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Stability analysis of anisotropic inflationary cosmology
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The stability analysis of an anisotropic inflationary universe of the four-dimensional Neveu-Schwarz–
Neveu-Schwarz string model with a nonvanishing cosmological constant is discussed in this paper. The accel-
erating expansion solution found earlier is shown to be stable against the perturbations with respect to the
dilaton and axion fields once the dilaton field falls close to the local minimum of the symmetry-breaking
potential. This indicates that the Bianchi type-I space tends to evolve to an isotropic flat Friedmann-Robertson-
Walker space. This expanding solution is also shown to be stable against the perturbation with respect to
anisotropic spatial directions.
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I. INTRODUCTION

Observations of the cosmic microwave background rad
tion, galaxies, and other astronomical objects reveal that
universe, on a very large scale, is remarkably uniform@1–3#
and is currently under accelerated expansion@4–7#. There-
fore, a physically acceptable cosmology should provid
self-contained mechanism to smear out the primordial ani
ropy and achieve an accelerating expansion at the pre
time. Furthermore, it is firmly believed that Einstein’s theo
of general relativity breaks down at high enough ener
which, at least, occurred during the early epoch of our U
verse. It is known that string theories are promising can
dates for all particles and interactions, including gravity, in
unified formulation. Thus the astrophysical and cosmolog
implications of string theories have become a highly dev
oping research theme~see Ref.@8# and references therein!.

An anisotropic cosmology was considered recently in
framework of four-dimensional Neveu-Schwarz–Neve
Schwarz~NS-NS! effective string theory in which the gravi
tational field is coupled with the dilaton and axion fields@9#.
In the de Sitter geometry configuration, i.e., with a posit
cosmological constantL.0, an inflationary solution can b
found in an exact parametric form. At large time limit, th
universe is made isotropic and its expansion is accelera
which is consistent with our current astronomical obser
tions. A stability analysis of any solution may provide mo
information of the theory under consideration@10–18#.
Therefore it is interesting and is the purpose of the pres
paper to investigate the stability conditions of this anis
tropic inflationary string cosmology. Our analysis indicat
that the inflationary solution found in Ref.@9# remainsstable
when the potentialU(f) is close to the local minima of the
potential.

This paper is organized as follows. In Sec. II we brie
review the NS-NS effective string theory and the exact so
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tion found in Ref.@9#. The stability analysis with respect t
the perturbations of the dilaton and axion fields will be p
formed in Sec. III. The perturbation with respect to the gra
tational field will be studied in Sec. IV. In Sec. V, we wi
draw some conclusions.

II. ANISOTROPIC SOLUTION

The four-dimensional NS-NS effective action, which
common to both the heterotic and the type-II string theor
@8#, is given by

S5E d4xA2gH R2k~]f!22
1

12
e24f H [3]

2 2UJ , ~1!

where f is the so-called dilaton andHmnl5] [mBnl] is a
totally antisymmetric tensor. Moreover,k denotes the gener
alized dilaton coupling constant (k52 for typical super-
string theories! andU5U(f) is a dilaton potential. The field
equations of the action~1! can be shown to be

Rmn2k]mf]nf2
1

2
gmnU2

1

4
e24f

3S HmabHn
ab2

1

3
gmnH2D50, ~2!

¹m~e24fHmnl!50, ~3!

¹2f1
1

6k
e24fH22

1

2k
]fU50. ~4!

In addition, the totally antisymmetric tensorH obeys the Bi-
anchi identity] [mHnlr]50.

In four dimensions, any three-form can be mapped o
to-one onto its dual one-form. This mapping relates the th
rank tensorH to a pseudo-vectorA via H5 * A with A
5Amdxm the dual one-form. Moreover, one can show th
the tensorH can be solved to give

Hmnl5e4f emnlr ]rh ~5!
©2001 The American Physical Society19-1
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following the field equation~3!. Here the totally antisymmet
ric tensore denotes the Levi-Civita tensor andh5h(t) is
known as the Kalb-Ramond axion. Note that we use the c
vention thatemnlr52d [0

m d1
nd2

ld3]
r /A2g in this paper. In ad-

dition, the above solution holds if and only if the first homo
ogy group for the space considered is trivial@19–21#.
Consequently, the Bianchi identity shown earlier become

]m~A2g e4f ]mh!50. ~6!

