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Note on embedding of M-theory corrections into eleven-dimensional superspace
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By analyzing eleven-dimensional superspace fourth-rank superfield stiesRjémchi identities, we show
that M-theory corrections to eleven-dimensional supergravity cannot be embedded into the mass dimension
zero constraints, such as thg?P) apXap” OF 1(Y*17%) 45X, ..o terms in the supertorsion constraif 4°.
The only possible modification of the superspace constraint at dimension zero is found to be the scaling of
Fapca like Faﬁcd:(1/2)(ycd)aﬁe‘1’ for some real scalar superfieffl, which alone is further shown not to
embed general M-theory corrections enough. This conclusion is based on the dimensidf-Biarahi
identity under the two assumptions(i) There are no negative dimensional constraints onRiseiperfield
strengthF ,5,5=F o5,0=0; (ii) the supertorsioiT-Bianchi identities andr-Bianchi identities are not modified
by Chern-Simons terms. Our result can serve as a powerful tool for future exploration of M-theory corrections
embedded into eleven-dimensional superspace supergravity.
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[. INTRODUCTION Simons terms. In addition to these assumptions, our conclu-
sion also relies on the so-called “conventional constraints”
If M theory [1] unifies superstring theorig®], such as that relate various superfields in the most general expansions
type-1, heterotic and type-lIA superstring theories, and itsof the superspace derivatives, andE, [9]. These conven-
low energy limit is described by eleven-dimensioialD)  tional constraints are restrictive, e.g., the one-gamma term in
supergravity[3], it is natural to expect that there must be T i only thedstandard onei(y%) .5, while the two-
high energy corrections to 11D supergravity compatible withgamma - term £°9)apXae” and the five-gamma term
the supergravity formulation itself, just as superstring correc{Y™* ) «pXa,--.d,_ COIrections are of a general form. Fur-
tions can be embedded into 10D supergral@y]. Based on  thermore, theX's themselves are restricted, e.%ap’=0,
this principle, there have been attempts to embed suchtc., as will be shown later.
M-theory corrections into 11D supergravity, such as in the A statement for the necessity of tifeconstraints ad
component formulatiofi5], as well as in the superspace for- <0 has been given i8], but without any proof. In the
mulation[6-9]. present paper, we provide explicit evidence for that claim.
In superspace formulatiofi7,8], it is so far commonly ~BY studying theF-Bl at d=0, we show that, as long as the
believed or expected that such M-theory corrections are modt-constraints atl<0 are absent, there can be such cor-
likely embedded into the generalized symmetric matrix comJections as §%),5Xae" or (y77%) ,5Xy,...q,° possible in
ponents of the mass dimension zem=0) supertorsion T,z other than the standard one-gamma term that can em-
component T, such as  §),5X,° or  bed M-theory corrections.
i(y21r8s) aBXa1-~-a5C with some appropriate superfiel¥g°
or Xal--~a5° [7,8,10. However, it is not clear whether we Il. SOLVING F-BI AT d=0

need only the corrections df,s° or F 5.4 atd=0 alone for We first give the most important part of our results here,

embedding M-theory corrections, or we also need any neggsamely we analyze whether thé=0 F-BI of the type
tive dimensional §<<0) constraints, such ds,5,q Or F ,5,s (aByde)

for such modifications foF-Bianchi identities(Bls).
In this paper, we will present a “no-go theorem” for em- 1 1
bedding M-theory corrections into constraints for superspacegV(aFBya)e+ VeFapys™ gTe(alfFflﬂyzS)_ 5 Tetal Folpyo)
Bls with modified constraints only ad=0. We will show
that thed=0 corrections of constraints are not enough for 1 ‘ 1
embedding M-theory corrections into 11D superspace super- - ZT(aﬁ\ Filyse™ ZT(aB\nFn\yﬁ)eEO (2.)
gravity. Our conclusion is based on two assumptighsAll
the F-superfield strength constraints @0 vanish;(ii) the  allows any nontrivial solution possible for embedding
supertorsionT-Bls and F-Bls are not modified by Chern- M-theory correctiong8]. For simplicity (as the assumption
of our “no-go theorem’), we set thed<O F-constraints to
Zero:
*Email address: nishino@nscpmail.physics.umd.edu
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Accordingly, there remains only one term in Eg.1) atd _ 1o i 1.,
=0: AS=]iWey,+ E‘I’a Yabt 6‘1’[ e+ ﬂ‘l’[ Yy
f —
Tapl Fily9e=0 (2.3 i B
- - - + _\If[5]»y[5] , (28b)
It is now a purely algebraic question whether there can be 120 o

any nontrivial solution to Eq(2.3), when we postulate

1
c XabC:l—G[(‘}’ab) 79D H 5+ 166],°W ) — 16W 1],

. 1 i
Tag =1t 5 (V) apXan™ 1567 %) apXay s’

