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Stability analysis of anisotropic inflationary cosmology
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The stability analysis of an anisotropic inflationary universe of the four-dimensional Neveu-Schwarz—
Neveu-Schwarz string model with a nonvanishing cosmological constant is discussed in this paper. The accel-
erating expansion solution found earlier is shown to be stable against the perturbations with respect to the
dilaton and axion fields once the dilaton field falls close to the local minimum of the symmetry-breaking
potential. This indicates that the Bianchi type-I space tends to evolve to an isotropic flat Friedmann-Robertson-
Walker space. This expanding solution is also shown to be stable against the perturbation with respect to
anisotropic spatial directions.
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[. INTRODUCTION tion found in Ref.[9]. The stability analysis with respect to
the perturbations of the dilaton and axion fields will be per-
Observations of the cosmic microwave background radiaformed in Sec. Ill. The perturbation with respect to the gravi-
tion, galaxies, and other astronomical objects reveal that ougtional field will be studied in Sec. IV. In Sec. V, we will
universe, on a very large scale, is remarkably unifptm3] ~ draw some conclusions.
and is currently under accelerated expangibr7|. There-
fore, a physically acceptable cosmology should provide a Il. ANISOTROPIC SOLUTION
self-contained mechanism to smear out the primordial anisot-

ropy and achieve an accelerating expansion at the present The fofr'S'The?hS'OQatl N?'NS ;TﬁCt,'Eve aﬁt'cin.’ WmCh IS
time. Furthermore, it is firmly believed that Einstein’s theoryCommon 0 Do € heterotic and the type-ll string theories

of general relativity breaks down at high enough energy,[g]' is given by
which, at least, occurred during the early epoch of our Uni- 1

verse. It is known that string theories are promising candi- S=J d4x\/—_g{ R—k(d¢p)?— e *Hi—U, (1)
dates for all particles and interactions, including gravity, in a 12

unified formulation. Thus the astrophysical and cosmologica{Nheredb is the so-called dilaton ané
implications of string theories have become a highly devel-t
oping research themee Ref[8] and references therqin alized dilaton coupling constantE&2 for typical super-

¢ An anlskotrofpuf: cosdmology wals csn&dergdhrecentlkll n thestring theoriesandU = U(¢) is a dilaton potential. The field
ramework of four-dimensional Neveu-Schwarz— eve“'equations of the actiofi) can be shown to be

Schwarz(NS-NS effective string theory in which the gravi-
tational field is coupled with the dilaton and axion fie[@3. 1

In the de Sitter geometry configuration, i.e., with a positive Ry, —kd, ¢d,d— EQ,WU— Ze74¢>
cosmological constanmk >0, an inflationary solution can be

: . ;LV}\:{?[,MBV)\] is a
otally antisymmetric tensor. Moreovet,denotes the gener-

found in an exact parametric form. At large time limit, this 1

universe is made isotropi i ion i i X| H,apH, = 50,,H?|=0 (2
pic and its expansion is accelerating, wapy 39,w ,

which is consistent with our current astronomical observa-

tions. A stability analysis of any solution may provide more V#(ef4¢|_| KNy =0, 3

information of the theory under consideratigi0-1§.

Therefore it is interesting and is the purpose of the present 1 1

paper to investigate the stability conditions of this aniso- Vig+ 6—974¢H2— 2—8¢U=0- (4)

tropic inflationary string cosmology. Our analysis indicates « K

that the inflationary solution found in R¢B] remainsstable |y addition, the totally antisymmetric tensbirobeys the Bi-

when the potential (¢) is close to the local minima of the gpchi identitydy ,H,, = 0.

potential. _ _ ) In four dimensions, any three-form can be mapped one-
This paper is organized as follows. In Sec. Il we briefly t5.one onto its dual one-form. This mapping relates the three

review the NS-NS effective string theory and the exact solurank tensorH to a pseudo-vectoA via H=*A with A

=A,dx* the dual one-form. Moreover, one can show that

the tensoM can be solved to give
*E-mail address: cmchen@phys.ntu.edu.tw
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fpllowing the field equatior@3)._ Ht_arfa the totally antisymmet- o tanie(7/2)— 1
ric tensore denotes the Levi-Civita tensor arft=h(t) is h(7)=hgy+ C - i (15
known as the Kalb-Ramond axion. Note that we use the con- tanif*(7/2)+ 1
vention thate#"P= — 3o 5185 8%,/ —g in this paper. In ad- Theref h
dition, the above solution holds if and only if the first homol- ' N€refore, one has
ogy group for the space considered is trivid9-21. 1
Consequently, the Bianchi identity shown earlier becomes ()= \/; cothr, (16)
d,(N—ge*®a*h)=0. (6)
V(71)=Vgsinhr, (17)

