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Coalescence of two spinning black holes: An effective one-body approach
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Institut des Hautes Etudes Scientifiques, 91440 Bures-sur-Yvette, France

~Received 7 March 2001; published 27 November 2001!

We generalize to the case of spinning black holes a recently introduced ‘‘effective one-body’’ approach to the
general relativistic dynamics of binary systems. We show how to approximately map the conservative part of
the third post-Newtonian~3PN! dynamics of two spinning black holes of massesm1 , m2 and spinsS1 , S2 onto
the dynamics of a non-spinning particle of massm[m1m2 /(m11m2) in a certain effective metric
gmn

eff (xl;M ,n,a) which can be viewed either as a spin deformation@with the deformation parametera
[Seff /M # of the recently constructed 3PN effective metricgmn

eff (xl;M ,n), or as an deformation@with the
comparable-mass deformation parametern[m1m2 /(m11m2)2# of a Kerr metric of massM[m11m2 and
~effective! spin Seff[@113m2 /(4m1)#S11@113m1/(4m2)#S2. The combination of the effective one-body
approach, and of a Pade´ definition of the crucial effective radial functions, is shown to define a dynamics with
much improved post-Newtonian convergence properties, even for black hole separations of the order of
6 GM/c2. The complete~conservative! phase-space evolution equations of binary spinning black hole sys-
tems are written down and their exact and approximate first integrals are discussed. This leads to the approxi-
mate existence of a two-parameter family of ‘‘spherical orbits’’~with constant radius!, and of a corresponding
one-parameter family of ‘‘last stable spherical orbits’’~LSSO!. These orbits are of special interest for forth-
coming LIGO-VIRGO-GEO gravitational wave observations. The binding energy and total angular momentum
of LSSO’s are studied in some detail. It is argued that for most~but not all! of the parameter space of two
spinning holes the approximate~leading-order! effective one-body approach introduced here gives a reliable
analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a
quantitative way, how certain spin orientations increase the binding energy of the LSSO. This leads to a
detection bias, in LIGO-VIRGO-GEO observations, favoring spinning black hole systems, and makes it urgent
to complete the conservative effective one-body dynamics given here by adding~resummed! radiation reaction
effects, and by constructing gravitational waveform templates that include spin effects. Finally, our approach
predicts that the spin of the final hole formed by the coalescence of two arbitrarily spinning holes never
approaches extremality.

DOI: 10.1103/PhysRevD.64.124013 PACS number~s!: 04.30.Db, 04.25.Nx, 04.70.Bw, 97.60.Lf
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I. INTRODUCTION

The most promising candidate sources for the Laser In
ferometric Gravitational Wave Observatory–~LIGO!-
VIRGO-GEO network of ground-based gravitational wa
~GW! interferometric detectors are coalescing binary syste
made of massive~stellar! black holes@1–5#. Signal to noise
ratio ~SNR! estimates@5# suggest that the first detections w
concern black hole binaries of total mass*25M ( . Model-
ing the GW signal emitted by such systems poses a diffi
theoretical problem because the observationally most ‘‘u
ful’’ part of the gravitational waveform is emitted in the la
;5 orbits of the inspiral, and during the ‘‘plunge’’ takin
place after crossing the last stable circular orbit. The tra
tion between the~adiabatic! inspiral and plunge takes plac
in a regime where the two bodies are moving at relativis
speeds (v/c;1/A6;0.4) and where their gravitational in
teraction becomes~nearly by definition! highly non-linear
(GM/c2r;1/6).

Several authors~notably @6,3#! have taken the view tha
the modelling of this crucial transition between inspiral a
plunge is~in the general case of comparable-mass syste!
beyond the reach of analytical tools and can only be tack
by ~possibly special-purpose@3#! numerical simulations. By
contrast, other authors@7–9,5,10,11# have introduced new
‘‘resummation methods’’ to improve the analytical descr
0556-2821/2001/64~12!/124013~22!/$20.00 64 1240
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tion of the last few GW cycles near this transition and ha
argued that these resummed analytical results gave a rel
description of the gravitational physics near the transiti
The purpose of the present paper is to further the latter
proach by generalizing the~resummed! ‘‘effective one-body’’
~EOB! methods introduced in@8–10# to the case of binary
systems ofspinningblack holes. Before doing this, we wis
to clarify what is the rationale for arguing that the ‘‘re
summed’’ analytical approach can describe the last stage
inspiral and the transition between inspiral and plunge.

Let us first recall that a lot of effort has been devoted
recent years to the analytical computing, by means of p
Newtonian~PN! expansions in powers ofv2/c2;GM/c2r ,
of the equations of motion, and the GW emission,
comparable-mass binary systems. The equations of mot
have been computed tov6/c6 ~3PN! accuracy by two sepa
rate groups,@12–15# and @16–18#, and the two results have
been shown to agree@19,20#. Until recently, there remained
~in both approaches! an ambiguous parameter,vs , linked to
the problem of regularizing some badly divergent integr
arising at the 3PN level. In a recent work, using an improv
regularization method~dimensional continuation!, the first
group @21# has succeeded in determining without ambigu
the value ofvs , namelyvs50. This unique determination
of the 3PN equations of motion is consistent with an o
argument of@22# showing that it should be possible to mod
©2001 The American Physical Society13-1
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TABLE I. Binding energiese[(Ereal/M )21 for circular orbits of equal-mass~non-spinning! binary
systems near the LSO. The invariant dimensionlessl-radiusr l[Rl /GM is defined in the text. The binding
energy is computed from the Pade´-resummed effective-one-body Hamiltonian at three successive p
Newtonian approximations: 1PN, 2PN, and 3PN~with vs50).

r l 12 11 10 9 8 7 6

l 4 3.889 3.780 3.674 3.578 3.5 3.464
100e1PN 20.9482 21.020 21.101 21.193 21.291 21.387 21.440
100e2PN 20.9441 21.015 21.094 21.183 21.277 21.366 21.412

100e3PN
(vs50) 20.9412 21.011 21.088 21.174 21.264 21.346 21.388
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black holes by point particles without ambiguity up to t
5PN level ~excluded!. The emission of GW is unambigu
ously known tov5/c5 ~2.5PN! accuracy@23#, and has re-
cently been formally computed tov7/c7 ~3.5PN! accuracy
@24#, modulo the appearance of several ambiguous par
eters (j,k,z) linked to the problem of regularizing som
divergences arising at the 3PN level. Dimensional regular
tion is expected to determine without ambiguity the values
j, k, andz, but has not~yet! been applied to the radiatio
problem.

We wish to emphasize that such high-order PN results
a necessary, but not by themselvessufficient, ingredient for
computing with adequate accuracy the gravitational wa
form of coalescing binaries. Indeed, it was emphasized l
ago@6# that the PN series~written as a straightforward Taylo
series in powers of some parameter«;v/c) become slowly
convergent in the late stages of binary inspiral. A first
tempt was made in@25# to improve the convergence of th
PN-expanded equations of motion so as to determine
~crucial! location of the last stable~circular! orbit ~LSO! for
comparable-mass systems. However, further work@26,27,7#
has shown the unreliability~and coordinate dependence! of
this attempt. There is, however, no reason of principle p
venting the existence of gauge-invariant ‘‘resummat
methods’’ able to give reliable results near the LSO. Inde
as emphasized in@7# and @10# most coordinate-invarian
functions ~of some invariant quantityx;v2/c2;GM/c2r )
that one wishes to consider when discussing the dynam
and GW emission of circular orbits are expected to hav
singularity only at the ‘‘light ring’’~LR! value ofx ~the last
possibleunstablecircular orbit!. If we trust ~for orders of
magnitude considerations! the small mass-ratio limit@n
[m/M[m1m2 /(m11m2)2!1#, we know thatxLR.1/3 is
smaller by a factor 2 thanxLSO.1/6. If the functionsf (x) we
are dealing with are meromorphic functions ofx, the location
of the expected closest singularity (xLR) determines their ra-
dius of convergence. Therefore, we expect that, forx
,xLR , the Taylor expansion off (x) will converge and will
behave essentially like(n(x/xLR)n. In particular, one expect
f (xLSO);(n (xLSO/xLR)n;(22n. This heuristic argumen
suggests a rather slow convergence, but the crucial point
have some convergence, so that the application of suit
resummation methodscan be expected to accelerate the co
vergence and to lead to numerically accurate results from
knowledge of only a few terms in the Taylor expansio
There exist many types of resummation methods and non
them are of truly universal applicability. As a rule, one mu
12401
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know something about the structure of the functionsf (x)
5 f 01 f 1x1 f 2x21••• one is trying to resum to be able t
devise an efficient resummation method. References@7–9#,
and @10# have studied in detail the various functions th
might be used to discuss the GW flux and the dynamics
binary systems. This work has led to selecting some spe
resummation methods, acting on some specific functions.
what concerns the GW flux we refer to Fig. 3 of@7# for
evidence of the acceleration of convergence~near the LSO!
provided by a specific resummation method combining a
definition of theGW flux function with Pade´ approximants.
We wish here, for the benefit of the skeptics, to exhibit so
of the evidence for the acceleration of convergence~near the
LSO! in the description of the two-bodydynamicsprovided,
at the 3PN level, by a resummation method defined by co
bining @8# and @10#. Specifically, we mean the combinatio
of the effective-one-body~EOB! approach~further discussed
below! and of a suitable Pade´ resummation of the effective
radial potential at thenPN level:APn

(u)5Pn
1@Tn11„A(u)…#

~see below!.
Let us consider a sequence ofcircular orbits, near the

LSO and for two non-spinning black holes. In the EOB a
proach the circular orbits are obtained by minimizing a c
tain effective radial potential, defined by fixing the total o
bital angular momentumL in the Hamiltonian. The mos
natural variable defining the one-parameter sequence of
cular orbits is then simply the angular momentumL. It is
therefore natural, for the purpose of this work, to measure
separation between the two holes~in a gauge-invariant and
approximation-independent! way by conventionallydefining
an l radius Rl[GMrl , such that the~invariantly defined!
total orbital angular momentumL[GmMl is given by l 2

[r l
2/(r l23), i.e., by the relation holding for a test particle

a Schwarzschild spacetime.@Here, and in the following, we
shall often setc51 and/or G51, except in some~final!
formulas where it might be illuminating to reestablish t
dependence onc and/or G.# As the problem is to know
whether the resummation method of the PN-expanded t
body dynamics is efficient, we compare in Table I the to
energiesEreal of the binary system, computed using 1P
2PN, and 3PN information, for circular orbits atl radii r l
512, 11, 10, 9, 8, 7, and 6. We give the values of the bind
energy per unit~total! mass,e[(E/M )21, for the equal-
mass case (m15m2 ; n51/4).

The numbers displayed in Table I illustrate the efficien
of the resummation method advocated in@8,10#. For r l512
3-2
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COALESCENCE OF TWO SPINNING BLACK HOLES: . . . PHYSICAL REVIEW D 64 124013
the fractional difference in binding energy between the 1
approximation and the 3PN one is 0.74%, while even for l

56 this difference is only 3.6%. These numbers indic
that, even near the LSO, the Pade´-improved effective-one-
body approach is a rationally sound way of computing
two-body dynamics. There are no signs of numerical unr
ability, as there were in the calculations based on
straightforward coordinate-dependent, PN-expanded
sions of the equations of motion@25# or of the Hamiltonian
@26,27# @which gave results differing byO ~100%! among
themselves, and as one changed the PN order#. We shall see
below that the robustness of the PN resummation exhib
in Table I extends to a large domain of the parameter sp
of spinning black holes.

As we do not know the exact result, and as current
merical simulations do not give reliable information abo
the late stages of the quasicircular orbital dynamics of t
black holes~see below!, the kind of internal consistenc
check exhibited in Table I is about the only evidence we c
set forth at present.@Note that, from a logical point of view
the situation here is the same as for numerical simulations
the absence of an exact solution~and of experimental data!
one can only do internal convergence tests.# Ideally, it would
be important to extend the checks of Table I to the 4PN le
~to confirm the trend and see a real sign of convergence
limit ! but this seems to be a hopelessly difficult task w
present analytical means. Finally, let us note that the fact
one can concoct many ‘‘bad’’ ways of using the PN
expanded information near the LSO~exhibiting as badly di-
vergent results as wished! is not a valid argument against th
reliability of the specific resummation technique used
@7,8,10# and here. An ambiguity problem would arise only
one could construct two different resummation metho
both exhibiting an internal ‘‘convergence’’~as the PN order
increases! as good as that illustrated in Table I, but yieldin
very different predictions for physical observables near
LSO. This is not the case at present because the compar
study of @10# ~see Table I there! has shown that the EOB
approach exhibited~when vs5” 29) significantly better PN
convergence than a panel of other invariant resumma
methods.

In the following we take for granted the soundness of
effective-one-body resummation approach and we show
to generalize it to the case of two~moderately! spinning
black holes. Let us first recall that the basic idea of the E
approach was first developed in the context of the elec
magnetically interacting quantum two-body problem@28,29#
~see also@30#!. A first attempt to deal with the gravitationall
interacting two-body problem~at the 1PN level! was made in
@31# ~see also@32#!. A renewed EOB approach~which sig-
nificantly differs from the general framework set up b
Todorov and co-workers@29,31#! was introduced in@8#. The
latter reference showed how to apply this method at the 2
level. It was then used to study the transition between
inspiral and the plunge for comparable masses, and, in
ticular, to construct a complete waveform covering the
spiral, the plunge, and the final merger@9# ~see@33# for the
physical consequences of this waveform!. More recently,
Ref. @10# showed how to extend the EOB approach to
12401
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3PN level ~this required a non trivial generalization of th
basic idea!.

