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Black hole entropy from nonperturbative gauge theory
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We present the details of a mean-field approximation scheme for the quantum mechanics ofN D0-branes at
finite temperature. The approximation can be applied at strong ’t Hooft coupling. We find that the resulting
entropy is in good agreement with the Bekenstein-Hawking entropy of a ten-dimensional nonextremal black
hole with a 0-brane charge. This result is in accord with the duality conjectured by Itzhaki, Maldacena,
Sonnenschein and Yankielowicz. We study the spectrum of single-string excitations within quantum mechan-
ics, and find evidence for a clear separation between light and heavy degrees of freedom. We also present a
way of identifying the black hole horizon.
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I. INTRODUCTION

The physics of black holes has played a prominent role
our quest to understand quantum gravity. Semiclassical c
siderations have shown that the horizon of a black hole
an associated thermodynamic entropy@1#, and a key test of
any proposed theory of quantum gravity should be to prov
a microscopic explanation of this entropy.

Dramatic progress was made a few years ago, when
tain extremal black holes were realized as collections
D-branes in string theory. This description led to a prec
counting of microstates, which was in exact agreement w
semiclassical black hole thermodynamics@2#. Unfortunately
this counting relied on supersymmetric nonrenormalizat
theorems, and therefore could only be applied to cer
classes of extremal black holes.

A more general understanding of black hole entropy
quires a non-perturbative definition of string theory. This
now available, at least in certain backgrounds, thanks to
M~atrix! and Maldacena conjectures@3,4# ~for reviews see
@5#!. These conjectures relate non-perturbative string theo
to dual strongly coupled large-N gauge theories. In this
framework, black hole entropy is identified with the entro
of the density matrix which describes the gauge theory
finite temperature.

In principle, one can use these dualities to underst
black hole physics in terms of gauge theory dynamics.
practice, however, this requires two things: a precise m
between gravity and gauge theory quantities, and a tract
calculational scheme in the gauge theory. Some progress
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been made on the first issue@6#, although even such basi
properties as spacetime locality are still obscure from
gauge theory point of view.

In this paper we will focus on the second issue, of dev
oping practical methods for doing gauge theory calculatio
The gauge theory is strongly coupled whenever semiclass
gravity is valid, so we must study the gauge theo
non-perturbatively.1 We do this using techniques from sel
consistent mean field theory. This provides us with an
proximation to the density matrix which describes the gau
theory at finite temperature. A key test of our approximati
is whether it reproduces the semiclassical thermodynamic
the black hole. As we will see, according to this criterion o
approximation works quite well, at least over a certain ran
of temperatures.

For simplicity we will concentrate on the quantum m
chanics ofN D0-branes, with sixteen supercharges and ga
groupSU(N) @9#. At large N and finite temperature, the ef
fective ’t Hooft coupling of the quantum mechanics is

geff
2 5gY M

2 N/T3. ~1!

Note that the quantum mechanics is strongly coupled at
temperature. This quantum mechanics is dual to a t
dimensional non-extremal black hole in type IIA supergra
ity, with N units of 0-brane charge@10#. The metric of the
black hole is

1In M~atrix! theory, one can argue that the entropy of certain bla
holes is not renormalized beyond one loop@7#. The argument as-
sumes Lorentz invariance is recovered in the largeN limit, a prop-
erty which has been checked at leading order in@8#.
©2001 The American Physical Society15-1
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ds25a8F2h~U !dt21h21~U !dU21
c1/2~gY M

2 N!1/2

U3/2
dV8

2G
~2!

h~U !5
U7/2

c1/2~gY M
2 N!1/2S 12

U0
7

U7D
wherec527p9/2G(7/2) andgY M is the Yang-Mills coupling
constant. The horizon of the black hole is atU5U0, which
corresponds to a Hawking temperature

T5
7

2pA30
~gY M

2 N!21/2S U0

2p D 5/2

50.2034~gY M
2 N!21/2S U0

2p D 5/2

. ~3!

The dual quantum mechanics is to be taken at the same fi
temperature. The black hole has a free energy, which ar
from its Bekenstein-Hawking entropy@11#

bF52S 2213257p14

719 D 1/5

N2S T

~gY M
2 N!1/3D 9/5

524.115N2S T

~gY M
2 N!1/3D 1.8

. ~4!

Duality predicts that the quantum mechanics should have
same free energy. The supergravity description is expecte
be valid when the curvature and the dilaton are small n
the black hole horizon. This regime corresponds to the
Hooft large-N limit of the quantum mechanics, when th
temperature is such that the dimensionless effective coup
~1! lies in the range@10#

1!geff
2 !N10/7. ~5!

An outline of this paper is as follows. In Sec. II we devel
a mean-field approximation scheme for 0-brane quantum
chanics, building on our earlier work@12#. In Sec. III we
present numerical results for the behavior of the ga
theory, focusing on thermodynamic quantities. We comp
our results to the black hole predictions, and find good ag
ment over a certain range of temperatures. Section IV
devoted to a spectral analysis of the propagators, to ex
the spectrum of stretched strings that make up the superg
ity background. In Sec. V we discuss how local spaceti
physics, such as the size of the black hole horizon, may
extracted from the gauge theory. Section VI gives our c
clusions and a discussion of possible future directions
summary of our results has appeared in@13#.

II. MEAN-FIELD APPROXIMATION FOR 0-BRANE
QUANTUM MECHANICS

The basic idea of our approximation is to treat theO(N2)
degrees of freedom appearing in 0-brane quantum mecha
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as statistically independent, with interactions taken into
count via a sort of mean-field approximation. In the rest
this section we present several reasons to believe this sim
approximation captures some of the essential physics of
quantum mechanics in the supergravity regime. In the n
section we will show that the approximation gives resu
which are in good agreement with black hole thermodyna
ics over a certain temperature range.

Let us begin by stating our approach to studying stron
coupled systems in rather general terms. We are prese
with a strongly-coupled actionS, in our case the action fo
0-brane quantum mechanics. We approximate this ac
with a simpler trial actionS0. All quantities of interest can
then be computed as an expansion in powers ofS2S0. For
instance, the free energy has an expansion@14#

bF5bF02^e2(S2S0)21&C,0

5bF01^S2S0&02
1

2
^~S2S0!2&C,0

1••• ~6!

where a subscriptC,0 denotes a connected expectation va
calculated using the trial actionS0. If the trial action comes
sufficiently close to capturing the dynamics of the full actio
then this expansion should be well-behaved, even if the
actionS is strongly coupled.

This sort of approximation relies crucially on an approp
ate choice of trial action. In our case, we shall takeS0 to be
the most general quadratic action that one can write in te
of the fundamental gauge theory degrees of freedom. T
means that our trial action involves an infinite number
adjustable parameters, namely the momentum-depen
two-point functions of all the fundamental fields. One c
regard these propagators as providing an infinite set of va
tional parameters. To fix these parameters we solve a t
cated set of Schwinger-Dyson equations. These gap e
tions provide a non-perturbative approximation to the tr
two-point functions of the theory, by resumming an infini
set of Feynman diagrams.

As we shall see, this sort of approximation has seve
attractive features, which initially motivated us to app
these techniques to 0-brane quantum mechanics.

The approximation is non-perturbative in the Yang-Mi
coupling constant, and self-consistently cures the infrared
vergences which are present in conventional fini
temperature perturbation theory. This makes it possible
apply the approximation at strong coupling, at temperatu
where one can make a direct comparison with black h
predictions.