(2.4 (2.80
. . 1 2
for the d=0 supertorsion constraint foF,;° [8]. Here we X cz_[i 7D H Lt = 5. Cp
have no corrections for the first one-gamma term, due to the =+ "% 16 (Yay -2 "DHs 37 Tl

“conventional constraints” relating=,, and E, as in Egs. 2

(24) and(25) in [9]. On the other hand,,° ananl...aSC are +—€% .. [5]\1’[5]} (2.80
. . . 1 5

some appropriate superfields that can possibly embed 15

oSt general correcions also o We-0 Frconstrait | AS Se€N fom EGS2.89 and (28, the constrints2.7 are
9 just equivalent to determining[*!, w31 w4 andwl5 in
1 terms only ofH P [9]. This situation is similar to the con-
Fapcd=1(Y%) apUeca™ E('yef)aﬁuefcd straint T,,°=0 in order to express the Lorentz connection
dma in terms of the vielbeire,™. Therefore we stress that
i there is no loss of degrees of freedom under the covariant
+ @(V[S])QBUmcd- (25  constraints2.7).
The original tensor superfield§s or U's are reduced into
In particular, the lowest order on-shell physical superfieldmore fundamental irreducible components. For example, the
constraint in[11] corresponds to the special case of original Uy has 605 components considering their symme-
tries, which can be decomposed irthyp =A%+ 4{16%

abc abc
+ na[bA{c]ll} , where AL1% is totally antisymmetric, while the
429part is traceless4!*?* ;2.=0, as the remainder degrees
of freedom are out of the original X155=605 components.
In a similar fashion, we can decompose the redt)sfas

1 1
Fapea=* 5 (Yedlaps  Uanca=+ 7 Nareap,  (2.6)

with Uape=Ua ...a.5c=0. Since we are considering

M-theory corrections, thes¢ andU-superfields can be dealt

as perturbation, namely we can first consider the satisfaction Uape= + AL2 + ALY + b A{c]ll},

of the BI (2.3 at the linear order, temporarily ignoring the

bilinear order(cross termg For this reason, we concentrate cd_ {2,574cd_ 4{330cd [c| 4165}|d] [c| 4{58}|d]

. . . ! U =+ Al +A + 6 A + 6 A

on the analysis at the linear order in termsxg and U's. ab ab ab ' Al Al
Based on the fluctuation analygi8], we can impose on +5[a|[0|5|b]\d],4{1},

the X's the following “conventional constraints:”

b_ — b_ —
Xap =0, X[abc]_ov Xa1~~a4b =0, X[al~~~a5b]_(()-2 2 Ual---asbc:"'A{all?-’-la?szc_i_ @Eal---as[bld

Under these constraintX,,° has only 429 degrees of free- + ”[b\[al\Afsépggsl\C]+ ”[bl[al\Al{gf'z’}'aslld
dom, while X;5,° has 4290 degrees of freedom. These con- 1

straints are analogous to the familiar torsion constraipt +—e. . 4380 165
=0 commonly used in superspace, which does not delete 242y 3be B+ ey TadeBlageg
any degrees of freedom. To be more specific, we saw in the (2.9
fluctuation analysis if9] that some components of super-

field A,# [9] entering inE,=E gy can be expressed in Substituting each irreducible component back into Eq.
terms ofH,° under Eq.(2.7): (2.3, we get the set of algebraic conditions to be satisfied for
each irreducible components:

—ode 414,29
1 5./431...(?5‘0]

E =~1f1/2[exp(3A)J ﬁ(D +Hz"d,,) (2.8a
@ 2 B B Ym/y :

(Y (e ( Yde)\ys)A{l}Z 0, (2.10a
(Y (el (Vi) ya Al =0, (2.10H
Un this paper, the symb¢h] in general denotes the total antisym- . ) . .
metrization of n indices, e.g., (/[5])6,6()/[5])”; i( Ya)(am( Y c)|'y5)[ Ua[b\A\{c]e_ ﬂe[b\A\{c] ;] =0,
E(‘yal.“as)aﬁ( ')’al-“as) yo " (210()
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i(y? aﬁ\('y )|y§)[773[b|A|c]e_ 77e[b|~A|c]a] O(

