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Coalescence of two spinning black holes: An effective one-body approach
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We generalize to the case of spinning black holes a recently introduced “effective one-body” approach to the
general relativistic dynamics of binary systems. We show how to approximately map the conservative part of
the third post-NewtoniafBPN) dynamics of two spinning black holes of masses m, and spinsS;, S, onto
the dynamics of a non-spinning particle of mags=m;m,/(m;+m,) in a certain effective metric
gi“v(x*;M,v,a) which can be viewed either as a spin deformatfevith the deformation parameteax
=S,4/M] of the recently constructed 3PN effective metgﬁf'v(x*;M,v), or as av deformation[with the
comparable-mass deformation parameterm;m,/(m;+m,)?] of a Kerr metric of masM=m,+m, and
(effective) spin Sgg=[1+3m,/(4m,)]S;+[1+3m,/(4m,)]S,. The combination of the effective one-body
approach, and of a Padeefinition of the crucial effective radial functions, is shown to define a dynamics with
much improved post-Newtonian convergence properties, even for black hole separations of the order of
6 GM/c?. The completeconservative phase-space evolution equations of binary spinning black hole sys-
tems are written down and their exact and approximate first integrals are discussed. This leads to the approxi-
mate existence of a two-parameter family of “spherical orbiisith constant radius and of a corresponding
one-parameter family of “last stable spherical orbit&SSO. These orbits are of special interest for forth-
coming LIGO-VIRGO-GEO gravitational wave observations. The binding energy and total angular momentum
of LSSO’s are studied in some detail. It is argued that for nibst not al) of the parameter space of two
spinning holes the approximateading-order effective one-body approach introduced here gives a reliable
analytical tool for describing the dynamics of the last orbits before coalescence. This tool predicts, in a
guantitative way, how certain spin orientations increase the binding energy of the LSSO. This leads to a
detection bias, in LIGO-VIRGO-GEO observations, favoring spinning black hole systems, and makes it urgent
to complete the conservative effective one-body dynamics given here by ddelugnmegradiation reaction
effects, and by constructing gravitational waveform templates that include spin effects. Finally, our approach
predicts that the spin of the final hole formed by the coalescence of two arbitrarily spinning holes never
approaches extremality.
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[. INTRODUCTION tion of the last few GW cycles near this transition and have
argued that these resummed analytical results gave a reliable
The most promising candidate sources for the Laser Interdescription of the gravitational physics near the transition.
ferometric ~ Gravitational Wave Observatoy4GO)-  The purpose of the present paper is to further the latter ap-
VIRGO-GEO network of ground-based gravitational waveproach by generalizing theesummeg“effective one-body”
(GW) interferometric detectors are coalescing binary systeméEOB) methods introduced if8—10] to the case of binary
made of massivéstellap black holeg1-5]. Signal to noise  systems okpinningblack holes. Before doing this, we wish
ratio (SNR) estimate$5] suggest that the first detections will to clarify what is the rationale for arguing that the “re-
concern black hole binaries of total mas25M . Model-  summed” analytical approach can describe the last stages of
ing the GW signal emitted by such systems poses a difficulinspiral and the transition between inspiral and plunge.
theoretical problem because the observationally most “use- Let us first recall that a lot of effort has been devoted in
ful” part of the gravitational waveform is emitted in the last recent years to the analytical computing, by means of post-
~5 orbits of the inspiral, and during the “plunge” taking Newtonian(PN) expansions in powers af?/c?~GM/c?r,
place after crossing the last stable circular orbit. The transief the equations of motion, and the GW emission, of
tion between thdadiabati¢ inspiral and plunge takes place comparable-mass binary systems. The equations of motions
in a regime where the two bodies are moving at relativistichave been computed f/c® (3PN) accuracy by two sepa-
speeds ¢/c~1/\/6~0.4) and where their gravitational in- rate groups[12—15 and[16-18, and the two results have
teraction becomesgnearly by definition highly non-linear been shown to agrdd 9,20. Until recently, there remained
(GM/c?r~1/6). (in both approachgsan ambiguous parametes,, linked to
Several authorg¢notably[6,3]) have taken the view that the problem of regularizing some badly divergent integrals
the modelling of this crucial transition between inspiral andarising at the 3PN level. In a recent work, using an improved
plunge is(in the general case of comparable-mass systemsegularization methoddimensional continuation the first
beyond the reach of analytical tools and can only be tackledroup[21] has succeeded in determining without ambiguity
by (possibly special-purpod8]) numerical simulations. By the value ofwg, namelyw,=0. This unique determination
contrast, other authorg7—9,5,10,11 have introduced new of the 3PN equations of motion is consistent with an old
“resummation methods” to improve the analytical descrip- argument of22] showing that it should be possible to model
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TABLE I. Binding energiese=(&,,/M)—1 for circular orbits of equal-masgon-spinning binary
systems near the LSO. The invariant dimensionlassliusr;=R,/GM is defined in the text. The binding
energy is computed from the Padesummed effective-one-body Hamiltonian at three successive post-
Newtonian approximations: 1PN, 2PN, and 3RMth w=0).

