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Note on embedding of M-theory corrections into eleven-dimensional superspace
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By analyzing eleven-dimensional superspace fourth-rank superfield strengthF-Bianchi identities, we show
that M-theory corrections to eleven-dimensional supergravity cannot be embedded into the mass dimension
zero constraints, such as the (gab)abXab

c or i (ga1¯a5)abXa1¯a5

c terms in the supertorsion constraintTab
c.

The only possible modification of the superspace constraint at dimension zero is found to be the scaling of
Fabcd like Fabcd5(1/2)(gcd)abeF for some real scalar superfieldF, which alone is further shown not to
embed general M-theory corrections enough. This conclusion is based on the dimension zeroF-Bianchi
identity under the two assumptions:~i! There are no negative dimensional constraints on theF-superfield
strength,Fabgd5Fabgd50; ~ii ! the supertorsionT-Bianchi identities andF-Bianchi identities are not modified
by Chern-Simons terms. Our result can serve as a powerful tool for future exploration of M-theory corrections
embedded into eleven-dimensional superspace supergravity.
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I. INTRODUCTION

If M theory @1# unifies superstring theories@2#, such as
type-I, heterotic and type-IIA superstring theories, and
low energy limit is described by eleven-dimensional~11D!
supergravity@3#, it is natural to expect that there must b
high energy corrections to 11D supergravity compatible w
the supergravity formulation itself, just as superstring corr
tions can be embedded into 10D supergravity@2,4#. Based on
this principle, there have been attempts to embed s
M-theory corrections into 11D supergravity, such as in
component formulation@5#, as well as in the superspace fo
mulation @6–9#.

In superspace formulation@7,8#, it is so far commonly
believed or expected that such M-theory corrections are m
likely embedded into the generalized symmetric matrix co
ponents of the mass dimension zero (d50) supertorsion
component Tab

c, such as (gab)abXab
c or

i (ga1¯a5)abXa1¯a5

c with some appropriate superfieldsXab
c

or Xa1¯a5

c @7,8,10#. However, it is not clear whether w

need only the corrections ofTab
c or Fabcd at d50 alone for

embedding M-theory corrections, or we also need any ne
tive dimensional (d,0) constraints, such asFabgd or Fabgd
for such modifications forF-Bianchi identities~BIs!.

In this paper, we will present a ‘‘no-go theorem’’ for em
bedding M-theory corrections into constraints for supersp
BIs with modified constraints only atd50. We will show
that thed50 corrections of constraints are not enough
embedding M-theory corrections into 11D superspace su
gravity. Our conclusion is based on two assumptions:~i! All
the F-superfield strength constraints atd,0 vanish;~ii ! the
supertorsionT-BIs and F-BIs are not modified by Chern
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Simons terms. In addition to these assumptions, our con
sion also relies on the so-called ‘‘conventional constrain
that relate various superfields in the most general expans
of the superspace derivatives:Ea andEa @9#. These conven-
tional constraints are restrictive, e.g., the one-gamma term
Tab

c is only the standard one:i (gc)ab , while the two-
gamma term (gde)abXde

c and the five-gamma term
(gd1¯d5)abXd1¯d5

c corrections are of a general form. Fu

thermore, theX’s themselves are restricted, e.g.,Xab
b50,

etc., as will be shown later.
A statement for the necessity of theF-constraints atd

,0 has been given in@8#, but without any proof. In the
present paper, we provide explicit evidence for that cla
By studying theF-BI at d50, we show that, as long as th
F-constraints atd,0 are absent, there can beno such cor-
rections as (gde)abXde

c or (gd1¯d5)abXd1¯d5

c possible in

Tab
c other than the standard one-gamma term that can

bed M-theory corrections.

II. SOLVING F -BI AT dÄ0

We first give the most important part of our results he
namely we analyze whether thed50 F-BI of the type
(abgde)

1

6
¹ (aFbgd)e1¹eFabgd2

1

6
Te(au

fF f ubgd)2
1

6
Te(au

hFhubgd)

2
1

4
T(abu

fF f ugd)e2
1

4
T(abu

hFhugd)e[0 ~2.1!

allows any nontrivial solution possible for embeddin
M-theory corrections@8#. For simplicity ~as the assumption
of our ‘‘no-go theorem’’!, we set thed,0 F-constraints to
zero:

Fabgd50, Fabgd50. ~2.2!
©2001 The American Physical Society16-1
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Accordingly, there remains only one term in Eq.~2.1! at d
50:

T(abu
fF f ugd)e[0. ~2.3!