We will consider the case in which the potential of the

dilaton field is a positive constant where 1= BAR(t 1), a=1/3+ V213K, Vg,

U(¢)=A=0, (7)  =V8duBAIV, and ¢5:=\C?/Bk,. Here tg,ai0,K;, C
=0, ¢o>0, andh, are free parameters representing the con-
which represents a de Sitter space. An exact solution for astants of integration. In addition, one writég=1I13>_,a;,/2
anisotropic(Bianchi type-) cosmology has been found in for convenience. One can also show that there is an addi-
Ref.[9]. Note that the line element of a Bianchi type-I spacetional constraint2?=lKi=0 following the field equations.

an anisotropic generalization of the flat Friedmann-These integration constants also obey the consistency condi-

Robertson-WalkefFRW) geometry, can be written as tion,
ds’=—dt?+a’(t)dx?+a3(t)dy’+a3(t)dz?,  (8) 3
K2:=2, Kf=AVi— ko, (18)

with a;(t), 1=1,2,3 the expansion factors on each spatial i=1
directions. With the identitie) and(7), the field equations
(2), (4), and(6) will take the following form: which follows from Eq.(9). Thereby the mean anisotropy

. and the deceleration parameter are given by

. . 1 . 1

30+2, 67+ K¢’ +5e"h?=SA=0, (9) oK2

=1 A(7)= v sechir, (19

! Y, 1A 0, =123 0
vaVe—3 IEReS q(7)=3 sechr—1. (20)
(10)
. . .. This exact solution indicates that the evolution of the Bi-
h+36h+4¢h=0, (1))  anchi type-l universe starts from a singular state, but with
finite values of the mean anisotropy and deceleration param-
eters. In the large time limit the mean anisotropy tends to
zero,A—0, and the Universe approaches an isotropic infla-
tionary de Sitter phase with a negative deceleration param-
Here we have introduced th&olume scale factorV eter, q<0, providing an accelerating expanding Universe
:=I1%_,a;, directional Hubble factors,:=a; /a;,i=1,2,3, consistent with the present observations. Furthermore, in the
large time limit the dilaton and axion fields become con-
stants, lim_., h(t)=ho=constant, lim_, e?¢V=2¢2
=constant. Note that the dynamics and evolution of the Uni-
verse is determined only by the presence of a cosmological
constant(or a dilaton field potentigl There is no direct cou-
ling between the metric and the dilaton and axion fields
ther than the constraint on the integration constants.
Note that the mixmaster modg22—2§ discussed earlier
als with a model with perfect fluid. Earlier work focuses
n the behavior of the solution near the singularity. The static
ield equation studied in Ref9] is similar to the mixmaster
model with axion and dilaton behaving like the perfect fluid.
Ly . The solution shown .in this section is, however, the_ first time
a;(7)=ao Sintf > cosHi > i=1,2,3 (13 such an exact solution is found for the NS-NS string effec-
tive theory that exhibits the desired property driving an ini-
tially anisotropic Bianchi type-l space to an isotropic space.
We will focus on the stability property of this solution in the
following section.

1 .1 .
- _ D ehdh2—
G V)~ —eth?=0. (12)

and themean Hubble factorg:==?>_, 6,/3=V/3V for conve-
nience. In addition, we will also introduce two basic physical
observational quantities in cosmology: threean anisotropy
parameter A:=32 | (6,— 6)?/36%, and thedeceleration pa-
rameter q:=d,60~ 1—1. Note thatA=0 for an isotropic ex-
pansion. Moreover, the sign of the deceleration parameteg
indicates how the Universe expands. Indeed, a positive sign
corresponds to “standard” decelerating models, whereas e
negative sign indicates an accelerating expansion.