Before entering the details of our way of introducing t
spin degrees of freedom in the EOB approach, let us state
general view of the usefulness of the EOB method in t
context. As we shall discuss below, the present work~which
incorporates spin effects at leading PN order! can only be
expected to give physically reliable results in the case
moderate spins (âp&0.3, see below!. However, the EOB ap-
proach, far from being a rigid structure, is extremely flexib
One can modify the basic functions@such asA(u)# determin-
ing the EOB dynamics by introducing new parameters c
responding to~yet! uncalculated higher PN effects.@These
terms become important only for orbits closer than 6GM,
and/or for fast-spinning holes.# Therefore, when either
higher-accuracy analytical calculations are performed or
merical relativity becomes able to give physically releva
data about the interaction of~fast-spinning! black holes, we
expect that it will be possible to complete the current EO
Hamiltonian so as to incorporate this information. As t
parameter space of two spinning black holes~with arbitrarily
oriented spins! is very large, numerical relativity will neve
be able, by itself, to cover it densely. We think, however, th
a suitable ‘‘numerically fitted’’~and, if possible, ‘‘analyti-
cally extended’’! EOB Hamiltonian should be able to fit th
needs of upcoming GW detectors. The present work sho
be viewed as a first step in this direction.

The present paper is organized as follows. In Sec. II
show how to incorporate~in some approximation! the spin
degrees of freedom of each black hole within a 3PN-lev
resummed effective one-body approach. In Sec. III we st
some of the predictions of our resummed dynamics, nota
for what concerns the location of the transition between
inspiral and the plunge. Section IV contains our conclud
remarks.

II. EFFECTIVE ONE-BODY APPROACH, EFFECTIVE
SPIN AND A DEFORMED KERR METRIC

A. Effective one-body approach

Let us recall the basic set up of the effective one-bo
~EOB! approach. One starts from the~PN-expanded! two-
body equations of motion, which depend on the dynami
variables of two particles. One separates the equation
motion in a ‘‘conservative part,’’ and a ‘‘radiation reactio
part.’’ Though this separation is not well defined at the ex
~general relativistic! level it is not ambiguous at the 3PN
level ~in the conservative part! which we shall consider
here.1 We shall henceforth consider only the conservat
part of the dynamics.~We leave to future work the general
zation to spinning black holes of the definition ofresummed
radiation reaction effects which was achieved in@9# for non-
spinning black holes.! It has been explicitly shown that th

1We expect real ambiguities to arise only at thev10/c10;5PN
level, because this corresponds to thesquareof the leading,v5/c5

;2.5PN, radiation reaction terms.
3-3
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THIBAULT DAMOUR PHYSICAL REVIEW D 64 124013
3PN2 dynamics is Poincare´ invariant @15,17#. The ten first
integrals associated with the ten generators of the Poin´
group were constructed in@15# ~see also@20#!. In particular,
we have the ‘‘center of mass’’ vectorial constantK5G2tP.
This constant allows one to define the center of mass fra
in which K50, which impliesP50 andG50. We can then
reduce the PN-expanded two-body dynamics to a P
expanded one-body dynamics by considering the rela
motion in the center of mass frame. This reduction leads
great simplification of the dynamics.

Indeed, the full 3PN Hamiltonian in an arbitrary referen
frame@15# containsO(100) terms, while its center-of-mass
reduced version contains only 24 terms. However, this s
plification is, by itself, insufficient for helping in any way th
crucial problem of the slow convergence of the PN exp
sion. One should also mention that the use of a Hamilton
framework@like the Arnowitt-Deser-Misner~ADM ! formal-
ism used in@12,13,10,15,21#! is extremely convenient~much
more so than an approach based on the harmonic-coordin
equations of motion, as in@16–18,20#!. Indeed, on the one
hand it simplifies very much the reduction to the center-
mass relative dynamics~which is trivially obtained by setting
prel5p152p2), and on the other hand it yields direct
~without guesswork! an action principle for the dynamics.3.
We shall find also below that a Hamiltonian approach is v
convenient for dealing with the spin degrees of freedom.

Up to now, we only mentioned the dynamics of the orbi
degrees of freedom, i.e.,~in the order-reduced Hamiltonia
formalism! the ~ADM coordinate! positions and momenta
x1 ,x2 ,p1 ,p2 of the two black holes.4 After reduction to the
center-of-mass frame (P5p11p250), and to the relative dy-
namics (x[x12x2 , p[p152p2), one ends up with a ca
nonical pairx, p of phase-space variables.

The addition of spin degrees of freedom on each bl
hole is,a priori, a rather complicated matter. If one wishe
to have arelativistically covariantdescription of the dynam
ics of two spinning objects, one would need not only to a
in Einstein’s equations, extra~covariant! source terms pro-
portional to suitable derivatives of delta functions~spin di-
poles!, but also to enlarge the two-body action principle
incorporate the spin variables. The first task is doable,
has been performed~to the lowest order! in several works,

2Henceforth, ‘‘3PN’’ will mean the conservative 3PN dynamic
i.e., N11PN12PN13PN.

3Note that a subtlety arises at 3PN@12# in that the Hamilton action
principle involvesderivativesof the phase space variables. How
ever, it was shown in@14# how to reduce the problem to an ordina
Hamiltonian dynamics by means of a suitableO(v6/c6) shift of
phase-space variables. We henceforth assume that we work wit
shifted variables defined in@14#.

4We recall that the high-order perturbative, PN-expanded, ca
lations of the dynamics of two non-spinning compact objects mo
these objects by delta-function~monopole! sources. The supports o
these delta functions define the coordinate ‘‘positions’’ of the co
pact objects. As explained in@22# these positions physically corre
spond to some ‘‘centers of the gravitational field’’ generated by
objects.
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such as Refs.@34–38#. For other works on the relativistic
equations of motion of black holes or extended bodies~en-
dowed with spin and higher multipole moments! see@39–
41#. Recently, Ref.@42# has tackled the next-to-leading ord
contribution to spin-orbit effects.~We consider here only the
case of interacting, comparable massive objects. The p
lem of a spinningtestparticle in an external field is simple
and has been dealt with by many authors, such as Mathis
@43#, Papapetrou@44#, etc . . . ) On theother hand, the secon
task ~incorporating the spin degrees of freedom in an act
principle! is quite intricate. First, it has been found tha
within a relativistically covariant set up for a spinning pa
ticle, the Lagrangian describing theorbital motion could not,
even at lowest order in the spin, be taken as an ordin
LagrangianL(x,•x), but needed to be a higher-order on
L(x,ẋ,ẍ, . . . ) @37#. Second, a relativistically covariant trea
ment of thespin degrees of freedom is an intricate matte
involving all the subtleties of constrained dynamical sy
tems, even in the simplest case of a free relativistic top@45#.
Contrary to the case of the spin-independent EOB wher
was easy to use the test-mass results to constrain the
Hamiltonian, the Mathisson-Papapetrou dynamics of sp
ning test masses in external gravitational fields is rather c
plicated and cannot easily be used to constrain the s
dependent EOB Hamiltonian.~It might, however, be
interesting to try to do so.! Fortunately, there is a technicall
much lighter approach which bypasses these problems
simplifiesboth the description of orbital degrees of freedo
and that of spin degrees of freedom. This approach isnot
manifestly relativistically covariant. This lack ofmanifest
Poincare´ covariance is not~in principle! a problem at all for
two reasons:~i! it does not prevent the expected global Po
carécovariance of the two-body dynamics to be realized a
phase-space symmetry~as was explicitly proven, at 3PN, fo
the orbital degrees of motion in Ref.@15#!, and~ii ! as we are,
at this stage, mainly interested in the description of the re
tive motion in a specific~center-of-mass! Lorentz frame,
there is no physical need to enforce any boost invarian
This non-covariant approach to the gravitational interact
of spinning objects stems from the classic work of Breit
the electromagnetic interaction of~quantum! spinning elec-
trons ~see, e.g.,@46#! and has been developed in a sequen
of papers@47–50#. ~The change of variables needed to pa
from the covariant, higher-order Lagrangian description
the non-covariant, ordinary Lagrangian has been discusse
several papers, e.g.,@45,51,52#.! In the present paper, we
shall combine the non-manifestly covariant, ADM Ham
tonian treatment of the orbital degrees of freedom of@12,15#,
with the similarly non-covariant, but Hamiltonian, treatme
of the spin degrees of freedom of@47,49#. Moreover, as is
explained below, we shall improve upon@48–50# in using a
direct Poisson-bracket treatment of the dynamical spin v
ables.

Finally, our starting point~for the effective one-body ap
proach! is a PN-expandedHamiltonian for therelative mo-
tion of two spinning objects of the form

H real
PN~x,p,S1 ,S2!5Horb

PN~x,p!1HS
PN~x,p,S1 ,S2!

1HSS
PN~x,p,S1,S2!1HSSS

PN ~x,p,S1 ,S2!

1•••. ~2.1!

the

u-
el

-

e
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Here,Horb
PN denotes the PN-expandedorbital Hamiltonian,

which is the sum of the free Hamiltonia
H05Am1

2c41p1
2c21Am2

2c41p2
2c2 and of the monopolar in-

teraction HamiltonianH int
m generated by the source term

proportional to the masses. Before the reduction to
center-of-mass frameH int

m has the symbolic structure
H int

m ;m1m21m1
2m21m1m2

21m1
3m2 1 m1

2m2
2 1 m1m2

3 1 •••

;m1m2@11m11m21(m11m2)21(m11m2)31•••#. It
is explicitly known up to the 3PN level@i.e., up to velocity-
independent terms}m1m2(m11m2)3#. After reduction
to the center-of-mass frame the PN expansion ofHorb

PN

reads @with M[m11m2 , m[m1m2/M , n[m/M
[m1m2 /(m11m2)2, r[uxu, p̂[p/m, x̂[x/GM#

Horb
PN~x,p!5Mc21HN~x,p!1H1PN~x,p!1H2PN~x,p!

1H3PN~x,p!, ~2.2!

HN~x,p!5
p2

2m
2

GMm

r
5mF1

2
p̂22

1

r̂
G , ~2.3!

H1PN~x,p!5
m

c2 F1

8
~3n21!p̂42

1

2
@~31n!p̂21n~n•p̂!2#

3
1

r̂
1

1

2r̂ 2G , ~2.4!

H2PN~x,p!5
m

c4 F 1

16
~125n15n2!p̂61•••

2
1

4
~113n!

1

r̂ 3G , ~2.5!

H3PN~x,p!5
m

c6 F 1

128
~25135n270n2135n3!p̂81•••

1F1

8
1S 109

12
2

21

32
p21vsD nG 1

r̂ 4G . ~2.6!

We have exhibited~for illustration! in Eqs.~2.5! and~2.6!
only the first and the last terms. We refer to@52# for the full
~center-of-mass! 2PN Hamiltonian~seven terms in all!, and
to @12,14,15# for the full ~center-of-mass! 3PN Hamiltonian
~11 terms in all!. Our effective one-body treatment will tak
into account thefull 2PN and 3PN structures, but in a ve
streamlined way which will be explicitly displayed below.

The other terms in Eq.~2.1! denote the various spin
dependent contributions to the Hamiltonian: respectively,
terms linear (HS

PN), quadratic (HSS
PN), cubic (HSSS

PN ), etc . . . .
in the spinsS1 , S2. Before reduction to the center-of-ma
frame they have the symbolic structure

HS
PN;S1m2@11m11m21~m11m2!21•••#

1S2m1@11m11m21~m11m2!21•••#, ~2.7!
12401
e

e

HSS
PN;S1

2m2S 1

m1
111m11m21••• D

1S1S2~11m11m21••• !

1S2
2m1S 1

m2
111m11m21••• D , ~2.8!

etc . . . . Weshall explain below the occurence of the term
quadratic in the spins and inversely proportional to a ma
In contradistinction with the case of the orbital Hamiltonia
which has been worked out with a high PN accuracy, o
the simplest spin-dependent terms have been explicitly
rived, namely the lowest PN-order term inHS

PN, whose
center-of-mass reduction reads@49#

HS
PN~x,p,S1 ,S2!

5
2G

c2r 3 F S 11
3

4

m2

m1
DS11S 11

3

4

m1

m2
DS2G•~x3p!

1OS 1

c4D , ~2.9!

and the lowest PN-order one-graviton exchange contribu
to the bilinear term (}S1S2) in HSS

PN. Reference@42# con-
tains some information about theO(1/c4) corrections in Eq.
~2.9!, but, because of the use of different gauge and s
conditions, not in a form which can be directly used to der
these corrections. We shall discuss the spin-bilinear contr
tion (}S1S2) below, together with the leading spin-quadra
contributions proportional toS1

2m2 /m11S2
2m1 /m2.

Before going further, let us make clear that, before a
after any type of resummation, the dynamics entailed by
Hamiltonians we shall considerH(x,p,S1 ,S2) follow, for all
degrees of freedom, from the basic Poisson brackets

$xi ,pj%5d j
i , ~2.10!

$S1
i ,S1

j %5« i jkS1
k , ~2.11!

$S2
i ,S2

j %5« i jkS2
k , ~2.12!

05$xi ,xj%5$pi ,pj%5$S1
i ,S2

j %5$xi ,S1
j %5$xi ,S2

j %

5$pi ,S1
j %5$pi ,S2

j %. ~2.13!