100
(Y (g (Vae ) 0 BiE T =0, (2.108
—(7 D (gl (V2D ) AT
1 1
d 330 _
~ 54120 )(am(7[5])\75)6[5]@[4]5%4]0}—0,
(2.100

1
— (Y (ap(Y° )|75)Aabe + Z('yab)(aﬁ|(7de)|yﬁ)xabd=0a

(2.109

Y (g (Y1) 45 ﬂ[d\bAEi]ﬁ\%] =0, (2.10n

(/) (@l (7)) 1y A 5et =0, (2.10)

i(?’d)(a,g\(’}’b[4])|75)7][d|bAEij%03=0, (2.10)
= 755 s (VD n €sial® ALt g
1207 (@ y [5|e]

5 0 (Vad o Xis =0, (210K

(P (gl (F*D e Al s d =0. (2.10)

The conceptually important ingredient here is that different

irreducible components in Eq2.10, such asl65 vs 2574

will not interfere with each other. Moreoverdt33% and

B33 in Eq. (2.100, A2} and X,,° in Eg. (2.109, or
Aég‘f;’ and X;5° in Eqg. (2.10K are proportional to each
other.

From now on, we use heavily the Fierz-type identities

(5.1)—(5.4 and Lemmag5.5—(5.8) that will be given sepa-
rately in Sec. VI. We start with Eq2.104. This condition is
identically satisfied for arbitraryd!!' due to the well-known
Fierz identity in 11D

(7®) (gl (¥b) |75 =0 (211
Next, due to Lemma 2 in Ed5.5), Eq. (2.100 implies that
Alt=0, (2.12

Equations (2.100 and (2.10d satisfy the assumption of
Lemma 2, wherB, . is identified with

Na bAf:r;:‘} - ﬂeoAE)na} + e bAi:rla}
(2.13

both forn=55 andn=66. Here we use the “arrow” symbol
instead of “equality,” due to the free index while B, ,; on

Ba,bc_’ nacAE)r:-:‘}_
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na[bAc]e_Sne[bAc]a+ 77ea-’4[bc] 77e[b|(A alc] +A§c]a)( 04)
2.1

both for n=55 andn=66. Now the ,, and ., contractions
respectively yield

APR¥=0, A%¥=o0. (2.15

Equations(2.10e, (2.10h, (2.10)), and(2.10l) are solved
based on Lemma 3 in E@5.8), namely they imply nothing
other than the vanishing of

16 46 3,00 17,16
BiE7=0, AlZ=0, AfRE=0 AG0=0
(216
Equation (2.10f) is understood as a sum of Egs. (5.2)
+(5.4), whenB, . andB, 5 are identified with
Ba,bc_> 24A§)::‘:3&9é1 Ba,[S]_> - 6[5]ae[4]65]30} . (217

The like terms of the types %),s(¥*)),s and

(¥#) ap(¥¥") 5 in the sum(5.2) + (5.4) yield respectively
the conditions

1 1
d _
gBa,bcl-~-c4_ 24 77a[b|Bd, [cl--»c4]+ ﬂB[bl,alcl~--c4]_ 0,
(2.18a
Ba,a[4]:0, (leb

both of which have contributions only fro, |5;. Equation
(2.18h deletes the middle term in Eq(2.183. Other
fontrivial-like terms are of the typer?) .5(¥1%)) 5, which
have contributions both from th8, . and B, 4; terms,
yielding the condition

5

1
> (8a°8p7 = 855 8ah) Bt gny— S_OedeeM]fghBa,eH] =0.

(2.19

Now if we look into only the[abccq( component of this equa-
tion, and multiply it bye,,°9"% s, we get the condition

Bf,kl...k5=0, (22@
up to terms that vanish upon using Eg.180. This implies
consistently with Eq(2.18 that

B, O:>B%330} (2.21

Now once 333%s does not contribute, then only the first
term in EqQ.(2.10f remains, which in turn impliesia Eq.
(5.7) in Lemma 2 that

Alst=0

(2.22

becauseAt®3® .2 ;=0 manifestly, upon the identification

the left-hand sidéLHS) can be arbitrary including any such By, bc—>Abcad

“free” index. Therefore corresponding to E¢.63, we get
the condition

Equation(2.10i) has they-matrix structure of Eq(5.2
with B, p,¢ identified with
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A{Z 574 a__ 0

ace !