It is now a purely algebraic question whether there can
any nontrivial solution to Eq.~2.3!, when we postulate

Tab
c5 i ~gc!ab1

1

2
~gab!abXab

c1
i

120
~ga1¯a5!abXa1¯a5

c,

~2.4!

for the d50 supertorsion constraint forTab
c @8#. Here we

have no corrections for the first one-gamma term, due to
‘‘conventional constraints’’ relatingEa and Ea as in Eqs.
~24! and~25! in @9#. On the other hand,Xab

c andXa1¯a5

c are
some appropriate superfields that can possibly em
M-theory corrections@7,8#. Accordingly, we need to put the
most general corrections also into thed50 F-constraint1

Fabcd5 i ~ge!abUecd1
1

2
~ge f!abUe f cd

1
i

120
~g@5#!abU @5#cd . ~2.5!

In particular, the lowest order on-shell physical superfi
constraint in@11# corresponds to the special case of

Fabcd51
1

2
~gcd!ab , Uabcd51

1

4
ha[chd]b , ~2.6!

with Uabc5Ua1¯a5bc50. Since we are considerin
M-theory corrections, theseX andU-superfields can be dea
as perturbation, namely we can first consider the satisfac
of the BI ~2.3! at the linear order, temporarily ignoring th
bilinear order~cross terms!. For this reason, we concentra
on the analysis at the linear order in terms ofX’s andU’s.

Based on the fluctuation analysis@9#, we can impose on
the X’s the following ‘‘conventional constraints:’’

Xab
b50, X@abc#50, Xa1¯a4b

b50, X@a1¯a5b#50.
~2.7!

Under these constraints,Xab
c has only 429 degrees of free

dom, whileX@5#
c has 4290 degrees of freedom. These c

straints are analogous to the familiar torsion constraintTab
c

50 commonly used in superspace, which does not de
any degrees of freedom. To be more specific, we saw in
fluctuation analysis in@9# that some components of supe
field Da

b @9# entering inEa[Ea
M]M can be expressed i

terms ofHa
b under Eq.~2.7!:

Ea5C1/2H expS 1

2
D D J

a

b

~Db1Hb
m]m!, ~2.8a!

1In this paper, the symbol@n# in general denotes the total antisym
metrization of n indices, e.g., (g@5#)ab(g@5#)gd

[(ga1¯a5)ab(ga1¯a5
)gd .
12401
e

e

d

d

n

-

te
e

Da
b[F iCaga1

1

2
Cabgab1

i

6
C@3#g@3#1

1

24
C@4#g@4#

1
i

120
C@5#g@5#G

a

b

, ~2.8b!

Xab
c5

1

16
@~gab!

gdDgHd
c116d [a

cCb]216Cab
c#,

~2.8c!

Xa1¯a5

c5
1

16F i ~ga1¯a5
!gdDgHd

c1
2

3
d [a1

cCa2¯a5]

1
2

15
ec

a1¯a5

@5#C@5#G . ~2.8d!

As seen from Eqs.~2.8c! and~2.8d!, the constraints~2.7! are
just equivalent to determiningC@1#, C@3#, C@4# andC@5# in
terms only ofHa

b @9#. This situation is similar to the con
straint Tab

c50 in order to express the Lorentz connecti
fma

b in terms of the vielbeinea
m. Therefore we stress tha

there is no loss of degrees of freedom under the covar
constraints~2.7!.

The original tensor superfieldsX’s or U’s are reduced into
more fundamental irreducible components. For example,
original Uabc has 605 components considering their symm
tries, which can be decomposed intoUabc5Aabc

$429%1Aabc
$165%

1ha[bAc]
$11% , whereAabc

$165% is totally antisymmetric, while the
429part is traceless:A$429%

a
a

c50, as the remainder degree
of freedom are out of the original 113555605 components.
In a similar fashion, we can decompose the rest ofU’s as

Uabc51Aabc
$429%1Aabc

$165%1ha[bAc]
$11% ,

Uab
cd51Aab

$2,574%cd1Aab
$330%cd1d@au

@cuAub]
$65%ud]1d@au

@cuAub]
$55%ud]

1d@au
@cud ub]

ud]A$1%,

Ua1¯a5bc51Aa1¯a5bc
$17,160% 1

1

120
ea1¯a5@bu

d1¯d5Ad1¯d5uc]
$4,290%

1h@bu@a1uAua2¯a5] uc]
$3,003% 1h@bu@a1uAua2¯a5] uc]

$462%

1
1

24
ea1¯a5bc

@4#B@4#
$330%1hb@a1uh ua2ucBua3a4a5]

$165% .

~2.9!

Substituting each irreducible component back into E
~2.3!, we get the set of algebraic conditions to be satisfied
each irreducible components:

i ~gd!(abu~gde! ugd)A$1%50, ~2.10a!

~gd!(abu~g@du! ugd)Aue]
$11%50, ~2.10b!

i ~ga!(abu~gbc! ugd)@ha@buAuc]e
$55%2he@buAuc]a

$55%#50,
~2.10c!
6-2
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i ~ga!~abu~gbc! ugd)@ha@buAuc]e
$65%2he@buAuc]a

$65%#50,
~2.10d!