It was shown that the general exact solution of this mode
can be parametrized in the following forf8]:

T T
e??(N= o3| tant’ 5> Ftantre S, (14)
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Ill. PERTURBATION AND STABILITY conditions. Let us denote the domain of solutions to clags
(b), and (a+b) stability conditions asS(a),S(b), and S(a

Perturbations of the fields of a gravitational system . o A
. ) . +b) respectively. Specifically, the definition of these do-
against the background evolutionary solution should be ins are defined byS(a)E{b‘ai|D;j5aj=O}, S(b)

checked to ensure the stability of the exact or approximatema' ) ,
background solution. In principle, the stability analysis ={0¢|D},64=0}, and S(a+b)={(sa;,5¢)|Dj, o3
should be performed against the perturbations of all possible- Di¢5¢:0}_

fields in all possible manners subject to the field equations Therefore, one only needs to show that

and boundaTIy gongitio?‘s of the sg/stem. In the foIIovc\j/ing S€C5(a) NS(b)C S(a+b). This is because thaIDia,éaj =0 and
tion, we will divide the perturbations into two disjoint _; - I i y A
classes{a) the perturbations of the scale factors, or equiva-D¢5¢20_ imply t.hat Daj 03j+D464=0." On the.other
lently the metric field, and the axion field; arb) the per- hand, “D'aj éa;+D,6¢h=0" does not imply that 'D'aj 03,
turbations of the dilaton and axion fields. =0 or Di(/)5¢:o,“ Hence class(a) and classb) solutions

Note further that the axion field can be solved as a comgover all the required stability conditions we are looking for.
bination of the dilaton field and the scale factors according t4ence we only need to consider these two separate cases for

Eqg. (11). The result is simplicity.
) In addition, one knows that any small time-dependent per-
h=Ce */Vv71 (21)  turbation against the metric field is known to be equivalent to

. . _ a gauge choicg28]. This can be clarified as follows. Indeed,
with a constant of integratio®=0. HereC=0 means that one can show that any small coordinate change of the form
the axion field does not couple to any other field. Thereforey’« =y« e+ will induce a gauge transformation on the met-

the effect of the perturbation of the axion field can be re- field according tay’ =g,,+D,€,+D,e,. Therefore, a
2% v v v ' ’

placed by Eq.21). In fact, Eq.(26) indicates that if one  gma|| metric perturbation against a background metric is

perturbs the axion field, one has to perturb either the dilaton . a4 ela
field or a; altogether unless the constaBtvanishes. Note amount to a gauge transformation of the foain=a, + € &

. 5 L for the Bianchi type-I metric witke,, = (constantg;(t)). This
also that Eq.(2]) indicates thath~a"", which is much s then equivalent to small metric perturbations. If a back-
smaller thana in the large time limit wherea;—a for all — ground solution is stable against small perturbation with re-
directions. This is an indication that the effect of the axiongpect to small field perturbations, one in fact did nothing but
field perturbation can be ignored in the metric perturbation, fie|q redefinition.
we will discuss later. o _ If the background solution is, however, unstable against
Once we replace the effect of the axion field in the fieldgmga)| perturbations, e.g., the small perturbation will grow
equations(9), (10), and (12), one can further simplify the o, nonentially as we will show momentarily, the resulting
perturbations into two disjoint clas&) the perturbations of 514 perturbations cannot be classified as small gauge trans-
the scale factors antb) the perturbations of the dilaton fmation any more. Therefore, the stability analysis per-
f!elds. We will argue that the most cqmplete stability condi-formed in the literaturé 10—18 for various models against
tions we are looking for can be obtained from cléasand e ynstable background solution served as a very simple
class(b) perturbations; even the backreaction of the scalafyethod to check if the system supports a stable metric field
field perturbation on the metric field perturbations is knownbackground. This is the reason why we still perform a per-
to be importan{27]. We will show that this backreaction y,rhation on the metric field for stability analysis; even a
does not bring in any further restriction on the stability con-gmq perturbation is equivalent to a gauge redefinition.

ditions. , , _ Note that one should also consider a more general pertur-
_ The reason is rather straightforward. One can write thg4tion with space perturbation included. The formulation is,
linearized perturbation equation as however, much more complicated than the one we will show
i e, in this paper. We will focus on the time-dependent case for

Daj 6aj+Dy64=0 (22) simplicity in this paper. The space-dependent perturbation

analysis is still under investigation. The time-dependent
for the system we are interested. Here the axion perturbationgnalysis alone will, however, bring us much useful informa-
have been replaced according to E2{l). Moreover, pertur-  tion for the stability conditions about the model we are in-
bations are defined @s=a’+ da; and= ¢+ 8¢ with the  terested. For example, we will show in the following subsec-
index 0 denoting the background field solution. Note alsction that the solution found in Reff9] remains stable as long
that the operator@'aj andD'd, denote the differential operator as the scalar field falls close to any local minimum of the

one obtained from the linearized perturbation equation witfPotentialU(¢). Note again that the solution found in Ref.
all fields evaluated at the background solutions. The exad] is an exact solution only whed = constant.

form of these differential operators will be shown later in the
following arguments.