We can formulate the approximation in a way which r
spects ’t Hooft large-N counting, by only keeping plana
contributions to the Schwinger-Dyson equations. This me
that an overall factor ofN2 in the free energy, as well as th
appearance of the gauge coupling only in the combina
gY M

2 N, is guaranteed. But this is exactly the form~4! of the
supergravity result. That is, we are proposing that the ove
factor of N2 in the supergravity free energy can be und
stood in terms ofO(N2) elementary quasiparticles, whic
are in one-to-one correspondence with the degrees of f
5-2
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BLACK HOLE ENTROPY FROM NONPERTURBATIVE . . . PHYSICAL REVIEW D 64 124015
dom appearing in the fundamental Lagrangian.2 Incidentally,
this means that our approximations are hopeless at coup
@outside the range~5!# which are so strong that ’t Hoof
scaling breaks down.

A key feature of the approximation is that a quadratic tr
action will automatically respect all symmetries that act l
early on the fundamental fields. This is crucial in a proble
like 0-brane quantum mechanics, where symmetries p
such an important role. By working in a superfield formalis
with off-shell supersymmetry, our trial action will haveN
52 supersymmetry andSO(2)3SO(7) rotational symme-
try @out of the underlyingN516 supersymmetry andSO(9)
rotational symmetry#.

Another feature of the approximation is that it avoids c
tain infrared problems which are present in the full 0-bra
quantum mechanics. The difficulty is that the partition fun
tion of the full quantum mechanics contains an infrared
vergence from the regions in moduli space where
0-branes are far apart. This leads to a divergent contribu
to the entropy with an overall coefficientO(N). From the
supergravity point of view, this corresponds to a thermal
of gravitons. This divergence may be regulated by putt
the system in a finite box. The black hole entropy which
O(N2) can then easily be made to dominate over theO(N)
contribution. Our mean-field approximation automatica
computes theO(N2) piece, while discarding the subleadin
O(N) divergence, so no additional infrared regularization
required.

This sort of approximation also has some potential dra
backs. An unfortunate fact is that there is noa priori guar-
antee that the approximation works well. One has to cho
a trial action and a set of gap equations, and hope that
appropriate choices the approximation works well. In o
case, we will be able to justify our choicesa posteriori by
showing that we get good agreement with black hole th
modynamics over a certain temperature range. Another
to justify the approximation is to compute higher-order ter
in the expansion~6! and show that they are small. We ha
not attempted this for the full 0-brane problem, although
models show promising behavior@12#.

Although the approximation respects all symmetr
which act linearly on the fields, it breaks symmetries that
non-linearly. As there is no superspace formulation of th
ries with 16 supercharges, we can only realize a subgrou
the supersymmetries~in our caseN52) as acting linearly on
the fields. This is sufficient, for example, to make our a
proximation to the vacuum energy vanish asb→`. How-
ever, the remaining supersymmetries and R-symmetries
broken by the approximation. Another important symme
which acts non-linearly on fields, and is therefore broken
our approximation, is gauge invariance. More precisely,
quadratic trial action is not invariant under Becchi-Rou
Stora-Tyutin~BRST! transformations. As we shall show i
Sec. III C, this difficulty can be largely overcome by an a
propriate gauge choice.

2A ‘‘Fermi liquid’’ approach to black hole physics.
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Before presenting the details of the approximation, let
note that the techniques we are using have a long hist
They are closely related to variational methods@14# and self-
consistent Hartree-Fock approximations, and also go by
name of modified perturbation theory@15#. They are equiva-
lent to the effective action formalism developed in@16#.
Similar techniques have been applied to QCD@17#, and re-
lated techniques are used to study finite-temperature fi
theory @18#. Our own work on the subject began with@12#,
where we were motivated by the 0-brane problem to ap
these techniques to several toy problems in supersymm
quantum mechanics. Related techniques have been appli
(010) dimensional Yang-Mills integrals in@19#, and have
also been used to study Wilson loops inN54 gauge theory
in @20#.

A. The 0-brane action inNÄ2 superspace

We begin by formulating the 0-brane action inN52 su-
perspace. For more details see appendix A of@12#.

N52 supersymmetry means that we have anSO(2)
R-symmetry, with spinor indicesa,b51,2 and vector indi-
cesi , j 51,2. TheSO(2)R Dirac matricesgab

i are real, sym-
metric, and traceless. Given two spinorsc andx, there are
two invariants one can make, which we denote by

caxa and caxa[
i

2
eabcaxb .

N52 superspace has coordinates (t,ua), whereua is a col-
lection of real Grassmann variables that transform as a sp
of SO(2)R . The simplest representation of supersymmetry
a real scalar superfield

F5f1 icaua1 f u2.

It contains a physical real bosonf and a physical real fer-
mion ca , along with a real auxiliary fieldf. To describe
gauge theory we introduce a real spinor connection on su
spaceGa , with component expansion

Ga5xa1A0ua1Xigab
i ub1deabub12eablbu2.

The fieldsXi are physical scalars, whilela are their super-
partners,d is an auxiliary boson,xa are auxiliary fermions,
andA0 is the (011)-dimensional gauge field.

To write a Lagrangian we introduce a supercovariant
rivative

Da5
]

]ua
2 iua

]

]t
~7!

and its gauge-covariant extension

¹a5Da1Ga . ~8!

The 0-brane action is built from a collection of seven adjo
scalar multipletsFa that transform in the7 of a G2,SO(9)
global symmetry, coupled to aU(N) gauge multipletGa .
The action reads
5-3
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SSY M5
1

gY M
2 E dtd2uTrS 2

1

4
¹aFi¹aFi2

1

2
¹aFa¹aFa

2
i

3
f abcFa@Fb ,Fc# D . ~9!

Here Fi5
1
4 gab

i $¹a ,¹b% is the field strength constructe
from Ga , and f abc is a totally antisymmetricG2-invariant
tensor, normalized to satisfy3

f abcf abd5
3

2
dcd . ~10!

Strictly speaking, the relative positions of theN 0-branes are
governed by anSU(N)/ZN gauge theory, but in the large-N
limit we can approximate this byU(N).

We are interested in the finite temperature properties
the action~9!. We work in Euclidean space, setting

SE52 iSM , t5 i t , A0 E52 iA0 M , f E52 i f M .

Note that we must Wick-rotate the auxiliary fields, to ge
Euclidean action that is bounded below. As usual we co
pactify the Euclidean time direction on a circle of circumfe
ence b, which is identified with the inverse temperatur
Bosons are periodic while fermions are antiperiodic; for e
ample we write the mode expansions

Xi~t!5
1

Ab
(
l PZ

Xl
iei2p l t/b

xa~t!5
1

Ab
(

r PZ11/2
xa r ei2pr t/b.

B. Gauge fixing

Our approximation is based on resumming an infin
class of Feynman diagrams to obtain an approximation
the two-point functions at strong coupling. To make this p
cedure well-defined, we must fix a choice of gauge. For r
sons we will explain, it is extremely advantageous to work
the gauge

DaGa50. ~11!

The first advantage of this gauge is that, since Eq.~11! is a
condition on superfields, our gauge choice preserves m
fest supersymmetry. In terms of component fields, it sets

] tA050, d50, la5
1

2
] txa . ~12!

This is a complete gauge fixing; i.e., having made this cho
there is no residual freedom to make additional gauge tra
formations.

3This corrects a normalization error in@12#.
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A second advantage is that our gauge choice is w
defined at finite temperature. To see this, note that the z
mode of the gauge field, which we denoteA00, survives as a
physical degree of freedom. This is important, because
finite temperature the gauge theory acquires an additio
dynamical degree of freedom, namely the value of a Wils
Polyakov loop around the Euclidean time directionU
5Pei rdtA0. In our gauge, this physical degree of freedom
parametrized by the zero mode

U5eiAbA00. ~13!

Note that at finite temperature

A00;A0012p/Ab ~14!

is a periodic variable.
Corresponding to our choice of gauge we must introdu

a ghost action~but no gauge fixing term!

