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We present the details of a mean-field approximation scheme for the quantum mech&hio8-tranes at
finite temperature. The approximation can be applied at strong 't Hooft coupling. We find that the resulting
entropy is in good agreement with the Bekenstein-Hawking entropy of a ten-dimensional nonextremal black
hole with a 0-brane charge. This result is in accord with the duality conjectured by Itzhaki, Maldacena,
Sonnenschein and Yankielowicz. We study the spectrum of single-string excitations within quantum mechan-
ics, and find evidence for a clear separation between light and heavy degrees of freedom. We also present a
way of identifying the black hole horizon.
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[. INTRODUCTION been made on the first iss(i6], although even such basic
properties as spacetime locality are still obscure from the
The physics of black holes has played a prominent role irgauge theory point of view.
our quest to understand quantum gravity. Semiclassical con- In this paper we will focus on the second issue, of devel-
siderations have shown that the horizon of a black hole hasping practical methods for doing gauge theory calculations.
an associated thermodynamic entrdy, and a key test of The gauge theory is strongly coupled whenever semiclassical
any proposed theory of quantum gravity should be to providgravity is valid, so we must study the gauge theory
a microscopic explanation of this entropy. non-perturbatively. We do this using techniques from self-
Dramatic progress was made a few years ago, when cegonsistent mean field theory. This provides us with an ap-
tain extremal black holes were realized as collections oforoximation to the density matrix which describes the gauge
D-branes in string theory. This description led to a precisgheory at finite temperature. A key test of our approximation
counting of microstates, which was in exact agreement wittis whether it reproduces the semiclassical thermodynamics of
semiclassical black hole thermodynamj@3. Unfortunately  the black hole. As we will see, according to this criterion our
this counting relied on supersymmetric nonrenormalizatiorapproximation works quite well, at least over a certain range
theorems, and therefore could only be applied to certai®f temperatures.
classes of extremal black holes. For simplicity we will concentrate on the quantum me-
A more general understanding of black hole entropy rechanics ofN DO-branes, with sixteen supercharges and gauge
quires a non-perturbative definition of string theory. This isgroup SU(N) [9]. At large N and finite temperature, the ef-
now available, at least in certain backgrounds, thanks to théective 't Hooft coupling of the quantum mechanics is
M(atrix) and Maldacena conjecturé¢8,4] (for reviews see
[5]). These conjectures relate non-perturbative string theories
to dual strongly coupled larg- gauge theories. In this 92=g2uN/T2. 1)
framework, black hole entropy is identified with the entropy
of the density matrix which describes the gauge theory at
finite temperature. Note that the quantum mechanics is strongly coupled at low
In principle, one can use these dualities to understangemperature. This quantum mechanics is dual to a ten-
black hole physics in terms of gauge theory dynamics. Irdimensional non-extremal black hole in type IIA supergrav-
practice, however, this requires two things: a precise majfty, with N units of O-brane chargfl0]. The metric of the
between gravity and gauge theory quantities, and a tractablgiack hole is
calculational scheme in the gauge theory. Some progress has

1in M(atrix) theory, one can argue that the entropy of certain black
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C1/2(g$ MN)1/2 as stati_stically independen.t, with inte(actipns taken into ac-
dgg count via a sort of mean-field approximation. In the rest of
this section we present several reasons to believe this simple
®) approximation captures some of the essential physics of the
quantum mechanics in the supergravity regime. In the next
section we will show that the approximation gives results
_ which are in good agreement with black hole thermodynam-
_Cllz(g\z(MN)llz ics over a certain temperature range.
Let us begin by stating our approach to studying strongly

wherec=27792'(7/2) andgyy, is the Yang-Mills coupling ~coupled systems in rather general terms. We are presented

constant. The horizon of the black hole istat=U,, which ~ With & strongly-coupled actio§, in our case the action for
corresponds to a Hawking temperature O-brane quantum mechanics. We approximate this action

with a simpler trial actionS,. All quantities of interest can
)5/2 then be computed as an expansion in powerS-e5,. For

ds’=a’| —h(U)dt?+h~Y(U)dU?+

U3/2

U7/2 Ug

h(U) —F

Uo

> instance, the free energy has an expangiah
o

7
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277\/%
— BF.— (e~ (5-S0) _
0,5 BF=pFy—(e Dco
=0.203492 N)1’2<—) . (3) 1
YM 21 =BF0+<S_50>0_§((S_50)2>C,0

The dual quantum mechanics is to be taken at the same finite

temperature. The black hole has a free energy, which arises e ©)
from its Bekenstein-Hawking entrofyt1] where a subscripE,0 denotes a connected expectation value
127 14\ 15 /5 calculated using the trial actio®,. If the trial action comes
BF=— 2735w 2 T sufficiently close to capturing the dynamics of the full action,
719 (g% yN)3 then this expansion should be well-behaved, even if the full

actionSis strongly coupled.
18 This sort of approximation relies crucially on an appropri-
NN R (4)  ate choice of trial action. In our case, we shall t&eto be
(gvuN) the most general quadratic action that one can write in terms

Duality predicts that the quantum mechanics should have thgf the fundamental gauge theory degrees of freedom. This

same free enerav. The superaravity descriotion is expected {geans that our trial action involves an infinite number of
gy- perg y P P adjustable parameters, namely the momentum-dependent

be valid when the curvature and the dilaton are small Ne&\wo-point functions of all the fundamental fields. One can
the black hole horizon. This regime corresponds to the ,tre aFr)d these propagators as providing an infinite ;set of varia-
Hooft largeN limit of the quantum mechanics, when the 9 propag b 9

. . . ; - tional parameters. To fix these parameters we solve a trun-
temperature is such that the dimensionless effective COUp“ngated et of Schwinger-Dvson equations. These gap equa-
(1) lies in the rangg10] ger-Ly q - gap eq

tions provide a non-perturbative approximation to the true
two-point functions of the theory, by resumming an infinite
set of Feynman diagrams.

An outline of this paper is as follows. In Sec. Il we develop AS We shall see, this sort of approximation has several
a mean-field approximation scheme for 0-brane quantum mettractive features, which initially motivated us to apply
chanics, building on our earlier worlk2]. In Sec. Ill we these techniques to O-brane quantum mechanics. _
present numerical results for the behavior of the gauge 'N€ approximation is non-perturbative in the Yang-Mills
theory, focusing on thermodynamic quantities. We Compar@ouplmg constant, and self-con3|ste_ntly cures the mfrargq di-
our results to the black hole predictions, and find good agreeZérgences which are present in conventional finite-
ment over a certain range of temperatures. Section |V j§€€mperature perturbation theory. This makes it possible to
devoted to a spectral analysis of the propagators, to extraéPPly the approximation at strong coupling, at temperatures
the spectrum of stretched strings that make up the supergraythére one can make a direct comparison with black hole
ity background. In Sec. V we discuss how local spacetiméredictions. o .
physics, such as the size of the black hole horizon, may be We can formulate the approximation in a way which re-
extracted from the gauge theory. Section VI gives our conSPects 't Hooft largeN counting, by only keeping planar
clusions and a discussion of possible future directions. Aontributions to the Schwinger-Dyson equations. This means
summary of our results has appearedig]. that an overall factor oN? in the f_ree energy, as well as thg
appearance of the gauge coupling only in the combination
g%uN, is guaranteed. But this is exactly the fot#) of the
supergravity result. That is, we are proposing that the overall
factor of N? in the supergravity free energy can be under-
The basic idea of our approximation is to treat thEN?) stood in terms ofO(N?) elementary quasiparticles, which
degrees of freedom appearing in 0-brane quantum mechaniese in one-to-one correspondence with the degrees of free-

=—4.113N?

