consider these res
with respect to the laws of thermodynamics.

The specific heat is given as

CV52
]E

]T
52S pL

6 DTH52S L

12Dl ~58!

with V the ‘‘volume’’ between the two ‘‘walls,’’ i.e. the dis-
tanceL in this case, and the isothermal compressibility is

kT52
1

L S ]L

]pD
TH

52S 12

p DL2. ~59!

The negative values of the specific heat and the isother
compressibility are a violation of the second law of therm
dynamics which requiresCV>0 andkT>0 @42#. This ther-
modynamical instability at least forCV is a common feature
in black hole physics, using the semiclassical approximat
This may be resolved by a more complete quantum treatm
and the inclusion of back reaction effects@43#.

The entropy of the stringy two-dimensional ‘‘Schwarz
child’’ black hole seen as a Casimir system is given~apply-
ing the first thermodynamical law! by

SCasimir5S(T50)2S pL

6 DTH5S(T50)2S L

12Dl ~60!

and according to the third law of thermodynamics

S→0 as T→0 ~61!
12402
d

ld

lts

al
-

n.
nt

the entropy is

SCasimir52S pL

6 DTH52S L

12Dl. ~62!

The entropy calculated here seems to violate of the sec
thermodynamical law. This is not true since the entropy c
culated here has not been obtained through a statis
counting of microstates. The expression~62! is the part of
the thermodynamical entropySTM due to the vacuum polar
ization ~virtual particles!—it does not need to have a stati
tical interpretation—and so it is not forbidden to be negat
@44#.

Being more precise the thermodynamical entropy wh
gives the contribution of quantum fields~radiation and mas-
sive fields! is given as

STM5SSM1S0 ~63!

whereSSM is the statistical-mechanical part of the entro
~statistical counting of microstates! which is absent here an
in our caseS05SCasimir is a quantity which gives the con
tribution of the vacuum polarization.

Finally the entropy of the two-dimensional Schwarzsch
black hole is

Sbh5Sclassical1STM ~64!

whereSclassical is the entropy from the classical gravitation
action and the thermodynamical entropySTM is the one-loop
quantum correction@45#.

III. ‘‘REISSNER-NORDSTRÖ M’’ BLACK HOLE

The line element of the stringy two-dimension
‘‘Reissner-Nordstro¨m’’ ~charged! black hole @27,28# in the
Schwarzschild gauge is given by

ds252g~r !dt21g21~r !dr2 ~65!

where

g~r !512
M

l
e22lr1

Q2

4l2
e24lr ~66!

with 0,t,1`, r 1,r ,1`, r 1 being the future event ho
rizon of the black hole.

Following a parametrization analogous to the fou
dimensional case the metric function factorizes as

g~r !5~12r2e22lr !~12r1e22lr ! ~67!

where

r65
M

2l
6

1

2l
AM22Q2 ~68!

we can recognize immediately the ‘‘outer’’ event horizo
H 1 placed at the pointr 15(1/2l)ln r1 , while the ‘‘inner’’
horizonH 2 is at the pointr 25(1/2l)ln r2 .
2-6
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In the extremal case (Q5M ) the two surfaces coincide in
a single event horizon at the point

r H5
1

2l
lnS M

2l D . ~69!

The line element~65!, ~66! in conformal gauge is written

ds25V~x!~2dt21dx2! ~70!

with the conformal factor

V~x!5
X~x!„X~x!1m…

„X~x!11…2
~71!

0,V~x!,1 ~72!

where the conformal variable

x5
1

2lm
ln@X~X1m!m21# ~73!

with 2`,x,1` and the asymmetric variableX is

X5e2l(r 2r 1)215
e2lr

r1
21 ~74!

0,X,1`. ~75!

The new parameterm is given by

m512
r2

r1
. ~76!

The non-zero Christoffel symbols are

Gxt
t 5Gxx

x 5G tt
x 5

1

2V~x!

dV~x!

dx
5l

@~X1m!1X~12m!#

~11X!2
.

~77!
12402
The Ricci scalar is given as

R~x!54l2F2„X~x!1m21…1m„12X~x!…

„X~x!11…2
G ~78!

and in the semiclassical approximation the trace~or confor-
mal! anomaly for the stringy two-dimensional backgrou
~65!–~68! is

Ta
a~x!5

l2

6p F2„X~x!1m21…1m„12X~x!…

„X~x!11…2
G . ~79!