~gd!~abu~gde
@3#! ugd)B@3#

$165%50, ~2.10e!

i

2
~gd!~abu~gab! ugd)Aabde

$330%

2
1

24

1

120
~gd!~abu~g@5#! ugd)e@5#de

@4#B@4#
$330%50,

~2.10f!

2~ga!~abu~gb! ugd)Aabe
$429%1

1

4
~gab!~abu~gde! ugd)Xab

d50,

~2.10g!

~gd!~abu~gb@4#! ugd)h@dubA@4#ue]
$462% 50, ~2.10h!

i ~gd!~abu~gab! ugd)Aabde
$2,574%50, ~2.10i!

i ~gd!~abu~gb@4#! ugd)h@dubA@4#e
$3,003%50, ~2.10j!

1

120
~gd!~abu~g@5#! ugd)e@5#@du

@5#8A@5#8ue]
$4,290%

1
i

2
~g@5#!~abu~gde! ugd)X@5#

d50, ~2.10k!

~gd!(abu~g@5#! ugd)A@5#de
$17,160%50. ~2.10l!

The conceptually important ingredient here is that differ
irreducible components in Eq.~2.10!, such as165 vs 2574
will not interfere with each other. Moreover,Aabcd

$330% and
Babcd

$330% in Eq. ~2.10f!, Aabc
$429% and Xab

c in Eq. ~2.10g!, or
A@5#a

$4,290% and X@5#
c in Eq. ~2.10k! are proportional to each

other.
From now on, we use heavily the Fierz-type identiti

~5.1!–~5.4! and Lemmas~5.5!–~5.8! that will be given sepa-
rately in Sec. VI. We start with Eq.~2.10a!. This condition is
identically satisfied for arbitraryA$1% due to the well-known
Fierz identity in 11D

~gab!(abu~gb) ugd)[0. ~2.11!

Next, due to Lemma 2 in Eq.~5.5!, Eq. ~2.10b! implies that

Aa
$11%50. ~2.12!

Equations ~2.10c! and ~2.10d! satisfy the assumption o
Lemma 2, whenBa,bc is identified with

Ba,bc→hacAbe
$n%2habAce

$n%2hecAba
$n%1hebAca

$n%

~2.13!

both forn555 andn566. Here we use the ‘‘arrow’’ symbo
instead of ‘‘equality,’’ due to the free indexe, while Ba,bc on
the left-hand side~LHS! can be arbitrary including any suc
‘‘free’’ index. Therefore corresponding to Eq.~5.6a!, we get
the condition
12401
t

ha[bAc]e
$n%28he[bAc]a

$n% 1heaA@bc#
$n% 2he@bu~Aauc]

$n% 1Auc]a
$n% !50,

~2.14!

both for n555 andn566. Now the ae and ce contractions
respectively yield

Abc
$55%50, Abc

$66%50. ~2.15!

Equations~2.10e!, ~2.10h!, ~2.10j!, and~2.10l! are solved
based on Lemma 3 in Eq.~5.8!, namely they imply nothing
other than the vanishing of

B@3#
$165%50, A@4#a

$462%50, A@4#a
$3,003%50 A@5#ab

$17,160%50.
~2.16!

Equation ~2.10f! is understood as a sum of Eqs. (5.
1(5.4), whenBa,bc andBa,@5# are identified with

Ba,bc→24Abcae
$330% , Ba,@5#→2e@5#ae

@4#B@4#
$330% . ~2.17!

The like terms of the types (ga)ab(g@5#)gd and
(g@2#)ab(g@2#8)gd in the sum~5.2! 1 ~5.4! yield respectively
the conditions

9Ba,bc1¯c4
2

1

24
ha@buBd,

d
@c1¯c4#1

1

24
B@bu,auc1¯c4#50,

~2.18a!

Ba,
a

@4#50, ~2.18b!

both of which have contributions only fromBa,@5# . Equation
~2.18b! deletes the middle term in Eq.~2.18a!. Other
nontrivial-like terms are of the type (g@2#)ab(g@6#)gd , which
have contributions both from theBa,bc and Ba,@4# terms,
yielding the condition

5

2
~da

cdb
d2db

cda
d!B@ f ,gh#2

1

30
eb

cde@4#
f ghBa,e@4#50.

~2.19!

Now if we look into only the@abcd# component of this equa
tion, and multiply it byecd

abghk1¯k5, we get the condition

Bf ,k1¯k5
50, ~2.20!

up to terms that vanish upon using Eq.~2.18b!. This implies
consistently with Eq.~2.18! that

Ba,b1¯b5
50⇒B@4#

$330%50. ~2.21!