r 12 11 10 9 8 7 6
[ 4 3.889 3.780 3.674 3.578 3.5 3.464
1008, py -0.09482 -1.020 —1.101 -1.193 -1291 —1.387 —1.440
1002, py -0.9441 -1015 —1.094 -1.183 -1277 —1.366 —1.412
1005~ 9) -009412 -1011 —-1.088 -1.174 -1264 —1.346 —1.388

3PN

black holes by point particles without ambiguity up to the know something about the structure of the functidiiz)
5PN level (excluded. The emission of GW is unambigu- =fy+f;x+f,x?+--- one is trying to resum to be able to
ously known tov®/c® (2.5PN accuracy[23], and has re- devise an efficient resummation method. Refereriges)],
cently been formally computed to’/c’ (3.5PN accuracy and [10] have studied in detail the various functions that
[24], modulo the appearance of several ambiguous paranmnight be used to discuss the GW flux and the dynamics of
eters € «,{) linked to the problem of regularizing some pinary systems. This work has led to selecting some specific
divergences arising at the 3PN level. Dimensional regularizaresymmation methods, acting on some specific functions. For
tion is expected to determine without ambiguity the va}lugs ofyhat concerns the GW flux we refer to Fig. 3 [of] for
¢ «, and{, but has notyet) been applied to the radiation gyjgence of the acceleration of convergefiear the LS®
problem. _ _ rovided by a specific resummation method combining a re-
We wish to emphasize that such high-order PN results argefinition of theGW fluxfunction with Padeapproximants.

a neces_sar,ybyt not by themselvessufficienf mg_re@ent for We wish here, for the benefit of the skeptics, to exhibit some
computing with adequate accuracy the gravitational wave- : :

. o . ; of the evidence for the acceleration of convergefm=ar the
form of coalescing binaries. Indeed, it was emphasized lon

agol[6] that the PN serie@vritten as a straightforward Taylor %SO) in the description of the twp-boobjynammsprowded,
series in powers of some paramesterv/c) become slowly af[ t_he 3PN level, by a reggmmanon method defmed_by com-
convergent in the late stages of binary inspiral. A first at—blnlng (8] ar)d [10]. Specifically, we mean the co.mbmatlon
tempt was made if25] to improve the convergence of the of the effectwe—ongbodj,EQB) approacr(further d|scussgd
PN-expanded equations of motion so as to determine thgelovw and of a suitable Padesummation of the effective

(crucia) location of the last stablirculan orbit (LSO) for ~ radial potential at th@PN level:Ap (u)= PA To1(A(U))]
comparable-mass systems. However, further wa@27,7  (see below.

has shown the unreliabilityand coordinate dependenaef Let us consider a sequence afcular orbits, near the
this attempt. There is, however, no reason of principle prel,SO and for two non-spinning black holes. In the EOB ap-
venting the existence of gauge-invariant “resummationproach the circular orbits are obtained by minimizing a cer-
methods” able to give reliable results near the LSO. Indeedtain effective radial potential, defined by fixing the total or-
as emphasized in7] and [10] most coordinate-invariant bital angular momentunt. in the Hamiltonian. The most
functions (of some invariant quantitx~v2/c2~GM/c?r) natural variable defining the one-parameter sequence of cir-
that one wishes to consider when discussing the dynamicgular orbits is then simply the angular momentumit is