Sghost5
1

gY M
2 E dtd2uTr~DaC̄¹aC!.

For the ghost multiplet we adopt the component expansi

C5a1baua1gu2

wherea and g are complex Grassmann fields andba is a
complex boson. At finite temperaturea andg are periodic,
while b is antiperiodic.

C. Slavnov-Taylor identities

Mean-field methods usually have a difficult time deali
with gauge symmetry. The problem is that the Slavno
Taylor identities are typically violated by the approximatio
After gauge fixing, Slavnov-Taylor identities arise fro
BRST invariance of the gauge fixed action. BRST transf
mations act non-linearly on fields, but the sort of mean-fi
approximation we wish to use is based on a trial action t
is quadratic in the fundamental fields. Such a trial act
cannot respect a symmetry that acts non-linearly. Thus me
field techniques typically break BRST invariance, and hen
violate Slavnov-Taylor identities.

A major advantage of our gauge choice~11! is that many
of the Slavnov-Taylor identities become trivially satisfied,
that even a quadratic trial action can respect many of
consequences of gauge invariance. To illustrate this, we c
sider a simplified model, which can be obtained from the f
0-brane quantum mechanics by discarding all fermion a
auxiliary fields. That is, we study bosonic Yang-Mills qua
tum mechanics, with the following gauge-fixed Euclide
action:

S5
1

gY M
2 E dtTrH 1

2
DtX

iDtX
i2

1

4
@Xi ,Xj #@Xi ,Xj #

1
1

2j
~]tA0!21]tāDtaJ . ~15!
5-4
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HereA0 is a U(N) gauge field, withDt5]t1 i @A0 ,•#. The
fieldsXi are adjoint scalars, anda is a ghost field. One subtle
point is that the antighost zero modeā l 50 does not appear in
the action, and therefore should not be regarded as a
degree of freedom. It is completely decoupled, and any c
relators involvingā0 vanish.

To illustrate the difficulties with gauge invariance w
have adopted a general class of gauges parametrizedj.
The action is obtained by gauge fixing]tA05 f and then
functionally integrating over f, with the weight
exp(2*dtf2/2gY M

2 j). Our preferred gauge condition]tA0

50 is recovered in the limitj→0. Expanding the fields in
Fourier modes, the action~15! is invariant under BRST
transformations:

dhA0 l52hS 2p l

b
a l1

1

Ab
(

m1n5 l
@A0 m ,an# D

dhXl
i52h

1

Ab
(

m1n5 l
@Xm

i ,an#

~16!

dha l5h
1

Ab
(

m1n5 l
aman

dhā l5
h

j

2p l

b
A0,2 l

whereh is a Grassmann parameter. Note that the decou
antighost zero modeā0 is indeed invariant under BRST
transformations.

We can use this BRST symmetry to derive Slavno
Taylor identities in the standard way, from the fact that t
expectation value of any BRST-exact quantity vanishes.
example, we must have

^dh~ā lA0l !&50. ~17!

This gives us the following relation among Green’s fun
tions.

K 1

j

2p l

b
A0,2 lA0l L 1K ā lS 2p l

b
a l1

1

Ab
(

m1n5 l
@A0man# D L

50. ~18!

For l 50 this Slavnov-Taylor identity is trivially satisfied: th
first term vanishes sincel 50, while the second term van
ishes sinceā0 is decoupled. Here we assume theA0,l two-
point function is finite atl 50. For lÞ0 the second term ca
be simplified using the following Schwinger-Dyson equati
~a consequence of the ghost equation of motion!

S 2p l

b D 2

^Tr~ ā la l !&1
1

Ab

2p l

b (
m1n5 l

^Tr~ ā l@A0m ,an# !&

52gY M
2 N2 ~19!
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where for simplicity we have taken a trace to get rid
matrix indices. Thus, modulo the use of an equation of m
tion, the content of the identity~17! is the well-known fact
that the gauge field propagator at non-zero frequency
given exactly by the gauge-fixing term in the classical acti

^Tr~A0lA0,2 l !&5
gY M

2 N2j

~2p l /b!2
for lÞ0. ~20!

In the limit j→0 this Slavnov-Taylor identity implies tha
the modes ofA0 with non-zero frequency do not propagat
But this is an automatic consequence of adopting our ga
choice~11!, which eliminates all non-zero modes ofA0. In
fact, in the full 0-brane quantum mechanics,all Slavnov-
Taylor identities which just constrain two-point functions a
automatically satisfied by working in the gauge (11).

Next let us consider a Slavnov-Taylor identity on
3-point function. We have the requirement

^dh~ā lXm
i Xn

j !&50. ~21!

Using the transformations~16!, this gives rise to a Slavnov
Taylor identity with the schematic form

1

j
^]tA0XiXj&5^āaXiXj&. ~22!

If the gauge field carries zero frequency this identity tur
out to be trivially satisfied@for the same reasons that~18!
was trivially satisfied atl 50#. If the gauge field carries non
zero frequency then this Slavnov-Taylor identity is no
trivial. In particular, in the limitj→0, it states that the am
plitude to emit a gauge boson with non-zero frequency
O(j). But this property is automatically satisfied by workin
in the gauge (11), where the non-zero modes of the ga
field are eliminated.Again, the content of the Slavnov-Taylo
identity ~21! is automatically taken into account just b
working in the gauge~11!.

This pattern is quite general. All non-trivial Slavnov
Taylor identities follow from the requirement that correlato
of the form

^dh~ā l••• !& ~23!

vanish.~There must be at least oneā, sincedh increases the
ghost number by one and you need zero ghost numbe
have a non-vanishing correlator.! If l 50 this Slavnov-Taylor
identity is trivially satisfied. If lÞ0 this Slavnov-Taylor
identity becomes a constraint on correlators that either
volve a gauge boson with non-zero frequency, or involve
antighost with non-zero frequency. Correlators withA0,lÞ0
must vanish in the limitj→0, and this property is guaran
teed by working in the gauge~11!. In fact it is not clear to us
whether the Slavnov-Taylor identities have any non-triv
content in the gauge~11!. In principle it seems that they
could give constraints on correlators involving antighos
but at the level of 2-point and 3-point functions, no co
straints arise which are not already implied by t
Schwinger-Dyson equations.
5-5



n
ld

ns

d
ge
u
b

n

th

co
so
n

ve

e
i
f

,

al
p

ian
d

-
y

u-
n

on.

-

uge
ou-
ss-
I C,
om.

ing
ro

the
rees
is-
nd-

int
r
c,

of e

DANIEL KABAT, GILAD LIFSCHYTZ, AND DAVID A. LOWE PHYSICAL REVIEW D 64 124015
Does this issue of Slavnov-Taylor identities have a
practical importance? After all, the approximation cou
work well even though it is not gauge invariant. But it tur
out that in our case, the gauge choice~11! is crucial. We have
used mean-field methods to study gauge theories@including
Eqs. ~9!,~15!# in the more generalRj class of gauges, an
have found that the system of one-loop truncated Schwin
Dyson equations does not have solutions when the ga
theory is strongly coupled. We believe this breakdown can
related to the fact that the violation of Slavnov-Taylor ide
tities gets worse as the coupling increases.

In any case, at least for 0-brane quantum mechanics,
difficulty can be avoided by working in the gauge~11!. The
vertices that appear in the gap equations receive no
straints that are not already implied by the Schwinger-Dy
equations~quartic vertices that appear in the gap equatio
will not involve a pair of ghosts!. The Schwinger-Dyson
equations themselves will be satisfied at the one-loop le
so the approximation is self-consistent.