One is looking for stability conditions that the field pa-
rameters must obey in order to keep the evolutionary solu- In this subsection, we will consider the perturbatié
tion stable. One can show that clasg and clasgb) solu-  with respect to the exact background soluti¢g given in
tions are good enough to cover all domain of stabilitythe preceding section.

A. Dilaton field perturbation
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We wiI_I consider a general symme_try-breaking poten.tialhave asd¢pxexp(—at) and shxexp(—2at) indicating both
U(¢) which has at least one local minimum. The solutionfields approach zero exponentially in the large time limit. On
obtained in Sec. Il remains a good approximation as long aghe other hand, the dilaton perturbation can be shown to be
the dilation field is close to the local minimungGv) of the  spcexpipt) with y=(—axa?—4B)/2 for the casep
potentialU such thatUq:=U(v)=A. Therefore, a perturba- 0. This implies thaf5¢| vanishes rapidly near the local
tion on ¢ field can also be considered as a test to see wheth@hinimum v when 0"(2¢,U(¢)|¢=u>0- shocexg (y—a)t] also
such solution tends to stabilize the FRW space or not. Wegnverges to zero exponentially.
will show momentarily that the result indicates that FRW |y short, the necessary condition for the stability of the
space tends to be a stable final state of any Bianchi typelackground solutions is that the background dilaton field
space once the dilaton field approaches the local minimum qfyst be close to the local minimumof the dilaton potential
theDsymtmettrr]y—t;lreatkmtg_j ?gf”:'r‘?'- deviation of the dilat U(¢). Consequently, the perturbed fields will approach zero

ue to the fluctuationS¢, the deviation of the dilaton ; ; 2 - )} :
potential, up to the first order, is exponent_lally provided thaﬁ¢U(¢)|¢:U is non negatlve._
' ' This partially reflects the fact that the background solution
U s U +9.U Sb=A+9.U 5. remains a good apprpxmated solution to the system as long

($at04)=U(ds)+I4U(ds) 06 sU(dse) ((33) as the dilaton potentidll (¢) ~ constant neath=v.

Note that we know the evolutionary solution of the sys-
By keeping the metric fields unperturbed, one can show thaem only when the dilaton potential is a constant. Nonethe-

the perturbation equations are less, the argument shown in this subsection indicates that the
system tends to bring the Universe to the FRW space once
N o the dilaton field falls close to local minimum of the
g Op— 7674‘/’3 6¢=0, (24 symmetry-breaking potential @s-c. This result provides
Ve convincing evidence for the formation of the flat FRW space

evolved from a Bianchi type-l anisotropic space-time.
34U(g) 56=0, (25 P pIc sP

B. Metric perturbation

1 : T A
V_Bﬂt(VB 5¢)+A4gp S+ §‘9¢U(¢B) §¢=0. (26) We will study the stability of the background solution
with respect to perturbations of the metric in this subsection.
Here we use Eq(21) in the above equations. In addition, Perturbations will be considered for all three expansion fac-
once the dilaton field falls close enough to one of the locators a; via
minimum of the symmetry-breaking potential, the dynamics
of the dilaton perturbation is inevitably much smaller than a;—ag;+ da;=agi(1+ dby), (30
the scale factor perturbations. This confirms our claims ear- . . .
lier that class(a) perturbation and clasé) perturbation are ?ereafter. We will focus_ on the variablé®; instead Ofﬁf”‘i
not of the same order of magnitude. rom now on for convenience. Therefore, the perturbations of
Note also that the Eq25) indicates that one of the nec- the following quantities can be shown to be
essary stable conditions for the background solution is that 1
¢ should be a local minimum of the dilaton potentif ). 0,— Ogi+Ob;, 06— 0g+= >, b,
In fact, close to local minimum condition is the only situa- 39
tion we are interested in this paper.
Combining the equations @i, one finds that the dilaton 2 gfﬂz 9§i+22 Og; Sb; , V*’VB+VBZ sb; .
perturbationdé¢ is determined by i [ [ [ 31