and GW emission of circular orbits are expected to have &herefore natural, for the purpose of this work, to measure the
singularity only at the “light ring” (LR) value ofx (the last ~ separation between the two holés a gauge-invariant and
possibleunstablecircular orbiy. If we trust (for orders of — approximation-independemtvay by conventionallydefining
magnitude considerationghe small mass-ratio limif» ~ anl radiusR=GMr,, such that the(invariantly defineg
=u/M=m;m,/(m;+m,)?<1], we know thatx,z=1/3 is  total orbital angular momenturh=GuM| is given by|?
smaller by a factor 2 thax, so=1/6. If the functions (x) we =r2/(r,—3), i.e., by the relation holding for a test particle in
are dealing with are meromorphic functionsxpthe location —a Schwarzschild spacetimigHere, and in the following, we

of the expected closest singularity, §) determines their ra- shall often setc=1 and/orG=1, except in somgfinal)
dius of convergence. Therefore, we expect that, kor formulas where it might be illuminating to reestablish the
<X_r, the Taylor expansion of(x) will converge and will dependence or and/or G.] As the problem is to know
behave essentially likE,(x/x_g)". In particular, one expects Wwhether the resummation method of the PN-expanded two-
f(XLso)~2n (Xso/Xr)"~=2"". This heuristic argument body dynamics is efficient, we compare in Table I the total
suggests a rather slow convergence, but the crucial point is @nergiesé,., of the binary system, computed using 1PN,
have some convergence, so that the application of suitab@PN, and 3PN information, for circular orbits ktradii r
resummation methodsan be expected to accelerate the con-=12, 11, 10, 9, 8, 7, and 6. We give the values of the binding
vergence and to lead to numerically accurate results from thenergy per unit(total) mass,e=(&/M)—1, for the equal-
knowledge of only a few terms in the Taylor expansion.mass casenf;=m,; v=1/4).

There exist many types of resummation methods and none of The numbers displayed in Table | illustrate the efficiency
them are of truly universal applicability. As a rule, one mustof the resummation method advocated &10]. Forr,=12
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the fractional difference in binding energy between the 1PNBPN level (this required a non trivial generalization of the
approximation and the 3PN one is 0.74%, while evenrfor basic idea

=6 this difference is only 3.6%. These numbers indicate Before entering the details of our way of introducing the
that, even near the LSO, the Pad®roved effective-one- spin degrees of freedom in the EOB approach, let us state our
body approach is a rationally sound way of computing thegeneral view of the u_sefulness of the EOB method_in this
two-body dynamics. There are no signs of numerical unrelicontext. As we shall discuss below, the present warkich
ability, as there were in the calculations based on thdncorporates spin effects at leading PN ojdean only be
straightforward coordinate-dependent, PN-expanded vefXPected to give physically reliable results in the case of
sions of the equations of motid5] or of the Hamiltonian ~moderate spinsa,<0.3, see beloyv However, the EOB ap-
[26,27] [which gave results differing by) (1009 among proach, far from being a rigid structure, is extremely flexible.
themselves, and as one changed the PN ariiég shall see One can modify the basic functiofisuch asA(u) ] determin-
below that the robustness of the PN resummation exhibiteithg the EOB dynamics by introducing new parameters cor-
in Table | extends to a large domain of the parameter spacesponding to(yet) uncalculated higher PN effectEThese

of spinning black holes. terms become important only for orbits closer tha@ M,

As we do not know the exact result, and as current nuand/or for fast-spinning holégs.Therefore, when either
merical simulations do not give reliable information abouthigher-accuracy analytical calculations are performed or nu-
the late stages of the quasicircular orbital dynamics of twonerical relativity becomes able to give physically relevant
black holes(see below, the kind of internal consistency data about the interaction ¢fast-spinning black holes, we
check exhibited in Table | is about the only evidence we carexpect that it will be possible to complete the current EOB
set forth at presenfNote that, from a logical point of view, Hamiltonian so as to incorporate this information. As the
the situation here is the same as for numerical simulations: iparameter space of two spinning black halegh arbitrarily
the absence of an exact solutitend of experimental data oriented spinsis very large, numerical relativity will never
one can only do internal convergence tddtdeally, it would  be able, by itself, to cover it densely. We think, however, that
be important to extend the checks of Table | to the 4PN leve& suitable “numerically fitted”(and, if possible, “analyti-

(to confirm the trend and see a real sign of convergence to eally extended) EOB Hamiltonian should be able to fit the
limit) but this seems to be a hopelessly difficult task withneeds of upcoming GW detectors. The present work should
present analytical means. Finally, let us note that the fact thdte viewed as a first step in this direction.