The conservation equation~12! again ‘‘splits’’ in two equa-
tions

d

dx
@V~x!Tt

x#50 ~80!

d

dx
@V~x!Tx

x#5
1

2 S dV~x!

dx DTa
a~x! ~81!

and by integration we obtain

Tt
x~x!5aV21~x!5a

„X~x!11…2

X~x!„X~x!1m…

~82!

Tx
x~x!5V21~x!@H2~x!1b#

5
„X~x!11…2

X~x!„X~x!1m…

@H2~x!1b#. ~83!

Using Eq.~19! H2(x) is now
H2~x!5
l2

12pEX(x1)

X(x) @~X1m!1X~12m!#@2~X1m21!1m~12X!#

~11X!5
dX ~84!

and the parametersa, b are constants of integration while the pointx1 is where the ‘‘outer’’ event horizonH 1 is placed.
Thus the quantityH2(x) becomes

H2~x!5
l2

24p
@m21H1~x!# ~85!

with

H1~x!52
4~122m1m2!

~11X!4
1

4~223m1m2!

~11X!3
2

~m224m14!

~11X!2
~86!

with the following limiting values:

if x→2`~X→0! then H2~x!50@H1~x!52m2#
2-7
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if x→1`~X→1`! then H2~x!5
l2

24p
m2@H1~x!50#.

Through the use of relations~79!, ~85!, ~86! for the stringy black hole background~65!–~68! Eq. ~21! becomes

Tn
m5F l2

6p F2„X~x!1m21…1m„12X~x!…

„X~x!11…2
G2V21~x!S l2

24p D @m21H1~x!# 0

0 V21~x!S l2

24p D @m21H1~x!#
G

1V21~x!F2b 2a

a b G . ~87!

In order to find the explicit form of the regularized energy-momentum tensor in the different vacua considered be
follow the analysis of the previous section.

A. Boulware vacuum

In this vacuum there are no particles detected at infinity (J 1) and the regularized energy momentum tensor~87! should
coincide at infinity with the standard Casimir energy-momentum tensor~23!.

The constants of integration are

b5
p

24L2
2

l2

24p
m2, a50 ~88!

and thus the regularized energy-momentum tensor is

Tn
(h)m5F l2

6p F2„X~x!1m21…1m„12X~x!…

„X~x!11…2
G2V21~x!S l2

24p D @m21H1~x!# 0

0 V21~x!S l2

24p D @m21H1~x!#
G

1V21~x!S p

24L2
2

l2

24p
m2D F21 0

0 1G . ~89!

The detected energy density, pressure and energy are asymptotically@x→1`, or equivalently settingV(x)51# given by

r5Tt
(h)t52

p

24L2
~90!

p52Tx
(h)x52

p

24L2
~91!

E~L !5E
0

L

rdx52
p

24L
. ~92!

The corresponding force between the ‘‘walls’’ is attractive as expected

F~L !52
]E~L !

]L
52

p

24L2
,0. ~93!

In analogy with Eq.~31! the energy for arbitrary position of the ‘‘walls’’ (x1 , x11L) can be evaluated. The correspondi
expression is quite complicated and is not presented here but gives Eq.~92! asx1→1`.
124022-8
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B. Hartle-Hawking vacuum

In this vacuum the stringy black hole~66!–~68! is in thermal equilibrium with an infinite reservoir of black body radiati
at temperatureT which is equal to the Hawking temperature of the stringy two-dimensional charged black hole@46#:

T5TH5
l

2p
m. ~94!

The regularized energy-momentum tensor~87! should coincide with the modified Casimir energy-momentum tensor~33!.
The constants of integration are

b5
p

24L2
, a50 ~95!

and thus the regularized energy-momentum tensor is

Tn
(y)m5F l2

6p F2„X~x!1m21…1m„12X~x!…

„X~x!11…2
G2V21~x!S l2

24p D @m21H1~x!# 0

0 V21~x!S l2

24p D @m21H1~x!#
G

1V21~x!S p

24L2D F21 0

0 1G . ~96!
ym

ys

d’’
l’’
ir-
ity

the

at
le
has

y-
The detected energy density, pressure and energy are as
totically @x→1`, or equivalently settingV(x)51# given
by

r5Tt
(y)t52S p

24L2
1

l2

24p
m2D ~97!

p52Tx
(y)x52S p

24L2
1

l2

24p
m2D ~98!

E~L,TH!5E
0

L

rdx52S p

24L
1

l2

24p
m2L D

52S p

24L
1

pL

6
TH

2 D . ~99!

The corresponding force between the ‘‘walls’’ is not alwa
attractive:

F~L,TH!52S ]E~L !