(2.23

so that the assumption of E¢.7) in Lemma 2 is satisfied,
and thereforeB, ,.=0, i.e.,

AZsid=o.

Ba bc™ Abcea )

(2.24)

At this stage, Eqs(2.109 and (2.10K are the only re-
maining conditions to be solved. Equatid®.109g is re-

24! Y (s (Y) |y AanT
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garded as the surtb.1) + (5.3, whenA,, for the former

andA,;, .4 for the latter are respectively identified with

Aqp— — 24AL2% 666X 5.
(2.295

Aap, = = 67761 Xy —

Accordingly, it is convenient to rewrite these Eg&.1)
+ (5.9 in terms of A, , andA,p, o4 instead ofA’s:

1 ab cd
96\ sl (Y ) jyeAab,cd

1 1
=+ —(y ap(7) 3o 18 = 7abAc,“+ 2Rac ) + g (V) e Vo) ya| + el A= 5 8120 ‘A |
cd, fc| |d] [c| |d]f 1 [3]ab cd > lca _dl
+9A,, +§A[a\ b1~ Ora) At +%(7 )ep( Y317 55 +§5[a Ay,
1o cs dp 0425 [l ldf
—55[51 5b] As, _10Aab 5A[ al | + = > 5 al A\b]f =0. (2.26
Since each of the different-matrix structure is independent, we have the following three conditions:
18A; b= MabAc,*+ 2R p°=0, (2.273
(ol Jil_ L5 cs dp L el g felaldf
Stal " Ab] ~ 5 9[a O] At +9Rabcat AR bl Ofal Apgr =0, (2.279
> e dl 1o es dp [el | ld] 5 [c| |d]f
E(S[a Ab], _55[3 5b] Af, _10Aab,cd_5A[a| |6 +§5[a‘ A|b]f, =0. (2270
|
Obviously, Eq.(2.273 implies thatA, =0, already satisfied Asb.ca=0=Xa,°=0. (2.30b

by the tracelessness @2 . Using this back in Eq(2.27a
implies that

9Aa,b+Aac,bc=0- (2.28
On the other hand, by contracting thg indices in Eq.
(2.27h, we get

9A, °—TA,, L°=0. (2.29
Obviously, Eqs(2.29 and(2.29 lead toA,,=0, A,,°=0,
which via Egs. (2.27h and (2.279 implies also thatA,,cq
=0. Therefore we get

A b= 0:>A{429}

abc

(2.303

We are now left with the conditiof2.10K. As mentioned
before, we can regardl/22? and X;5;° as proportional to
each otherAlg{2%=constXs,. Then finding a nontrivial
solution for Eq.(2.10K is equivalent to deducing a nontrivial
solution for the unknown parameteasand b other thana

=b=0 in the equality
ia()/d)(a/s\(7’[d|[5])\y5)x[5]\e+ib(7[5])<aﬁ\(Yde)|yﬁx[5]22=£]a)

for an arbitraryX;5,°#0. The simplest way to get more ex-
plicit conditions from Eq(2.31) is to multiply it by (y2°) %%,
and contract the indicesg:
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(¥2®)“P[LHS of Eq. (2.31),4,5]= +20i(3a+b)
X (A4 X141 e~ 8i(a+5b) L2 (415)) 5 X5
+40i (a—b) (yel#) , 5X (41120 + 40D (48 Xy )
(2.32

We next multiply Eq.(2.32 by (¥°).”, to get the only solu-
tionsa=b=0 as

=0.

(60a-+280)(y?®)) sX(51e+ (40a+8b) (y*1%)) 5X 5
+(320a+16M) (y1*) 5X(42°=0=a=b=0.
(2.33

This is because thel*! term yields Z2+b=0, while the
multiplication of the 4% terms byiy? yields 2%+ 11b
=0. Therefore the only solutions to the conditi@10K are

(4299

[5]a =0. (2.34)

=0, Xs°
Collecting all the results above, i.e., Eq8.12), (2.15,
(2.16, (2.2, (2.22), (2.24), (2.30, and(2.34), we reach the
conclusion that among all the componentsW$ entering
Eq. (2.5), except forthe singlet component!*! in Eq. (2.9,
as well as all theX’s in Eq. (2.4), should be zero, in order to
satisfy theF-BI (2.1) at d=0 under the condition§2.2).
Therefore, the only possible form &7, 4.4 is
Fapod=+2(Yed) ap AP+ () p Al - (2,39
The remaining componentti8? here is due to the fact that
this component doesot enter any of the conditions in Eq.