one can concoct many “bad” ways of using the PN- The present paper is organized as follows. In Sec. Il we
expanded information near the LS@xhibiting as badly di- show how to incorporatéin some approximationthe spin
vergent results as wisheib not a valid argument against the degrees of freedom of each black hole within a 3PN-level,
reliability of the specific resummation technique used inresummed effective one-body approach. In Sec. Il we study
[7,8,10 and here. An ambiguity problem would arise only if some of the predictions of our resummed dynamics, notably
one could construct two different resummation methodsfor what concerns the location of the transition between the
both exhibiting an internal “convergencedas the PN order inspiral and the plunge. Section IV contains our concluding
increasesas good as that illustrated in Table I, but yielding remarks.

very different predictions for physical observables near the

LSO. This is not the case at present because the comparative

study of[10] (see Table | thepehas shown that the EOB Il. EFFECTIVE ONE-BODY APPROACH, EFFECTIVE
approach exhibitedwhen ws# —9) significantly better PN SPIN AND A DEFORMED KERR METRIC
convergence than a panel of other invariant resummation )

methods. A. Effective one-body approach

In the following we take for granted the soundness of the Let us recall the basic set up of the effective one-body
effective-one-body resummation approach and we show hoyEOB) approach. One starts from thH®N-expandedtwo-
to generalize it to the case of tw@noderately spinning  body equations of motion, which depend on the dynamical
black holes. Let us first recall that the basic idea of the EOByariables of two particles. One separates the equations of
approach was first developed in the context of the electromotion in a “conservative part,” and a “radiation reaction
magnetically interacting quantum two-body problg28,29  part.” Though this separation is not well defined at the exact
(see alsg30]). A first attempt to deal with the gravitationally (general relativistig level it is not ambiguous at the 3PN
interacting two-body problertat the 1PN levelwas made in  level (in the conservative partwhich we shall consider
[31] (see alsd32]). A renewed EOB approactwhich sig-  here! We shall henceforth consider only the conservative
nificantly differs from the general framework set up by part of the dynamics\We leave to future work the generali-
Todorov and co-workerg29,31)) was introduced ii8]. The  zation to spinning black holes of the definition @summed
latter reference showed how to apply this method at the 2PMadiation reaction effects which was achieved9hfor non-
level. It was then used to study the transition between thapinning black holeg.It has been explicitly shown that the
inspiral and the plunge for comparable masses, and, in par-
ticular, to construct a complete waveform covering the in-
spiral, the plunge, and the final merd@ (see[33] for the We expect real ambiguities to arise only at h#/c'°~5PN
physical consequences of this waveforriMore recently, level, because this corresponds to ugiareof the leadingp®/c®
Ref. [10] showed how to extend the EOB approach to the~2.5PN, radiation reaction terms.
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3PN dynamics is Poincarénvariant[15,17. The ten first such as Refs[34—-38. For other works on the relativistic
integrals associated with the ten generators of the Poincaguations of motion of black holes or extended bodes
group were constructed fi15] (see alsd20]). In particular, ~dowed with spin and higher multipole momentsee[39—

we have the “center of mass” vectorial constagt G—tP.  41]. Recently, Ref[42] has tackled the next-to-leading order

This constant allows one to define the center of mass fram&ontribution to spin-orbit effectsWe consider here only the

in which K=0, which impliesP=0 andG=0. We can then case of interacting, comparable massive objects. The prob-

. lem of a spinningestparticle in an external field is simpler
reduce the PN-expanded two-body dynamics to a PNand has been dealt with by many authors, such as Mathisson

expanded one-body dynamics by considering the relatives3) papapetrof4], etc . . . ) On theother hand, the second
motion in the center of mass frame. This reduction leads to gsk (incorporating the spin degrees of freedom in an action
great simplification of the dynamics. principle) is quite intricate. First, it has been found that,