1 g2 N1, (5)

Il. MEAN-FIELD APPROXIMATION FOR 0-BRANE
QUANTUM MECHANICS
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dom appearing in the fundamental Lagrandiancidentally, Before presenting the details of the approximation, let us
this means that our approximations are hopeless at coupling®te that the techniques we are using have a long history.
[outside the rangé5)] which are so strong that 't Hooft They are closely related to variational meth¢id] and self-
scaling breaks down. consistent Hartree-Fock approximations, and also go by the
Akey feature of the approximation is that a quadratic trialname of modified perturbation theofy5]. They are equiva-
action will automatically respect all symmetries that act lin-lent to the effective action formalism developed [ib6].
early on the fundamental fields. This is crucial in a problemSimilar techniques have been applied to QD], and re-
like O-brane quantum mechanics, where symmetries pla ted techniques are used to study flnlte-temperature field
such an important role. By working in a superfield formalismth€ery [18]. Our own work on the subject began with2],
with off-shell supersymmetry, our trial action will havg ~ Where we were motivated by the 0-brane problem to apply

_ : these techniques to several toy problems in supersymmetric
=2 supersymmetry an80O(2) X SO(7) rotational symme- : . .
try [out of the underlyingV=16 supersymmetry anglo(9) quantum mechanics. Related techniques have been applied to

rotational symmetr (0+0) dimensional Yang-Mills integrals ifil9], and have

Another feature of the approximation is that it avoids Cer_;'laqls[c;(;)]een used to study Wilson loop 4 gauge theory

tain infrared problems which are present in the full 0-brane
guantum mechanics. The difficulty is that the partition func-
tion of the full quantum mechanics contains an infrared di-
vergence from the regions in moduli space where the We begin by formulating the O-brane action=2 su-
0O-branes are far apart. This leads to a divergent contributioRérspace. For more details see appendix Al@f.

to the entropy with an overall coefficie@®(N). From the N=2 supersymmetry means that we have 80(2)
supergravity point of view, this corresponds to a thermal gagt-symmetry, with spinor indices, 5=1,2 and vector indi-
of gravitons. This divergence may be regulated by putting€Si.i =1,2. TheSO(2)r Dirac matricesy,,; are real, sym-
the system in a finite box. The black hole entropy which ismetric, and traceless. Given two spinaksand y, there are
O(N?) can then easily be made to dominate over ¢H&\) two invariants one can make, which we denote by
contribution. Our mean-field approximation automatically i

computes the)(N?) piece, while discarding the subleading WoaXae aNd ¥y ,= §€aB¢aXB-

O(N) divergence, so no additional infrared regularization is

required.

This sort of approximation also has some potential draw
backs. An unfortunate fact is that there is agriori guar-
antee that the approximation works well. One has to choos
a trial action and a set of gap equations, and hope that wit
appropriate.choices the _app_roximation. works wgll._ In our d=+ig,0,+f62
case, we will be able to justify our choicesposteriori by
showing that we get good agreement with black hole therit contains a physical real bosap and a physical real fer-
modynamics over a certain temperature range. Another wapion 4, , along with a real auxiliary field. To describe

to justify the approximation is to compute higher-order termsgauge theory we introduce a real spinor connection on super-
in the expansiori6) and show that they are small. We have gpacel”, | with component expansion

not attempted this for the full 0-brane problem, although toy
models show promising behavipt2]. L o= Xat Ao, + XY 05+ de, 305+ 26,5\ 562
o . a” Xa a ap?p apYB aphp
Although the approximation respects all symmetries
which act linearly on the fields, it breaks symmetries that actrhe fieldsX' are physical scalars, while, are their super-
non-linearly. As there is no superspace formulation of theopartnersd is an auxiliary bosony, are auxiliary fermions,
ries with 16 supercharges, we can only realize a subgroup efnd A, is the (0+ 1)-dimensional gauge field.

the supersymmetrig@n our caseV=2) as acting linearly on To write a Lagrangian we introduce a supercovariant de-
the fields. This is sufficient, for example, to make our ap-rivative

proximation to the vacuum energy vanish @s»>c. How-

ever, the remaining supersymmetries and R-symmetries are a . d

broken by the approximation. Another important symmetry Dazﬁ_' 9aﬁ @)
which acts non-linearly on fields, and is therefore broken by ¢

our approximation, is gauge invariance. More precisely, ouind its gauge-covariant extension

quadratic trial action is not invariant under Becchi-Rouet-

A. The 0-brane action in N'=2 superspace

N=2 superspace has coordinatésd(), whered, is a col-

lection of real Grassmann variables that transform as a spinor

of SO(2)g. The simplest representation of supersymmetry is
real scalar superfield

Stora-Tyutin(BRST) transformations. As we shall show in V,=D,+T,. (8)
Sec. I C, this difficulty can be largely overcome by an ap-
propriate gauge choice. The 0-brane action is built from a collection of seven adjoint

scalar multipletsb, that transform in th& of a G,CSO(9)
global symmetry, coupled to B(N) gauge multipletl",, .
2A “Fermi liquid” approach to black hole physics. The action reads
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1 1 1 A second advantage is that our gauge choice is well-
SSYMzz—f dtdZHTr< - ZV“;’-}VQ}]— EV“(I)aVQCDa defined at finite temperature. To see this, note that the zero
Oym mode of the gauge field, which we dené{g,, survives as a

i physical degree of freedom. This is important, because at
__fabc(pa[q)b,(pc])_ (9) finite temperature the gauge theory acquires an additional

3 dynamical degree of freedom, namely the value of a Wilson-
Polyakov loop around the Euclidean time directidh
=Pé¥970_ |In our gauge, this physical degree of freedom is
parametrized by the zero mode

Here fi=%7iaB{Va,Vﬁ} is the field strength constructed
from I',, and f,,. is a totally antisymmetrids,-invariant
tensor, normalized to satisfy

. U=e"Pho, (13
fabcf abd=5 Ocd- 10
abciabd™ 3 Ted (10 Note that at finite temperature
Strictly speaking, the relative positions of tNeD-branes are Aoo~ Ao+ 27/\B (14)
governed by ars U(N)/Zy gauge theory, but in the large-
limit we can approximate this by (N). is a periodic variable.
We are interested in the finite temperature properties of Corresponding to our choice of gauge we must introduce
the action(9). We work in Euclidean space, setting a ghost actior(but no gauge fixing terin

SE:_iSM, T:it, AOE:_iAOMI fE:_ifM' 1 o
_ o sghostsz dtd?6Tr(D*CV ,C).
Note that we must Wick-rotate the auxiliary fields, to get a Gym
Euclidean action that is bounded below. As usual we com-
pactify the Euclidean time direction on a circle of circumfer- For the ghost multiplet we adopt the component expansion
ence B, which is identified with the inverse temperature. )
Bosons are periodic while fermions are antiperiodic; for ex- C=a+p,0,tv0

ample we write the mode expansions _ )
wherea and y are complex Grassmann fields afg is a
_ 1 o complex boson. At finite temperature and y are periodic,
XI(T):T > Xiel2ml7lp while 8 is antiperiodic.
B leZ