(2.10. In other words, we can still have a term proportional

to ALY in Eq. (2.35.
However, we point out some degrees of freedom of supe
field redefinition of the potential superfielygc. This is

associated with the definition of the superfield strengt

Fascp. In fact, consider the shfft

Aabc—Aapct A;]BGCS} ) (2.39
keeping other components amoAgg intact. This can ab-
sorb the A1%%% term in Eq.(2.35, while any of the con-
straints atd<0 in Eq.(2.2) are maintained. For example for
Fapys, We have

TiapPelyo)»
(2.37)

which is intact under the shif2.36). The same is also true
for F 5,5, Which we skip here.

Fapys=g V(aPpys) ™ 7 TiapAdys) ~

PHYSICAL REVIEW D64 124016

is the singlet component!*! in Eq. (2.39, which implies
thatF ,zcq can be only of the form

1 (O]
Faﬁcdzi(')’cd)aﬁe (2.38

proportional to the on-shell physical superfield constraint
[11], scaled by some real scalar superfidid

We mention here the importance of the conventional con-
straints (2.7). If these constraintavere notimposed, we
would have such corrections as

Tapg=1(¥)apti (MY (up)

1
Faﬂcdzi(')’cd)aﬁ_’_ E(M Yed) (ap) (2.39

for an arbitrary 32x 32 matrix M ,? satisfying Eq.(2.3) at

the linear order ifM. However, these corrections cannot em-
bed M-theory corrections, because they contribute as redun-
dant degrees of freedom. We can also show that the gravita-
tional superfield equation will not be modified at the linear
order inM, because thed3c, 6)-type Bl is not modified by

M. Therefore, such a matriM is not enough for embedding
M-theory corrections. We skip the details here, leaving them
for a future publication.

Our analysis so far is concerned only with the linear order
terms in EQ.(2.3) in the fluctuations irF 5.4 and T,z for
M-theory corrections. However, even if we include the
bilinear-order terms in Eq(2.3), our conclusion above re-
mains intact. In other words, the linear-order satisfaction of
the F-Bl at d=0 only by the limited form(2.38 will not be
affected by the inclusion of next bilinear order terms. To put
|t differently, once the most general correction of Iﬁgﬁcd
'has been determined as in EQ.J at the linear order, in

articular with no corrections fof ,z°, then it is straightfor-

ard to confirm that Eq(2.38 satisfies also th&-Bl at d
=0 to “all orders” in the expansion in terms @b, because
the only correction is just a scaling &f, 5.4, While there is
no derivative involved in thel=0 BI (2.3).

This “no-go theorem” established here is not so surpris-
ing from the viewpoint that Eq(2.11) is the only available
Fierz identity of the type #1™),4(")},5=0 allowing
arbitrary integersn andn. In other words, such conditions as
Eq. (2.3 has too many free indices to allow more degrees of
freedom other than the singlet compone#it! as in Eq.
(2.10a.

Ill. EFFECT OF SCALAR SUPERFIELD &

We have seen that the only possible correction of super-

Based on these results and considerations, we concludgace constraints at=0 is the scaling ofF,z.q in Eg.
that the only degree of freedom possibly embedding2.38 by a real scalar superfiel®. The next question is

M-theory corrections for the superspace constraints=a0

°Notice the crucial difference of the symbais from A’s which
should not be confused with the former.

what sort of M-theory corrections can be embedded into this
scalar superfieldb.

The answer can be easily deduced from dimensional con-
siderations. First, since the scalar superfi@lts atd=0, its
spinorial derivative enters into the= 1/2 constraintsT 5,

124016-5
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T’ andF ,,cq. Therefore we have again the spinorial su-

perfieldJ,, [6] related tod by?
vV, b=£J,, 3.9

with an appropriate constagtlike in Refs.[9,6]. The most
general forms for these constraints are now