The ~real! time evolution of any dynamical quantit
f (x,p,S1 ,S2) is given by

d

dt
f ~x,p,S1 ,S2!5$ f ,H real%, ~2.14!

where the Poisson bracket~PB! $ f ,H real% is computed from
the basic PB’s~2.10!–~2.13! by using the standard PB prop
erties ~skew symmetry: $ f ,g%52$g, f %; Leibniz rule:
$ f ,gh%5$ f ,g%h1g$ f ,h%; and the Jacobi identity
ˆf ,$g,h%‰1ˆg,$h, f %‰1ˆh,$ f ,g%‰50). The simplest way to
prove the statements~2.10!–~2.14! is to consider our dynam
3-5
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ics as the classical limit of the quantum dynamics of a s
tem of gravitationally interacting spinning particles. Surpr
ingly, though Refs.@47,48# derived ~à la Breit! the spin-
dependent contributions to the Hamiltonian by a quant
route, they never noticed that they could very simply der
the spin evolution equations by using the PB’s~2.11!,~2.12!.
They had to go back to a Lagrangian formalism and a

some explicit spin kinetic energy terms (1
2 I 1v1

21 1
2 I 2v2

2) to
derive the spin evolution equations. Note also that we h
kept the label ‘‘real’’ on the Hamiltonian in Eq.~2.14! to
distinguish the evolution with respect to the real time~asso-
ciated with the original two-body system! from the evolution
generated by the effective Hamiltonian to be introduced
low ~which is associated with an auxiliary, effective time!.

Before generalizing it, by including the spin degrees
freedom, let us recall the results of@8# ~2PN level! and @10#
~3PN level! concerning the effective one-body ‘‘upgrading
of the PN-expanded orbital HamiltonianHorb

PN(x,p). Again,
the simplest way to motivate it is to think of our dynamics
the classical limit of a quantum dynamics defined by so
Hermitian Hamiltonian operatorHorb(x,2 i\“). We are
mainly interested in the bound states ofHorb. It is crucial to
note that the orbital Hamiltonian~2.2!–~2.6! is symmetric
under anO(3) group~corresponding to arbitrary rotations o
the relative positionx5x12x2, in the center-of-mass frame!.
Therefore the quantum~and classical! bound states will be
labeled~besides parity! by only two quantum numbers:~i!
the total orbital angular momentumL25L(L1\), and ~ii !
some ‘‘principal quantum number’’N @such that (N2L)/\
counts the number of nodes in the radial relative wave fu
tion#. Both L andN are quantized in units of\. The full list
of two-body bound states is thereby encoded in the form
giving the bound state energy as a function of the two qu
tum numbers L and N: Ereal5Ereal(L,N)5Mc2

2 1
2 m(Gm1m2)2/N21E1PN(L,N)1E2PN(L,N)1E3PN(L,N).

The basic idea of the effective one-body method is to m
~in a one-to-one manner! the discrete set of real two-bod
bound statesEreal(L,N) onto the discrete set of bound stat
of an auxiliary ~‘‘effective’’ ! one-body Hamiltonian
Heff(xeff ,peff). Because of the special labeling by~only! two
integer quantum numbersL/\,N/\ one is naturally led to
imposing that ~i! the EOB Hamiltonian be sphericall
symmetric,5 and~ii ! the integer-valued quantum numbers
identified in the two problems, i.e.,L/\5Leff /\ and N/\
5Neff /\. On the other hand, one can~and onea priori
should! leave free a~one-to-one! continuous functionf map-
ping the real energies onto the effective ones:Eeff(L,N)
5 f „Ereal(L,N)…. Evidently, for this method to be advanta
geous we wish the effective dynamics to be significan

5We are making this very explicit because some people, w
they hear about the EOB approach, think that the effective me
describing the one-body dynamics should, at some level of appr
mation, include some Kerr-like features to model the veloci
dependent two-body interactions. This is not true for the orb
dynamics, whatever the PN accuracy level is. On the other hand
shall see that we need Kerr-like features to accomodate the intr
spin effects.
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simpler than the originalH real(x,p), and, in particular, to re-
duce, in some approximation, to the paradigm of the simp
gravitational one-body problem, namely the dynamics of
~effective! test particle in some~to be determined! effective
metric gmn

eff (xeff
l ). Remarkably enough, it was found in@8#

that such a mapping between the very complicated real t
body orbital 2PN Hamiltonian~2.2!–~2.5! and the usual
~‘‘geodesic’’! dynamics of a test particle of massm
5m1m2 /(m11m2) in a very simple~spherically symmetric!
effective metric

dseff
2 52A~r eff!c

2dteff
2 1

D~r eff!

A~r eff!
dreff

2 1r eff
2 ~du21sin2udw2!,

~2.15!

is possible, if and only if the energy mappingEeff5 f (Ereal)
is given by

Eeff

mc2
5

Ereal
2 2m1

2c42m2
2c4

2m1m2c4
. ~2.16!

Remarkably, the simple energy map~2.16! ~which is here
determined by our requirements! coincides with the energy
map introduced in several other investigations@28,7# ~and is
simply related to the one defineda priori in @29,31,32#!.

Recently, the problem of mapping the extremely comp
cated real two-body 3PN Hamiltonian~2.6! onto an effective
one-body dynamics has been solved@10#. Again the result is
remarkably simple, though less simple than at the 2PN le
Indeed, it was found6 that the effective one-body dynamic
was given by an Hamilton-Jacobi equation of the form~with
pa

eff5]S/]xeff
a )

05m21geff
abpa

eff pb
eff1Q4~peff!, ~2.17!

with a simple~spherically symmetric! effective metric of the
form ~2.15! and some additional quartic-in-momenta cont
bution Q4(p). Remarkably, it was found that, at the 3P
level, the energy mapping is again uniquely determined to
the simple relation~2.16!. As for the metric coefficients of
the ~covariant! effective metricgab

eff , and the quartic terms
Q4(p), they were found to be

A~r !5122û12nû31a4~n!û4, ~2.18!

D~r !5126nû212~3n226!nû3, ~2.19!

Q4~p!

m2
52~423n!nû2~n•p̂!4, ~2.20!

n
ic
i-

-
l
e
ic

6In fact, @10# found that it was possible to map the real dynam
onto the geodesic dynamics of a test particle. However, both
effective metric and the modified energy map needed for this r
resentation are rather complicated. It was felt that it is more c
vincing to keep a simple effective metric, and a simple energy m
but to relax the constraint ofgeodesicmotion.
3-6
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whereû[GM/r , p̂5p/m, and

a4~n!5S 94

3
2

41

32
p212vsD n. ~2.21!

As we said above, the correct value ofvs has been recently
found @21# to be simplyvs50. We shall find it convenient
however, to keepvs as a free parameter in order to assess
quantitative importance of 3PN effects.

Let us emphasize again the streamlined nature of the
fective one-body description of the orbital dynamics. Succ
sively, as the PN order increases, one can say that~i! the 6
terms of the Newtonian plus the first post-Newtonian relat
Hamiltonian~2.3!,~2.4! can be mapped@via Eq. ~2.16! and a
canonical transformation of (x,p)# onto geodesic motion in a
Schwarzschild spacetime of massM ~i.e., A1PN5122û,
D1PN51); ~ii ! to take into account the 7 additional term
enteringH2PN, Eq. ~2.5!, it is enough to add12nû3 to A(r )
and 26nû2 to D(r ); and ~iii ! to take into account the 11
additional terms enteringH3PN, it is enough to further
add 1a4(n)û4 to A(r ) and 12(3n226)nû3 to D(r ), and
to add the simple quartic term~2.20! to the mass-shel
condition ~2.17!. Note that the effective one-body dynami
is a ‘‘deformation’’ of a geodesic dynamics for a partic
of massm in a Schwarzschild spacetime of massM, with
the symmetric mass ration5m/M5m1m2 /(m11m2)2 as
deformation parameter (0,n< 1

4 , with n being small ifm1
!m2 or m2!m1, and reaching its maximal value of1

4 when
m15m2). Note also that, at this stage, we have not yet
troduced any particular resummation technique. The ef
tive quantities~2.18!–~2.20! are still given as straightforward
PN expansions in powers ofû5GM/c2r . However, this al-
ready means an appreciable gain over the original PN ex
sions, Eqs.~2.3!–~2.6!. Indeed, there are far less terms in t
‘‘effective’’ PN expansions and they generically have sign
cantly smaller coefficients~which are now all multiplied by
n,1/4). For instance, the ‘‘radial’’ potential determining th
circular orbits is now fully encoded in the simple functio
g00

eff52A(r eff) which differs from the test-mass~Schwarzs-

child! result, A(n50)5122û, only by two numerically
smallish terms when one is above the last stable orbit.
deed, whenr eff.6GM/c2, 2nû3,0.23%, and a4(n)û4

,0.36%~for vs50). When working at the 2PN level it was
in fact, found unnecessary@8# to further ‘‘resum’’ the effec-
tive PN expansions ofA(r ) and D(r ). As they stand, they
led to small deviations from the test-mass (n→0) results.
However, it was found in@10# that the situation is not quite
as good at the 3PN level. Because of the largish coefficien
Eq. ~2.21!, 94

3 2 41
32 p2.18.688, the additional term

1a4(n)û4 in Eq. ~2.18! significantly modifies the qualitative
behavior of the metric coefficientA(r ) for r eff,6GM. In
particular, whenvs50, the straightforward PN-expande
function A(r ) no longer features a zero nearr eff52GM for
all possible values of the deformation parameter 0,n< 1

4 .
As this zero~which corresponds to the Schwarzschild ho
zon! is a crucial qualitative feature of then50 limit, it was
argued in@10# that one should Pade´ resum the PN expansio
12401
e

f-
s-

e
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n-

-

in

of A(r ) so as to ensure the stable presence of a similar ‘‘
rizon’’ when 0,n< 1

4 . We shall also do so here, but on
after having introduced the spin effects, which modify t
radial function which is the analog ofA(r ).

B. Effective spin

Let us now tackle the central task of this work: to intr
duce spin effects in the effective one-body approach. Le
first emphasize that the ambition of the present work
somewhat limited. Our main goal is to derive a spi
dependent EOB Hamiltonian which is physically reliable f
small and moderate spins. We shall proceed toward this g
in successive steps. First, we consider only~at the lowest PN
order where they enter! the interactions which arelinear in
the spins. Then, we shall incorporate~to some approxima-
tion! the interactions which are quadratic in the spins. Co
trary to the case of the spin-independent interactions wh
many years of work have yielded high-PN-accuracy inform
tion which allowed one to refine and test the EOB approa
one does not have in hand enough information for gaug
the reliability of the spin-dependent interactions in the ca
of fast spins. As a consequence, we will be able to trust
presently introduced EOB Hamiltonian only when spin e
fects are not too large. As we said in the Introduction, o
will need new information~either from numerical relativity,
or from improved analytical methods! to find a reliable form
of the EOB Hamiltonian for large spins.

We have written down in Eq.~2.9! the contribution to the
real, PN-expanded, two-body Hamiltonian which is linear
the two spins. Our first proposal is to map this contributi
to the spin-orbit coupling of a~spinless! effective particle
moving in a suitably ‘‘spinning’’ effective metric, i.e. som
type of generalized Kerr metric. If we formally considerS1
andS2 as deformation parameters~on top of the basicorbital
deformation parametern), the effective dynamics we ar
looking for should be a ‘‘spin deformation’’ of the currentl
most accurate orbital dynamics, as described by the 3
effective dynamics Eqs.~2.15!–~2.21!. In particular, we
should keep the non-geodesic Hamilton-Jacobi equa
~2.17!. Note that the spin effects@notably Eq.~2.9!# break the
O(3) symmetry of the orbital interaction. At the quantu
level, this means that spin interactions lift the degener
~lack of dependence on the ‘‘magnetic’’ quantum numb
Lz /\) of the orbital energy states. This shows that the eff
tive ~co!metric geff

ab entering Eq.~2.17! should no longer be
spherically symmetric, but should contain special directio
linked to the spins. For generality, let us first consider
arbitrary ~time-independent! effective cometric

geff
abpapb5geff

00p0
212geff

0i p0pi1geff
i j pipj . ~2.22!

Let us define

a[~2geff
00!21/2, b i[

geff
0i

geff
00

, g i j [geff
i j 2

geff
0i geff

0 j

geff
00

,

~2.23!

i.e.,
3-7
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geff
0052

1

a2
, geff

0i 52
b i

a2
, geff

i j 5g i j 2
b ib j

a2
. ~2.24!

The effective energyEeff[2p0
eff is conserved~because of

the assumed stationarity ofgeff
ab). Using the parametrization

~2.23!, Eq. ~2.17! reads

~Eeff2b i pi !
25a2@m21g i j pipj1Q4~p!#. ~2.25!

Solving Eq.~2.25! for Eeff @using the fact thatQ4(p), Eq.
~2.20!, depends only on thepi ’s# yields the effective Hamil-
tonian

Eeff5Heff~x,p, . . . !5b i pi1aAm21g i j pipj1Q4~pi !,
~2.26!

where we have suppressed, for readability, the labels ‘‘e
on the orbital phase space variablesxeff, peff. The ellipsis in
the arguments ofHeff are added to remind us thatHeff will
ultimately also depend on the spin variablesS1 , S2, which
enter the metric coefficientsa, b i , g i j as parameters.