We will consider the case in which the potential of t
dilaton field is a positive constant

U~f!5L>0, ~7!

which represents a de Sitter space. An exact solution fo
anisotropic~Bianchi type-I! cosmology has been found i
Ref. @9#. Note that the line element of a Bianchi type-I spa
an anisotropic generalization of the flat Friedman
Robertson-Walker~FRW! geometry, can be written as

ds252dt21a1
2~ t !dx21a2

2~ t !dy21a3
2~ t !dz2, ~8!

with ai(t), i 51,2,3 the expansion factors on each spa
directions. With the identities~5! and~7!, the field equations
~2!, ~4!, and~6! will take the following form:

3u̇1(
i 51

3

u i
21kḟ21

1

2
e4f ḣ22

1

2
L50, ~9!

1

V
] t~Vu i !2

1

2
L50, i 51,2,3,

~10!

ḧ13uḣ14ḟḣ50, ~11!

1

V
] t~Vḟ !2

1

k
e4fḣ250. ~12!

Here we have introduced thevolume scale factor, V

ª) i 51
3 ai , directional Hubble factors, u iªȧi /ai , i 51,2,3,

and themean Hubble factor, uª( i 51
3 u i /35V̇/3V for conve-

nience. In addition, we will also introduce two basic physic
observational quantities in cosmology: themean anisotropy
parameter, Aª( i 51

3 (u i2u)2/3u2, and thedeceleration pa-
rameter, qª] tu

2121. Note thatA[0 for an isotropic ex-
pansion. Moreover, the sign of the deceleration param
indicates how the Universe expands. Indeed, a positive
corresponds to ‘‘standard’’ decelerating models, wherea
negative sign indicates an accelerating expansion.

It was shown that the general exact solution of this mo
can be parametrized in the following form@9#:

ai~t!5ai0 sinha i
1 t

2
cosha i

2 t

2
, i 51,2,3 ~13!

e2f(t)5w0
2S tanhv

t

2
1tanh2v

t

2D , ~14!
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h~t!5h01
kAf0

C

tanh2v~t/2!21

tanh2v~t/2!11
. ~15!

Therefore, one has

u~t!5AL

6
cotht, ~16!

V~t!5V0 sinht, ~17!

where tªA3L/2(t2t0), a i
6
ª1/36A2/3LKi /V0 , v

ªA8f0/3L/V0 and w0
2
ªAC2/8kf0. Here t0 , ai0 ,Ki , C

>0,f0.0, andh0 are free parameters representing the c
stants of integration. In addition, one writesV05P i 51

3 ai0/2
for convenience. One can also show that there is an a
tional constraint( i 51

3 Ki50 following the field equations.
These integration constants also obey the consistency co
tion,

K2
ª(

i 51

3

Ki
25LV0

22kf0 , ~18!

which follows from Eq.~9!. Thereby the mean anisotrop
and the deceleration parameter are given by

A~t!5
2K2

LV0
2

sech2t, ~19!

q~t!53 sech2t21. ~20!

This exact solution indicates that the evolution of the B
anchi type-I universe starts from a singular state, but w
finite values of the mean anisotropy and deceleration par
eters. In the large time limit the mean anisotropy tends
zero,A→0, and the Universe approaches an isotropic in
tionary de Sitter phase with a negative deceleration par
eter, q,0, providing an accelerating expanding Univer
consistent with the present observations. Furthermore, in
large time limit the dilaton and axion fields become co
stants, limt→` h(t)5h05constant, limt→` e2f(t)52w0

2

5constant. Note that the dynamics and evolution of the U
verse is determined only by the presence of a cosmolog
constant~or a dilaton field potential!. There is no direct cou-
pling between the metric and the dilaton and axion fie
other than the constraint on the integration constants.