Now onceB$330%’s does not contribute, then only the firs
term in Eq. ~2.10f! remains, which in turn impliesvia Eq.
~5.7! in Lemma 2 that

Aabcd
$330%50, ~2.22!

becauseA$330%
ac

a
d50 manifestly, upon the identification

Ba,bc→Abcad
$330% .

Equation~2.10i! has theg-matrix structure of Eq.~5.2!
with Ba,bc identified with
6-3
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Ba,bc→Abcea
$2,574% , Ba,

a
c→Aace

$2,574% a50, ~2.23!

so that the assumption of Eq.~5.7! in Lemma 2 is satisfied
and thereforeBa,bc50, i.e.,

Abcea
$2,574%50. ~2.24!

At this stage, Eqs.~2.10g! and ~2.10k! are the only re-
maining conditions to be solved. Equation~2.10g! is re-
12401
garded as the sum~5.1! 1 ~5.3!, whenAa,b for the former
andAab,cd for the latter are respectively identified with

Aa,b→224Aabe
$429% , Aab,

cd→26he@auX
cd

ub]26de
[cXab

d] .
~2.25!

Accordingly, it is convenient to rewrite these Eqs.~5.1!
1 ~5.3! in terms ofAa,b andAab,cd instead ofA’s:
1

24
~ga!(abu~gb! ugd)Aa,b1

1

96
~gab!(abu~gcd! ugd)Aab,cd

51
1

48
~ga!ab~gb!gd~18Aa,b2habAc,

c12Aac,b
c!1

1

96
~gab!ab~gcd!gdF1d@au

@cuAub]
ud]2

1

2
d@a

cdb]
dAf ,

f

19Aab,
cd1

1

2
A@au

@cu
,ub]

ud]2d@au
@cuAub] f ,

ud] f G1
1

5,760
~g@3#ab!ab~g@3#

cd!gdF1
5

2
d [a

[cAb],
d]

2
1

2
d [a

cdb]
dAf ,

f210Aab,
cd25A@au

@cu
,ub]

ud]1
5

2
d [au

@cuAub] f ,
ud] f G50. ~2.26!

Since each of the differentg-matrix structure is independent, we have the following three conditions:

18Aa,b2habAc,
c12Aac,b

c50, ~2.27a!

d@au
@cuAub]

ud]2
1

2
d [a

cdb]
dAf ,

f19Aab,cd1
1

2
A@au

@cu
,ub]

ud]2d@au
@cuAub] f ,

ud] f50, ~2.27b!

5

2
d [a

[cAb],
d]2

1

2
d [a

cdb]
dAf ,

f210Aab,cd25A@au
@cu

,ub]
ud]1

5

2
d@au

@cuAub] f ,
ud] f50. ~2.27c!
l

-

Obviously, Eq.~2.27a! implies thatAa,
a50, already satisfied

by the tracelessness ofAabc
$429% . Using this back in Eq.~2.27a!

implies that

9Aa,b1Aac,b
c50. ~2.28!

On the other hand, by contracting thebd indices in Eq.
~2.27b!, we get

9Aa,
c27Aab,c

b50. ~2.29!

Obviously, Eqs.~2.29! and ~2.28! lead toAab50, Aab
cb50,

which via Eqs. ~2.27b! and ~2.27c! implies also thatAabcd
50. Therefore we get

Aa,b50⇒Aabc
$429%50, ~2.30a!
Aab,cd50⇒Xab
c50. ~2.30b!

We are now left with the condition~2.10k!. As mentioned
before, we can regardA@5#a

$4,290% and X@5#
c as proportional to

each other:A@5#a
$4,290%5constX@5#a . Then finding a nontrivial

solution for Eq.~2.10k! is equivalent to deducing a nontrivia
solution for the unknown parametersa and b other thana
5b50 in the equality

ia~gd!~abu~g@du
@5#! ugd)X@5#ue1 ib~g@5#!~abu~gde! ugdX@5#

d50,
~2.31!

for an arbitraryX@5#
cÞ0. The simplest way to get more ex

plicit conditions from Eq.~2.31! is to multiply it by (gab)ab,
and contract the indicesab:
6-4
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~gab!ab@LHS of Eq. ~2.31!abgd#5120i ~3a1b!

3~g@au@4#!gdX@4#
ub]

e28i ~a15b!de
@au~g@5#!gdX@5#

ub]

140i ~a2b!~ge
@4#!gdX@4#

@ab#140ib~g@4#@au!gdX@4#e
ub]

50. ~2.32!

We next multiply Eq.~2.32! by (gb)e
g, to get the only solu-

tions a5b50 as

~60a128b!~ga@5#!edX@5#e1~40a18b!~ge@5#!edX@5#a

1~320a1160b!~g@4#!edX@4#
ae50⇒a5b50.

~2.33!

This is because theg@4# term yields 2a1b50, while the
multiplication of the g@6# terms by iga yields 25a111b
50. Therefore the only solutions to the condition~2.10k! are

A@5#a
$4,290%50, X@5#

c50. ~2.34!