We also assume that Eq.~2.16! ~which was found to hold
at 1PN, 2PN, and 3PN! still holds. Solving it for the real
energyEreal in terms of the effective one finally yields th
real Hamiltonian

Ereal5H real~x,p, . . . !5MA112nS Heff2m

m D . ~2.27!

We recall that, at the linearized level and at the lowest
order, the addition of a spinSeff onto an initially spherical
symmetric metric leads to an off-diagonal term in the met

b i.2g0i.2g0i.1
2G

r 3
« i jkSeff

j xk. ~2.28!

Inserting this term in Eq.~2.26!, and expanding Eq.~2.27!
in a PN series yields, as leading spin-orbit coupling@linear-
ized in Seff and taken to formal orderO(1/c2)# in H real, the
term

dSeff
H real.b i pi.

2G

c2r 3
« i jkpiSeff

j xk. ~2.29!

This term can exactly reproduce the leading7 two-body spin-
orbit coupling~2.9! if we define

Seff[s1S11s2S2 , ~2.30!

with

s1[11
3

4

m2

m1
, s2[11

3

4

m1

m2
. ~2.31!

7We use here the fact that the real phase-space coordinatesxreal,
preal differ only byO(1/c2) from the effective ones enteringHeff @8#.
12401
’’
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C. A deformed Kerr metric

Remembering that the main message of the effective o
body method is that the orbital dynamics of two comparab
mass black holes can be described in terms of a slig
deformed ~with deformation parametern) Schwarzschild
metric, we expect that the orbital-plus-spin dynamics of t
black holes can be described in terms of some deforma
of the Kerr metric. In other words, we are expecting that n
only the effects linear in the spins, such as Eq.~2.9!, but also
the spin-dependent non-linear effects, can be describe
terms of some deformed, effective Kerr metric. At this sta
it is therefore very natural to construct a suitable ‘‘deform
Kerr metric’’ which combines the orbital deformation
~2.18!,~2.19! with the full spin effects linked to the ‘‘effec-
tive spin’’ ~2.30!. After constructing this deformed Kerr me
ric, we shalla posterioricheck that it approximately incor
porates the expected two-body interactions which
quadratic in the spins.

Let us start from the simplest form of the Kerr cometr
underlying its separability properties@53#

gKerr
ab papb5

1

r 21a2 cos2u
FDK~r !pr

21pu
21

1

sin2u

3~pw1a sin2upt!
22

1

DK~r !

3@~r 21a2!pt1apw#2G , ~2.32!

with DK(r )5r 222Mr 1a2. In the non-spinning limit (a
→0) the coefficients ofpr

2 and pt
2 become, respectively

DK(r )/r 2 and 2r 2/DK(r ). However, we know that in this
limit we should get@from ~2.15!# A(r )/D(r ) and21/A(r ),
respectively. It is therefore very natural to generalize
Kerr metric ~2.32! ~while still keeping its separability prop
erties! by assuming that the coefficients of the first and l
terms in the large square brackets of Eq.~2.32! involve two
different functions ofr, say D r(r ) and 21/D t(r ), whose
product reduces to21/D(r ) when a→0. This reasoning
leads us, as the simplest8 possibility for combining spin ef-
fects with orbital effects, to postulating that the effecti
metric entering~2.17! has the form

geff
abpapb5

1

r 21a2 cos2u
FD r~r !pr

21pu
21

1

sin2u

3~pw1a sin2upt!
22

1

D t~r !

3„~r 21a2!pt1apw…
2G , ~2.33!

8We leave untouched the dependence ona to ensure that, when
GM→0 with a being fixed, the metricgeff

ab be Minkowski in dis-
guise.
3-8
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with

D r
PN~r !5

r 2APN~r !1a2

DPN~r !
, D t

PN~r !5r 2APN~r !1a2.

~2.34!

Here, the superscripts ‘‘PN’’ indicate that, at this stage,
are only comparing PN expansions. We already know fr
the 3PN study of@10# that this is unsatisfactory because
tends to change the qualitative behavior of the radial fu
tions and, in particular, the presence of a horizon in the m
ric ~2.33!. To get a regular horizon in Eq.~2.33! we need the
two functionsD t(r ) and D r(r ) to have a zero at the sam
value of r. The simplest~and most robust! way of ensuring
this is ~as discussed in@10#! to define them as

D t~r ![r 2P3
1FAPN~r !1

a2

r 2G , D r~r ![D t~r !S 1

D~r ! D
PN

.

~2.35!

Here, Pm
n @ f PN(u)#, with u[1/r , denotes theNn(u)/Dm(u)

Padéof a certain PN-expanded functionf PN(u)5c01c1u
1c2u21•••1cn1mun1m @Nn(u) andDm(u) being polyno-
mials inu of degreesn andm, respectively#. We do not write
down the~uniquely defined! explicit expression of

Ā~u![P3
1@APN~u!1a2u2#

5P3
1@122û1â2û212nû31a4~n!û4#

5
11n1û

11d1û1d2û21d3û3

~where û5GM/r , â5a/GM) because~i! it is rather com-
plicated and not illuminating, and~ii ! modern algebraic ma
nipulators compute it directly from its Pade´ definition.

In the definition ofD r(r ) @which is less important than
that of D t(r )# we have factorized the Pade´ resummedD t(r )
and assumed that it was enough to work with the n
resummed PN expansion of the inverse of theD function,
i.e., @from Eq. ~2.19!#

@D21~r !#PN[116nû212~2623n!nû3. ~2.36!

If the need arises, it would be easy to define improved~re-
summed! versions ofD21(r ). Because of the positive coe
ficients in Eq.~2.36! the present definition does not interfe
~as would the consideration of@DPN(r )21# with the desired
feature of having a simple zero inD r(r ) located at the same
value as that inD t(r ).

Finally, we shall see later that there are some advanta
in defining the quartic-in-momenta contributionQ4(p) in the
following ~deformed! way:
12401
e
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-
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Q4~p!5
1

m2
2~423n!n

~GM!2

r 21a2 cos2u
~n•p!4. ~2.37!

Equation ~2.33! definesgeff
ab only with respect to some

~instantaneous! polar coordinate system with thez-axis
aligned with the effective spin~2.30!. Such a coordinate sys
tem cannot be used for describing the evolution of two gra
tationally interacting spinning black holes. Indeed, we exp
~and shall check below! that the total real Hamiltonian im
poses some type of precession motion forS1 , S2 and there-
fore Seff . To get the full dynamics of the system we need
rewrite geff

ab in a general, Cartesian-like coordinate syste
This is achieved by explicitly introducing, besidesni[xi /r ,
the quantities@Seff[(dabSeff

a Seff
b )1/2#

si[
Seff

i

Seff
, a[

Seff

M
, cosu[nisi , r2[r 21a2 cos2u.

~2.38!

This leads to the following, Cartesian-like, effective metri

2r2geff
005

~r 21a2!22a2D t sin2u

D t
, ~2.39!

r2geff
0i 52

a@r 21a22D t#

D t
~s3x! i , ~2.40!

r2geff
i j 5D rn

inj1r 2~d i j 2ninj !2
a2

D t
~s3x! i~s3x! j ,

~2.41!

from which follows

a5A r2D t

~r 21a2!22a2D t sin2u
, ~2.42!

b i5
a@r 21a22D t#~s3x! i

~r 21a2!22a2D t sin2u
, ~2.43!

g i j 5geff
i j 1

b ib j

a2
. ~2.44!

Note that near the ‘‘horizon,’’ i.e., asD t→0, the quantitya
tends to zero likeAD t, while b i and g i j have finite limits.
@The singular last term on the right-hand side of Eq.~2.41! is
cancelled near the horizon by the contribution1b ib j /a2 to
g i j , Eq. ~2.44!.#

Finally, the spin-dependent, real two-body Hamiltoni
H real(x,p,S1 ,S2) is defined by (p̂i[pi /m, ûr[GM/Ar2,
ni[xi /r )
H real~x,p,S1 ,S2![MA112n@b i p̂i1aA11g i j p̂i p̂ j12~423n!nûr
2~ni p̂i !

421#, ~2.45!
3-9
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where we recall that the basic effective Kerr spin vector
defined by

Masi[Seff
i [s1S1

i 1s2S2
i , ~2.46!

with s1 ands2 defined in Eq.~2.31!. The phase-space coo
dinates appearing in this Hamiltonian are the effective o
(xeff

i ,pi
eff). They differ @8,10# by O(1/c2) terms from the co-

ordinates used in usual PN calculations, such as ADM o
The evolution equations defined by the Hamiltonian~2.45!
are obtained by the Poisson bracket equations~2.10!–~2.13!.
Before discussing them let us show how the Hamilton
~2.45! contains spin-quadratic effects of the good sign a
magnitude.

D. Effects quadratic in the spins

Note first that if we introduce the ‘‘non-relativistic’’ effec
tive Hamiltonian Heff

NR[Heff2mc2, and similarly H real
NR

[H real2Mc2, one has

Heff
NR5H real

NRS 11
1

2

H real
NR

Mc2D . ~2.47!

Therefore, if we are interested in the leading PN approxim
tion to any additional term inH real

PN , one can neglect the
@O(1/c2) smaller# difference betweenHeff andH real. By this
argument, the leading PN approximation to the term linea
the spins is

H realS.HeffS.b i pi5
a@r 21a22D t#

~r 21a2!22a2D t sin2u
~s3x! i pi .

~2.48!

We write it explicitly in the form in which it appears in ou
Hamiltonian for the reader to see how the term~2.29! is
generated.~The important feature here is thatr 21a22D t
.2GMr at the leading PN approximation.!

Let us now consider the interaction terms inH real or Heff
which are quadratic in the spins, and therefore quadrati
the Kerr-like parametera, Eq. ~2.46!. First, one should re-
member that most terms of ordera2, as they appear in the
effective metric~2.39!–~2.41!, do not directly correspond to
physical effects proportional toSeff

2 . Indeed, we are using
here Boyer-Lindquist-type coordinates which differ, even
the flat space limit GM→0, from usual ~flat-space,
Cartesian-like! coordinates by terms of orderO(a2). As we
are interested in the leading PN effects quadratic in the sp
we can view the Kerr-like metric~2.39!–~2.41! as a defor-
mation, by thea-dependent terms, of the Schwarzschild m
ric ~which is the leading PN version of the orbital effectiv
metric!. We then expect that the leading physical effects q
dratic a will be those linked to thea-dependent quadrupol
moment deformation of the Schwarzschild metric. The qu
rupole moment of the Kerr metric~which coincides with our
metric when we neglect additional 2PN fractional corre
tions! has been determined to be@54#
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Qi j 52Ma2sisj1
1

3
Ma2d i j . ~2.49!

This corresponds to an additional term in the interact
Hamiltonian equal to

HQ
real.HQ

eff.2
1

2
mQi j ] i j

1

r
51

1

2
mMa2sisj] i j

1

r
.

~2.50!

In terms of the effective spin this reads~in standard units!

HQ
real.1

1

2

G

c2

m

M
Seff

i Seff
j ] i j

1

r
. ~2.51!

Such is the prediction from our Hamiltonian. Let us no
compare it to the expected real two-body, spin-quadratic
fects. As sketched in Eq.~2.8! there are several sources
spin-quadratic effects. At leading PN order, it is enough
consider:~i! the term proportional tom2S1

2/m1 which arises
because of the interaction of the monopolem2 with the spin-
induced quadrupole moment of the spinning black hole
massm1, ~ii ! the term proportional tom1S2

2/m2 obtained by
exchanging 1→2, and ~iii ! the term proportional toS1S2
coming from the direct, one-graviton interaction between
two spin dipoles. The first term is obtained by relabeling t
result ~2.51! by m→m2 , M→m1 , Seff

i →S1
i . Therefore the

sum of ~i! and ~ii ! reads

HS1S1
1HS2S2

.1
1

2

G

c2 S m2

m1
S1

i S1
j 1

m1

m2
S2

i S2
j D ] i j

1

r
.

~2.52!

The term~iii ! has been computed in@47,48# and reads

HS1S2
.1

G

c2r 3
S1

i S2
j ~3ninj2d i j !51

G

c2
S1

i S2
j ] i j

1

r
.

~2.53!

It is easily checked that the sum of Eqs.~2.52! and ~2.53!,
sayHSS[HS1S1

1HS2S2
1HS1S2

, can be written as

HSS.
1

2

G

c2

m

M
S0

i S0
j ] i j

1

r
, ~2.54!

with S0
i /M[a0

i [a1
i 1a2

i [S1
i /m11S2

i /m2, i.e., explicitly,

S0
i [S 11

m2

m1
DS1

i 1S 11
m1

m2
DS2

i . ~2.55!

The result~2.54!,~2.55! is remarkably similar to the predic
tion ~2.51! @with Eqs. ~2.30! and ~2.31!#. The only discrep-
ancy is a 25% difference in the coefficient of the mass ra
in the definition of the effective spin. Though there might
physical situations where this smallish difference might p
a significant role, we think that in most cases where one w
be entitled to trust the approximate spin-dependent E
Hamiltonian introduced here this difference will not matte
3-10
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Indeed, because of the partiallyad hoc way in which we
constructed our deformed Kerr metric, we cannot trust
predictions beyond the domain where spin effects are m
erate corrections to orbital effects. However, it is useful
incorporate in a qualitatively correct manner the non-lin
spin effects. This is what our prescription achieves. For
stance:~i! in the limit where, say,m2!m1 ~and uS2u<m2

2)
Eqs.~2.51! and ~2.54! become equivalent, or~ii ! in the case
where S1 and S2 are parallel~in the same direction!, Eqs.
~2.51! and ~2.54! differ only by a numerical factor which is
near one for all mass ratios.