Note that the mixmaster model@22–26# discussed earlier
deals with a model with perfect fluid. Earlier work focus
on the behavior of the solution near the singularity. The sta
field equation studied in Ref.@9# is similar to the mixmaster
model with axion and dilaton behaving like the perfect flu
The solution shown in this section is, however, the first tim
such an exact solution is found for the NS-NS string effe
tive theory that exhibits the desired property driving an i
tially anisotropic Bianchi type-I space to an isotropic spa
We will focus on the stability property of this solution in th
following section.
9-2
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III. PERTURBATION AND STABILITY

Perturbations of the fields of a gravitational syste
against the background evolutionary solution should
checked to ensure the stability of the exact or approxima
background solution. In principle, the stability analys
should be performed against the perturbations of all poss
fields in all possible manners subject to the field equati
and boundary conditions of the system. In the following s
tion, we will divide the perturbations into two disjoin
classes:~a! the perturbations of the scale factors, or equiv
lently the metric field, and the axion field; and~b! the per-
turbations of the dilaton and axion fields.

Note further that the axion field can be solved as a co
bination of the dilaton field and the scale factors according
Eq. ~11!. The result is

ḣ5C e24f V21, ~21!

with a constant of integrationC>0. HereC50 means that
the axion field does not couple to any other field. Therefo
the effect of the perturbation of the axion field can be
placed by Eq.~21!. In fact, Eq. ~26! indicates that if one
perturbs the axion field, one has to perturb either the dila
field or ai altogether unless the constantC vanishes. Note
also that Eq.~21! indicates thatḣ;a23, which is much
smaller thana in the large time limit whereai→a for all
directions. This is an indication that the effect of the axi
field perturbation can be ignored in the metric perturbat
we will discuss later.

Once we replace the effect of the axion field in the fie
equations~9!, ~10!, and ~12!, one can further simplify the
perturbations into two disjoint class:~a! the perturbations of
the scale factors and~b! the perturbations of the dilato
fields. We will argue that the most complete stability con
tions we are looking for can be obtained from class~a! and
class~b! perturbations; even the backreaction of the sca
field perturbation on the metric field perturbations is kno
to be important@27#. We will show that this backreaction
does not bring in any further restriction on the stability co
ditions.

The reason is rather straightforward. One can write
linearized perturbation equation as

Daj

i daj1Df
i df50 ~22!

for the system we are interested. Here the axion perturbat
have been replaced according to Eq.~21!. Moreover, pertur-
bations are defined asai5ai

01dai andf5f01df with the
index 0 denoting the background field solution. Note a
that the operatorsDaj

i andDf
i denote the differential operato

one obtained from the linearized perturbation equation w
all fields evaluated at the background solutions. The ex
form of these differential operators will be shown later in t
following arguments.

One is looking for stability conditions that the field p
rameters must obey in order to keep the evolutionary s
tion stable. One can show that class~a! and class~b! solu-
tions are good enough to cover all domain of stabil
12401
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conditions. Let us denote the domain of solutions to class~a!,
~b!, and ~a1b! stability conditions asS(a),S(b), and S(a
1b) respectively. Specifically, the definition of these d
mains are defined byS(a)[$dai uDaj

i daj50%, S(b)

[$dfuDf
i df50%, and S(a1b)[$(dai ,df)uDaj

i daj

1Df
i df50%.

Therefore, one only needs to show th
S(a)ùS(b),S(a1b). This is because that ‘‘Daj

i daj50 and

Df
i df50’’ imply that ‘‘ Daj

i daj1Df
i df50.’’ On the other

hand, ‘‘Daj

i daj1Df
i dfh50’’ does not imply that ‘‘Daj

i daj

50 or Df
i df50.’’ Hence class~a! and class~b! solutions

cover all the required stability conditions we are looking fo
Hence we only need to consider these two separate case
simplicity.

In addition, one knows that any small time-dependent p
turbation against the metric field is known to be equivalen
a gauge choice@28#. This can be clarified as follows. Indeed
one can show that any small coordinate change of the f
x8m5xm2em will induce a gauge transformation on the me
ric field according togmn8 5gmn1Dmen1Dnem . Therefore, a
small metric perturbation against a background metric
amount to a gauge transformation of the formai85ai1e tȧi

for the Bianchi type-I metric withem5„constant,e i(t)…. This
is then equivalent to small metric perturbations. If a bac
ground solution is stable against small perturbation with
spect to small field perturbations, one in fact did nothing b
a field redefinition.