Collecting all the results above, i.e., Eqs.~2.12!, ~2.15!,
~2.16!, ~2.21!, ~2.22!, ~2.24!, ~2.30!, and~2.34!, we reach the
conclusion that among all the components ofU’s entering
Eq. ~2.5!, except forthe singlet componentA$1% in Eq. ~2.9!,
as well as all theX’s in Eq. ~2.4!, should be zero, in order to
satisfy theF-BI ~2.1! at d50 under the conditions~2.2!.
Therefore, the only possible form forFabcd is

Fabcd512~gcd!abA$1%1 i ~gb!abAbcd
$165% . ~2.35!

The remaining componentAabc
$165% here is due to the fact tha

this component doesnot enter any of the conditions in Eq
~2.10!. In other words, we can still have a term proportion
to Aabc

$165% in Eq. ~2.35!.
However, we point out some degrees of freedom of sup

field redefinition of the potential superfieldAABC . This is
associated with the definition of the superfield stren
FABCD . In fact, consider the shift2

Aabc→Aabc1Aabc
$165% , ~2.36!

keeping other components amongAABC intact. This can ab-
sorb theA$165% term in Eq. ~2.35!, while any of the con-
straints atd,0 in Eq. ~2.2! are maintained. For example fo
Fabgd , we have

Fabgd[
1

6
¹ (aAbgd)2

1

4
T~abu

eAeugd)2
1

4
T~abu

eAeugd) ,

~2.37!

which is intact under the shift~2.36!. The same is also true
for Fabgd , which we skip here.

Based on these results and considerations, we conc
that the only degree of freedom possibly embedd
M-theory corrections for the superspace constraints atd50

2Notice the crucial difference of the symbolA’s from A’s which
should not be confused with the former.
12401
l

r-

h

de
g

is the singlet componentA$1% in Eq. ~2.35!, which implies
that Fabcd can be only of the form

Fabcd5
1

2
~gcd!abeF ~2.38!

proportional to the on-shell physical superfield constra
@11#, scaled by some real scalar superfieldF.

We mention here the importance of the conventional c
straints ~2.7!. If these constraintswere not imposed, we
would have such corrections as

Tab
c5 i ~gc!ab1 i ~Mgc!~ab! ,

Fabcd5
1

2
~gcd!ab1

1

2
~Mgcd!~ab! , ~2.39!

for an arbitrary 32332 matrix Ma
b satisfying Eq.~2.3! at

the linear order inM. However, these corrections cannot em
bed M-theory corrections, because they contribute as red
dant degrees of freedom. We can also show that the gra
tional superfield equation will not be modified at the line
order inM, because the (abc,d)-type BI is not modified by
M. Therefore, such a matrixM is not enough for embedding
M-theory corrections. We skip the details here, leaving th
for a future publication.

Our analysis so far is concerned only with the linear ord
terms in Eq.~2.3! in the fluctuations inFabcd andTab

c for
M-theory corrections. However, even if we include th
bilinear-order terms in Eq.~2.3!, our conclusion above re
mains intact. In other words, the linear-order satisfaction
theF-BI at d50 only by the limited form~2.38! will not be
affected by the inclusion of next bilinear order terms. To p
it differently, once the most general correction of theFabcd
has been determined as in Eq.~2.3! at the linear order, in
particular with no corrections forTab

c, then it is straightfor-
ward to confirm that Eq.~2.38! satisfies also theF-BI at d
50 to ‘‘all orders’’ in the expansion in terms ofF, because
the only correction is just a scaling ofFabcd , while there is
no derivative involved in thed50 BI ~2.3!.

This ‘‘no-go theorem’’ established here is not so surpr
ing from the viewpoint that Eq.~2.11! is the only available
Fierz identity of the type (g@m#)(abu(g

@n#) ugd)50 allowing
arbitrary integersm andn. In other words, such conditions a
Eq. ~2.3! has too many free indices to allow more degrees
freedom other than the singlet componentA$1% as in Eq.
~2.10a!.

III. EFFECT OF SCALAR SUPERFIELD F

We have seen that the only possible correction of sup
space constraints atd50 is the scaling ofFabcd in Eq.
~2.38! by a real scalar superfieldF. The next question is
what sort of M-theory corrections can be embedded into
scalar superfieldF.

The answer can be easily deduced from dimensional c
siderations. First, since the scalar superfieldF is atd50, its
spinorial derivative enters into thed51/2 constraintsTab

g,
6-5
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Tab
c, andFabcd . Therefore we have again the spinorial s

perfieldJa @6# related toF by3

¹aF[jJa , ~3.1!

with an appropriate constantj like in Refs. @9,6#. The most
general forms for these constraints are now

Tab
c5a1db

cJa1a2~gb
c!a

bJb , ~3.2a!