1 C. Slavnov-Taylor identities

Xo(T)=—"= D  Xar€?™75 Mean-field methods usually have a difficult time dealing
B refiae

with gauge symmetry. The problem is that the Slavnov-
Taylor identities are typically violated by the approximation.
B. Gauge fixing After gauge fixing, Slavnov-Taylor identities arise from
BRST invariance of the gauge fixed action. BRST transfor-

mations act non-linearly on fields, but the sort of mean-field

class of Fe_:ynman_dlagrams to obtam_ an approximation fO<[;1pproximation we wish to use is based on a trial action that
the two-point functions at strong coupling. To make this Pro=ig quadratic in the fundamental fields. Such a trial action

cedure well-defined, we must fix a choice of gauge. For reaz, oy respect a symmetry that acts non-linearly. Thus mean-
sons we will explain, it is extremely advantageous to work in

the gauge field techniques typically break BRST invariance, and hence
violate Slavnov-Taylor identities.
DT ,=0. (11) A major advantage of our gauge choidd) is that many
of the Slavnov-Taylor identities become trivially satisfied, so
The first advantage of this gauge is that, since @@) is a  that even a quadratic trial action can respect many of the

condition on superfields, our gauge choice preserves manfonsequences of gauge invariance. To illustrate this, we con-
fest Supersymmetry_ In terms of Component ﬁe|d3' it sets sider a Slmp|lfled mOdel, which can be obtained from the full

0-brane quantum mechanics by discarding all fermion and

Our approximation is based on resumming an infinite

1 auxiliary fields. That is, we study bosonic Yang-Mills quan-
dAe=0, d=0, Ae=5diXa- (120 tum mechanics, with the following gauge-fixed Euclidean
action:

This is a complete gauge fixing; i.e., having made this choice
there is no residual freedom to make additional gauge trans- S= LJ dTTr: ED XD X — E[Xi XX, X1
formations. [ek2Y 2T T A ’

1 _
+— 2+ 9 aD. aj. 1
3This corrects a normalization error j2]. Zg(arAO) e Ta] 19
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HereA, is aU(N) gauge field, withD .= d.+i[Aq,-]. The  where for simplicity we have taken a trace to get rid of
fields X' are adjoint scalars, andis a ghost field. One subtle matrix indices. Thus, modulo the use of an equation of mo-

point is that the antighost Zero moaeio does not appear in tion, the content Of the |dent|tw.7) is the well-known fact )
the action, and therefore should not be regarded as a trfBat the gauge field propagator at non-zero frequency is
degree of freedom. It is completely decoupled, and any cordiven exactly by the gauge-fixing term in the classical action:

relators involvinga vanish. 2 N2

To illustrate the difficulties with gauge invariance we (Tr(AgiAg_)) = Yym for 1+0. (20)
have adopted a general class of gauges parametrizéd by ’ (27l1B)?
The action is obtained by gauge fixingAy=f and then
functionally integrating over f, with the weight In the limit £—0 this Slavnov-Taylor identity implies that
exp(—[drf%2g%,,&). Our preferred gauge condition,A,  the modes oA, with non-zero frequency do not propagate.
=0 is recovered in the limit—0. Expanding the fields in But this is an automatic consequence of adopting our gauge
Fourier modes, the actiohl5) is invariant under BRST choice (11), which eliminates all non-zero modes Af. In

transformations: fact, in the full O-brane quantum mechanied| Slavnov-
Taylor identities which just constrain two-point functions are
27l 1 automatically satisfied by working in the gauge (11)
S A0=—n| —(at—= > [Aoman] Next let us consider a Slavnov-Taylor identity on a
B VB mA= 3-point function. We have the requirement

PRV SN (8, XipX}))=0. (21
i B ’
VB minel Using the transformationd 6), this gives rise to a Slavnov-

1 (16) Taylor identity with the schematic form
S,a1=n—= Z Ump 1
Vi L [— Lo
VB min= £ (7 AX X)) = (@axx). (22)
— 72l : . o
S, 0= If the gauge field carries zero frequency this identity turns

=% 5 Ao~
! ¢ B out to be trivially satisfiedfor the same reasons thét8)
ofyas trivially satisfied at=0]. If the gauge field carries non-
zero frequency then this Slavnov-Taylor identity is non-
trivial. In particular, in the limit§— 0, it states that the am-
plitude to emit a gauge boson with non-zero frequency is
O(&). But this property is automatically satisfied by working
in the gauge (11), where the non-zero modes of the gauge
%field are eliminatedAgain, the content of the Slavnov-Taylor
identity (21) is automatically taken into account just by
working in the gaugéll).

where 7 is a Grassmann parameter. Note that the decoupl

antighost zero modey, is indeed invariant under BRST
transformations.

We can use this BRST symmetry to derive Slavnov-
Taylor identities in the standard way, from the fact that the
expectation value of any BRST-exact quantity vanishes. F
example, we must have

(8,(@iAa))=0. 17 This pattern is quite general. All non-trivial Slavnov-

This gives us the following relation among Green's furm_Taonr identities follow from the requirement that correlators
ti of the form
ions.

127l — [ 27l 1 (8,(er--4)) (23

E_Ao,—lAm +Hoa| ot = 2 [Aman] _ _ _

B B \/E m+n=I vanish.(There must be at least ore sinced,, increases the
=0 (19) ghost number by one and you need zero ghost number to

have a non-vanishing correlatolf | =0 this Slavnov-Taylor
identity is trivially satisfied. Ifl#0 this Slavnov-Taylor
identity becomes a constraint on correlators that either in-
volve a gauge boson with non-zero frequency, or involve an
antighost with non-zero frequency. Correlators with, .
must vanish in the limit—0, and this property is guaran-
teed by working in the gaug@l). In fact it is not clear to us
whether the Slavnov-Taylor identities have any non-trivial
content in the gaugéll). In principle it seems that they
2 <Tr(;I[AOm:an])> could give constraints on correlators involving antighosts,
=

Forl=0 this Slavnov-Taylor identity is trivially satisfied: the
first term vanishes sinck=0, while the second term van-

ishes sincex, is decoupled. Here we assume thg, two-
point function is finite at=0. Forl #0 the second term can
be simplified using the following Schwinger-Dyson equation
(a consequence of the ghost equation of motion

(Z—“)Zm(— =
B B nth

B but at the level of 2-point and 3-point functions, no con-
2 o straints arise which are not already implied by the
=—gymN (19 schwinger-Dyson equations.
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Does this issue of Slavnov-Taylor identities have any There are a few subtle points to note about this action.
practical importance? After all, the approximation couldOne point is that, due to the periodicit¥4), it is not appro-
work well even though it is not gauge invariant. But it turns priate to adopt a Gaussian trial action f&g,. Rather we
out that in our case, the gauge choit#) is crucial. We have have adopted the unitary one-plaquette model ad@dn
used mean-field methods to study gauge thediresuding
Egs. (9),(19)] in the more generaR; class of gauges, and
have found that the system of one-loop truncated Schwinger-
Dyson equations does not have solutions when the gauge -
theory is strongly coupled. We believe this breakdown can béor the holonomyU = &' P00, This action undergoes a large-
related to the fact that the violation of Slavnov-Taylor iden-N phase transition when=2. As discussed ifi12], such a
tities gets worse as the coupling increases. transition is expected to separate the perturbative gauge