Indeed, the full 3PN Hamiltonian in an arbitrary referencewithin a relativistically covariant set up for a spinning par-
frame[15] contains®(100) terms, while its center-of-mass- ticle, the Lagrangian describing tloebital motion could not,
reduced version contains only 24 terms. However, this simeven at lowest order in the spin, be taken as an ordinary
plification is, by itself, insufficient for helping in any way the LagrangianL(x,-x), but needed to be a higher-order one
crucial problem of the slow convergence of the PN expanl(x,X,X, . ..)[37]. Second, a relativistically covariant treat-
sion. One should also mention that the use of a Hamiltoniafnent of thespin degrees of freedom is an intricate matter,
framework([like the Arnowitt-Deser-MisnefADM) formal-  involving all the subtleties of constrained dynamical sys-
ism used iM12,13,10,15,2]) is extremely convenierimuch tems, even in the simplest case of a free relativistic[#H).

more so than an approach based on the harmonic-coordinatgé)mrary to the case of the spin-independent EOB where it
equations of motion, as if.6—18,20). Indeed, on the one Was €asy to use the test-mass results to constrain the EOB

hand it simplifies very much the reduction to the center—of—Ham"toman’ the Mathisson-Papapetrou dynamics of spin-

lative d idsvhich is trivially obtained by set ning test masses in external gravitational fields is rather com-
mass reative dynamidsvhicn is trivially obtained by Setting plicated and cannot easily be used to constrain the spin-
Prei=P1=—P2), and on the other hand it yields directly

| X = i@ dependent EOB Hamiltonian(lt might, however, be
(without guessworkan action principle for the dynamics. jnteresting to try to do spFortunately, there is a technically

We shall find also below that a Hamiltonian approach is verymych lighter approach which bypasses these problems and
corB/e?lent for dealllng Wltfl_the c?Ft)kI:] ((jjegree_s of ]:‘rtehedorg:t simplifies both the description of orbital degrees of freedom
p to now, we only mentioned the aynamics or the orbitalgnd that of spin degrees of freedom. This approachois
degrees of freedom, i.e(in the order-reduced Hamiltonian manifestly relgtivisti?:ally covariant. This Iackpgﬁanifest
formalism the (ADM coordinatg positions and momenta Poincarecovariance is notin principle) a problem at all for
X1,%2,P1,P, Of the two black hole$.After reduction to the two reasonsti) it does not prevent the expected global Poin-
center-of-mass frameP= p; +p,=0), and to the relative dy- carecovariance of the two-body dynamics to be realized as a
namics k=x,—X,, p=p;=—pP,), one ends up with a ca- phase-space symmetfgs was explicitly proven, at 3PN, for
nonical pairx, p of phase-space variables. the orbital degrees of motion in R¢1.5]), and(ii) as we are,
The addition of spin degrees of freedom on each blaclat this stage, mainly int_e_rested in the description of the rela-
hole is,a priori, a rather complicated matter. If one wished tive motion in a specific(center-of-mags Lorentz frame,
to have arelativistically covariantdescription of the dynam- there is no physical need to enforce any boost invariance.
ics of two spinning objects, one would need not only to add,ThIS non-covariant approach to the grav!tatmnal interaction
in Einstein's equations, extr&covariani source terms pro- ©f SPiNning objects stems from the classic work of Breit on
portional to suitable derivatives of delta functiofspin di- :?:nsel(igtéorgag[rl%t]l)c ;Egerha;ﬂ%ge@rfu d?\/tglrg SeF()jlri]RIggsgleuce_nce
poleg, but also to enlarge the two-body action principle to f pa ers[,47.g.5q (The change of ar'ablgs needed t?) ass
incorporate the spin variables. The first task is doable, an pap ' 9 varl P

has been performetio the lowest orderin several works om the covariant, higher-order Lagrangian description to
P ' the non-covariant, ordinary Lagrangian has been discussed in

several papers, e.g45,51,53.) In the present paper, we
_ _ ~shall combine the non-manifestly covariant, ADM Hamil-
Henceforth, “3PN” will mean the conservative 3PN dynamics, tgnian treatment of the orbital degrees of freedorfil@f 15,
i.e., N+ 1PN+ 2PN+ 3PN. with the similarly non-covariant, but Hamiltonian, treatment
3Note that a subtlety arises at 3PN] in that the Hamilton action of the spin degrees of freedom p£7,49. Moreover, as is
principle involvesderivativesof the phase space variables. How- explained below, we shall improve up48—50 in using a

ever, it was shown ifil4] how to reduce the problem to an ordinary girect poisson-bracket treatment of the dynamical spin vari-
Hamiltonian dynamics by means of a suitaliiv®/c®) shift of abl