Fabcd5 iheF~gbcd!a
bJb , ~3.2b!

Tab
g5b1d~a

gJb)1b2~ga!ab~ga!gdJd

1b3~g@2#!ab~g@2#!
gdJd , ~3.2c!

with the unknown coefficientsa1 ,a2 ,h,b1 ,b2 ,b3 . The sat-
isfaction of d51/2 BIs yields the following relationship
among the coefficients:

b152
5

2
~a11a2!1j, b252

1

4
~9a115a2!1

3

4
j,

b351
3

8
~a11a2!2

1

8
j, h51

3

2
a12

1

2
j. ~3.3!

Note the important fact that the exponential functioneF is
needed inFabgd , while such a factor is absent inTab

c and
Tab

g in order to satisfy theF-BI at d51/2. For example, the
(abcde)-typeF-BI tells us that all theFabcd-linear terms in
Tab

g stay the same withno exponential functioneF:

Tab
guF5

i

144
~gb

@4#F @4#18g@3#Fb@3#!a
g, ~3.4!

where the symboluF denotes theFabcd-linear part ofTab
g.

As is well known, the (abcde)-type F-BI at d53/2 gives
the expression for¹aFbcde in terms of Tab

g and Fabcd ,
where the latter contains the linearJ’s as

¹aFbcdeu¹J5
i

6
heF~g@bcdu!a

b¹ ue]Jb . ~3.5!

Here the factoreF is involved via Eq. ~3.2b!. On the other
hand, the (abcd)-type T-BI gives the relationship

Rabcdu¹J5a1hb[c¹d]Ja1a2~gcd!a
b¹bJb , ~3.6!

with no exponential factoreF with the J’s. When Eqs.~3.5!
and ~3.6! are used in the (abg,d)-type BI, the former pro-
duces an exponential factoreF, while the latter doesnot. In
order to avoid this mismatch, we are forced to seth50,
which in turnvia Eq. ~3.3! implies that

3We do not take the standpoint in@7# that there is no auxiliary
spinorial superfield ind51/2 constraints at least temporarily, fo
the sake of argument here.
12401
-
h50, a15

1

3
j, b152

5

2
a21

1

6
j, b252

5

4
a2 ,

b351
3

8
a2 . ~3.7!

The gravitino superfield equation can be obtained fr
the (abg,d)-type BI, by contracting spinorial indices in sev
eral different ways, which should be consistent with ea
other. One way is to multiply this BI byi (ga)a

bdd
g to get

the trace part of the gravitino superfield equation

2
185

8
~gab!abTab

b1
23i

6
j~ga!ab¹aJb50, ~3.8!

while another way is to multiply the same BI byi (ga)d
g to

get

15

8
~gab!abTab

b1
11i

6
j~ga!ab¹aJb50, ~3.9!

up to terms, such asJ2 or theJ’s with fundamental physica
superfields ignored as higher orders. Note that all
a2-dependent terms cancel each other in these equat
Obviously, Eqs.~3.8! and ~3.9! lead to the conclusion tha
j50 as the only possible solution. Unfortunately, this is
trivial solution, because this implies thatJa50 in Eq. ~3.1!,
so thatF5const. There are also other additional conditio
on the independent parameters in Eq.~3.7! we did not men-
tion, that will not change the conclusion here. This is beca
they providemore stronger conditions on the unknown p
rameters, but they never avoid the conclusionj50 above.
Note also that our result here is in agreement with the ar
ment about the absence of the off-shellJ-superfield in@7#.

From these considerations, we conclude that the sc
superfieldF embedded intoFabcd as the exponent above i
not enough to embed M-theory corrections, as long as
F-BIs are not modified by Chern-Simons terms.

IV. FERMIONIC k-SYMMETRY AND CHERN-SIMONS
MODIFICATION

We next consider the fermionick-symmetry of super-
membrane action@12#, which justifies our assumption~i!
about the vanishingF constraints atd,0. The standard su
permembrane action is@12#

I[E d3sF1
1

2
A2ggi j habP i

aP j
b2

1

2
A2g

2
1

3
e i jkP i

AP j
BPk

CACBAG , ~4.1!

with the pull-backsP i
A[(] iZ

M)EM
A, for the superspace co

ordinatesZM and the inverse vielbeinEM
A in the 11D super-

space we are dealing with. The fermionick-symmetry is dic-
tated by@12#
6-6



le
en

nd

r-
ly

as
ons

NOTE ON EMBEDDING OF M-THEORY . . . PHYSICAL REVIEW D64 124016
dkEa5~ I 1G!a
bkb, dkEa50,

Gab[
i

6
e i jkP i

aP j
bPk

c~gabc!
ab, ~4.2!

where dkEA[(dkZM)EM
A. The general variation formula

underdkEa50 is

dkI 5A2ggi j ~dkEa!P i
BTBa

dP jd

1
1

3
e i jk~dkEa!P i

BP j
CPk

DFDCBa . ~4.3!