If the background solution is, however, unstable agai
small perturbations, e.g., the small perturbation will gro
exponentially as we will show momentarily, the resultin
large perturbations cannot be classified as small gauge tr
formation any more. Therefore, the stability analysis p
formed in the literature@10–18# for various models agains
the unstable background solution served as a very sim
method to check if the system supports a stable metric fi
background. This is the reason why we still perform a p
turbation on the metric field for stability analysis; even
small perturbation is equivalent to a gauge redefinition.

Note that one should also consider a more general pe
bation with space perturbation included. The formulation
however, much more complicated than the one we will sh
in this paper. We will focus on the time-dependent case
simplicity in this paper. The space-dependent perturba
analysis is still under investigation. The time-depend
analysis alone will, however, bring us much useful inform
tion for the stability conditions about the model we are
terested. For example, we will show in the following subse
tion that the solution found in Ref.@9# remains stable as long
as the scalar field falls close to any local minimum of t
potentialU(f). Note again that the solution found in Re
@9# is an exact solution only whenU5 constant.

A. Dilaton field perturbation

In this subsection, we will consider the perturbationdf
with respect to the exact background solutionfB given in
the preceding section.
9-3
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We will consider a general symmetry-breaking poten
U(f) which has at least one local minimum. The soluti
obtained in Sec. II remains a good approximation as long
the dilation field is close to the local minimum (f5v) of the
potentialU such thatU0ªU(v)5L. Therefore, a perturba
tion onf field can also be considered as a test to see whe
such solution tends to stabilize the FRW space or not.
will show momentarily that the result indicates that FR
space tends to be a stable final state of any Bianchi ty
space once the dilaton field approaches the local minimum
the symmetry-breaking potential.

Due to the fluctuationdf, the deviation of the dilaton
potential, up to the first order, is

U~fB1df!→U~fB!1]fU~fB! df5L1]fU~fB! df.
~23!

By keeping the metric fields unperturbed, one can show
the perturbation equations are

ḟB dḟ2
C2

kVB
2

e24fB df50, ~24!

]fU~fB! df50, ~25!

1

VB
] t~VB dḟ!14ḟB dḟ1

1

2k
]f

2 U~fB! df50. ~26!

Here we use Eq.~21! in the above equations. In addition
once the dilaton field falls close enough to one of the lo
minimum of the symmetry-breaking potential, the dynam
of the dilaton perturbation is inevitably much smaller th
the scale factor perturbations. This confirms our claims e
lier that class~a! perturbation and class~b! perturbation are
not of the same order of magnitude.

Note also that the Eq.~25! indicates that one of the nec
essary stable conditions for the background solution is
fB should be a local minimum of the dilaton potentialU(f).
In fact, close to local minimum condition is the only situ
tion we are interested in this paper.

Combining the equations ofdḟ, one finds that the dilaton
perturbationdf is determined by

] t~VBe4fB dḟ!1
1

2k
VBe4fB]f

2 U~fB! df50. ~27!

Taking the large time limit,t→`, one can show that the
background variablesVB andfB approach

VB→ V0

2
eat, fB→v, ~28!

where aªA3L/2 and vª ln(2w0
2)/2. In addition, Eq.~27!

reduces to

df̈1a dḟ1b df50, ~29!

with b5]f
2 U(f)uf5v/2k. For the case]f

2 U(f)uf5v50,
i.e., b50, the perturbations of dilaton and axion fields b
12401
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have asdf}exp(2at) and dh}exp(22at) indicating both
fields approach zero exponentially in the large time limit. O
the other hand, the dilaton perturbation can be shown to
df}exp(gt) with g5(2a6Aa224b)/2 for the caseb
Þ0. This implies thatudfu vanishes rapidly near the loca
minimum v when ]f

2 U(f)uf5v.0. dh}exp@(g2a)t# also
converges to zero exponentially.

In short, the necessary condition for the stability of t
background solutions is that the background dilaton fi
must be close to the local minimumv of the dilaton potential
U(f). Consequently, the perturbed fields will approach z
exponentially provided that]f

2 U(f)uf5v is non-negative.
This partially reflects the fact that the background solut
remains a good approximated solution to the system as
as the dilaton potentialU(f); constant nearf5v.