Tan’=@18,°3 0+ az(1%) "I, (3.2a
Fabca=1 7€ (Yoed) oI5, (3.2b

Top”=B10a"d gy Bo( ¥ ap(72) 725
+Ba( V) ap(v12)) 755, (3.20

with the unknown coefficienta,,a,,7,81,82,83. The sat-
isfaction of d=1/2BlIs yields the following relationships
among the coefficients:

s 1 3
,31—_5(0114'“2)4'5, Bz—_Z(9a1+5az)+Z§,

3 1 1
Bs=tglartay)—g&, n=+5a-5& (33

Note the important fact that the exponential functahis
needed irF 5,4, While such a factor is absent i,,° and
T,p” in order to satisfy thé-Bl atd=1/2. For example, the
(aBcde)-typeF-Bl tells us that all thé=,,linear terms in
T,,” stay the same witho exponential functiore®:

i
Taby|F:m( Yo 4y + 83 F 3707, (3.4

where the symbol: denotes thé=,,.rlinear part ofT,,”.
As is well known, the &bcde)-type F-BI at d=3/2 gives
the expression folV Fy.q4e In terms of T,,” and F pcq,
where the latter contains the linedis as

i
VancdeIV.]:g 7€* (Vibed) o? V) d5 - (3.5

Here the factore? is involvedvia Eq. (3.2b. On the other
hand, the &bcd)-type T-BI gives the relationship
Rabed va= @1mpcVadat @2 ved) o’ Vidg,  (3.6)
with no exponential factoe® with the J's. When Eqs(3.5
and (3.6) are used in thegBy, d)-type BI, the former pro-
duces an exponential factef’, while the latter doesot In

order to avoid this mismatch, we are forced to $gt0,
which in turnvia Eq. (3.3) implies that

3We do not take the standpoint [i7] that there is no auxiliary
spinorial superfield id=1/2 constraints at least temporarily, for
the sake of argument here.

PHYSICAL REVIEW b4 124016

1 5 5
7=0, a1=3& Pri=—satgé Bo=— g,

,33:+§a2- (3.7

The gravitino superfield equation can be obtained from
the (@B, d)-type BI, by contracting spinorial indices in sev-
eral different ways, which should be consistent with each
other. One way is to multiply this Bl by(y?),”6s” to get
the trace part of the gravitino superfield equation

185 0, 28 5
~ 5 asTaf + 5 ) apVad?=0, (39

while another way is to multiply the same Bl bfy?) 5 to
get

15 P 11 a 8

up to terms, such a¥ or theJ's with fundamental physical
superfields ignored as higher orders. Note that all the
as-dependent terms cancel each other in these equations.
Obviously, Egs.(3.8) and (3.9) lead to the conclusion that
£=0 as the only possible solution. Unfortunately, this is a
trivial solution, because this implies that=0 in Eq. (3.1,

so that® = const. There are also other additional conditions
on the independent parameters in E2}7) we did not men-
tion, that will not change the conclusion here. This is because
they providemore stronger conditions on the unknown pa-
rameters, but they never avoid the conclusien0 above.
Note also that our result here is in agreement with the argu-
ment about the absence of the off-shkBuperfield in[7].

From these considerations, we conclude that the scalar
superfield® embedded intd- 4.4 as the exponent above is
not enough to embed M-theory corrections, as long as the
F-Bls are not modified by Chern-Simons terms.

IV. FERMIONIC «-SYMMETRY AND CHERN-SIMONS
MODIFICATION

We next consider the fermionig-symmetry of super-
membrane actiof12], which justifies our assumptiofi)
about the vanishing constraints atl<0. The standard su-
permembrane action [42]

|Efd30'

1 .
- §E'JkHiAHjBHkCACBA \

1 . 1
+ E\/_gg” 7apl 1211~ >V~ 9

4.1

with the pull-backd1;*=(4,ZM)E,,*, for the superspace co-
ordinatesz™ and the inverse vielbeiBy” in the 11D super-
space we are dealing with. The fermiorisymmetry is dic-
tated by[12]
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E«=(I +r)wﬂ,<ﬁ, 5,.E3=0, only to the variation of the WZNW term in E¢4.3), that are
not simply cancelled by the variation of the kinetic term:

i
[ef= — IK[T.a1T. b7, © aﬁ’ 4.2 1.
g€ itk (Vabe) (4.2 8=+ §6"k(5KEa)HiBijHk5F573a

where §,.E*=(5,ZM)Ey". The general variation formula

ijk O\ TT.BTT. Y11, @
unders,E2=0 is + e (8 ENILPIL L F gy, - (4.9

It is unlikely that new corrections due to other radical and

— J—qqii ay[T.BT. d ) : .
Sl =V=9g" (8 BN "Tg, Ty nonconventional corrections such asE2=0 itself, or due
1 to the addition of some other terms to the actidtself can
+3 ¥ (5 ENIEI, I PFpcp,. (4.3  lead to the fermionia-invariance of the conventional super-

membrane actioi.1), because such corrections occur only
at d<0, which do not seem to communicate with other

The first term is from the variation of the kinetic term, while .
=0 constrainté.

the second one is from the Wess-Zumino-Novikov-Witten
(WZNW) term in Eq.(4.2).