phase-space variables. We henceforth assume that we work with the Finally, our starting pointfor the effective one-body ap-

shifted variables defined ifL4] roach is a PN-expandedHamiltonian for therelative mo-
“We recall that the high-order perturbative, PN-expanded, caleu? N-expand
ion of two spinning objects of the form

lations of the dynamics of two non-spinning compact objects modeF

these objects by delta-functidmonopol¢ sources. The supports of PN _ 4PN PN
these delta functions define the coordinate “positions” of the com- HiealX,P:S1,52) = Ho(X,P) + Hs (X, 51, S)

pact objects. As explained {i22] these positions physically corre- + Hgg(X,p,Sl,Sz)'i” Hggg{X,p,Sl,Sz)
spond to some “centers of the gravitational field” generated by the
objects. +.. (2.1
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Here,H"™ denotes the PN-expandecbital Hamiltonian,
which is the sum of the free Hamiltonian

Ho=\mic*+ pic?+ \Jmsc*+ p5c? and of the monopolar in-
teraction HamiltonianH{), generated by the source terms

proportional to the masses. Before the reduction to the

center-of-mass frameH[, has the symbolic structure:
HM ~m;m,+m2m,+myms+m3m, + m2m3 + mym3 + - - -
~mymy[ 1+ my+my+ (M +my) 2+ (my+my)3+- -], It
is explicitly known up to the 3PN levél.e., up to velocity-
independent termsem;m,(m;+m,)%]. After reduction
to the center-of-mass frame the PN expansion Hj})
reads [with M=m;+m,, u=mmy/M, v=u/M
=mym,/(m;+my)2, r=|x|, p=p/u, X=x/GM]

HEMX, p) =Mc2+Hy(X,p) + Hipn(X,P) + Hapn(X, P)

+H3zp\(X,P), (2.2
p® GMp |1, 1
HN(Xup)_ﬂ_ MR ?] (2.3

%(3v—1>6“—;[<3+v>|62+v<n-|6>2]

M
Hle(x,p)zg

1 1
XT‘FZT y (24)
r r
H e
2PN(X,p)—g 1_6( v V)Pt
1(1+3 ) ! (2.5
- V)|, .
4 ;3
y72 ~
Hapn(X,P)=— | —=( — 5+ 350 — 7002+ 3503 p°+ - . -
3pN(X:P) e 128 )P
1 (109 21
"r‘g"r‘ E—g—zﬂ +(1)s VF—4. (26)

We have exhibitedfor illustration) in Egs.(2.5) and(2.6)
only the first and the last terms. We refer[&2] for the full
(center-of-mass2PN Hamiltonian(seven terms in a)] and
to [12,14,15 for the full (center-of-mags3PN Hamiltonian
(11 terms in all. Our effective one-body treatment will take
into account thedull 2PN and 3PN structures, but in a very
streamlined way which will be explicitly displayed below.

The other terms in Eq(2.1) denote the various spin-

dependent contributions to the Hamiltonian: respectively, the

terms linear HEY), quadratic HEY), cubic HESY, etc . . . .
in the spinsS,, S,. Before reduction to the center-of-mass
frame they have the symbolic structure

HEN~Simy[ 1+ my+my+ (mp+my)2+ - -]

+S,my[1+m;+my+(mg+my)+---], (2.7

PHYSICAL REVIEW D 64 124013

1
H§’§~s§m2(—+1+ my+my+ - -
my
+5,S(1+mp+my+---)

, (2.8

1
+S§m1(m—2+1+m1+mz+m

etc... . Weshall explain below the occurence of the terms
quadratic in the spins and inversely proportional to a mass.
In contradistinction with the case of the orbital Hamiltonian
which has been worked out with a high PN accuracy, only
the simplest spin-dependent terms have been explicitly de-
rived, namely the lowest PN-order term HS", whose
center-of-mass reduction read9]

HSN(x,p,S;,Sy)

SCR Y P P B X
23 Zm, Sy am, S| - (XXp)
1
+0 ik (2.9
c

and the lowest PN-order one-graviton exchange contribution
to the bilinear term €S,S,) in HES. Referencd42] con-
tains some information about tf@(1/c*) corrections in Eq.
(2.9), but, because of the use of different gauge and spin
conditions, not in a form which can be directly used to derive
these corrections. We shall discuss the spin-bilinear contribu-
tion («S;S,) below, together with the leading spin-quadratic
contributions proportional t6§m2/m1+ S%mllmz.