The first term is from the variation of the kinetic term, whi
the second one is from the Wess-Zumino-Novikov-Witt
~WZNW! term in Eq.~4.1!.

We now study whether the nonzeroF constraintsFabgd
Þ0, FabgdÞ0 at d,0 are compatible with this fermionic
symmetry~4.2!. Using Eq.~4.3!, we easily see that if there
are such nontrivialF constraints atd,0, they will contribute
12401
only to the variation of the WZNW term in Eq.~4.3!, that are
not simply cancelled by the variation of the kinetic term:

dkI 51
1

3
e i jk~dkEa!P i

bP j
gPk

dFdgba

1e i jk~dkEa!P i
bP j

gPk
dFdgba . ~4.4!

It is unlikely that new corrections due to other radical a
nonconventional corrections such asdkEa50 itself, or due
to the addition of some other terms to the actionI itself can
lead to the fermionick-invariance of the conventional supe
membrane action~4.1!, because such corrections occur on
at d,0, which do not seem to communicate with otherd
>0 constraints.4

V. USEFUL ALGEBRAIC LEMMAS

In what follows, we list up some useful algebraic lemm
and relationships that play decisive roles for our conclusi
in this paper. We start with the Fierz identity
e

1

24
~ga!~abu~gb! ugd)Aa,b51~ga!ab~gb!gdS 3

8
Aa,b2

1

48
habAc,

cD1~gab!ab~gcd!gdF 1

96
d@cu

@auAud],
ub]2

1

192
d@c

add]
bAc,

cG
1~g@4#a!ab~g@4#

b!gdS 1

576
Aa,b2

1

5,760
habAc,

cD , ~5.1!

whereAa,b are any arbitrary symmetric tensor superfield. In a similar fashion for an arbitrary tensor superfieldBa,bc with the
propertyBa,bc52Ba,cb , we have

i

48
~ga!~abu~gbc! ugd)Ba,bc51

i

96
@~ga!ab~gbc!gd1~gbc!ab~ga!gd#~9Ba,bc2Bb,ca2Bc,ab2ha@buBd,

d
uc] !

1
i

2,304
~g@4#a!ab~g@4#

bc!gdS Ba,bc2Bb,ca2Bc,ab2
1

5
ha@buBd,

d
uc] D

1
i

1,152
@~g@2#!ab~g@2#

abc!gd1~g@2#abc!ab~g@2#!gd#B@a,bc# . ~5.2!

Similarly, for any arbitrary tensor superfields with the propertiesAab,cd51Acd,ab5(1/4)A@ab#,@cd# , A@ab,cd#50, Aab,
ab50, we

have

1

96
~gab!~abu~gcd! ugd)Aab,cd51

1

24
~ga!ab~gb!gdAac,b

c1
1

96
~gab!ab~gcd!gd@9Aab,

cd1A@au
c
,ub]

d2h@au
@cuAub]e,

ud]e#

1
1

2,304
~g@3#ab!ab~g@3#cd!gd@24Aab,

cd24A@au
c
,ub]

d1d@au
@cuAub]e,

ud]e#. ~5.3!

For an arbitrary tensor superfieldBa,b1 ...b5
with the totally antisymmetric indicesb1 ...b5 , we have

4One can, of course, give up such fermionick-symmetry of the supermembrane action~4.1! entirely, but we do not argue about th
‘‘legitimacy’’ of fermionic symmetry itself in this paper.
6-7
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1

2,880
~ga!~abu~g@5#! ugd)Ba,@5#51

1

5,760
~ga!ab~gbc1¯c4!gdF9Ba,bc1 ,¯c4

2
1

24
ha@buBd,

d
uc1¯c4]1

1

24
B@bu,auc1¯c4#G

2
1

5,760
~gab!ab~gb

cd1¯d4!gdFBa,cd1¯d4
2

1

300
ha@cuBe,

e
ud1¯d4]1

1

24
B@cu,aua1¯d4#G

1
1

192
~gbc!ab~g@2#!gdBa,

a
bc@2#1@~g@5#!ab terms#, ~5.4!
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where we have omitted the terms with the structure
(g@5#)ab , because they are independent from the terms
plicitly given here, and moreover, they are too messy wh
structures are not decisive for our lemma below.

Using Eqs.~5.1!–~5.4!, we can get the following impor-
tant lemmas:

Lemma 1:If the left-hand side (LHS) of Eq. (5.1) vanishe
then it follows that:

Aa,b50. ~5.5!

Lemma 2:The vanishing of the LHS of Eq. (5.2) implies th
the following two conditions hold:

9Ba,bc2Bb,ca2Bc,ab2ha@buBd,
d

uc]50, ~5.6a!