D. Trial action and gap equations

In applying mean-field methods to 0-brane quantum m
chanics, the first step is to choose a trial action. We w
adopt the following trial action, which is written in terms o
component fields expanded in Matsubara modes.

S052
N

l
Tr~U1U†!1(

l

1

2s l
2
Tr~Xl

iX2 l
i !

2(
r

1

2ar
Tr~xarxa,2r !1(

l

1

2D l
2
Tr~f l

af2 l
a !

2(
r

1

2gr
Tr~car

a ca,2r
a !1(

l

1

2e l
2
Tr~ f l

af 2 l
a !

2(
lÞ0

1

sl
Tr~ ā la l !1(

r

1

t r
Tr~ b̄arbar !2(

l

1

ul
Tr~ ḡ lg l !.

~24!

Recall that l ,mPZ and r ,sPZ1 1
2 label Fourier modes

a,b51,2 areSO(2)R spinor indices,i , j 51,2 areSO(2)R
vector indices, anda,b51, . . . ,7 areindices in the7 of G2.
The parametersl,s l

2 , . . . can be thought of as variation
parameters, which we will fix by solving a set of one-loo
gap equations.

The action~24! is essentially the most general Gauss
trial action that is compatible with the linearly-realize
bosonic symmetries of the problem.4 Supersymmetry is bro
ken at finite temperature, so we have not imposed supers
metry on the action~24!, although as we discuss below s
persymmetry gets incorporated into our approximation i
natural way.

4Including theZ2 R-parity symmetry discussed in appendix A
@12#.
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There are a few subtle points to note about this acti
One point is that, due to the periodicity~14!, it is not appro-
priate to adopt a Gaussian trial action forA00. Rather we
have adopted the unitary one-plaquette model action@21#

Sh52
N

l
Tr~U1U†!

for the holonomyU5eiAbA00. This action undergoes a large
N phase transition whenl52. As discussed in@12#, such a
transition is expected to separate the perturbative ga
theory regime from the supergravity regime, presuming c
plings to other fields do not turn this into a smooth cro
over. A second minor point is that, as discussed in Sec. II
the antighost zero mode is not a physical degree of freed
We have therefore suppressed the terms involvingā0 in Eq.
~24!.

Corresponding to the action~24! we have the 2-point cor-
relators

^A00A00&0[r0
2 ^Xl

iXm
j &05s l

2d i j d l 1m

^xarxbs&05ardabd r 1s

^f l
afm

b &05D l
2dabd l 1m

~25!
^car

a cbs
b &05grd

abdabd r 1s ^ f l
af m

b &05e l
2dabd l 1m

^ā lam&05sld lm ^b̄arbbs&05t rdabd rs

^ḡ lgm&05uld lm

where^•••&0 denotes an expectation value computed us
S0, and where the two-point function of the gauge field ze
mode is given by

r0
25H 2

bN F li 2S 12
l

2D1S 12
2

l D logS 12
l

2D21G , l<2,

1

bN S p2

3
2

4

l D , l>2,

~26!

involving a dilogarithm@12#.
Next we need to choose a set of gap equations to fix

parameters that appear in our trial action. For most deg
of freedom we will adopt the one-loop gap equations d
cussed in@12#. These equations can be obtained by dema
ing that the quantity5

I eff5bF01^SII 1SIV2S0&02
1

2
^~SIII !

2&C,0 ~27!

is stationary with respect to arbitrary variations of the 2-po
functions~25!, whereSII ,SIII ,SIV refer to terms in the supe
Yang-Mills– ~SYM-! plus-ghost action that are quadrati

5This quantity can be identified with the two-loop 2PI effectiv
action of Cornwall, Jackiw and Tomboulis@16#.
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cubic, quartic in the fundamental fields. The explicit expr
sion for this effective action is given in the Appendix.

For the gauge field, however, we use a slightly differe
gap equation. The starting point is the Schwinger-Dys
equation for̂ TrU&, which follows from demanding that

^U&5E dUd~••• ! Ue2S ~28!

is invariant under an infinitesimal change of variablesU
→gU with g511 ivPU(N). At leading order this implies

^TrU&52
i

Ab
K TrS U

dS

dA00
D L ~29!
hi
tio
an
y

ile
ec
ke

ed
rg
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p

el

12401
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t
n

where we have dropped higher-order terms indA00, coming
from the Campbell-Baker-Hausdorff lemma, which do n
contribute at one loop in the mean field approximatio
Evaluating Eq.~29! to one-loop order gives a relation be
tween expectation values computed with respect toS0.

1

N
^TrU&h5

2

bS 2
iAb

N
^Tr~UA00!&hD

3
]

]r0
2 S ^SIV&02

1

2
^~SIII !

2&C,0D . ~30!

The relevant one-plaquette expectation values are@21#
1

N
^TrU&h5H 12l/4 l<2

1/l l>2
~31!

2
iAb

N
^Tr~UA00!&h5H 1

2 S 11
l

4D2
1

lS 12
l

2D 2

logS 12
l

2D l<2

12
1

2l
l>2,
while the expressions for̂SIV&0 and 2 1
2 ^(SIII )

2&C,0 are
given in the Appendix. We adopt Eq.~30! as the gap equation
that fixes the one-plaquette couplingl.

Let us pause to note a few important features of t
system of gap equations. First, in computing expecta
values we have kept only planar contributions. This me
’t Hooft large-N counting is automatic: the free energ
will come with an overall factor ofN2, and the Yang-Mills
coupling will only appear in the combinationgY M

2 N.
We henceforth adopt units which setgY M

2 N51, by rescaling
all dimensionful quantities as in@12#. Second, since we
have consistently worked to one-loop order wh
including all auxiliary fields, these gap equations resp
supersymmetry. Of course supersymmetry gets bro
at finite temperature, but in the zero-temperature lim
these symmetry breaking effects go away.6 Thus asb→`
the bosonic and fermionic propagators will be relat
by supersymmetry Ward identities, and the vacuum ene
will automatically vanish.

To summarize, the parameters appearing in our t
action are fixed by solving the following set of ga
equations:

6Supersymmetry is unbroken at zero temperature in this mod
s
n
s

t
n

it

y

l

1

N
^TrU&h5

2

bS 2
iAb

N
^Tr~UA00!&hD

3F 2

b (
l

s l
21

5i

2b (
r

2pr

b
ar1

7

b (
l

D l
2

2
4

b (
l

S 2p l

b D 2

~s l
2!22

4

b (
r

S 2pr

b D 4

~ar !
2

2
14

b (
l

S 2p l

b D 2

~D l
2!22

7

b (
r

~gr !
2

1
1

b (
l

S 2p l

b D 2

~sl !
21

1

2b (
r

~ t r !
2G ~32!

1

s l
2
5S 2p l

b D 2

1
2

b (
m

sm
2 1

3i

b (
r

2pr

b
ar

1
14

b (
m

Dm
2 1

2

b
r0

22
8

b S 2p l

b D 2

s l
2r0

2

2
14

b (
r 1s1 l 50

grgs1
1

b (
r 1s1 l 50

t r ts ~33!
.

5-7



set
eri-
ddi-

g
rge

rs.
tions
in

the

DANIEL KABAT, GILAD LIFSCHYTZ, AND DAVID A. LOWE PHYSICAL REVIEW D 64 124015
1

ar
52 i S 2pr

b D 3

2
3i

b

2pr

b (
l

s l
2

1
4

b

2pr

b (
s

2ps

b
as2

5i

2b

2pr

b
r0

2

2
14i

b

2pr

b (
l

D l
21

8

b S 2pr

b D 4

arr0
2

2
14

b (
r 1s1 l 50

S 2p l

b D 2

D l
2gs

2
14

b (
r 1s1 l 50

e l
2gs1

1

b (
r 1s1 l 50

tsul

2
1

b (
r 1s1 l 50

S 2p l

b D 2

sl ts ~34!