We now study whether the nonzeFoconstraintsF, 4,5
#0, F,5,d#0 atd<O0 are compatible with this fermionic In what follows, we list up some useful algebraic lemmas
symmetry(4.2). Using Eq.(4.3), we easily see that if there and relationships that play decisive roles for our conclusions
are such nontriviaF constraints atl<0, they will contribute in this paper. We start with the Fierz identity

V. USEFUL ALGEBRAIC LEMMAS

1 a b a b 3 1 c cd 1 [a] |b] 1 as bp c
Zl(y )@Y ) yoPap= T (¥ ap(¥") ys gRab™ zg7avf, +(Yan) ap( ¥ ys 969l A, ~ 7% 9 A,

1 1
( L4 ]a) aB( 7[4] )‘}/5( 576Aa b™ 5 76077abA ) (51)

whereA, , are any arbitrary symmetric tensor superfield. In a similar fashion for an arbitrary tensor sugyfigidith the
propertyB, pc=—Bacn, We have

bC) bC)

i
4_8( Y (sl (Y°)|y5)Bapc= + %[(7’&) (79 57 (¥°9) (¥ 151 (9Ba be— B ca= Be.ab™ 7ab|Ba. i)

i [4]a bc 1 d
+ m(?’ )ap(Y1a1"") ys| Babc— Bb.ca= Beab™ 5 NarbBd, |q]

[2]abo)

1 152[(7 D ap(¥i2*9) ys+ (v «g(Y127) ys]Brabel - (5.2

Similarly, for any arbitrary tensor superfields with the properfigs.q= + Acqg ab= (1/4)Arabi (cd] » Arab,cd;= 05 Aab,ab= 0, we
have

1 ab cd 1 a b c 1 ab cd cd c d [c] |d]e
%(7 ) (ap (Y )|y6)Aab,cd:+ﬂ('y )ap( V") ysPach +%(7 ) (YD) yol OAab, "+ Ara)® 0] — Ml Abe, ]
1 cd c d [c| |d]e
2304(7 ) 8 Via1ed) yol = 4Aab S0 AAC 15+ S A b, E]. (5.3
For an arbitrary tensor superfieR} p _p, with the totally antisymmetric indicels; ...bs, we have
4One can, of course, give up such fermiomisymmetry of the supermembrane acti@ghl) entirely, but we do not argue about the

“legitimacy” of fermionic symmetry itself in this paper.
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1 1 1 1
2,880 ") sl 7*DyoBars =+ 5760 7 asl 7'°°1'"°4)75[98a»bc1v-~~c4‘ 2. 7a0b1Ba ey o F 2_48[b|,a|61‘“°4]}

1 ab cdy---d 1 e 1
- %(7 )ap( Yo" ") 36 Bacayd, ™ 300 7alclBe, layd0 T 5 Brel alay -y

1
+ 755 asOF7) B oo H[(F%) 4 terms, (5.4

where we have omitted the terms with the structure ofwhich combined with the vanishing of the first and second
(y[s])aﬁ, because they are independent from the terms exines of the RHS of Eq(5.4) implies immediaterBa’bl...b5

plicitly given here, and moreover, they are too messy whose- 0. This is due to the difference in the coefficient in the first

structures are not decisive for our lemma below. terms in these two sectors.
Using Egs.(5.1)—(5.4), we can get the following impor-
tant lemmas:
Lemma 1:If the left-hand side (LHS) of Eq. (5.1) vanishes, V1. CONCLUDING REMARKS
then it follows that: In this paper, we have shown that te=0 F-BI cannot

be satisfied by any correction of the type/at’)aﬁxabc or
(595 S aa A . é )
i(y 5)aﬁxal...615 in dimension zero supertorsion con