In any case, at least for 0-brane quantum mechanics, thigeory regime from the supergravity regime, presuming cou-
difficulty can be avoided by working in the gau@kl). The  plings to other fields do not turn this into a smooth cross-
vertices that appear in the gap equations receive no corpver. A second minor point is that, as discussed in Sec. IlI C,
straints that are not already implied by the Schwinger-Dysorihe antighost zero mode is not a physical degree of freedom.
equations(quartic vertices that appear in the gap equationsie have therefore suppressed the terms involvigdn Eq.
will not involve a pair of ghosts The Schwinger-Dyson (24).
equations themselves will be satisfied at the one-loop level, Corresponding to the actid24) we have the 2-point cor-
so the approximation is self-consistent. relators

(Aohono=p5 (XiXl)o=078"68 . m

N
So=—Tr(U+U")

D. Trial action and gap equations

In applying mean-field methods to O-brane quantum me-  {XarXps)0= & Sapd;+s
chanics, the first step is to choose a trial action. We will

adopt the following trial action, which is written in terms of <¢f¢?n>o:A|25ab5|+m
component fields expanded in Matsubara modes. a b b ach 2 b (25
<¢arwﬂs>ozgréa 5aB5r+s <f| fm>0:6| 5? Ol+m
So=—ETr(U+U*)+Z iTr(xixi ) — —
A ] 20-|2 121 <alam>O=SI Sim (:BarIBBs>O=tr5aﬁ5rs
1 1 (N Ymo=U8im
=2 5 T XarXa, )+ 20 5T ¢%) | |
r ' I 24 where(- - - )q denotes an expectation value computed using
1 1 Sy, and where the two-point function of the gauge field zero
_2 —Tr(yR, 0 7r)+2 —Tr(FRfR ) mode is given by
r 20, ’ [ 2€|2
|‘<1 Mal1-2)iogl1-2]-1], a=2
1= 1= 1= N R ST A R VA S el
-3 Taa)+ X CTBube) =2 ;T 2= P
{70 S| oL T U Po 1 (72 4
— == =], A=2,
(24) BN 3 )
(26)
Recall thatl,meZ and r,seZ+3 label Fourier modes, involving a dilogarithm[12].
a,B=1,2 areSQ(2)r spinor indicesj,j=1,2 areSO(2)r Next we need to choose a set of gap equations to fix the
vector indices, andz,b=1, ..., 7 arendices in the7 of G,. parameters that appear in our trial action. For most degrees
The parametera, oy, ... can be thought of as variational of freedom we will adopt the one-loop gap equations dis-
parameters, which we will fix by solving a set of one-loop cussed if12]. These equations can be obtained by demand-

gap equations. ing that the quantity
The action(24) is essentially the most general Gaussian
trial action that is compatible with the linearly-realized 1
bosonic symmetries of the probléhSupersymmetry is bro- lefi=BFo+(Si +S'V_SO>0_§<(S'” Peo (27
ken at finite temperature, so we have not imposed supersym-
metry on the actior{24), although as we discuss below su- is stationary with respect to arbitrary variations of the 2-point
persymmetry gets incorporated into our approximation in gunctions(25), whereS,; ,S,;, .S,y refer to terms in the super
natural way. Yang-Mills— (SYM-) plus-ghost action that are quadratic,

“4Including theZ, R-parity symmetry discussed in appendix A of °This quantity can be identified with the two-loop 2PI effective
[12]. action of Cornwall, Jackiw and Tombouli6].
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cubic, quartic in the fundamental fields. The explicit expres-where we have dropped higher-order term$Ag,, coming
sion for this effective action is given in the Appendix. from the Campbell-Baker-Hausdorff lemma, which do not
For the gauge field, however, we use a slightly differentcontribute at one loop in the mean field approximation.
gap equation. The starting point is the Schwinger-DysorEvaluating Eq.(29) to one-loop order gives a relation be-
equation for{TrU), which follows from demanding that tween expectation values computed with respe@gto

<u>=ded(---)Ue—S (29 1 2( iyB
N(Truhzﬁ(_W(Tr(UAoo»D)
is invariant under an infinitesimal change of variablds
—gU with g=1+iwe U(N). At leading order this implies d 1 )

ng (Siv)o— §<(S|||) Ycol- (30

TrU)=——=(Trl U —— 29
() \/E < ( 5Aoo>> @9 The relevant one-plaquette expectation valueq2t¢

1 1-N4 <2
NTWVo= 1 =2 3D
! 1+)\ 1 A 2I 1 A A2
iVB 2] 2] 9T T
_T<TT(UA00)>D: 1
1-— A=2,
2\
|
while the expressions fotSy), and —3((Sy)?)co are 1 iVB

2 B
given in the Appendix. We adopt E(B0) as the gap equation N<TYU>D=— - W<Tr(UAOO)>D

that fixes the one-plaquette coupling A

Let us pause to note a few important features of this 2 5i 21 7
system of gap equations. First, in computing expectation x|= > or +2— > —a+-2 Aj
values we have kept only planar contributions. This means B B B B
't Hooft largeN counting is automatic: the free energy 2 4
will come with an overall factor oN?, and the Yang-Mills _4 > (Z_WI) (0?)%— 4 > (Zﬂ (a,)2
coupling will only appear in the combinatiorg%MN. B B B B
We henceforth adopt units which ng;[MN= 1, by rescaling ’
all dimensionful quantities as if12]. Second, since we _EE (Z_WI) (AZ)Z—ZE (9,)2
have consistently worked to one-loop order while B 1 B ' B '

including all auxiliary fields, these gap equations respect

2
supersymmetry. Of course supersymmetry gets broken 1 2wl , L )
at finite temperature, but in the zero-temperature limit +,3 2 B (s1) +23 Z (tr) (32)
these symmetry breaking effects go aWajhus asg—
the bosonic and fermionic propagators will be related 2 .
. - 1 2l 2 3i 27r
by supersymmetry Ward identities, and the vacuum energy = —] += E o2+ — 2 —_a
. . . 2 m r
will automatically vanish. O B B “m BT B
To summarize, the parameters appearing in our trial )
action_ are fixed by solving the following set of gap +EE A2m+ Epg_§<2_7ﬂ) Ulng
equations: B “m B B\ B
14 1
- — +— t,t 33
8Supersymmetry is unbroken at zero temperature in this model. B r+;:0 9rGs B r+;:0 e 33
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ar ,8 ,8 B | :
+4 2mr 27S 5i 2m7r 5
—_—— _a___
BB S B 28"
14i 27r 8 (2mr\*
| i 2mr A2+_(_ a.p?
B B 24 B\ B | “Po
14 (27TI)2A2
B &0\ B ) S9s
14
t
,B r+; OEIgs ,3r+; 0 SUI
1 21\ 2
TBn&o\ g S (34
1 2l 4 4i 21 2
A,Z(ﬁ) B2 Tnt 2 g At gk
12 12
+— z Afneﬁ__ 2 0:9s
B minti=0 B r+éti=0
4(27T|)2 8(27TI)2
— —_— a —_—— —_—
B\ B | &0 gl
X Afph (35
1 2ar 12
—=i—t— AZ
6 B B A
2 27l 2
_ AZ 2
,8 r+s+1=0 ( ,B s~ r+s§+:l=0 €l as
4 2
+ E r+sz+l=0 0'|ng+ Egrpé (36)
1 4
S=1+— X AZAZ+H— D ags
€| m+n+1=0 r+s+1=0
(37
1 271\2  1/2#1\2
s_l__(?) F(?) H;-o“as
2(2q\?
~ B\ g SPo (39
1 2@r 1 1
—=i—t= otts— = agu
tt B ,8r+; o 71 2,3r+;=0 st
1 27l\? 1, 39
+ﬁr+s+l=0 5 Slas+ﬁpotr (39
1 1
Z=1+ 2 ta. 40
% fm;  tras (40
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E. Numerical methods