]L D
TH

52
p

24L2
1

l2

24p
m2

52
p

24L2
1

p

6
TH

2 . ~100!

It is obvious again that the corresponding force is
„a… attractive

L,
1

2TH
5

p

lm
~101!
12402
p-„b… zero

L5
1

2TH
~102!

„c… repulsive

L.
1

2TH
. ~103!

Thus as in the case of two-dimensional ‘‘Schwarzschil
black hole if the last condition is satisfied the outer ‘‘wal
moves towards infinity. It can be studied as a ‘‘moving m
ror’’ creating particles whose energy rate detected at infin
is given by the second term in Eq.~99!:

dE

dt
5

l2

24p
m2L5

pL

6
TH

2 . ~104!

This is the rate at which energy is radiated for the case of
massless two-dimensional field.

C. Unruh vacuum

In this vacuum an outward flux of radiation is detected
infinity. Thus the stringy two-dimensional charged black ho
~66!–~68! radiates and its temperature when the system
settled down to an ‘‘equilibrium’’ state is given as in Eq.~94!
@46#. The regularized energy-momentum tensor~87! should
now coincide at infinity with the modified Casimir energ
momenum tensor~46!.

The constants of integration are
2-9
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b5
p

24L2
2

l2

48p
m2, a5

l2

48p
m2 ~105!

thus the regularized energy-momentum tensor is now given by

Tn
(j)m5F l2

6p F2„X~x!1m21…1m„12X~x!…

„X~x!11…2
G2V21~x!S l2

24p D @m21H1~x!# 0

0 V21~x!S l2

24p D @m21H1~x!#
G

1V21~x!F 2
p

24L2
1

l2

48p
m2 2

l2

48p
m2

l2

48p
m2

p

24L2
2

l2

48p
m2G . ~106!
ym

ys

n-
s
ond

ate

o-
re-

ild’’

ck
mi-
The detected energy density, pressure and energy are as
totically @x→1`, or equivalently settingV(x)51# given
by

r5Tt
(j)t52S p

24L2
1

l2

48p
m2D ~107!

p52Tx
(j)x52S p

24L2
1

l2

48p
m2D

~108!

E~L,TH!5E
0

L

rdx52S p

24L
1

l2

48p
m2L D

52S p

24L
1

pL

12
TH

2 D . ~109!

The corresponding force between the ‘‘walls’’ is not alwa
attractive:

F~L,TH!52S ]E~L,TH!

]L D
TH

52
p

24L2
1

l2

48p
m2

52
p

24L2
1

p

12
TH

2 ~110!

and is thus

„a… attractive

L,
1

A2TH

5A2
p

lm
~111!

„b… zero
12402
p-
L5

1

A2TH

~112!

„c… repulsive

L.
1

A2TH

. ~113!

Thus if the outer ‘‘wall’’ is placed at a distanceL such that
the last condition is satisfied then it will move towards infi
ity. It can be studied as a ‘‘moving mirror’’ creating particle
whose energy rate detected at infinity is given by the sec
term in Eq.~109!:

dE

dt
5

l2

48p
m2L5

pL

12
TH

2 ~114!

which is for the two-dimensional massless field the r
which the energy is radiated.

It is interesting to evaluate in this vacuum some therm
dynamical quantities and to examine these results with
spect to the laws of thermodynamics.

The specific heat is given as

CV52
]E

]T
52S pL

6 DTH52S L

12Dlm ~115!

and the isothermal compressibility is

kT52
1

L S ]L

]pD
T

52S 12

p DL2. ~116!

The comments made in the corresponding ‘‘Schwarzsch
case also hold here.

The entropy of the stringy two-dimensional charged bla
hole seen as a Casimir system using the first thermodyna
cal law is given by
2-10
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SCasimir5S(extremal)2S pL

6 DTH5S(extremal)2S L

12Dlm

~117!

whereS(extremal) is the entropy of the two-dimensional ex
tremal (Q5M or equivalently m50) black hole due to
vacuum polarization.

The two-dimensional extremal black hole is shown@46# to
be obtained as a regular limit of the stringy two-dimensio
charged~nonextremal! black hole. The results obtained in th
case of the stringy two-dimensional ‘‘Schwarzschild’’ bla
hole are those of the stringy two-dimensional charged bl
hole when the parameterm approaches 1, i.e. the electr
charge is zero (Q50) @46#. Therefore we expect to get Eq
~62! by settingm51 to Eq.~117!. In order to achieve this we
must set the entropy of the extremal black holeS(extremal)
due to vacuum polarization equal to zero. The thermo
namical entropy of the two-dimensional charged black h
is given now by

SCasimir52S pL

6 DTH52S L

12Dlm. ~118!