It might, however, be useful to define another Ham
tonian, sayH real8 , which ~a! reduces~like H real) to the Kerr
one in the test-mass~and test-spin! limit, ~b! contains~like
H real) the spin-orbit terms~2.9!, and ~c! contains the exac
spin-spin terms~2.54! @instead of their ‘‘25%’’ approxima-
tion ~2.51! contained inH real#. A simple way to do that is to
defineH real8 [MA112n(Heff8 2m)/m with a modified effec-
tive Hamiltonian defined as the sum of Eq.~2.26!, written
with the replacementSeff→S0, and of an additional spin-orbi
interaction term,Db i pi , with Db i proportional to the differ-
ences i[Seff

i 2S0
i :

Heff8 ~x,p,S1 ,S2!5Heff~x,p,S0!1DHSO~x,p,S0 ,s!,
~2.56!

where~denotinga0[S0 /M , cosu0[niS0
i /uS0u)

DHSO~x,p,S0 ,s![
r 21a0

22D t~a0!

~r 21a0
2!22a0

2D t~a0!sin2u0

« i jkpis
j xk

M
,

~2.57!

with

s i[Seff
i 2S0

i [2
1

4 S m2

m1
S1

i 1
m1

m2
S2

i D . ~2.58!

The consideration of the new HamiltonianH real8 would
considerably complicate~even at the qualitative level! the
discussion of the following section. As we are not sure t
this complication really entails a betterquantitativedescrip-
tion of spin effects, when these become important, we sh
in the following, content ourselves with studying the cons
quences of the simpler~though slightly less ‘‘accurate’’!
HamiltonianH real, Eq. ~2.45! with Eq. ~2.46!. However, we
mention that it might be useful to consider simultaneou
H real andH real8 , and to trust their predictions only in the cas
where they differ only by a slight amount. This gives a use
measure of the domain of validity of the present sp
dependent effective-one-body approach.

III. DYNAMICS OF TWO SPINNING BLACK HOLES

A. Equations of motion and exact or approximate first integrals

In the previous section we have explicitly constructed
Hamiltonian H real(x,p,S1 ,S2) describing~to some approxi-
mation! the ~conservative part of the! gravitational interac-
tion of two spinning black holes in the center-of-mass fra
of the binary system. In the present section we shall desc
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some consequences of this Hamiltonian. Let us start by w
ing down explicitly the evolution equations for all the dy
namical variables. From the basic PB’s~2.10!–~2.14! we get

dxi

dt
5$xi ,H real%51

]H real

]pi
, ~3.1!

dpi

dt
5$pi ,H real%52

]H real

]xi
, ~3.2!

dS1
i

dt
5$S1

i ,H real%5« i jk
]H real

]S1
j

S1
k , ~3.3!

dS2
i

dt
5$S2

i ,H real%5« i jk
]H real

]S2
j

S2
k . ~3.4!

In vectorial notation, the spin evolution equations read~e.g.
for the first spin!

dS1

dt
5V13S1 , V1[

]H real

]S1
. ~3.5!

A first consequence of these results is that the magnitude
the two spins are exactly conserved:

S1
25const, S2

25const. ~3.6!

Another general consequence is the exact conservation o
total angular momentum

J[L1S11S2 , ~3.7!

whereLi[« i jkxj pk . Indeed, it is easily checked thatJi gen-
erates, by Poisson brackets, global rotations of all the ve
rial dynamical quantities:$Ji ,Vj%5« i jkVk for V5x, p, S1 or
S2. As the Hamiltonian is a scalar constructed out ofx, p, S1
andS2, we have

d

dt
Ji5$Ji ,H real%50. ~3.8!

Therefore

Ji5const and, in particular,J25const. ~3.9!

Evidently, we have also the conservation of the total ene

dHreal

dt
5$H real,H real%50⇒H real5const. ~3.10!

This closes the list of generic first integrals of the evolutio
It should be noted that, in general, quantities such asL2 or
S1•S2 are not conserved in time. This means, in particu
that the magnitude of the effective spin,a25M 22Seff

2 , will
not stay constant during the evolution.

Evidently, in particular situations, more quantities mig
be approximately conserved. An interesting case is tha
which the spins are small enough for one to retain only
terms linear in them. In this approximation
3-11



n

-

-
an

s

r-

ath
s,

f

g
ary
to
cir-
cir-
e
g

u-
ir-
ri-

atic
this
a-

by
the

us
in

all

e
n-

n

dy
err
tric
ork

f
g

THIBAULT DAMOUR PHYSICAL REVIEW D 64 124013
Heff~x,p,S1 ,S2!.H0~x,p!1
@r 22D t

(a50)#

Mr 4
L•Seff ,

~3.11!

whereH0(x,p) is spherically symmetric.
Let us, more generally,9 assume thatHeff , as well as

H real, are spherically symmetric, functions ofx andp except
for a dependence on the combinationL•Seff :

H real5H real~r ,pr ,L2,L•Seff!, ~3.12!

where pr[nipi is canonically conjugated tor ($r ,pr%51).
Under the assumption~3.12! the angular momenta evolutio
equations become@with (LS)[L•Seff#

dS1

dt
5

]H real

]~LS!
s1L3S1 , ~3.13!

dS2

dt
5

]H real

]~LS!
s2L3S2 , ~3.14!

dL

dt
5

]H real

]~LS!
Seff3L. ~3.15!

These evolution equations imply not only~as in the gen-
eral case! the conservation ofJ5L1S11S2, and ofS1

2 and
S2

2, but also that of

L25const, L•Seff5const. ~3.16!

Note, however, thatSeff
2 is not conserved. Moreover, the ra

dial motion is governed by the equations

ṙ 5
]H real~r ,pr ,L2,L•Seff!

]pr
, ~3.17!

ṗr52
]H real~r ,pr ,L2,L•Seff!

]r
. ~3.18!

In view of the constancy ofL25C0 andL•Seff5C1, we see
from these equations that the function ofr and pr ,
H rad(r ,pr)5H real(r ,pr ,C0 ,C1), defines a reduced Hamil
tonian describing the radial motion, separately from the
gular degrees of freedom. In particular, we see~using the fact
that pr enters at least quadratically inH real) that, under our
current~approximate! assumption~3.12!, there exists a clas
of spherical orbits, i.e. of orbits satisfying

r 5const, pr50,
]H real~r ,pr50,L2,L•Seff!

]r
50.

~3.19!

Because of the~possibly non-linear! spin-orbit coupling, i.e.,
the dependence ofH real on L•Seff , the orbital plane of these
‘‘spherical’’ orbits is not fixed in space. But the radial coo

9For instance, we can assume Eq.~3.11! for Heff , but we make no
further approximation in computingH real5 f (Heff).
12401
-

dinater being constant, these orbits trace a complicated p
on a sphere~hence the name!. These orbits are the analog
in our two-body problem, and in the approximation~3.12!, of
similar exact ‘‘spherical’’ orbits for the geodesic motion o
test particles in a Kerr spacetime@55#. Their existence~under
some approximation! in the two-body problem is interestin
for the following reason. One expects most black hole bin
sources of interest for the LIGO-VIRGO-GEO network
have had the time to relax, under radiation reaction, to
cular orbits. When the two black holes get closer, these
cular orbits will adiabatically shrink until they come clos
enough for feeling the effect of the spin-orbit couplin
~which varies proportionally tor 23!. In some intermediate
domain where the spin-orbit coupling is significant, but co
plings quadratic in the spins are still small, the initially c
cular orbit will evolve into an adiabatic sequence of ‘‘sphe
cal’’ orbits of the type just discussed.~We are here adding by
hand the effect of radiation reaction, treated as an adiab
perturbation of the conservative dynamics discussed in
paper.! These considerations indicate that, in first approxim
tion, the total amount of gravitational radiation emitted
coalescing spinning black holes will be determined by
binding energy of the last stable spherical orbit~LSSO!, i.e.,
the last stable solution of Eqs.~3.19!, which will satisfy

]H real

]r
~r ,pr50,L2,L•Seff!50,

]2H real

]r 2
~r ,pr50,L2,L•Seff!50. ~3.20!

Before studying the energetics of these LSSO’s let
mention the existence of other approximate first integrals
the dynamics of binary spinning black holes. Let us keep
the terms non-linear inSeff , i.e., the full expression of
H real(x,p,S1 ,S2), but let us try to approximately decoupl
the orbital motion from the spin degrees of freedom by co
sidering that the two spin vectors evolve adiabatically~i.e.,
slowly on the orbital time scale!, through Eqs.~3.3! and
~3.4!. In this adiabatic-spin approximation, the orbital motio
is described by the Hamilton-Jacobi equation~2.17!, with an
adiabatically fixed effective metricgeff

ab . With the definition
~2.37! of the quadratic-in-momenta termQ4(p), one can
check that, in this approximation, there will exist a two-bo
analog of the Carter constant for geodesic motion in K
@53#. Indeed, we have constructed our deformed Kerr me
~2.33! so as to respect its separability properties. Let us w
in an ~adiabatic! Boyer-Lindquist-type coordinate system
(t,r ,u,w), as in Eq.~2.33!. We find that the separability o
the effective Hamilton-Jacobi equation yields the followin
first integrals~of the effective Hamiltonian!:

pt52Eeff , pw5Lz , ~3.21!

pu
21

~Lz2aEeff sin2u!2

sin2u
1m2a2 cos2u
3-12
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5K[Q1~Lz2aEeff!
2, ~3.22!

pu
21cos2uF Lz

2

sin2u
1a2~m22Eeff

2 !G
5Q[K2~Lz2aEeff!

2. ~3.23!

The last two equations are equivalent to each other, but,
pending on the context, one can be more convenient than
other. Let us note the connection of the first integrals~3.21!–
~3.23! with the above analysis of the first integrals of t
Hamiltonian depending only on the combinationL•Seff . The
conservation ofLz , Eq. ~3.21!, corresponds to the conserv
tion of L•Seff , Eq. ~3.16!, while the conservation ofK or Q
corresponds to the conservation ofL2. Indeed, if we neglect
the terms proportional toa2 in Eq. ~3.23! we get

Q.pu
21Lz

2 12sin2u

sin2u
5L22Lz

2 . ~3.24!

This suggests that, even beyond the adiabatic-spin app
mation, the quantities, now defined in an arbitrary frame

Lz[L•s, Q[L22~L•s!21a2~n•s!2~m22Eeff
2 !,

~3.25!

will be @as well asSeff
2 andK[Q1(Lz2aEeff)

2# conserved
to a good approximation. We are mentionning here th
approximate conservation laws because they could be he
in qualitatively understanding the full two-body dynamics

B. Spherical orbits and last stable spherical orbits

We discussed above the existence of spherical orbits
der the assumption~or the approximation! thatH real depends
only on the ‘‘spin-orbit’’ combinationL•Seff ~as it does at the
linear-in-spin level!. More generally, we have seen that if w
treat the evolution of the spins as being adiabatic, we h
the ~approximate! first integrals~3.25!. If we use~as a heu-
ristic mean of studying the main features of the orbital d
namics! this adiabatic approximation, we can define a fam
of spherical orbits by drawing on the conservation of t
quantities~3.25!. Indeed, inserting the definitions~3.25! into
Eq. ~2.17! we get an equation controlling the radial motio

D rpr
212~423n!n~GM!2pr

4/m2

5
1

D t~r !
@~r 21a2!Eeff2aLz#

2

2@m2r 21Q1~Lz2aEeff!
2#. ~3.26!

The right-hand side of Eq.~3.26! defines ~when a2

5Seff
2 /M2, Lz , andQ are considered as adiabatic constan!

a radial potential whose local minima, inr, determines~adia-
batic! spherical orbits. The last stable spherical orbit is o
tained when this radial potential has an inflection poi
More precisely let us define
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R~r ,Eeff ,Lz ,Q![@~r 21a2!Eeff2aLz#
2

2D t~r !@m2r 21Q1~Lz2aE!2#.

~3.27!

The spherical orbits are the solutions of

R~r ,Eeff ,Lz ,Q!5
]

]r
R~r ,Eeff ,Lz ,Q!50. ~3.28!

The solutions of Eq.~3.28! yield a two-parameter family of
solutions, along which, for instance,r andEeff are functions
of Lz and Q. The last stable spherical orbit~LSSO! along
such a family of solutions must satisfy the three equation

R~r ,Eeff ,Lz ,Q!5
]

]r
R~r ,Eeff ,Lz ,Q!

5
]2

]r 2
R~r ,Eeff ,Lz ,Q!50. ~3.29!

There is a one-parameter family of LSSO’s. For instan
one can take as a free parameter the dimensionless
Q/Lz

2 which is a measure of the maximum angle between
orbital plane and the equatorial plane defined bySeff . @Note
that Q50 for an orbit in the equatorial plane.# For each
value of this angle, and for each value of the effective s
parametera, there will be some LSSO, with particular value
of r, Eeff , andLz .

To study the values of the~effective and real! binding
energy, and of the orbital angular momentum along this o
parameter family of LSSO’s, it is convenient to work wit
slightly different variables. Let us introduce

L̄z[Lz2aEeff , K[Q1L̄z
2 . ~3.30!

Let us also work with the radial variableu[1/r and denote

Ā~u![
D t~r !

r 2
[P3

1@Aorb
PN~u!1a2u2#. ~3.31!