Ba,bc1Bb,ca1Bc,ab50. ~5.6b!

In particular, when Ba,
a

b50, it follows that

Ba,bc50. ~5.7!

Lemma 3:The vanishing of the LHS of Eq. (5.4) implies th

Ba,b1¯b5
50. ~5.8!

Some remarks are in order for these lemmas: Fi
Lemma 1 is based on the fact that each sector of diffe
structure ofg matrices in Eq.~5.1! for the two pair of indices
ab and gd is to be independently zero. This leads to t
condition (3/8)Aa,b2(1/48)habAc,

c50, whose trace gives
Ac,

c50, which in turn yieldsAa,b50, when resubstituted
into this original equation. Second, Lemma 2 is also e
under Eq.~5.2!, because we can require each of the t
sectors with theg-matrix structures (ga)ab(gbc)gd and
(g@2#)ab(g@2#

abc)gd should vanish independently. Note he
that a simple contraction of two indices in Eq.~5.6a! does
not lead toB a,b

a 50, due to the vanishing trace compone
We did not write the condition of vanishing of the seco
line on the RHS of Eq.~5.2!, because it is just a necessa
condition of the conditions~5.6a! and ~5.6b!. We also men-
tion that the well-known identity~2.11! is nothing more than
a special case ofBa,bc5ha[bvc] satisfying both Eqs.~5.6a!
and~5.6b!. Third, Lemma 3 is straightforward, because ea
sector in the RHS of Eq.~5.4! is to vanish independently
The last sector with (g@2#)ab(g@2#8)gd yields

Ba,
a

b1¯b4
50, ~5.9!
12401
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which combined with the vanishing of the first and seco
lines of the RHS of Eq.~5.4! implies immediatelyBa,b1¯b5

50. This is due to the difference in the coefficient in the fi
terms in these two sectors.

VI. CONCLUDING REMARKS

In this paper, we have shown that thed50 F-BI cannot
be satisfied by any correction of the type (gab)abXab

c or
i (ga1¯a5)abXa1¯a5

c in dimension zero supertorsion con

straint Tab
c, based on the two assumptions:~i! M-theory

corrections toF-superfield strength atd,0 are absent;~ii !
the T and F-BIs are not modified by Chern-Simons term
Additionally, we relied upon the ‘‘conventional constraints
that relate and delete unnecessary freedom in the expan
of Ea and Ea . These conventional constraints restrict t
structure of corrections inTab

c, such that the one-gamm
term i (gc)ab in Tab

c receives no corrections, while theg@2#

or g@5# terms can, satisfying the conditions in Eq.~2.7!. We
have seen that this result is valid forF-BI without Chern-
Simons modifications.

Subsequently, we have also analyzed the BIs atd>1, and
obtained some conditions on the constraints ofTab

g, Tab
c,

andFabcd , at least for the case that theF-BIs are not modi-
fied by Chern-Simons terms. In particular, we have fou
that Fabcd50 in order to satisfy the matching exponenti
functionseF in the (abg,d)-type BI atd53/2. On the other
hand, the consistency of gravitino superfield equation ou
the same (abg,d)-type BI leads to the condition of vanish
ing of ¹aF50, leading to the trivial solutionF5const. This
validates our conclusion, because this scalar superfieldF
was the only possible modification atd50. In other words,
the modification of the constraintFabcd at d50 is not
enough for embedding M-theory corrections.

As has been mentioned, our result is not so surprising,
reasonable enough from the following viewpoints. Name
the only Fierz identity of the form (g@m#)(ab(g@n#)gd) is noth-
ing other than Eq.~2.11!. This is also understandable from
the fact that theF-BI ~2.3! at d50 has four spinorial indices
and one vectorial index as free indices, and therefore
vanishing of Eq.~2.3! gives such a strong condition as all th
components inU’s and X’s are zero, except for the single
A$1% in Uabcd.

Our main conclusion in this paper can be bypassed
avoiding at least one of the two assumptions~i! and ~ii !
above. The assumption~i! seems very difficult to avoid, due
6-8
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to the fermionic symmetry of supermembrane action t
seems to prevent the introduction of anyF constraints atd
,0. On the other hand, the assumption~ii ! is also difficult,
because there has been no other known example of
supertorsionT-BIs modified by Chern-Simons terms. W
mention also that our result here doesnot contradict the
works in @8#, because theF-BIs we dealt with in our pape
have not been analyzed explicitly in@8#. In fact, a statemen
about the necessity of theF constraints atd,0 was given in
@8# without explicit proof. Our result in this paper provides
supporting proof with evidence for this statement, in terms
explicit computation of theF-BI at d50.
n
m

’’

7

I.

12401
t
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We believe that not only the conclusion presented in t
paper, but also the technical ingredient of Fierz identities w
be of great importance in the future, for exploring any po
sible M-theory corrections into 11D superspace supergrav
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