The gap equations we have described form an infinite set
of coupled algebraic equations. We now outline the numeri-
cal methods that we used to solve these equations. For addi-
tional details see appendix B ff2].

The first step is to reduce the infinite set of E@2)—(40)
down to a finite set. To do this we use the following
asymptotic forms of the propagators, which are valid at large
momenta:

1 i 1

2 o ~

N 2mipZemE & 2wl (2mriB) 2+l

A2 1 i2mrlB

Teniprmg YT @it

(2m18)?

2"\1—

T 2w+ “y
1 . i2mrlB

ST 2Aig?rmE T (2arB) 2+ m?

N (2711B)?
U= 2nlig) 2+ m?

At leading order these are simply the tree-level propagators.
Demanding that these propagators satisfy the gap equations
to the first subleading order of an expansion in
1/(momentum) fixes the asymptotic masses to be

2 Sig 2mr UG 2 6,
"B 4 52§ &t 2 AT g0

2___- — 2
Mg 2 gt g A
i 2r 2
m§=—/—32 B EPS

1 1
thZEZI Uf—ﬁpg

"This reflects the fact that the quantum mechanics is free in the
ultraviolet.
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i 24 beta F
2_
M E e N
-1.25
The next step is to fix a mode cutdff. For modes with -1.5
—N=I, r<N we regard the Fourier modes of the propaga- -1.7s
tors themselves as the unknowns, while for modes outside beta
this range we parametrize the propagators in terms of the .52 25 3 35 4
. . O -2.25
eight unknown asymptotic masses appearing in(Ef). The
propagators with—-N<I, r<N are to be found by directly ~2.5
solving the relevant gap equation82)—(40), while the -2.75

asymptotic masses are to be determined by solving the sys-
tem of equations(42). Note that all these equations are
coupled. For example, we evaluate the high-momentum par
of the loop sums that appear in Eq82)—(40) and (42)

FIG. 1. The solid curve is the power law f#7) for BF. The
fsata points are calculated from numerical solutions to the gap equa-
ons.

analytically, in terms of the asymptotic masses. _lll. MEAN-FIELD RESULTS FOR THERMODYNAMIC
This leaves us with a finite set of equati¢h®ur basic QUANTITIES
strategy is to start at high temperatu@s 1, where we have
the following approximate solution to the gap equations. In principle the trial action we have constructed contains a
great deal of information about correlation functions in the
A~0.4183%2 U(Z)Nolgo%m Ag%olzgzgm quantum mechanics. But in this section we will just present

numerical results for the behavior of three basic quantities:
the free energy, the Wilson loop, and the mean size of the

2 . ~
€2~0.677 Up~1. 43 state.

(All non-zero modes are approximately given by their free-
field values) Then we use the Newton-Raphson meth®2

to solve the system of equations at a sequence of succes- At high temperatures, where the gauge theory is weakly
sively lower temperatures. Our numerical results were obcoupled, we find that the free energy of the system is
tained starting aB=0.1, with

A. Free energy

BF=61logB+0O(1). (46)
B—min(1.28,8+0.25 This result can be obtained analytically: the gap equations
are dominated by the bosonic zero modes, and the free en-
on each step, and with a mode cutbfff=- max(3,53). ergy is dominated bysF,,.

Finally, after solving all the gap equations, we wish to  |n general, for a weakly-coupled theory int@ dimen-
compute the free energy. This has the expansion given in Egjons, one would expect the free energy to behave likgglog
(6), which we truncate to But note that, even though the gauge theory is weakly

coupled at high temperature, the perturbation series is af-
1 ) flicted with IR divergences. Thus, to determine the coeffi-

BF~PBFo+(S—Sp)o~ §<(S”l) )c.o- (44) cient of the logarithm(which depends on the value of the
dynamically generated IR cutgfbne must re-sum part of the
perturbation series. This is a well-known phenomenon in fi-
nite temperature field theofy18]. In any case, we expeet
priori that mean-field methods give good results in the high
temperature regime.

As the temperature is lowered the behavior of the free
energy changes: @8~0.7 we find that it begins to roll over

N and fall off as a non-trivial power of the temperature. In the
_ El log 0'|2= _ E |Og{0'|2[(277|/ﬁ)2+ m(zr]} \r;en”gﬁtlb<y3<4 the numerical results for the free energy are
—N

That is, our approximation t@F is simply the effective
action | o of Eq. (27).° The explicit expression fot is
given in the Appendix. To calculalges numerically we must
make use of the asymptotic form@l). For example we
define the following renormalized sum:

+2 log(2 sinh(Bm,, /2)). (45) BF~—0.79-2.08"1". (47)

This fit to the numerical results is illustrated in Fig. 1. Note

88N+ 13 equations, to be precise, where we have taken advantagLQat_ supersymmetry is crucial in making such power-law be-
of the fact that time-reversal invariance makes (hesonic, fermi- avior possible. Without supersymmetry the free energy
onic) propagatorgeven, oddl functions of their momenta. would behave agF~ BE, in the low temperature regime
9The O-brane action also has 6-point couplings, but it turns ouf 8>1), whereE, is the ground state energy of the system.
that(Sy,)o=0 so these terms do not contribute to our approxima- \We obtained Eq.(47) by performing a Levenberg-
tion for the free energy. Marquardt nonlinear least-squares [2] to 75 numerical
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energy energy
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2 T ¢ § 10 12 14 st ' beta

0.2 0.5 1 2 5 10

FIG. 2. Energy vs3. For f>2.5 fixing \ by fitting SF to a FIG. 3. Energy vs8. Same as Fig. 2, but plotted on a log-log
power law leads to the solid middle line, while the Schwinger-¢4je.

Dyson gap equation for lambda leads to the lower dashed line. The

upper dot-dashed line is the semiclassical energy of the black hole.
when 8>2.5 (the midpoint of our range £8<4), we

calculations of the free energy, carried out in the temperaturghoose\ so that the free energy is given by E4.7). The

range kpB<4. To estimate the uncertainty in the best fit energy E=d(BF)/dB calculated with this prescription is

parameters we varied the window @fover which the fitwas shown in Figs. 2 and 3.

performed(fitting over the ranges 2 <4 and 1< 8<3),

which leads to:—0.79+0.06, —2.0+ 0.1, and—1.7=0.2.