This is the part of the thermodynamical entropy due to
vacuum polarization as mentioned before. The statisti
mechanical partSSM of the thermodynamical entropy is ab
sent and since the entropy calculated here does not ha
statistical interpretation is not prohibited to be negative.

IV. DISCUSSION

In this paper we have explicitly calculated in the strin
two-dimensional ‘‘Schwarzschild’’ and ‘‘Reissner
Nordström’’ black hole backgrounds the regularized energ
momentum tensor of a massless scalar field satisfying
Dirichlet boundary conditions. The regularized energ
momentum tensor is separately treated in the Boulw
Hartle-Hawking and Unruh vacua. In the Boulware vacuu
the asymptotically detected energy, energy density, pres
acting on the ‘‘walls’’ and the corresponding force betwe
the ‘‘walls’’ where proved to be the same for both string
black hole backgrounds~‘‘Schwarzschild’’ and ‘‘Reissner-
Nordström’’ !. In the other two vacua the expressions o
tained for the ‘‘Reissner-Nordstro¨m’’ black hole are seen to
approach the corresponding results for the ‘‘Schwarzsch
case whenm→1, i.e. the electric charge is zero (Q50). We
have shown that the corresponding force between the ‘
richlet walls’’ is not always attractive: it can be attractiv
zero or repulsive depending on the distance between
‘‘walls’’ being smaller, equal or larger of the inverse Haw
ing temperature of the black hole. This can be understoo
we recall the semi-infinite Witten’s cigar which is an inte
pretation of an Euclidean black hole and which is asympto
to a cylindrical two-dimensional spacetime. The inverse te
perature of the Euclidean black hole can be viewed as
circumference of the Witten’s cigar. Therefore if the distan
between the ‘‘Dirichlet walls’’ is smaller than the circumfe
ence of the Witten’s cigar then the corresponding force w
12402
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c
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be dominated by the attractive term due to the bound
effects and not by the repulsive term of the radiation pr
sure. If the ‘‘Dirichlet walls’’ are placed at a distance a
proximately equal to the circumference of the Witten’s cig
the attractive term will be compensated by the repulsive te
and the corresponding force will be zero. Finally if the ‘‘D
richlet walls’’ are placed at a distance larger than the circu
ference then the dominant term will be the repulsive te
due to the radiation pressure and the corresponding fo
acting on the ‘‘walls’’ will be repulsive.

We have concluded that the thermodynamical quanti
specific heat and thermal compressibility violate the sec
thermodynamical law since they obtain negative values. T
thermodynamical second law instability induced by the s
cific heat is not suprising since it is a byproduct of the sem
classical approximation~one-loop gravity!. This is the reason
we reach the same result in the four-dimensional black h
physics. The thermodynamical stability is regained
‘‘freezing’’ the black hole which in the case of the two
dimensional charged black hole means to reach extrem
(Q5M ). The thermodynamical second law instability in
duced by the negativity of the isothermal compressibility
flects the possibility of extracting energy from the vacuu
The thermodynamical entropy was evaluated in the Un
vacuum and was shown to be negative. This is not a viola
of the second thermodynamical law since the thermodyna
cal ~Casimir! entropy calculated here—the statistica
mechanical part of entropy is absent—is due to the vacu
polarization. Thus we have obtained the one-loop correc
~due to vacuum polarization! to the classical entropy ob
tained from the corresponding classical gravitational acti
Same result can be easily obtained for the case of Ha
Hawking vacumm in contradistinction to the Casimir entro
of the Boulware vacuum which is zero since energy is te
perature independent.

In the extremal case (Q5M ) of the stringy two-
dimensional charged black hole the results obtained in
Hartle-Hawking and Unruh vacua coincide with those
stable Boulware vacuum. This is another argument wh
strengthens our belief that extremal black holes are a st
quantum mechanical ending point for the black holes in
process of their evaporation.

Finally we would also like to note that, for asymptot
position of the ‘‘walls,’’ it is natural for the results to depen
only on the temperatute of the black hole; however for ar
trary position of the ‘‘walls’’ the dependence of the energy
the position is different for the two stringy two-dimension
black holes studied in this work. Possible determination~us-
ing this difference! of the nature of a black hole through th
Casimir effect is very interesting and we have in mind
come back with a future work.
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