We have

r 24R~r ![U~u![~Eeff2aL̄zu
2!22Ā~u!~m21Ku2!.

~3.32!

The equationU(u)50 @i.e., R(r )50# is now solved as

Eeff5Wa~u,L̄z ,K![aL̄zu
21AĀ~u!~m21Ku2!.

~3.33!

The two-parameter family of spherical orbits is now obtain
~as functions of the parametersL̄z and K) by solving
]W/]u50, while the one-parameter family of LSSO’s is o
tained by solving]W/]u5]2W/]u250. The advantage o
this formulation is that it exhibits in the simplest way th
analogy with the effective radial potential discussed in@8,10#
for the pure~3PN! orbital motion~without spin!, namely,

W0~u,L ![AA~u!~m21L2u2!, ~3.34!
3-13
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with A(u)[P3
1@Aorb

PN(u)#. Apart from the replacemen
L2→K, the only two differences between the spinni
case@Eq. ~3.33!# and the spinless one@Eq. ~3.34!# is the
addition of the spin-orbit energy term1aL̄zu

2, and the
additionala2u2 term in the PN expansion ofĀ(u). @Note that
Ā(u)ÞĀ(u)1a2u2 because the Pade´ resumming is done af
ter the addition ofa2u2.# We have chosen to parametriz
Wa(u) in terms ofL̄z andK because it simplifies very muc
its expression and thereby renders more transparent the
physics incorporated in our effective one-body approa
The fact thatL̄z depends both onLz andEeff is not a problem
for solving Eq.~3.32! for Eeff . Indeed, we are discussing
continuous family of solutions and it is essentially indiffere
to parametrize them in terms ofLz or L̄z . We could have
introduced another effective potentialWa8(r ,Lz ,Q) by solv-
ing R(r ,Eeff ,Lz ,Q)50, with Eq. ~3.27!, which would be
more complicated, but which would describe the same ph
ics. @Note thatWa8(r ) would directly exhibit the correct fac
that the spin-orbit energy, for givenLz , decreases liker 23,
while this fact is hidden inWa(u) which assumes thatL̄z
5Lz2aEeff is given.#

C. Binding energy of last stable spherical orbits

To get a first idea of the physical consequences of
effective one-body description of coalescing spinning bla
holes we have numerically investigated the properties of
one-parameter family of LSSO’s. The most important qu
tity we are interested in is the binding energy at the l
stable spherical orbit because it is the prime quantity de
mining the detectability of the GW emitted during the i
spiral. We recall that the real, two-body energy is related
the effective energy entering the equations of Sec. II
through

Ereal5MA112nS Eeff

m
21D . ~3.35!

We are mostly interested in the~dimensionless! binding en-
ergy per unit total mass, say

e[
Ereal2M

M
5A112nS Eeff

m
21D21. ~3.36!

The value ofe at the LSSO depends on three dimensionl
parameters

n4[4
m

M
[4n, â[

a

M
[

uSeffu

M2
, cosuLS[

L̄z

AK .

~3.37!

Here, the parametern4 ~renormalized so that 0,n4<1) de-
termines the effect of having comparable masses (n4.1)
rather than a large mass hierarchy (n4!1). The dependence
of eLSO on n4 in the absence of spins was studied in@8,10#. It
was found that the ratioeLSO/n4 was essentially linear inn4
~even forn4 as large as 1, corresponding to the equal-m
case!
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eSeff50
LSO .20.014298n4~11c1n4!. ~3.38!

Here, the numerical value21.4298%5 1
4 (A 8

9 21) is one-
fourth the specific binding LSO energy of a test particle
the Schwarzschild spacetime. The numerical coefficientc1
which condenses the effect of resummed PN interactions
found to have a valuec1

2PN.0.048 at 2PN andc1
3PN(vs

50).0.168 at 3PN, and forvs50. @The dependence o
c1

3PN on vs is also roughly linear: c1
3PN(vs).0.168

10.0126vs , at least when210&vs&0.#
We expect that the dependence onn4 of the spin-

dependent effects will also be roughly linear@after factoriza-
tion of an overall factorn4 which comes from expanding th
square root in Eq.~3.36!#. In the following we shall generally
consider~in our numerical investigations! the casen451,
and concentrate on the dependence on the other param

Let us clarify the meaning of the parametersâ and cosuLS

introduced in Eq.~3.37!. The quantitiesSeff , L̄z and K en-
tering these definitions are all supposed to be compute
the last stable spherical orbit of an adiabatic sequence
spherical orbits~in the sense discussed above!. Physically,
we have in mind the sequence of inspiralling orbits driven
radiation reaction. Technically, we definee(n4 ,â,cosuLS) by
solving the effective radial potential problem defined in S
III B. We are aware of the fact that we cannot really attach
cosuLS the meaning of being the cosinus betweenL andSeff
~as the name would suggest!, but this is not important. Wha
is important is that there is indeed a physical degree of fr
dom related to the misalignment betweenL and Seff at the
LSSO and that we measure it by a parameter normalize
that cosuLS51 ~or 21) when all angular momenta ar
aligned @in this limit the concept of the last stable circula
equatorial orbit is meaningful and coincides with th
cosuLS51 ~or 21) limit of our formal definitions#.

Note that, with the definitions~3.37! and the additional
definition l̄ [(K)1/2/GMm, the effective radial potentia
~3.33! yields ~in dimensionless form,û[GM/r )

Eeff

m
5Ŵâ~ û,cosuLS , l̄ !

5â cosuLSl̄ û21AĀ~ û,â2!~11 l̄ 2û2!. ~3.39!

This form makes it clear thatEeff
LSSO/m, and thereforeeLSSO,

Eq. ~3.36!, will depend primarily on the combination~‘‘pro-
jected value ofâ’’ !

âp[â cosuLS.
k•Seff

M2
~3.40!

wherek5L/uLu ~at the LSSO!. For smallish spins, the com
binationâp is the only one entering the problemlinearly. As
recalled by the notation in Eq.~3.39! the non-projected value
of â enters only quadratically inĀ(û,â2).

Let us consider more closely the crucial quantity
3-14
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âp5
1

~m11m2!2 F S 11
3

4

m2

m1
D k•S11S 11

3

4

m1

m2
D k•S2G

5S X1
21

3

4
X1X2D k•â11S X2

21
3

4
X1X2D k•â2 . ~3.41!

In the second form, we have definedX1[m1 /M , X2

[m2 /M (X11X251, X1X25n), and â1[S1 /m1
2 , â2

[S2 /m2
2. ~We recall that a maximally spinning hole wou

haveuâ1u51.!
An important question~for the relevance of the presen

work! is the following: what are the plausible values ofâp in
the sources that will be detected by LIGO-VIRGO-GEO
Present astrophysical ideas about the formation of bin
black holes@1,4# suggest neither that the holes be typica
maximally spinning, nor that there be any correlation b
tween the spin and angular momenta, i.e. between the d
tions of k, S1, andS2. Not much is known either about th
probable value of the mass ratio. To have an idea of
plausible values ofâp ~which is an algebraic quantity whic
can take positive or negative values! let us consider the ran
dom mean square~rms! value ofâp under the assumption o
random, uncorrelated directionsk, S1, andS2 ~so that^âp&
50). Let us assume~for simplicity! that m15m2, i.e., n4
51, which is the most favorable case becauseeLSSO}n4. We
assume also that^â1

2&5^â2
2&[(a1

rms)2 is some given quantity
~to be determined by astrophysical models!. This yields for

âp
rms[A^âp

2&

âp
rms5

7

16

A2

A3
a1

rms50.357a1
rms. ~3.42!

Even if â1
rms51 ~which would mean that all black holes a

maximally spinning! we getâp
rms50.357. However, we find

it highly plausible thatâ1
rms will be significantly smaller than

1. For instance, if we optimistically assume a uniform dis
bution of spin kinetic energy between 0 and the maxim
value we would get â1

rms51/A2 and therefore âp
rms

57/(16A3)50.253. In view of these arguments, we fin
plausible that most LIGO-VIRGO binary black hole sourc
will have uâpu&0.3. This consideration is important becau
we shall see later that for such smallish values ofâp the
simple analytical approach advocated here seems to be
reliable. However, one should also be able to compute ph
cally reliable~or, at least, sufficiently flexible! templates for
fast spinning binary black holes. As we said in the Introdu
tion, we think that the EOB approach can be an essential
for this purpose, in conjunction with numerical data, by fee
ing the ~necessarily sparse! numerical data into some multi
parameter version of the EOB Hamiltonian.

This statistical estimate of the plausible value ofap sug-
gests that a typical value of cosuLS.k•Seff /uSeffu is around
61/A3. In our numerical estimates ofeLSSO we have used
this value, as well as the~implausible! value cosuLS561
corresponding to perfect alignment. As a first step towa
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exploring the ‘‘parametric flexibility’’ of the EOB approach
we have studied the dependence ofeLSSO on the value of the
parametervs , as it appears in Eq.~2.21!. We have done
numerical simulations for three fiducial values:vs50
[vDJS @21#, vs521987/840[vs

BF @16,18#,10 and also for

vs52 1
2 ( 94

3 241p2/32)[vs* . Note the numerical values
vs

BF.22.3655, vs* .29.3439. The original motivation
~when writing this paper, before the completion of the wo
@21# which determined the correct value ofvs) was to study
the sensitivity of our results to the ‘‘3PN ambiguity.’’ W
kept it here as an interesting case study of the sensitivity
EOB results to modifications of the various coefficients e
tering the EOB Hamiltonian. The change fromvs50 to
vs5vs

BF corresponds to a change of the coefficie
a4[a4(n)/n from 18.688 to 13.957, i.e., a fractional chan
of 225.32%. The valuevs5vs* has the effect of completely
cancelling the 3PN contribution to the radial functionsA(u)
and Ā(u). Therefore, choosingvs5vs* gives for the LSSO
quantities the same results as the 2PN effective-one-b
Hamiltonian@8#. Its consideration is useful for exhibiting th
difference between the 2PN-based results and the 3PN-b
ones. Our results are displayed in Table II and Fig. 1.

The most important conclusion we wish to draw fro
these results is that, whenâ&0.3 ~which, as we argued
above, covers a large domain of the physically relev
cases!, the binding energy at the LSSO seems to be relia
describable by the simple analytical EOB Hamiltonian d
fined above. Indeed, the differences between~i! the non-
spinning case and the spinning ones, and~ii ! the 2PN orbital
approximation and the 3PN one, are all quite moder
~which indicates that the effective one-body approach is
fective in resumming PN interactions near the LSO!. Fur-
thermore, the difference between~iii ! the spinning 3PN case
with vs505vs

DJS @10#, and the same case withvs5vs
BF

@18# is rather small. This is a testimony of the robustness
the EOB approach. A change of its 3PN coefficient by 25
does not affect much the physical predictions. This robu
ness at the 3PN level is indicative of some robustness aga
the addition of higher PN effects. Note also~from Table II!
the confirmation that whenuâpu&0.2, the binding energy a
the LSSO depends nearly only on the projected effective s
parameterâp5â cosuLS , with a very weak dependence o
the value of cosuLS .

On the other hand, it must be admitted that when, sayâ
*0.4 the differences between the three cases~i!, ~ii !, ~iii !
become so large, and the radius of the LSSO become
small, that the present spin-dependent EOB predictions c
not be quantitatively trusted.~However, as discussed in mor
detail below, we think that they remain qualitatively correc!

10This value corresponds to takingl50 in vs5211l/3
21987/840. Here,l denotes the natural ambiguity parameter e
tering the Blanchet-Faye framework. Note that the authors of R
@16–18# do not claim thatl50 is a preferred value. However, asl
is expected to be of order unity we usel50, i.e., vs5
21987/840 as a fiducial deviation fromvs50.
3-15
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TABLE II. Binding energiese[(Ereal/M )21 and~effective Boyer-Lindquist! radii of last stable spheri-
cal orbits~LSSO! for equal-mass spinning binary systems. The LSSO’s depend on two independent p

eters: uâu[uSeffu/M2 and cosuLS[L̄z /AK ~which is, morally, the cosine of the angle between the orb

angular momentum and the effective spin!. The combined parameterâp[uâu cosuLS ~projected spin! plays a

primary role for moderate spins. The algebraic quantityâ is defined as1uâu if cosuLS.0 and 2uâu if
cosuLS,0. All quantities are computed from the 3PN-level Pade´-resummed effective-one-body Hamiltonia
~2.45! with vs50.

cosuLA561/A3 cosuLS561

âp â eLSSO
r̂ LSSO âp â eLSSO

r̂ LSSO

20.6 21.039 20.01319 6.298 20.6 20.6 20.01150 7.344
20.5 20.8660 20.01337 6.220 20.5 20.5 20.01207 6.989
20.4 20.6928 20.01364 6.109 20.4 20.4 20.01271 6.623
20.3 20.5196 20.01405 5.940 20.3 20.3 20.01345 6.242
20.2 20.3464 20.01463 5.700 20.2 20.2 20.01433 5.841
20.1 20.1732 20.01547 5.377 20.1 20.1 20.01538 5.415

0. 0. 20.01670 4.954 0. 0. 20.01670 4.954
10.1 10.1732 20.01859 4.391 10.1 10.1 20.01842 4.439
10.2 10.3464 20.02203 3.580 10.2 10.2 20.02091 3.833
10.3 10.5196 20.05146 1.344 10.3 10.3 20.02529 3.005
10.4 10.6928 20.1790 0.7752 10.4 10.4 20.04930 1.538

10.5 10.5 20.1048 1.194
10.6 10.6 20.1474 0.9792
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If the orbital dynamics were well described by the 2PN-le
orbital EOB metric~i.e. if vs had been near29; see upper
curve in Fig. 1!, the binding energy, even in such extrem
cases, would differ only moderately from the non-spinni
case, and we could trust the EOB-plus-spin predictio
However, asvs is zero the 3PN EOB1 spin predictions
become, for cosuLS.1 anda*0.4, very different from the
2PN ones and quite sensitive to the numerical values of
expansion coefficients entering the EOB potentials. Let
note, however, that in all cases~even the most extremel

FIG. 1. Dependence of the binding energye[(Ereal/M )21 of

the LSSO on the effective spin parameterâ[Seff /M
2 ~taken with

the sign of cosuLS). We consider an equal-mass system with a ty
cal misalignment angle cosuLS561/A3. All three curves used the
Padé-resummed effective-one-body approach. The lower curves
a 3PN-level Hamiltonian: the lowest one usesvs505vs

DJS @10#,
while the middle one usesvs522.3655vs

BF @17#. The upper curve
usesvs529.3445vs* , which is~essentially! equivalent to using a
2PN-level Hamiltonian@8#.
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spinning ones! if the spin parameterâp is negative~i.e., if the
effective spin vector, whatever its magnitude may be ha
negative projection on the orbital angular momentum! the
EOB predictions become extremely reliable because all
differences between the cases~i!, ~ii !, ~iii ! become quite
small.