It is quite remarkable that the power law?) is in excel- B. Wilson loop
lent agreement with the semiclassical black hole prediction

[10.11] In our approximation the expectation value of the timelike

Wilson loopU = P€&$4™o is controlled by the one-plaquette
BF=—4.123"180 (48) cogplin_g)\, as in Eq.(31). A key fea_tL_Jre of the one-plaquette
action is that a larg& phase transition occurs at=2 [21].

The exponents differ by 6% while the coefficients of theAt this value of the coupling the eigenvalueslbEpread out
power-law differ by a factor of 2(An additive constant ap- around a circle, and become sensitive to the fact that the
pears in the mean-field approximation for the free energy. Wgauge field is a periodic variable. It has been argued that just
will generally ignore this “ground state degeneracy,” since it such a phase transition is expected to occur in 0-brane quan-
seems to be an artifact of the approximation when applied té&um mechanics, as the system moves from weak coupling
systems with a continuous spectrum. Similar behavior wa#ito the supergravity regimil 2].
noted in[12].) In a toy model studied if12] it was noted Our mean-field results fok are shown in Fig. 4. We
that higher order terms in the expansion of the free energpresent the results fox that are obtained by solving the
(6) appear with approximately the same power law depenSchwinger-Dyson equatio(80), as well as the results that
dence on temperature as the leading term. Thus by compuare obtained from our prescription of fittingF to a power
ing higher-order corrections one might hope for better agreetaw.
ment of the overall coefficient, with the power law  Note that in both case$, increases monotonically with
essentially unchanged. B. The Gross-Witten phase transition takes place wken

As we go to still lower temperatures, we find that the =2; with the prescription of fitting3F to a power law this
energy d(BF)/dp calculated in the mean-field approxima- value is reached g8=7.8. Thus, as expected, a phase tran-
tion begins to drop below the energy of the black hole. Insition takes place as the system moves into the supergravity
fact the mean-field energy becomes negative arggmd.8.  regime[12]. By adopting the prescription of fittingF to a
Ultimately, asB— o, the mean-field energy does asymptotepower law, we cannot say anything about the order of the
to zero, as required by th&=2 supersymmetry which is phase transition. But if one takes the Schwinger-Dyson result
manifest in the approximation. But a negative energy clearlyfor N seriously, then the Gross-Witten transition occurs at
reflects some problem with the approximation. B=14.2, and is weakly second ordghe second derivative

Fortunately, we can be rather precise about exactly wheref the free energy drops by 0.01 in crossing the transition
the approximation is going wrong: the difficulty is with the  Our prescription for choosiny by fitting BF to a power
Schwinger-Dyson gap equation we have been using to fix thiaw begins to break down arourgi= 14, as we find thak
value of the one-plaquette coupling Although we do not rapidly diverges ag approaches 1¥ By itself, this is not
know how to write down a better gap equation figrwe can  necessarily a problem: infinite simply means that the Wil-
give aprescriptionfor fixing A, that will allow us to obtain  son loop is uniformly distributed oved (N). But unfortu-
reasonable results at much lower values of the temperaturaately, we do not have a good prescription for continuing
This may be regarded either as a check on our understanding
of why the approximation is breaking down, or as a way of
building a model for the black hole that can be used at lower °The Schwinger-Dyson gap equation forhas solutions at all
temperatures. Our prescription for fixing is simply that, temperatures.
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lambda radius
6 2.5

> 2

4

t
2 2 6 8 To 12 12 >t 2 4 6 8 10 12 14 Pete

FIG. 4. The one-plaquette couplingvs 8. The Gross-Witten FIG. 5. Range of eigenvaluésadius of the Wigner semi-circle
transition occurs whem=2. For 8<2.5 we use the Schwinger- vs B. The upper solid curve is for the scalar fields in the scalar
Dyson gap equation to determine For 8>2.5 the Schwinger- multiplets; the lower dotted curve is for the scalar fields in the
Dyson gap equation gives the dashed line, while fit{#ig to a  gauge multiplet. The dashed curve is the Schwarzschild radius of
power law gives the solid line. the black hole. These results were calculated \@ihfit to a power

law for 8>2.5.
past this temperature. Evidently some of the other gap equa- o ) _ _ )
tions (not just the gap equation fov) start to break down at value d|§tr|but|ons. It_ seems apprqprlate to.|dent|fy the ra(j|us
this point. Note that this breakdown does not occur until well°f thezelges\slglue distributions with the size of the region
into the strong coupling regime, as an inverse temperaturkl <(9ywN) ™ in which 10-dimensional supergravity is valid

=14 corresponds to an effective gauge couplijig=°
Z3X103. P gaug plgig A This brings up a subtle issue. The Higgs fields of the

gauge theory are expected to correspond to spatial coordi-

nates in the supergravity geomet{®). But one is always

free to reparametrize the radial coordinate in supergravity. In
Finally, let us comment on the average “size” of the state.Eq. (50) we have implicitly made use of the naive identifi-

In our approximation the scalar field§(7) and ¢*(7) are  cation X=U/27, where X is a Higgs field andU is the

Gaussian random matrices, and their eigenvalues obey supergravity coordinate appearing in E&). This can be

Wigner semi-circle distribution. We can define the size of thejustified at zero temperature, because supersymmetry fixes

C. Mean size

state in terms of the quantities the mass of a Bogomol'nyi-Prasad-SommerfiglBPS
stretched string in the gauge theory to be given by the tree-
R2 =£<Tr[xi(7)]2> level formula my=X, while in supergravity one has
gauge N o =U/2x [10]. However this particular identification is not

(490  appropriate at finite temperature. A proposal for relating the
5 1 4 12 two radial coordinates has been presentef28;.
Rscalar:N<Tr[¢ (1]%0- An unambiguous way to fix the relation is to use the fact
that my=(U —Ug)/27 in the non-extremal black hole ge-
The radius of the Wigner semi-circle, given byw/R? is  ometry. By computingny in the gauge theory, the mapping
shown in Fig. 5. Note that the radius stays fairly constant inbetween the Higgs fiel and the supergravity coordinate
the region corresponding to the black hole. However, becan be fixed. However one must first take account of the fact
cause the superfield formalism we are using does not respeiftat one has a continuous distribution of masses in the quan-
the full SO(9) invariance, the radius measured in the scalatum mechanics. The spacetime geometry will only corre-
multiplet directions is not the same as the radius measured i#pond to the lightest of these states as we discuss in Sec. V.
the gauge multiplet directions. A8=14 we find This procedure will be studied further [24].