1

D l
2
5S 2p l

b D 2

1
4

b (
m

sm
2 1

4i

b (
r

2pr

b
ar1

2

b
r0

2

1
12

b (
m1n1 l 50

Dm
2 en

22
12

b (
r 1s1 l 50

grgs

1
4

b S 2p l

b D 2

(
r 1s1 l 50

args2
8

b S 2p l

b D 2

3D l
2r0

2 ~35!

1

gr
5 i

2pr

b
1

12

b (
r 1s1 l 50

D l
2gs

2
2

b (
r 1s1 l 50

S 2p l

b D 2

D l
2as2

2

b (
r 1s1 l 50

e l
2as

1
4

b (
r 1s1 l 50

s l
2gs1

2

b
grr0

2 ~36!

1

e l
2
511

6

b (
m1n1 l 50

Dm
2 Dn

21
4

b (
r 1s1 l 50

args

~37!

1

sl
52S 2p l

b D 2

2
1

b S 2p l

b D 2

(
r 1s1 l 50

t ras

2
2

b S 2p l

b D 2

slr0
2 ~38!

1

t r
5 i

2pr

b
1

1

b (
r 1s1 l 50

s l
2ts2

1

2b (
r 1s1 l 50

asul

1
1

2b (
r 1s1 l 50

S 2p l

b D 2

slas1
1

2b
r0

2t r ~39!

1

ul
511

1

b (
r 1s1 l 50

t ras . ~40!
12401
E. Numerical methods

The gap equations we have described form an infinite
of coupled algebraic equations. We now outline the num
cal methods that we used to solve these equations. For a
tional details see appendix B of@12#.

The first step is to reduce the infinite set of Eqs.~32!–~40!
down to a finite set. To do this we use the followin
asymptotic forms of the propagators, which are valid at la
momenta:

s l
2'

1

~2p l /b!21ms
2 ar'

i

2pr /b

1

~2pr /b!21ma
2

D l
2'

1

~2p l /b!21mD
2 gr'2

i2pr /b

~2pr /b!21mg
2

e l
2'

~2p l /b!2

~2p l /b!21me
2 ~41!

sl'2
1

~2p l /b!21ms
2 t r'2

i2pr /b

~2pr /b!21mt
2

ul'
~2p l /b!2

~2p l /b!21mu
2 .

At leading order these are simply the tree-level propagato7

Demanding that these propagators satisfy the gap equa
to the first subleading order of an expansion
1/(momentum) fixes the asymptotic masses to be

ms
25

2

b (
l

s l
21

3i

b (
r

2pr

b
ar1

14

b (
l

D l
22

6

b
r0

2

ma
25

3

b (
l

s l
21

4i

b (
r

2pr

b
ar1

14

b (
l

D l
22

11

2b
r0

2

~42!

mD
2 5

4

b (
l

s l
21

12

b (
l

D l
22

6

b
r0

2

mg
25

4

b (
l

s l
21

12

b (
l

D l
22

2

b
r0

2

me
252

4i

b (
r

2pr

b
ar1

12

b (
l

D l
2

ms
252

i

b (
r

2pr

b
ar2

2

b
r0

2

mt
25

1

b (
l

s l
22

1

2b
r0

2

7This reflects the fact that the quantum mechanics is free in
ultraviolet.
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mu
252

i

b (
r

2pr

b
ar .

The next step is to fix a mode cutoffN. For modes with
2N< l , r<N we regard the Fourier modes of the propag
tors themselves as the unknowns, while for modes out
this range we parametrize the propagators in terms of
eight unknown asymptotic masses appearing in Eq.~41!. The
propagators with2N< l , r<N are to be found by directly
solving the relevant gap equations~32!–~40!, while the
asymptotic masses are to be determined by solving the
tem of equations~42!. Note that all these equations a
coupled. For example, we evaluate the high-momentum p
of the loop sums that appear in Eqs.~32!–~40! and ~42!
analytically, in terms of the asymptotic masses.

This leaves us with a finite set of equations.8 Our basic
strategy is to start at high temperaturesb!1, where we have
the following approximate solution to the gap equations.

l'0.418b3/2 s0
2'0.209b1/2 D0

2'0.282b1/2

e0
2'0.677 u0'1. ~43!

~All non-zero modes are approximately given by their fre
field values.! Then we use the Newton-Raphson method@22#
to solve the system of equations at a sequence of suc
sively lower temperatures. Our numerical results were
tained starting atb50.1, with

b→min~1.2b,b10.25!

on each step, and with a mode cutoffN5max(3,5b).
Finally, after solving all the gap equations, we wish

compute the free energy. This has the expansion given in
~6!, which we truncate to

bF'bF01^S2S0&02
1

2
^~SIII !

2&C,0 . ~44!

That is, our approximation tobF is simply the effective
action I eff of Eq. ~27!.9 The explicit expression forI eff is
given in the Appendix. To calculateI eff numerically we must
make use of the asymptotic forms~41!. For example we
define the following renormalized sum:

2(
l

logs l
252(

2N

N

log$s l
2@~2p l /b!21ms

2 #%

12 log„2 sinh~bms /2!…. ~45!

88N113 equations, to be precise, where we have taken advan
of the fact that time-reversal invariance makes the~bosonic, fermi-
onic! propagators~even, odd! functions of their momenta.

9The 0-brane action also has 6-point couplings, but it turns
that ^SVI&050 so these terms do not contribute to our approxim
tion for the free energy.
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III. MEAN-FIELD RESULTS FOR THERMODYNAMIC
QUANTITIES

In principle the trial action we have constructed contain
great deal of information about correlation functions in t
quantum mechanics. But in this section we will just pres
numerical results for the behavior of three basic quantit
the free energy, the Wilson loop, and the mean size of
state.

A. Free energy

At high temperatures, where the gauge theory is wea
coupled, we find that the free energy of the system is

bF56 logb1O~1!. ~46!

This result can be obtained analytically: the gap equati
are dominated by the bosonic zero modes, and the free
ergy is dominated bybF0.

In general, for a weakly-coupled theory in 011 dimen-
sions, one would expect the free energy to behave like lob.
But note that, even though the gauge theory is wea
coupled at high temperature, the perturbation series is
flicted with IR divergences. Thus, to determine the coe
cient of the logarithm~which depends on the value of th
dynamically generated IR cutoff! one must re-sum part of th
perturbation series. This is a well-known phenomenon in
nite temperature field theory@18#. In any case, we expecta
priori that mean-field methods give good results in the h
temperature regime.

As the temperature is lowered the behavior of the f
energy changes: atb'0.7 we find that it begins to roll ove
and fall off as a non-trivial power of the temperature. In t
range 1,b,4 the numerical results for the free energy a
well fit by

bF'20.7922.0b21.7. ~47!

This fit to the numerical results is illustrated in Fig. 1. No
that supersymmetry is crucial in making such power-law
havior possible. Without supersymmetry the free ene
would behave asbF'bE0 in the low temperature regime
(b.1), whereE0 is the ground state energy of the system

We obtained Eq.~47! by performing a Levenberg
Marquardt nonlinear least-squares fit@22# to 75 numerical

ge

t
-

FIG. 1. The solid curve is the power law fit~47! for bF. The
data points are calculated from numerical solutions to the gap e
tions.
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calculations of the free energy, carried out in the tempera
range 1<b<4. To estimate the uncertainty in the best
parameters we varied the window ofb over which the fit was
performed~fitting over the ranges 2,b,4 and 1,b,3),
which leads to:20.7960.06, 22.060.1, and21.760.2.