Lemma 2:The vanishing of the LHS of Eq. (5.2) implies thatstraint T,,z°, based on the two assumptiori$) M-theory
the following two conditions hold: corrections toF-superfield strength ad<<O are absent(ii)
g the T and F-Bls are not modified by Chern-Simons terms.
9Ba e Bbca=Bcab™ 7ap/Ba,"1g=0. (5.6  Additionally, we relied upon the “conventional constraints”
that relate and delete unnecessary freedom in the expansion
of E, and E;. These conventional constraints restrict the
structure of corrections i ,z°, such that the one-gamma
termi(y©) 4z in T, 4 receives no corrections, while theé?!
B, pe=0. (5.7 or ¥ terms can, satisfying the conditions in E8.7). We
' have seen that this result is valid f6rBl without Chern-
Lemma 3:The vanishing of the LHS of Eq. (5.4) implies that Simons modifications.
Subsequently, we have also analyzed the Big=ai, and
obtained some conditions on the constraintsTgg”, T .;°,
) .andF .4, at least for the case that tire Bls are not modi-
Some remarks are in order for these lemmas: FirSljoqy py Chern-Simons terms. In particular, we have found
Lemma 1 is based on the fact that each sector of differen} o F* ' —0 in order to satisfy the matching exponential
structure ofy matrlce§ in Eq(5.1) for the two pair of indices functionse® in the (287, 8)-type Bl atd=3/2. On the other
op a_n_d 9 Is 10 be mdependentcly zero. This leads to thehand, the consistency of gravitino superfield equation out of
corldmon (3/8Ra 5~ (1/48)77apAc,"=0, Whose trace gives o qame 48+, 5)-type BI leads to the condition of vanish-
A;,"=0, which in turn yieldsA, =0, when resubstituted .. oty §=0, leading to the trivial solutior = const. This
¥alidates our conclusion, because this scalar superfield

under Eq._(E;].Z),h because we can req“';e eacbrl of thedtwowas the only possible modification dt=0. In other words,
sectors with they-matrix structures %) ap(v™),s and  yhe mogification of the constrair ,zcq at d=0 is not

[2] ab ich i . .
(7N ap(712"") 56 Should vanish independently. Note here g, ,qh for embedding M-theory corrections.
that a simple contraction of two indices in E.6a does As has been mentioned, our result is not so surprising, but

not lead toB®, ,=0, due to the vanishing trace component. reagonable enough from the following viewpoints. Namely,
We did not write the condition of vanishing of the secondpe only Fierz identity of the formi[m])(aﬁ(y["])ya) is noth-

line on the RHS of Eq(5.2), because it is just a necessary jng other than Eq(2.11). This is also understandable from
condition of the condition$5.63 and (5.60. We also men-  he tact that theé-BI (2.3 atd=0 has four spinorial indices
tion that the well-known identity2.11) is nothing more than 54 one vectorial index as free indices, and therefore the
a special case dB, p.= 7apv ) Satisfying both Eqs(5.68  yanishing of Eq(2.3) gives such a strong condition as all the

and(5.6b). Third, Lemma 3 is straightforward, because eaChcomponents inJ’s and X's are zero, except for the singlet
sector in the RHS of Eq(5.4) is to vanish independently. A in U e
abca-

The last sector with £2)) ,5(112)") 5 yields Our main conclusion in this paper can be bypassed by
a _ avoiding at least one of the two assumptioins and (ii)
Ba, bl"'b4_0’ (5.9 above. The assumptidin seems very difficult to avoid, due

Aa’b=0.

Ba,bc+ Bb,ca+ Bc,abzo- (5.6b

In particular, when B #,=0, it follows that

Ba'bl...b5=0. (58)
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to the fermionic symmetry of supermembrane action that We believe that not only the conclusion presented in this
seems to prevent the introduction of aRyconstraints atl paper, but also the technical ingredient of Fierz identities will
<0. On the other hand, the assumpti@n is also difficult, be of great importance in the future, for exploring any pos-

because there has been no other known example of sugible M-theory corrections into 11D superspace supergravity.
supertorsionT-Bls modified by Chern-Simons terms. We
mention also that our result here doest contradict the

works in[8], because th&-Bls we dealt with in our paper ACKNOWLEDGMENTS
have not been analyzed explicitly fiB]. In fact, a statement
about the necessity of tie constraints atl<0 was given in We are grateful to S. J. Gates, Jr., U. Gran, and B. E. W.

[8] without explicit proof. Our result in this paper provides a Nilsson for considerable help and discussions for crucial
supporting proof with evidence for this statement, in terms ofpoints in this paper. This work is supported in part by NSF

explicit computation of thé--Bl at d=0. Grant No. PHY-98-02551.
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