2Recala= 181 Ryauge=0.80. IV. PROPAGATORS AND SPECTRAL WEIGHTS
This shows that, as expected, the trial action does not respect Important information about spacetime geometry is en-

the underlyingSQ(9) invariance. Nonetheless, the trial ac- €0ded in the spectrum of single-string excitations in the

black hole density matrix in the supergravity regime. clidean propagators we introduce a spectral representation
In Fig. 5 we have also plotted the Schwarzschild radius ofor the 2-point functions. By inserting complete sets of
the black hole states, one can show that at finite temperature the analog of

the Lehmann spectral representation takes the form

coshw(7— B/2)

= —_— 0= 7<
Note that, as the temperature decreases, the Schwarzschild<¢(7) ¢(0)) fo dop(w) 2w sinh(Bw/2) O=7=p
radius becomes much smaller than the radius of the eigen- (51

Uo/2m=1.898"2%. (50)
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FIG. 6. The 2-point function of the scalar fields in the scalar

multiplets, calculated at Matsubara frequencies. The solid curve isa FIG. 7. The effective density of states arising from the scalar
fit to the propagator with a twin peak ansatz for the density ofmultlplet. We show the result for two different temperatures: the
states. The upper curve is fq;: 378, the lower curve fo'ﬁ first and third peaks are f(ﬁ:378, the second and fourth f@

=2.03. =2.03.
where the spectral weighi(w) is defined as the thermal . wZy wZy
average p(w)_(w—m1)2+y2+(w—m2)2+y2+(w_’_w)‘
(52)
1
plw)=5 > e FEn > [(n[g|m)P2w(1—-e F?) where we fix the widthy=0.02 (any number much smaller
m n=m than T will do). The parameters in Eq52) are determined
X 8(w—En+Ep). by fitting to theA,2 propagator. Note that the small valueypf

is motivated by[24]; we could not hope to extract such a
We can interprep(w)dw as the effective number of single- small width by fitting the ansatz just at Matsubara frequen-
String microstates with a mass betweemand w+dw. We cies. The reSUlung densities of states are shown in Flg 7. As
will apply this to the scalar fields in the scalar multiplets, can be seen from the plot, we obtain a very good fit to the

setting propagators at the Matsubara frequencies. The fit determines
the parameterg, andm; with uncertainties at the level of a
, [ 1 few percent.
Ap= fo dwp(w)—(zwI/B)ZerZ' This result clearly indicates the presence of both the high

and low frequency states mentioned above. It also points to a

In general, solving the inverse problem to extract the denclear separation between the two sets of states—a separation
sity of states from\? is a difficult numerical problem, which  which will play an important role in the next section.
we analyze in detail if24]. However some gross features of
the spectral d'ens'ity can bg egsily seen. ConsiderAthe V. RESOLVING SPACETIME GEOMETRY
propagator which is plotted in Fig. 6. At large frequency the
behavior of the propagator is controlled by the asymptotic In our mean-field approximation, we have modelled the
massmi (42). This mass is of order 1 in 't Hooft units; for cloud of 0-branes that make up the black hole using Gauss-
examplem, = 2.8 at3=3.78. This indicates that states with ian random matrices. As we discussed in Sec. Il C, the ei-
a mass of order 1 are present in the spectrum. In additiorgenvalues of these matrices have very large quantum fluctua-
note that a clear enhancement of the propagator at smdiPns. Within the gauge theory, we find that the scale of these
frequency compared to its asymptotic form can be seen iffuctuations is set by the 't Hooft coupling.
Fig. 6. This suggests the presence of light states in the spec- 1
trum, with a mass of order the temperature. These light states 2_ 2\ (2 2/3
make the dominant contribution to the entropy. R _N<Tr¢(T) Yo~ (GyuN)™™ (53)

To express this in a more quantitative way, we will make
an ansatz for the form gf(w). The ansatz will allow us to In terms of supergravity, this means that the positions of the
estimate the spectral density without performing a complet®-branes that make up the black hole have very large quan-
analysis of the inverse problem. Our ansatz is motivated byum fluctuations. Indeed they fluctuate over roughly the en-
the results of24], where we considered a 0-brane probe oftire region[of sizeU~(g%,,N)®[10]] in which supergrav-
the black hole background. The full analysis[@8#] shows ity is valid. One might suspect that these large fluctuations
that the density of states consists of two narrow pgaks are an artifact of our approximation, but it has been argued
narrower than a scale of order the temperatwee centered that the scaling53) is an intrinsic feature of 0-brane quan-
at frequency of order the temperature, the other at frequendym mechanic$25].
of order the 't Hooft coupling. Motivated by this result, we  This raises a very interesting question. How can we re-
introduce the following ansatz cover local spacetime physics from the qguantum mechanics?
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In particular, given the large fluctuatioriS3), how can we radius
resolve the horizon of the black hole?

The answer is that local spacetime physics only arises as a
low energyapproximation to the quantum mechanics. To re-
cover local spacetime physics from the quantum mechanics 1.5
we must introduce a resolving time, and integrate out high oo
frequency degrees of freeddhThe point is that most of the 1
N? degrees of freedom in the quantum mechanics have a
very large frequency, set by the 't Hooft coupling

2

0.5

o~(giuN) 2.

. . . _ 2 4 6 8 To 1z 14°°t

From the supergravity point of view, this energy scale corre-

sponds to the energy of a string that stretches across the FIG. 8. The dotted curve is the smeared radius of the Wigner

entire region in which supergravity is valid. A low energy semi-circle. The solid curve is the Schwarzschild radius of the black

observer within supergravity cannot resolve such highhole, as measured in the coordinate.

frequency fluctuations. Therefore, to recover local spacetime

physics from the quantum mechanics, we must first introduce One might worry that this definition of horizon radius is

a resolving timee, and integrate out all modes with frequen- @mbiguous, since it seems to depend on the choice of resolv-

cies larger than 1. With an appropriate choice of resolving ing time. Fortunately, from Fig. 7, we see that the spectral

time, we should recover the expected result, that the O-brandlgnsity consists of two well-separated peaks. The low-

only fluctuate over a region whose size is set by the horizoffequency peak corresponds to states with an energy of order

of the black hole. the temperature; these states can be thermally excited and
We begin by discussing a single harmonic oscillator. Atshould be included in the fluctuations which make up the

finite temperature the fluctuation in the oscillator positionhorizon. The high-frequency peak corresponds to states with

coordinate is an energy of order the 't Hooft coupling, states which should
be integrated out to see agreement with supergravity. Thus

5 1 any resolving time which keeps the low-frequency peak and

(x5 = W- integrates out the high-frequency peak is acceptable, and will

produce the same horizon radius.
We introduce a resolving time, by smearing the Heisenberg For reasonable values efwe can easily estimatép?).

picture operators over a Lorentzian time intereal Rather than use the Gaussian cut@®), it turns out to be
more convenient to define a time-averaged size by introduc-
—_ (> dt 2 ing a factor 1/cosiw/2) into the integrand of Eq54)
X= e “eX(t).
—© €\ — * 1
(p*)= f dwp(w)g————sr. (56)
The fluctuations in the smeared operators are suppressed 0 20 Sin( fw/2)
whenw>1/e. . .
@ e The extra factor has the effect of cutting off the integral at
o w22 w=~1/B. This corresponds to a reasonable choice of resolv-
<72>: S — ing time, e~ B. Defined in this way, our estimate for the
2w tanh( Bw/2) time-averaged fluctuations in the O-brane positions is simply

. . , 8iven by a Euclidean Green’s function, cf. E§1)
To take this over into 0-brane quantum mechanics, we us
the spectral representati@dl). The fluctuations in the field <$2>=<¢(ﬁ/2) #(0))

are given by
This is easily calculated as a Fourier transform of our

2= | dosl(w)——— 54 momentum-space propagators. In Fig. 8 we plot the resulting
(49 fo l )Zwtank([%w/Z) 9 smeared radius of the Wigner semicircle

Following our treatment of the harmonic oscillator, we can §=2\/(7§2 1 OR? 29
introduce a resolving time by setting scalar’ =" gaug
w220 as a function ofB (we average over the scalar fields in the
<$2>:f°°d () (55) gauge and scalar multiple}t%2 The time-averaged fluctua-
0 “@PLe 2wtani(Bw/2)’ tions in the O-brane positions go down with temperature.