All these results are easy to interpret physically. This c
be seen from the basic equations of the EOB approach w
simplify so much the description of the physical interactio
by representing them as slightly deformed versions of
well-known gravitational physics of test particles
Schwarzschild or Kerr geometries. Indeed, the basic equa
of the EOB approach determining the binding of the LSO
Eq. ~3.39! which differs from its well-known11 Kerr limit
~i.e., n→0) only by the change

AK~ û,â2!5122û1â2û2→Ā~ û,â2!

5P3
1@122û1â2û212nû31a4~n!û4#.

~3.43!

The crucial point~which is, finally, the most important new
information obtained by the 2PN and 3PN orbital calcu
tions! is that the 2PN and 3PN additional terms to the rad
functionAa50

PN (û) have bothpositivecoefficients. This means
that, even before the addition of the effect of spin@which

11Actually, as far as we know, the Kerr limit of Eq.~3.39! has
never been written down before. Usual treatments@55# use the more
complicated effective radial potentialWa8(r ,Lz ,Q). Anyway, the
physics is the same, but it is more cleanly presented in Eq.~3.39!.
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leads to a1â2û2 additional term inAK(û), corresponding to
the famous1a2 term in DK(r )5r 222Mr 1a2# the main
effect of non-linear orbital interactions for comparab
masses is‘‘repulsive’’ , i.e., it corresponds to a partial scree

ing of the basic Schwarzschild attractive term 122û51
22GM/c2r by the addition of repulsive terms}1n/r 3 and
1n/r 4. Now, paradoxically, the addition of a repulsive ter
leads to a more tightly bound LSSO because theless attrac-

tive, but still attractive,12 radial functionA(û,â250) will be
able to ‘‘hold’’ a particle in spherical orbit down to alower
orbit. In other words, when a radial potential becomes l
attractive, its LSSO gets closer to the horizon, and the b
ing energy of the LSSO becomes more negative. This be
said, one understands immediately the additional effects
to the spin interaction. There are basically two such effe
~a! a linear ‘‘spin-orbit’’ effect linked to the1âp l̄ û2 term in
Eq. ~3.39! ~with âp[â cosuLS), and ~b! a non-linear spin-
quadratic modification of the metric coefficient, i.e., the a
ditional 1â2û2 term in Ā(û,â2) @or in AK(û)5122û

1â2û2#. The crucial points are that~1! when âp,0, i.e.,
cosuLS,0 ~coarse antialignment of angular momenta! the
dominant linear spin-orbit coupling isattractive and there-
fore pushes the LSSOupwards, towards a less bound orbi
while ~2! when âp.0, i.e., cosuLS.0 ~coarse alignment o
angular momenta! both the linear spin-orbit coupling
1âp l̄ û2 and the spin-quadratic additional term1â2û2 are
repulsiveand tend to draw the LSSOdownwards, i.e., closer
to the horizon, in a more bound orbit. Therefore we see t
when âp.0, all the new effects~the n-dependent non-linea
orbital interactions and the spin effects! tend in the same
direction: towards a closer, more bound orbit. As the ex
tence of a LSSO is due to a delicate balance between
attractive gravitational effects and the usual repulsive~‘‘cen-
trifugal’’ ! effect of the orbital angular momentum@i.e., the
term 1 l̄ 2û2}1L2/r 2 in Eq. ~3.39!#, when several attractive
effects combine their action, they start having a large eff
on the binding of the LSSO. This is well known to be th
case for circular, equatorial, corotating (âp51â) orbits of a
test particle in Kerr, which feature, in the case of an extre
Kerr (â51) an LSO at r̂ 51, with m-fractional binding
(Eeff2m)/m51/A321520.42265 @corresponding to e
.n(Eeff2m)/m.20.10566n4#. It is also well known that,
again for extreme Kerr, a counterrotating (âp52â) circular,
equatorial orbit in extreme Kerr has a LSO atr̂ 59,
with m-fractional binding (Eeff2m)/m55/(3A3)21
520.037 750~corresponding toe.20.009 437 4n4). What
is less well known is that the extreme binding of the circul
equatorial, corotating LSO around an extreme Kerr is

12Remember that we Pade´ resumA(û) and Ā(û) to ensure that

these functions qualitatively behave like 122û or 122û1â2û2

~for â2,1), i.e., ~generically! have a simple zero nearr̂ 5û2151

1A12â2, which means that the effective metric becomes ‘‘in
nitely attractive’’ at some deformed horizon.
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representative of the binding of typical LSSO’s around ty
cal ~or even extreme! Kerr holes. Indeed, when cosuLS5”
61 ~i.e., in more invariant language, whenQ5” 0) and when
â,1, the LSSO is, in general, moderately perturbed aw
from the Schwarzschild valuer̂ LSO56 and its binding is cor-
respondingly moderately different from its Schwarzsch
limit eSchw

LSO .20.014 298n4. The present work has show
that the location of the LSSO’s for binary spinning holes c
be rather simply obtained, in the EOB approach, by bala
ing in the specific way of Eq.~3.39! the centrifugal effect of
the orbital angular momentum against the overall attrac
effect of gravity, but with the critical addition of the 2PN an
3PN repulsive terms, of the spin-quadratic repulsive te
and of the indefinite-spin effect of the spin-orbit interactio

D. Expected spin of the hole formed by the coalescence
of two spinning holes

The last topic we wish to discuss concerns the expec
result of the coalescence of two holes. In particular, we
interested in estimating the maximal spin that the final ho
resulting from the coalescence of two spinning holes, mi
have. It was estimated in@9,11# ~by using the EOB approach!
that the coalescence of two non-spinning holes of the sa
massm15m25M /2 leads~after taking into account the ef
fect of gravitational radiation on the orbital evolution and
the loss of energy and angular momentum! to the formation
of a rotating black hole of massMBH.(12« rd)0.976M and
spin parameterâBH.0.80 ~we have included a factor 1
2« rd in MBH to take into account the energy loss during t
ring-down. Ref.@11# found « rd.0.7%). The fractional en-
ergy 0.97621520.024 roughly corresponds to the~adia-
batically estimated! LSO binding energy (20.015 in the
2PN-based estimate of@8#! minus the energy per unit mas
radiated during the plunge (;20.007 @11#!. We shall leave
to future work a similar estimate, for the 3PN-plus-spin ca
of the amount of energy emitted in GW. We wish here
focus on the issue of the spin of the final hole. The abo
value âBH.0.80 is rather close to the maximal valueâmax
51 and there arises the question of whether an EOB tr
ment of the coalescence of two spinning holes might
formally predict a final value ofâBH larger than one. By
‘‘EOB treatment’’ we mean here a completed version of t
EOB approach~as in @9# at the 2PN, non-spinning level!
obtained by~i! adding a resummed radiation force to th
‘‘conservative’’ EOB dynamics, and~ii ! pushing the calcula-
tion of the EOB evolution down to its point of unreliabilit
~near the lastunstable orbit! where it is matched to a
perturbed-single-black-hole description. A zeroth approxim
tion to this completed EOB approach is the one we study
this paper: an adiabatic sequence of solutions of the con
vative dynamics, terminated at the LSO. In this approach
entirely neglects the losses of energy and angular momen
during the plunge phase following the crossing of the LS
The numbers recalled above show that the energy loss du
the plunge~and the ring-down! is not negligible compared to
the binding energy at the LSO. However, for the pres
question this is not a problem. What is important is that
3-17
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angular momentum loss during the plunge is a very sm
fraction ~a percent or so! of the angular momentum at th
LSO, and that the final mass of the black hole is nearly eq
to M5m11m2. This leads us to the following zeroth orde
estimate of the spin parameter of the final hole:

âBH.
uJuLSSO

~Ereal
LSSO!2

.
uJuLSSO

M2
. ~3.44!

In view of the exact conservation ofJ in our conservative
EOB ~real! dynamics, it is clear that it isuJuLSSO which is a
good measure of the total angular momentum of the fi
spacetime, i.e. of the final black hole.

We are facing here a potential consistency problem of
simple-minded EOB treatment: when computing Eq.~3.44!
for spinning configurations does one always getâBH,1?
One might worry that, starting with a value ofâBH.0.80 for
non-spinning holes, the addition of large spins on the ho
might quickly exceed the extremal limit. It is plausible th
the most dangerous situation is the ‘‘aligned case,’’ where
the angular momenta,L, S1, andS2 are parallel~or antipar-
allel!. In this case the numerator of Eq.~3.44! reads

JLSSO5Lz
LSSO1S11S2 , ~3.45!

while the spin parameter of the effective metric reads

â5âp5
k•Seff

M2
5S X1

21
3

4
n D â11S X2

21
3

4
n D â2 . ~3.46!

Here, we considerS1 , S2, and â1[S1 /m1
2 , â2[S2 /m2

2 as
algebraic numbers~positive or negative!. This allows us to
investigate also the case where the spins might be antip
lel to k. For simplicity, we shall only study the symmetr
case wherem15m2 andS15S2. For this case

â5âp5
7

8
â1 , ~3.47!

and

âBH5
JLSSO

M2
5

1

4
L̂z

LSSO1
1

2
â15

1

4
L̂z

LSSO1
4

7
âp ~3.48!

where the dimensionless orbital angular momentumL̂z
[Lz /mM is related to the dimensionless quantity~when
cosuLS51) l̄ [AK/mM5L̄z /mM appearing in Eq.~3.39!
through

L̂z5 l̄ 1â
Eeff

m
. ~3.49!

It is interesting to note that, even in the case where b
holes are extreme (â15â251) the maximum value of the
effective spin parameter isâmax5

7
8 ,1. We have numerically

investigated the quantityâBH , Eq.~3.48!, as a function of the
12401
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effective â5âp . The result is plotted in Fig. 2 for differen
values of the 3PN parametervs .

We see that the final spin parameter reaches a maxim
for a positive value ofâp , i.e., for parallel~rather than anti-
parallel! spins. For the correct 3PN valuevs50 the maxi-
mum value of âBH is comfortably below 1: namely,âBH

max

.0.87, reached forâp.10.3. This is not much larger tha
the valueâBH.0.82 obtained forâp50. We find that this is
a nice sign of the consistency of the EOB approach. T
consistency was nota priori evident. In fact forvs<29 one
gets a maximum value ofâBH slightly larger than 1. In par-
ticular, note that the 2PN treatment of the orbital dynam
~obtained forvs5vs* .29.3439; upper curve in Fig. 2! for-

mally leads to problematic over-extreme values ofâBH . This
may be interpreted as a confirmation of the need of ‘‘rep
sive’’ 3PN effects~i.e., vs19@1!. It is ~a posteriori!! easy
to understand physically whyâBH , after reaching a maxi-
mum, then decreases when one adds more spin on the
black holes. Indeed, there is here a competition between
effects: adding spin on the holes~i.e., increasingâp! on the
one hand directly contributes to augmentingâBH through the
second term of the right-hand side~RHS! of Eq. ~3.48!, but,
on the other hand, indirectly contributes to reducing the to
JLSSO by reducingL̂z

LSSO ~indeed, as we explained abov
positive spin leads to a LSO orbit closer to the horizon, a
therefore with less orbital angular momentum!. The first ef-
fect wins for smallish spins, while the second~more non-
linear! effect wins for larger spins.

IV. CONCLUSIONS

We started by recalling the need of techniques for acc
erating the convergence of the post-Newtonian~PN! expan-

FIG. 2. Approximate prediction for the spin parameterâBH

.uJuLSSO/M2 of the black hole formed by the coalescence of tw
identical spinning holes~with spins parallel or antiparallel to the
orbital angular momentum!. The horizontal axis is the effective spi

parameterâ5
7
8 â15

7
8 â2. The three curves correspond to the thr

cases plotted in Fig. 1. Note the prediction~robust under changing
the 3PN contribution to the effective potential by 25%! that the final
spin parameter is always subextremal, and reaches a maxim

âBH.0.87 for â.10.3.
3-18
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sions in the last stages of the inspiral of binary systems.
summarized the evidence~Table I! showing the remarkable
convergence properties of the best current resummation t
nique: the effective one-body~EOB! approach of Refs.
@8,10#. We showed how to generalize the EOB approach
the case of two spinning black holes with comparable mas
(n5m/M;1/4). As a first step towards computing the sp
dependent EOB Hamiltonian we constructed an effec
metric, which can be viewed either as an-deformation of
the Kerr metric or as a spin-deformation of then-deformed
effective metric. The effective spin entering this deform
Kerr metric is Ma[Seff[@11 3

4 (m2 /m1)#S11@11 3
4 (m1 /

m2)#S2. The introduction of this effectivea allows one to
combine in a simple manner all~PN leading! spin-orbit cou-
pling effects, and most of the spin-spin ones, with the rat
complex but important 3PN effects, which have been inc
porated only recently in the EOB approach@10#.