It is quite remarkable that the power law~47! is in excel-
lent agreement with the semiclassical black hole predic
@10,11#

bF524.12b21.80. ~48!

The exponents differ by 6% while the coefficients of t
power-law differ by a factor of 2.~An additive constant ap
pears in the mean-field approximation for the free energy.
will generally ignore this ‘‘ground state degeneracy,’’ since
seems to be an artifact of the approximation when applie
systems with a continuous spectrum. Similar behavior w
noted in @12#.! In a toy model studied in@12# it was noted
that higher order terms in the expansion of the free ene
~6! appear with approximately the same power law dep
dence on temperature as the leading term. Thus by com
ing higher-order corrections one might hope for better agr
ment of the overall coefficient, with the power la
essentially unchanged.

As we go to still lower temperatures, we find that t
energy](bF)/]b calculated in the mean-field approxim
tion begins to drop below the energy of the black hole.
fact the mean-field energy becomes negative aroundb55.8.
Ultimately, asb→`, the mean-field energy does asympto
to zero, as required by theN52 supersymmetry which is
manifest in the approximation. But a negative energy clea
reflects some problem with the approximation.

Fortunately, we can be rather precise about exactly wh
the approximation is going wrong: the difficulty is with th
Schwinger-Dyson gap equation we have been using to fix
value of the one-plaquette couplingl. Although we do not
know how to write down a better gap equation forl, we can
give aprescriptionfor fixing l, that will allow us to obtain
reasonable results at much lower values of the tempera
This may be regarded either as a check on our understan
of why the approximation is breaking down, or as a way
building a model for the black hole that can be used at low
temperatures. Our prescription for fixingl is simply that,

FIG. 2. Energy vsb. For b.2.5 fixing l by fitting bF to a
power law leads to the solid middle line, while the Schwing
Dyson gap equation for lambda leads to the lower dashed line.
upper dot-dashed line is the semiclassical energy of the black h
12401
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when b.2.5 ~the midpoint of our range 1<b<4), we
choosel so that the free energy is given by Eq.~47!. The
energy E5](bF)/]b calculated with this prescription is
shown in Figs. 2 and 3.

B. Wilson loop

In our approximation the expectation value of the timeli
Wilson loopU5Pei rdtA0 is controlled by the one-plaquett
couplingl, as in Eq.~31!. A key feature of the one-plaquett
action is that a large-N phase transition occurs atl52 @21#.
At this value of the coupling the eigenvalues ofU spread out
around a circle, and become sensitive to the fact that
gauge field is a periodic variable. It has been argued that
such a phase transition is expected to occur in 0-brane q
tum mechanics, as the system moves from weak coup
into the supergravity regime@12#.

Our mean-field results forl are shown in Fig. 4. We
present the results forl that are obtained by solving th
Schwinger-Dyson equation~30!, as well as the results tha
are obtained from our prescription of fittingbF to a power
law.

Note that in both cases,l increases monotonically with
b. The Gross-Witten phase transition takes place whenl
52; with the prescription of fittingbF to a power law this
value is reached atb57.8. Thus, as expected, a phase tra
sition takes place as the system moves into the supergra
regime@12#. By adopting the prescription of fittingbF to a
power law, we cannot say anything about the order of
phase transition. But if one takes the Schwinger-Dyson re
for l seriously, then the Gross-Witten transition occurs
b514.2, and is weakly second order~the second derivative
of the free energy drops by 0.01 in crossing the transitio!.

Our prescription for choosingl by fitting bF to a power
law begins to break down aroundb514, as we find thatl
rapidly diverges asb approaches 14.10 By itself, this is not
necessarily a problem: infinitel simply means that the Wil-
son loop is uniformly distributed overU(N). But unfortu-
nately, we do not have a good prescription for continui

10The Schwinger-Dyson gap equation forl has solutions at all
temperatures.

-
he
le.

FIG. 3. Energy vsb. Same as Fig. 2, but plotted on a log-lo
scale.
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BLACK HOLE ENTROPY FROM NONPERTURBATIVE . . . PHYSICAL REVIEW D 64 124015
past this temperature. Evidently some of the other gap eq
tions ~not just the gap equation forl) start to break down a
this point. Note that this breakdown does not occur until w
into the strong coupling regime, as an inverse tempera
b514 corresponds to an effective gauge couplinggeff

2 5b3

'33103.

C. Mean size

Finally, let us comment on the average ‘‘size’’ of the sta
In our approximation the scalar fieldsXi(t) and fa(t) are
Gaussian random matrices, and their eigenvalues obe
Wigner semi-circle distribution. We can define the size of
state in terms of the quantities

Rgauge
2 5

1

N
^Tr@Xi~t!#2&0 ,

~49!

Rscalar
2 5

1

N
^Tr@fa~t!#2&0 .

The radius of the Wigner semi-circle, given by 2AR2, is
shown in Fig. 5. Note that the radius stays fairly constan
the region corresponding to the black hole. However,
cause the superfield formalism we are using does not res
the full SO(9) invariance, the radius measured in the sca
multiplet directions is not the same as the radius measure
the gauge multiplet directions. Atb514 we find

2Rscalar51.81 2Rgauge50.80.

This shows that, as expected, the trial action does not res
the underlyingSO(9) invariance. Nonetheless, the trial a
tion may provide a useful approximate description of t
black hole density matrix in the supergravity regime.

In Fig. 5 we have also plotted the Schwarzschild radius
the black hole

U0/2p51.89b22/5. ~50!

Note that, as the temperature decreases, the Schwarzs
radius becomes much smaller than the radius of the eig

FIG. 4. The one-plaquette couplingl vs b. The Gross-Witten
transition occurs whenl52. For b,2.5 we use the Schwinger
Dyson gap equation to determinel. For b.2.5 the Schwinger-
Dyson gap equation gives the dashed line, while fittingbF to a
power law gives the solid line.
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value distributions. It seems appropriate to identify the rad
of the eigenvalue distributions with the size of the regi
U!(gYM

2 N)1/3 in which 10-dimensional supergravity is vali
@10#.

This brings up a subtle issue. The Higgs fields of t
gauge theory are expected to correspond to spatial coo
nates in the supergravity geometry~2!. But one is always
free to reparametrize the radial coordinate in supergravity
Eq. ~50! we have implicitly made use of the naive identifi
cation X5U/2p, where X is a Higgs field andU is the
supergravity coordinate appearing in Eq.~2!. This can be
justified at zero temperature, because supersymmetry fi
the mass of a Bogomol’nyi-Prasad-Sommerfield~BPS!
stretched string in the gauge theory to be given by the tr
level formula mW5X, while in supergravity one hasmW
5U/2p @10#. However this particular identification is no
appropriate at finite temperature. A proposal for relating
two radial coordinates has been presented in@23#.

An unambiguous way to fix the relation is to use the fa
that mW5(U2U0)/2p in the non-extremal black hole ge
ometry. By computingmW in the gauge theory, the mappin
between the Higgs fieldX and the supergravity coordinateU
can be fixed. However one must first take account of the
that one has a continuous distribution of masses in the qu
tum mechanics. The spacetime geometry will only cor
spond to the lightest of these states as we discuss in Se
This procedure will be studied further in@24#.

IV. PROPAGATORS AND SPECTRAL WEIGHTS

Important information about spacetime geometry is e
coded in the spectrum of single-string excitations in t
quantum mechanics. To extract this information from the E
clidean propagators we introduce a spectral representa
for the 2-point functions. By inserting complete sets
states, one can show that at finite temperature the analo
the Lehmann spectral representation takes the form

^f~t!f~0!&5E
0

`

dvr~v!
coshv~t2b/2!

2v sinh~bv/2!
0<t<b

~51!