: 1
d(Vget?e 5¢)+2—VBe4¢B(?(2ﬁU(¢B) 5¢=0. (27)  One can show that the metric perturbatidiis, to the linear
K order in éb;, obey the following equations:
Taking the large time limitt—c, one can show that the c2
background variable¥g and ¢g approach > sb+2> 0Bi5bi_?e_4¢B > 8b=0, (32)
I | I
Vo °
Vg— ?e“t, $g— U, (28) v
(Sbi‘i‘V—B(Sbi‘f‘z (Sbj GBi:O, (33)
where a:=\3A/2 andv:=In(2¢3)/2. In addition, Eq.(27) B J
reduces to
) . >, b pp=0. (34)
Sp+a Sdp+ B S5p=0, (29 [
with B=d5U($)|4—,/2x. For the cases;U($)|4—,=0,  Equation(34) indicates thats;sh;=0. Therefore, Eq(32)
i.e., B=0, the perturbations of dilaton and axion fields be-gives further that
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IV. CONCLUSION
> 5b;=0. (35 . . y
i In summary, we investigate the stability condition for an

anisotropic inflationary string solution that evolves to the
Substituting it back to the other equations, one can show thatRW space. This solution is consistent with the significant
requirements constrained by present astronomical
observations—homogeneity, isotropy, and accelerating ex-
pansion. We analyze in details the perturbed equations with
respect to the dilaton fields and separately with respect to the
Note that the background variabl¥g and #g; approach  expanding scale factors of the Bianchi type-I space. Our re-
sult indicates that the cosmological model considered in this
paper is stable for both cases under certain constraints.

In the former case, the necessary condition for the stabil-
ity of the background solutions is that the background dilaton
in the large time limit ag— . Herea:=y3A/2. Note also  field must be close to the local minimum of the dilaton
that we keep only leading order in the above equationspotential U(¢). Consequently, the perturbed fields will ap-
Therefore, the solution fOﬁb, can be found to be proach Zero exponentia”y provided th}%lvl(d,”(/):v is non-

Sb—ce-at 39) negative. This partially reflects the fact that the background
e ’ solution remains a good approximation to the system only
together with the following constraint on integration con-When the dilaton potentidl (¢)~ constant neap=wv. _
stantsc:: Note that we do not know the exact evolutionary solution
I . . .
of the system when the dilaton potential is not close to a
constant. Nonetheless, we show that the system tends to
Z ¢ =0. (39 bring the Universe to the FRW space once the dilaton field
falls close to local minimum of the symmetry-breaking po-

Moreover, the asymptotic form, in the large time limit, of tential ast—o. This result provides a convincing evidencg
background scale factors ig;— agexf at/3]/4¥3. There-  for the formation of the flat FRW space evolved from a Bi-

fore, the “actual” fluctuations for each expansion factor, anchi type-I anisotropic space-time that will work for models
Sa;=ap;ob; is with a reasonable symmetry-breaking potential.
For the latter case, the perturbed expanding scale factors
a0 o are al_so_ shown to approach zero exponentially in the large
ba— — e : (40 time limit. We also show that the perturbations of the three
4 expanding scale factors are constrained by the field equa-
tions.

Vg

Sb;+ — b, =0. (36)
Ve

Vo
VB—> ?e“t, 0Bi_> A/6, (37)

Henceda; approaches zero exponentially sinees definite
positive. Consequently, the background solutionsiable
against the perturbation of the graviton field.

Note that the perturbations of the three different expan- The work of C.M.C. is supported by the Taiwan CosPA
sion factors in Bianchi type-I cosmology are not independenproject and, in part, by the Center of Theoretical Physics at
due to the constraint39). The constraint39) indicates that NTU and National Center for Theoretical Science. This work
scale factor perturbations along arbitrary directions are conis supported in part by the National Science Council under
fined by the field equations. This also signifies the symmetnGrant No. NSC89-2112-M009-001. One of the authors
of the coordinate transformation among the scale factors. IGW.F.K.) is grateful for the hospitality of the physics depart-
fact, there should be only two independent coordinate pertument of National Taiwan University where part of this work
bations reflecting the symmetry of the coordinate choice. was done.
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