We have also constructed a more complicated modi
effective Hamiltonian, Eq.~2.56!, which separately depend
on two ~effective! spin vectors,Ma0[S0[(11m2 /m1)S1
1(11m1 /m2)S2, and s[Seff2S0[2 1

4 @(m2 /m1)S1
1(m1 /m2) S2#, and which allows a~hopefully! more accu-
rate representation of spin-spin effects. We recommend
simultaneous consideration ofHeff andHeff8 to determine the
domain of trustability of the presently constructed sp
dependent EOB Hamiltonian. Namely, whenH real5 f̄ (Heff)
and H real8 5 f̄ (Heff8 ) lead to numerically very similar evolu
tions, one is entitled to trust them both; while a significa
difference in their predictions signals a breakdown of
trustability of the simple EOB Hamiltonian proposed here

The present paper has only investigated a few aspec
the physics predicted by our spin-generalized EOB appro
In particular, as a first cut toward understanding the r
evance of our construction for gravitational wave~GW! ob-
servations we have discussed the approximate existenc
‘‘spherical orbits’’ ~orbits with fixed radial coordinate, as i
the Kerr metric! and we studied the binding energy of th
last stable spherical orbits~LSSO!. A message of this study i
that, for most physically relevant cases~in the parameter
space where one randomly varies all angles and all spin
ues!, the results are only weakly dependent on the exact
merical values of the 3PN coefficients. Moreover, they
hibit moderate deviations from the non-spinning case~see
Fig. 1 and Table II!. To give a numerical flavor of the effect
of spin we note that, when the projected spin parameteâp
5k•a/M , Eq. ~3.41!, is smaller than about10.2, its effect
on the fractional binding energy@e[(Ereal2M )/M # of the
LSSO is, approximately,

100eLSSO.21.43n4~110.168n4!

20.806n4~110.888n4!âp , ~4.1!

where n4[4n[4m1m2 /(m11m2)2<1. As in most cases
~random angles, random spin-kinetic energies! it is plausible
that uâpu&ap

rms;0.25, we expect that spin effects will onl
modify the energy emitted as gravitational waves up to
LSSO by less than about 0.6%n4M .
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Such an increase, though modest, is still a significant fr
tional modification of the corresponding energy loss p
dicted for non-spinning systems (e0521.67%M for n4

51). In fact, this effect might cause an importantbias in the
first observations. If the intrinsic spins of the holes can~at
all! take large values, the highest signal-to-noise-ratio eve
in the first years of LIGO observations might select bina
systems with rather large and rather aligned spins. It is th
fore important to include spin effects in the data analysis
coalescing black holes. We have argued that, in most ca
the simple-minded generalized EOB approach presented
should be a reliable analytical tool for describing the dyna
ics of two spinning holes and for computing a catalogue
gravitational waveforms, to be used as matched filters in
detection of GW’s. However, it must be admitted that, in t
cases where the effective spin vector is coarsely~positively!
aligned with the orbital angular momentum, and where

spins are so large thatâ*0.4, the predictions from the
above-introduced EOB Hamiltonian start predicting LSS
radii so near the ‘‘effective horizon’’ whereD t(r )50, that
they cannot be quantitatively relied upon~though I would
still argue that they can be qualitatively trusted, in view
the simple physics they use; see Sec. III C.# We give some
examples of that in Table II. In such cases the EOB appro
does predict much larger energy losses, possibly larger
10%M . In these cases, the uncertainty in the waveform m
be so large that one may need the type of non-linear filter
search algorithm advocated in Ref.@2#. We wish, however, to
emphasize the differences between our treatment and con
sions and those of Flanagan and Hughes. These author
fined the ‘‘merger’’ phase as~essentially! what comes after
the binary system crosses the non-spinning LSO~around
6GM!, and they assumed that the signal from the ‘‘merge
phase can only be obtained from numerical relativity. Mo
over, they optimistically assumed that~in all cases! 10%M
are emitted in GW energy during the merger phase, and
during the subsequent ring-down phase. By contrast,
treatment is based on the idea that a suitable resummed
sion of the PN-expanded dynamics, namely the EOB-pl
Padéapproach, can, in most cases, give an analytical han
on the computation of the inspiral signal down to the sp
modified LSSO~and even during the subsequent plunge,
discussed for the spinless case in@9#!. We have argued in
several ways that the simple EOB Hamiltonian~2.45! gives
reliable answers in most cases, and allows one to analytic
control the possible amplification~or deamplification, when
âp,0) in GW energy loss due to spin effects. Moreover, it
only in rather extreme cases that we could agree with@2# in
predicting*10%M energy losses. In most other cases,
think that the EOB method provides a reliable basis for co
puting families of waveforms that will be useful templat
for the detection of GW’s. Another difference with@2# is that
we have argued, on the basis of definite computations,
the spin of the final hole will never become nearly extrem
~even if the initial spins are extremal!. This is important for
the data analysis of the ring-down signal, because the de
time of the least damped quasi-normal-mode starts becom
large only for near extremal holes.
3-19
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Let us emphasize that the present work is only a first s
toward an improved analytical understanding of the l
stages of inspiral motion of two spinning compact objec13

The explicit spin-dependent Hamiltonian~2.45! ~or, better,
H real8 defined at the end of Sec. II! has only taken into ac
count the leading effects~in a PN expansion! of the spin-
dependent interactions. More work is needed to analytic
determine more accurate versions of the EOB Hamilton
In particular, it would be interesting to explicitly derive th
next-to-leading~1PN! corrections to the EOB spin-orbit~and
spin-spin! interactions. Furthermore, we have only provid
a resummation of the conservative part of the dynam
There remains the important complementary task of res
ming the radiation reaction part. This was done in@9#, using
previous results of@7#, only for the spinless case.

Once this is done, we expect, as in our previous study@9#,
that the presence of a LSSO along the sequence of adia
orbits will be blurred and will be replaced by a continuo
transition between inspiral and plunge. There remains a
the task of studying the effects of spin-dependent interact
on the gravitational waveform emitted during the last sta
of inspiral and during the plunge~that we have not consid
ered here!. In other words, one needs to redo, by combini
the EOB approach with resummed versions of radiation
action, the studies, valid far from the LSO, which were bas
on straightforward PN-expanded results@56,57#. Note that
our result above about the primary importance of the sin
parameterâp , combined with the understanding@5# that the
number of ‘‘useful’’ cycles in the GW signal for massiv
binaries is rather small, suggests that a rather small num
of ‘‘spinning templates’’ will be really needed in a matche
filter data analysis. On the other hand, we recall that it w
found in @5# that the plunge signal~but not the ring-down
one, for stellar mass holes! plays a significant role in the dat
analysis.

It will also be interesting to see, within the EOB a
proach, the extent to which the non-linear spin-depend
interactions might, as has been recently suggested@58#, lead
to a chaotic dynamical evolution. Wea priori suspect that
two factors will diminish the significance of such chao
evolutions:~1! they occur only in an improbably small re
gion of phase space~involving, in particular, large spins!,
and~2! their effect on the crucial GW phasing is rather sma

It would be very useful to have independent means
testing the accuracy of the EOB approach. At this stage
see only three ways of doing that~beyond the performanc
of more internal checks of the robustness of the approa!:
~i! an analytical calculation of the 4PN interaction Ham
tonian, ~ii ! a comparison between numerical computatio
and the EOB results, and/or~iii ! a comparison between th
EOB predictions and the forthcoming GW observations.~i!
would be important for assessing the convergence of the

13Though, in most of the paper we only spoke of binary bla
holes, it should be clarified that our EOB Hamiltonian also app
to binary spinning neutron stars or to spinning neutron-star–bla
hole systems, at least down to the stage where the quadrupol
formation of the neutron star becomes significant.
12401
p
t

ly
n.

s.
-

tic

o
ns
s

-
d

le

er

s

nt

.
f
e

s

N-

resummed EOB Hamiltonian. In view of the extreme dif
culties involved in the 3PN calculations@12–18# it would
seem hopeless to even mention the 4PN level. But, in f
the EOB approach itself suggests that the current meth
used in PN calculations are highly inefficient, and unnec
sarily complicated. Indeed, as emphasized in@10# the final,
gauge-invariant content of the 3PN result is contained
only three quantitiesa4 , b3, andz3, and only one of them,
a4(n), is really important for determining the dynamics
inspiralling quasi-circular binaries. If one could invent a ne
approximation scheme which computes directlya4 ~at 3PN!,
it might be possible to compute its 4PN counterpart,a5(n).
~ii ! is not yet possible~at least as a test of the EOB Hami
tonian! because numerical computations use as initial d
geometrical configurations that do not take into account m
of the crucial physics incorporated in PN calculations. C
rent numerical computations use somewhatad hoc‘‘binary-
black-hole-like’’ data, often of the restricted spatially confo
mally flat type, without trying to match their initial data t
the near LSO configurations predicted by~resummed! ana-
lytical approaches. On the other hand, let us stress that
value of the radial PN-expanded potentialA(û)5122û

1a3(n)û31a4(n)û41••• crucially depends on the non
linear gravitational interactions linked to thehi j

TT part of the
spatial metric, i.e. to its nonconformally flat part, and also
the non-linear interactions linked to thepTT

i j part of the
gravitational field momenta. For instance, already at the 2
level, the truncation of the Einsteinian prediction for the tw
body problem~driven into a close orbit by a long past inte
action involving retarded GW interactions! corresponding to
artificially assuming a conformally flat spatial metr
changes the physically correct valuea3

2PN(n)52n into
a3

conf. flat(n)5 1
4 (1825n)n @10#. @It also slightly changes the

energy mapf.# For equal-mass systems, this corresponds
multiplying the positivea3(n) by a factor12.09375. As we
discussed above, this~artificial! increase of the ‘‘repulsive’’
character of the non-linear gravitational interactions tends
artificially increase the binding of the LSO. As the 2PN c
efficient is anyway too small to have a large impact on
LSO characteristics, this 2PN change does not, by its
change much the LSO energy@10#. However, if this tendency
to increase the ‘‘repulsive’’ character of the PN expans
~caused by the neglect of thehi j

TT-, andpTT
i j -dependent inter-

actions! persists at the~numerically more important! 3PN
level, this might explain the current discrepancy betwe
analytical and numerical estimates of LSO characteristics
fact, we note that the initial data taken by a recent attem
@59# at fulfilling the proposal of@8# to start a full numerical
calculation only at the moment where it is really needed, i
after crossing the LSO, uses LSO initial data@60# with a
binding energyeLSO5E/(m11m2)21.22.3% which is
38% larger than the valueeLSO

3PN.21.67% obtained at 3PN
~with vs50) by analytical estimates. Similarly, the LSO o
bital period of the initial data of@59# is TLSO.35(m11m2)
@60#, which is twice smaller than the 3PN estimateTLSO

3PN

.71.2(m11m2) @10#. These discrepancies between state-
the-art numerical LSO initial data and state-of-the-art a
lytical estimates of LSO data are significantly larger than

s
k-
de-
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natural ‘‘theoretical error bar’’ on the~resummed! analytical
estimates~derived, say, by comparing 2PN estimates to 3
ones!. ~See, however, the new numerical approach of@61#
whose LSO data agree well with the 3PN EOB estima
@62#.! In our opinion, this makes it urgent for the numeric
relativity community to develop ways of constructing initi
data that correctly incorporate the crucial non-linear phys
~linked to thehi j

TT andpTT
i j parts of the metric! which is taken

into account in PN calculations. If a significant discrepan
remains after this is done, one will be entitled to blame
lack of convergence of the EOB-resummed PN calculatio
If one finds agreement, this will be a confirmation of t
claim made here that the Pade´-improved EOB is a reliable
description of the last orbits before coalescence. Once
succeeds in matching analytical and numerical results
non-spinning black holes, it will be very interesting to u
numerical data on fast-spinning black holes to refine
EOB Hamiltonian by fitting the values of the extra para
eters which can be introduced in the EOB Hamiltonian
represent higher PN effects. In the long term we expect
such a complementarity between numerical and analyt
tools will be needed for defining a sufficiently dense set
.
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GW templates.~In view of the large dimensionality of the
parameter space of the two spinning hole system, it se
hopeless to use only numerical techniques to define a d
network of templates.!

Finally, even if no decisive progress is made on~i! or ~ii !
before the first sources are detected, there remains the p
bility that the first observations might confirm the soundne
of ~or suggest specific modifications of! the EOB-based
waveforms, and thereby facilitate further detections by n
rowing the bank of templates. For instance, one might
clude a 4PN contribution1a5(n)u5 to A(u), as a free pa-
rameter in constructing a bank of templates, and wait u
LIGO-VIRGO-GEO get high signal-to-noise-ratio observ
tions of massive coalescing binaries to determine its num
cal value.
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