Note that we know the evolutionary solution of the sy
tem only when the dilaton potential is a constant. Nonet
less, the argument shown in this subsection indicates tha
system tends to bring the Universe to the FRW space o
the dilaton field falls close to local minimum of th
symmetry-breaking potential ast→`. This result provides
convincing evidence for the formation of the flat FRW spa
evolved from a Bianchi type-I anisotropic space-time.

B. Metric perturbation

We will study the stability of the background solutio
with respect to perturbations of the metric in this subsecti
Perturbations will be considered for all three expansion f
tors ai via

ai→aBi1dai5aBi~11dbi !, ~30!

hereafter. We will focus on the variablesdbi instead ofdai
from now on for convenience. Therefore, the perturbations
the following quantities can be shown to be

u i→uBi1dḃi , u→uB1
1

3 (
i

dḃi ,

(
i

u i
2→(

i
uBi

2 12(
i

uBi dḃi , V→VB1VB(
i

dbi .

~31!

One can show that the metric perturbationsdbi , to the linear
order indbi , obey the following equations:

(
i

db̈i12(
i

uBidḃi2
C2

VB
2

e24fB (
i

dbi50, ~32!

db̈i1
V̇B

VB
dḃi1(

j
dḃ j uBi50, ~33!

(
i

dḃi ḟB50. ~34!

Equation~34! indicates that( idḃi50. Therefore, Eq.~32!
gives further that
9-4
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(
i

dbi50. ~35!

Substituting it back to the other equations, one can show

db̈i1
V̇B

VB
dḃi50. ~36!

Note that the background variablesVB anduBi approach

VB→ V0

2
eat, uBi→AL/6, ~37!

in the large time limit ast→`. HereaªA3L/2. Note also
that we keep only leading order in the above equatio
Therefore, the solution fordbi can be found to be

dbi5cie
2at, ~38!

together with the following constraint on integration co
stantsci :

(
i

ci50. ~39!

Moreover, the asymptotic form, in the large time limit,
background scale factors isaBi→ai0exp@at/3#/41/3. There-
fore, the ‘‘actual’’ fluctuations for each expansion facto
dai5aBidbi is

dai→
ai0ci

41/3
e22at/3. ~40!

Hencedai approaches zero exponentially sincea is definite
positive. Consequently, the background solution isstable
against the perturbation of the graviton field.

Note that the perturbations of the three different exp
sion factors in Bianchi type-I cosmology are not independ
due to the constraint~39!. The constraint~39! indicates that
scale factor perturbations along arbitrary directions are c
fined by the field equations. This also signifies the symme
of the coordinate transformation among the scale factors
fact, there should be only two independent coordinate per
bations reflecting the symmetry of the coordinate choice
ci

12401
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IV. CONCLUSION

In summary, we investigate the stability condition for a
anisotropic inflationary string solution that evolves to t
FRW space. This solution is consistent with the significa
requirements constrained by present astronom
observations—homogeneity, isotropy, and accelerating
pansion. We analyze in details the perturbed equations w
respect to the dilaton fields and separately with respect to
expanding scale factors of the Bianchi type-I space. Our
sult indicates that the cosmological model considered in
paper is stable for both cases under certain constraints.

In the former case, the necessary condition for the sta
ity of the background solutions is that the background dila
field must be close to the local minimumv of the dilaton
potentialU(f). Consequently, the perturbed fields will a
proach zero exponentially provided that]f

2 U(f)uf5v is non-
negative. This partially reflects the fact that the backgrou
solution remains a good approximation to the system o
when the dilaton potentialU(f); constant nearf5v.

Note that we do not know the exact evolutionary soluti
of the system when the dilaton potential is not close to
constant. Nonetheless, we show that the system tend
bring the Universe to the FRW space once the dilaton fi
falls close to local minimum of the symmetry-breaking p
tential ast→`. This result provides a convincing evidenc
for the formation of the flat FRW space evolved from a B
anchi type-I anisotropic space-time that will work for mode
with a reasonable symmetry-breaking potential.

For the latter case, the perturbed expanding scale fac
are also shown to approach zero exponentially in the la
time limit. We also show that the perturbations of the thr
expanding scale factors are constrained by the field eq
tions.
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