FIG. 5. Range of eigenvalues~radius of the Wigner semi-circle!
vs b. The upper solid curve is for the scalar fields in the sca
multiplets; the lower dotted curve is for the scalar fields in t
gauge multiplet. The dashed curve is the Schwarzschild radiu
the black hole. These results were calculated withbF fit to a power
law for b.2.5.
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where the spectral weightr(v) is defined as the therma
average

r~v!5
1

Z (
m

e2bEm (
n.m

z^nufum& z22v~12e2bv!

3d~v2En1Em!.

We can interpretr(v)dv as the effective number of single
string microstates with a mass betweenv and v1dv. We
will apply this to the scalar fields in the scalar multiple
setting

D l
25E

0

`

dvr~v!
1

~2p l /b!21v2 .

In general, solving the inverse problem to extract the d
sity of states fromD l

2 is a difficult numerical problem, which
we analyze in detail in@24#. However some gross features
the spectral density can be easily seen. Consider theD2

propagator which is plotted in Fig. 6. At large frequency t
behavior of the propagator is controlled by the asympto
massmD

2 ~42!. This mass is of order 1 in ’t Hooft units; fo
examplemD52.8 atb53.78. This indicates that states wi
a mass of order 1 are present in the spectrum. In addit
note that a clear enhancement of the propagator at s
frequency compared to its asymptotic form can be seen
Fig. 6. This suggests the presence of light states in the s
trum, with a mass of order the temperature. These light st
make the dominant contribution to the entropy.

To express this in a more quantitative way, we will ma
an ansatz for the form ofr(v). The ansatz will allow us to
estimate the spectral density without performing a comp
analysis of the inverse problem. Our ansatz is motivated
the results of@24#, where we considered a 0-brane probe
the black hole background. The full analysis of@24# shows
that the density of states consists of two narrow peaks~i.e.
narrower than a scale of order the temperature!, one centered
at frequency of order the temperature, the other at freque
of order the ’t Hooft coupling. Motivated by this result, w
introduce the following ansatz

FIG. 6. The 2-point function of the scalar fields in the sca
multiplets, calculated at Matsubara frequencies. The solid curve
fit to the propagator with a twin peak ansatz for the density
states. The upper curve is forb53.78, the lower curve forb
52.03.
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r~v!5
vz1

~v2m1!21g2 1
vz2

~v2m2!21g2 1~v→2v!,

~52!

where we fix the widthg50.02 ~any number much smalle
than T will do!. The parameters in Eq.~52! are determined
by fitting to theD l

2 propagator. Note that the small value ofg
is motivated by@24#; we could not hope to extract such
small width by fitting the ansatz just at Matsubara freque
cies. The resulting densities of states are shown in Fig. 7
can be seen from the plot, we obtain a very good fit to
propagators at the Matsubara frequencies. The fit determ
the parameterszi andmi with uncertainties at the level of a
few percent.

This result clearly indicates the presence of both the h
and low frequency states mentioned above. It also points
clear separation between the two sets of states—a separ
which will play an important role in the next section.

V. RESOLVING SPACETIME GEOMETRY

In our mean-field approximation, we have modelled t
cloud of 0-branes that make up the black hole using Gau
ian random matrices. As we discussed in Sec. III C, the
genvalues of these matrices have very large quantum fluc
tions. Within the gauge theory, we find that the scale of th
fluctuations is set by the ’t Hooft coupling.

R25
1

N
^Tr f~t!2&0;~gY M

2 N!2/3. ~53!

In terms of supergravity, this means that the positions of
0-branes that make up the black hole have very large qu
tum fluctuations. Indeed they fluctuate over roughly the
tire region@of sizeU;(gY M

2 N)1/3 @10# # in which supergrav-
ity is valid. One might suspect that these large fluctuatio
are an artifact of our approximation, but it has been argu
that the scaling~53! is an intrinsic feature of 0-brane quan
tum mechanics@25#.

This raises a very interesting question. How can we
cover local spacetime physics from the quantum mechan

r
a

f

FIG. 7. The effective density of states arising from the sca
multiplet. We show the result for two different temperatures: t
first and third peaks are forb53.78, the second and fourth forb
52.03.
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In particular, given the large fluctuations~53!, how can we
resolve the horizon of the black hole?

The answer is that local spacetime physics only arises
low energyapproximation to the quantum mechanics. To
cover local spacetime physics from the quantum mecha
we must introduce a resolving time, and integrate out h
frequency degrees of freedom.11 The point is that most of the
N2 degrees of freedom in the quantum mechanics hav
very large frequency, set by the ’t Hooft coupling

v;~gY M
2 N!1/3.

From the supergravity point of view, this energy scale cor
sponds to the energy of a string that stretches across
entire region in which supergravity is valid. A low energ
observer within supergravity cannot resolve such hi
frequency fluctuations. Therefore, to recover local spacet
physics from the quantum mechanics, we must first introd
a resolving timee, and integrate out all modes with freque
cies larger than 1/e. With an appropriate choice of resolvin
time, we should recover the expected result, that the 0-bra
only fluctuate over a region whose size is set by the hori
of the black hole.

We begin by discussing a single harmonic oscillator.
finite temperature the fluctuation in the oscillator positi
coordinate is

^x2&5
1

2v tanh~bv/2!
.

We introduce a resolving time, by smearing the Heisenb
picture operators over a Lorentzian time intervale.

x̄5E
2`

` dt

eAp
e2t2/e2

x~ t !.

The fluctuations in the smeared operators are suppre
whenv.1/e.

^x̄2&5
e2v2e2/2

2v tanh~bv/2!
.

To take this over into 0-brane quantum mechanics, we
the spectral representation~51!. The fluctuations in the field
are given by

^f2&5E
0

`

dvr~v!
1

2v tanh~bv/2!
. ~54!

Following our treatment of the harmonic oscillator, we c
introduce a resolving time by setting

^f̄2&5E
0

`

dvr~v!
e2v2e2/2

2v tanh~bv/2!
. ~55!

11We are grateful to Leonard Susskind and Emil Martinec
discussions on this topic.
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One might worry that this definition of horizon radius
ambiguous, since it seems to depend on the choice of res
ing time. Fortunately, from Fig. 7, we see that the spec
density consists of two well-separated peaks. The lo
frequency peak corresponds to states with an energy of o
the temperature; these states can be thermally excited
should be included in the fluctuations which make up
horizon. The high-frequency peak corresponds to states
an energy of order the ’t Hooft coupling, states which sho
be integrated out to see agreement with supergravity. T
any resolving time which keeps the low-frequency peak a
integrates out the high-frequency peak is acceptable, and
produce the same horizon radius.

For reasonable values ofe we can easily estimatêf̄2&.
Rather than use the Gaussian cutoff~55!, it turns out to be
more convenient to define a time-averaged size by introd
ing a factor 1/cosh(bv/2) into the integrand of Eq.~54!

^f̄2&[E
0

`

dvr~v!
1

2v sinh~bv/2!
. ~56!

The extra factor has the effect of cutting off the integral
v'1/b. This corresponds to a reasonable choice of reso
ing time, e'b. Defined in this way, our estimate for th
time-averaged fluctuations in the 0-brane positions is sim
given by a Euclidean Green’s function, cf. Eq.~51!

^f̄2&5^f~b/2!f~0!&.

This is easily calculated as a Fourier transform of o
momentum-space propagators. In Fig. 8 we plot the resul
smeared radius of the Wigner semicircle

R̄52A~7R̄scalar
2 12R̄gauge

2 !/9

as a function ofb ~we average over the scalar fields in th
gauge and scalar multiplets!.12 The time-averaged fluctua
tions in the 0-brane positions go down with temperatu

r 12The result forR̄ is dominated by the contribution of the zero
frequency Matsubara mode.