MWe are grateful to Leonard Susskind and Emil Martinec for ?The result forR is dominated by the contribution of the zero-
discussions on this topic. frequency Matsubara mode.
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This is the expected behavior for the size of these blackange of validity of these techniques. Let us mention one

holes. The result folR is in rough agreement with the Possibility. One can apply our techniques to puvé=2

Schwarzschild radius, of the black hole(50), which we  gauge theory, simply by dropping the scalar multiplets. The
show in the same plot. resulting system of gap equations does not have a solution in

the low temperature regimg>1. Presumably this can be
V1. CONCLUSIONS AND FUTURE DIRECTIONS related to the fact that the pure gauge model breaks super-
' symmetry spontaneous|28]. It would be interesting to un-

In this paper we have developed an approximatiorderstand this connection in more detail.

scheme for 0-brane quantum mechanics at strong coupling It would also be interesting to have additional tests of our
and finite temperature. We presented an ansatz for a tri@Pproximation scheme. The supergravity makes further pre-
action which captures some of the behavior of the laige- dictions for the behavior of the gauge theory, which could be
guantum mechanics. The parameters appearing in the trif¢sted. For example, if26] a set of predictions were made
action are chosen according to a set of gap equations whid®r the scaling exponents of two-point functions of certain
resum an infinite set of planar diagrams. The approximatiofPPerators at zero temperature. These were extracted by com-
automatically respects 't Hooft large-counting, and also Puting Green’s functions in the extremal supergravity back-
partially respects the supersymmetries and R-symmetries @found, and taking a large time/low frequency limit. It was

the quantum mechanics. argued that these predictions follow from a generalized con-
Our main result is that we find good agreement with blackformal symmetry that appears in the 't Hooft linj27]. -
hole thermodynamics over the temperature rangeB¥ 4. It would be interesting to test these predictions against our

In addition, we studied the behavior of a Wilson loop, angnumerical results. Even at finite temperature, one would still
found that as expected a larephase transition occurs as €XPect to recover the scaling behavior for frequencies satis-
the system enters the supergravity regime. We also present&8ng T<w<(g{yN)"® Unfortunately, the correlators
results on the mean size of the system, and argued that in th¢hich are predicted to have a scaling behavior involve com-
supergravity regime this mean si@s measured by quantum Posite operators whose two-point functions we have not yet
fluctuation$ exceeds the Schwarzschild radius of the dualcomputed. We hope to study this question further in the fu-
black hole. We could nonetheless recover the Schwarzschildre.
radius from the quantum mechanics, by introducing a suit- Another interesting direction would be to better under-
able resolving time; to make our prescription unambiguous istand the duality between gravity and gauge theory. In par-
was important that the spectral density showed a clear sepHCU|aI’, it would be interesting to understand better how the
ration between light and heavy degrees of freedom. supergravity properties of spacetime locality and causality
We would like to emphasize that in the temperature rang€merge from the gauge theory. One might hope to see that
1<:8<4 our approximation app”es Stricﬂy to the gauge the horizon of the black hole is reflected in the dynamics of
theory, and makes no use of supergravity information. Wdhe gauge theory along the lines [@9]. Also, as we men-
presented a prescription for fixing the value of the Wilsontioned in Sec. llIC, there is the subtle question of which
loop, which allowed us to extend the agreement upgdto radial coordinate in supergravity corresponds to the gauge
=14. The prescription, however, relies on Supergravity in_theory nggs fields. To address these sorts of issues, it is
puts. natural to introduce a O-brane to probe the supergravity back-
Our results are based on several technical developmengound. The probe has a dual description in terms of a spon-
in the use of mean-field methods. Some of these develoganeously broken gauge theory. [B4], we use mean-field
ments were reported in our previous wofk2]. In the Methods to study this problem.
present paper, the main new technical problem we faced was Ultimately, one might hope to use mean-field methods to
the difficulty of treating gauge theories using mean-fieldstudy non-equilibrium processes in the gauge theory at
methods. By working in the gaugéll), many of the strong coupling, perhaps using some sort of thermofield for-
Slavnov-Taylor identities become trivially satisfied. This malism[30]. For example, it would be extremely interesting
gauge choice was instrumental in enabling us to find a cont0 study scattering of a graviton wave packet off a black
sistent set of gap equations, that could be solved in th&ole. Could one see correlations in the outgoing Hawking

strong-coupling regime. radiation?
There are two perspectives that one could take on this
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APPENDIX: 2PI EFFECTIVE ACTION

The two-loop, 2PI effective action is defined by

1
let=BF o+ (S +5|v_50>0_§<(5|n )Hco. (A

We adopt units which effectively sgﬁMN: 1, and suppress
the overall factor ofN? in the free energy. Then the free
energy of the trial action is given by

7
BFo=BFo(\) — 2 logaf+ 2l loga, — 5 ) logAf
r

.
+7> |099r—§§|: Ioge,2+|2 logs,—2>, logt,
r #0 r

(S _So>0:¥<Tr(U+UT)>D+2| [(%)203—1}

27r)\ 3
+> il —] a+1
2 H g )&
7 27\ 2
_ i 2_
ta H B ) A }
2@
+72( |igr+1
G B
7 2
+= D (ef-1)+ (—) s+1
2 9 70
2r
+22 (|7t —1) 2 (u—1) (Ad)
where the one-plaquette model contribution is
2 1
N ——— ASs2
X(Tr(U+UT)>D: N2 (AS)
2I\%  A=2.

We also have the contribution of the 4-point couplings,

_ 2 2mr 27S 3i 2 2ar )
+EI loguy, (A2) <SIV>O__E 25 B a,agt 25 ——a,0]
1 14 ,2mr
2
where the free energy of the one-plaquette model is + Bt atom, + ) 2 Afon+— 3 2 Af Tar
7 5i 2 2
5 1 A 3 +E2| A.Zpé+ﬁ2r 7arp§+52| aipg
———zlogz+ -, A2,
BFo={ X 29272 (A3) 6
—1/\2, A=2. _ , , S
where the two-point function of\y is defined in Eq(26).
Finally, the contribution of the three-point couplings is given
We also have by
1 4 2ml\? 4 2 2l 14
— S 2 - - 22 2 (_ + ( A 2
2<( |||) )C,O ﬁ 2 ( B ) (0-|) pO B Z B (ar) pO B |+r+zs 0 B Iargs B |+T+ES:O args
14 14 27l
-3 |+r25=0 779,95~ B EI: ( 3 ) AZ)ZPO_ — 2 (9,)? po+ — +m§+:n=0 AZAZ €2
42 1 2ml\2 1
,3 I+r25* Alzgrgs—'—EHr;s:O Ulztrts_ultras+ 7) Sitias +ﬁ 2 (tr)ng
2l
+ = E ( ) (s)%p (A7)
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