FIG. 8. The dotted curve is the smeared radius of the Wig
semi-circle. The solid curve is the Schwarzschild radius of the bl
hole, as measured in theU coordinate.
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This is the expected behavior for the size of these bl
holes. The result forR̄ is in rough agreement with th
Schwarzschild radiusU0 of the black hole~50!, which we
show in the same plot.

VI. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we have developed an approximat
scheme for 0-brane quantum mechanics at strong coup
and finite temperature. We presented an ansatz for a
action which captures some of the behavior of the largeN
quantum mechanics. The parameters appearing in the
action are chosen according to a set of gap equations w
resum an infinite set of planar diagrams. The approxima
automatically respects ’t Hooft large-N counting, and also
partially respects the supersymmetries and R-symmetrie
the quantum mechanics.

Our main result is that we find good agreement with bla
hole thermodynamics over the temperature range 1,b,4.
In addition, we studied the behavior of a Wilson loop, a
found that as expected a large-N phase transition occurs a
the system enters the supergravity regime. We also prese
results on the mean size of the system, and argued that in
supergravity regime this mean size~as measured by quantum
fluctuations! exceeds the Schwarzschild radius of the d
black hole. We could nonetheless recover the Schwarzsc
radius from the quantum mechanics, by introducing a s
able resolving time; to make our prescription unambiguou
was important that the spectral density showed a clear s
ration between light and heavy degrees of freedom.

We would like to emphasize that in the temperature ra
1,b,4 our approximation applies strictly to the gau
theory, and makes no use of supergravity information.
presented a prescription for fixing the value of the Wils
loop, which allowed us to extend the agreement up tob
514. The prescription, however, relies on supergravity
puts.

Our results are based on several technical developm
in the use of mean-field methods. Some of these deve
ments were reported in our previous work@12#. In the
present paper, the main new technical problem we faced
the difficulty of treating gauge theories using mean-fie
methods. By working in the gauge~11!, many of the
Slavnov-Taylor identities become trivially satisfied. Th
gauge choice was instrumental in enabling us to find a c
sistent set of gap equations, that could be solved in
strong-coupling regime.

There are two perspectives that one could take on
subject. The ‘‘supergravity’’ perspective is that, since gau
theory is better understood than quantum gravity, we sho
try to study supergravity phenomena from the gauge the
point of view. The ‘‘field theory’’ perspective is to regar
0-brane quantum mechanics as an interesting laboratory
developing and testing methods to study field theories
strong coupling.

Depending on which perspective one adopts, there
several interesting possible directions for future work. Fr
the field theory point of view, it would be interesting to app
mean-field methods to other models, to better understand
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range of validity of these techniques. Let us mention o
possibility. One can apply our techniques to pureN52
gauge theory, simply by dropping the scalar multiplets. T
resulting system of gap equations does not have a solutio
the low temperature regimeb.1. Presumably this can b
related to the fact that the pure gauge model breaks su
symmetry spontaneously@28#. It would be interesting to un-
derstand this connection in more detail.

It would also be interesting to have additional tests of o
approximation scheme. The supergravity makes further p
dictions for the behavior of the gauge theory, which could
tested. For example, in@26# a set of predictions were mad
for the scaling exponents of two-point functions of certa
operators at zero temperature. These were extracted by c
puting Green’s functions in the extremal supergravity ba
ground, and taking a large time/low frequency limit. It w
argued that these predictions follow from a generalized c
formal symmetry that appears in the ’t Hooft limit@27#.

It would be interesting to test these predictions against
numerical results. Even at finite temperature, one would
expect to recover the scaling behavior for frequencies sa
fying T!v!(gY M

2 N)1/3. Unfortunately, the correlators
which are predicted to have a scaling behavior involve co
posite operators whose two-point functions we have not
computed. We hope to study this question further in the
ture.

Another interesting direction would be to better unde
stand the duality between gravity and gauge theory. In p
ticular, it would be interesting to understand better how
supergravity properties of spacetime locality and causa
emerge from the gauge theory. One might hope to see
the horizon of the black hole is reflected in the dynamics
the gauge theory along the lines of@29#. Also, as we men-
tioned in Sec. III C, there is the subtle question of whi
radial coordinate in supergravity corresponds to the ga
theory Higgs fields. To address these sorts of issues,
natural to introduce a 0-brane to probe the supergravity ba
ground. The probe has a dual description in terms of a sp
taneously broken gauge theory. In@24#, we use mean-field
methods to study this problem.

Ultimately, one might hope to use mean-field methods
study non-equilibrium processes in the gauge theory
strong coupling, perhaps using some sort of thermofield
malism@30#. For example, it would be extremely interestin
to study scattering of a graviton wave packet off a bla
hole. Could one see correlations in the outgoing Hawk
radiation?
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APPENDIX: 2PI EFFECTIVE ACTION

The two-loop, 2PI effective action is defined by

I eff5bF01^SII 1SIV2S0&02
1

2
^~SIII !

2&C,0 . ~A1!

We adopt units which effectively setgY M
2 N51, and suppress

the overall factor ofN2 in the free energy. Then the fre
energy of the trial action is given by

bF05bFh~l!2(
l

logs l
21(

r
logar2

7

2 (
l

logD l
2

17(
r

loggr2
7

2 (
l

loge l
21(

lÞ0
logsl22(

r
log t r

1(
l

logul ~A2!

where the free energy of the one-plaquette model is

bFh~l!5H 2
2

l
2

1

2
log

l

2
1

3

4
, l<2,

21/l2, l>2.

~A3!

We also have
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s
e

y

^SII 2S0&05
N

l
^Tr~U1U†!&h1(

l
F S 2p l

b D 2

s l
221G

1(
r

F i S 2pr

b D 3

ar11G
1

7

2 (
l

F S 2p l

b D 2

D l
221G

17(
r

S 2 i
2pr

b
gr11D

1
7

2 (
l

~e l
221!1(

lÞ0
F S 2p l

b D 2

sl11G
12(

r
S i

2pr

b
t r21D2(

l
~ul21! ~A4!

where the one-plaquette model contribution is

N

l
^Tr~U1U†!&h5H 2

l
2

1

2
l<2

2/l2 l>2.

~A5!

We also have the contribution of the 4-point couplings,

^SIV&052
2

b (
r ,s

2pr

b

2ps

b
aras1

3i

b (
l ,r

2pr

b
ars l

2

1
1

b (
l ,m

s l
2sm

2 1
14

b (
l ,m

D l
2sm

2 1
14i

b (
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D l
2 2pr
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1
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b (
l

D l
2r0

21
5i
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r

2pr

b
arr0

21
2

b (
l

s l
2r0

2

~A6!

where the two-point function ofA00 is defined in Eq.~26!.
Finally, the contribution of the three-point couplings is give
by
2
1

2
^~SIII !

2&C,052
4

b (
l

S 2p l

b D 2

~s l
2!2r0

22
4

b (
r

S 2pr

b D 4

~ar !
2r0

21
14

b (
l 1r 1s50

S 2p l

b D 2

D l
2args1

14

b (
l 1r 1s50

e l
2args

2
14

b (
l 1r 1s50

s l
2grgs2

14

b (
l

S 2p l

b D 2

~D l
2!2r0

22
7

b (
r

~gr !
2r0

21
21

b (
l 1m1n50

D l
2Dm

2 en
2

2
42

b (
l 1r 1s50

D l
2grgs1

1

b (
l 1r 1s50

Fs l
2t r ts2ul tras1S 2p l

b D 2

sl trasG1
1

2b (
r

~ t r !
2r0

2

1
1

b (
l

S 2p l

b D 2

~sl !
2r0

2 . ~A7!
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