Before going further, let us make clear that, before and
after any type of resummation, the dynamics entailed by the
Hamiltonians we shall considét(x,p,S;,S,) follow, for all
degrees of freedom, from the basic Poisson brackets

{x.p}=4j, (2.10
{S|,S}=gks, (2.11)
{S,.Sh}=¢llks, (2.12

0={x'}={p; ,pj}={S1, S} ={x', S} ={x', S}
={pi . S} ={pi . Sy} (213

The (rea) time evolution of any dynamical quantity
f(x,p,S1,S,) is given by

d
&f(xapvslvsz):{vareaﬂ’a (2.14

where the Poisson bracké®B) {f,H 4} is computed from
the basic PB'92.10—(2.13 by using the standard PB prop-
erties (skew symmetry: {f,g}=—{g,f}; Leibniz rule:
{f,gh}={f,g}h+g{f,h}; and the Jacobi identity:
{f.{g,h}}+{g,{h,f}}+{h,{f,g}}=0). The simplest way to
prove the statement{2.10—(2.14) is to consider our dynam-
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ics as the classical limit of the quantum dynamics of a syssimpler than the originaH,.,(X,p), and, in particular, to re-
tem of gravitationally interacting spinning particles. Surpris-duce, in some approximation, to the paradigm of the simplest
ingly, though Refs[47,48 derived (a la Brei) the spin-  gravitational one-body problem, namely the dynamics of an
dependent contributions to the Hamiltonian by a quantunieffective) test particle in sométo be determinedeffective
route, they never noticed that they could very simply derivemetric giﬁy(xfgﬁ). Remarkably enough, it was found [@]
the spin evolution equations by using the Ps11),(2.12.  that such a mapping between the very complicated real two-
They had to go back to a Lagrangian formalism and addhody orbital 2PN Hamiltonian2.2—(2.5) and the usual
some explicit spin kinetic energy termél(looiwL %Izwﬁ) to  (“geodesic”) dynamics of a test particle of masa
derive the spin evolution equations. Note also that we have= mym,/(m;+m,) in a very simplespherically symmetric
kept the label “real” on the Hamiltonian in Eq2.14 to  effective metric
distinguish the evolution with respect to the real titasso- ()
ciated with the original two-body systgrfrom the evolution D(r e .
generated by the effective Hamiltonian to be introduced begsgff: _A(reﬂ)czdtgﬁJ’ A(T o) dr§ﬂ+r§ﬂ(d02+sm26d<p2),
low (which is associated with an auxiliary, effective time (2.195
Before generalizing it, by including the spin degrees of
freedom, let us recall the results [&] (2PN leve) and[10] is possible, if and only if the energy mappifgs= f (E ca)
(3PN leve) concerning the effective one-body “upgrading” is given by

of the PN-expanded orbital Hamiltoniarn"}(x,p). Again,

the simplest way to motivate it is to think of our dynamics as Eet EZ,—mic*—mic?

the classical limit of a quantum dynamics defined by some > 2 . (2.19
Hermitian Hamiltonian operatoH,(x,—iAV). We are Ke 2m;myc

mainly interested in the bound stateshbf,,. It is crucial to
note that the orbital Hamiltoniaf2.2)—(2.6) is symmetric
under anO(3) group(corresponding to arbitrary rotations of
the relative positiox=x; —X,, in the center-of-mass frame
Therefore the quanturfand classicalbound states will be
labeled (besides parity by only two quantum numbergi)

Remarkably, the simple energy m#&p.16 (which is here
determined by our requiremeitsoincides with the energy
map introduced in several other investigati¢@8,7] (and is
simply related to the one definedpriori in [29,31,32).
Recently, the problem of mapping the extremely compli-
: _ . cated real two-body 3PN Hamiltonid8.6) onto an effective
;Zemft?;r%rggzll Zzgtriltirrnmr?ur?net?é?lﬁsul_cﬂ_ tJfrgt) ’(\la_nf)(/”ﬁ) one-body dynamics has been soly&@]. Again the result is
remarkably simple, though less simple than at the 2PN level.

counts the number of nodes in the radial relative wave func- ) h )
tion]. Both L andN are quantized in units df. The full list Indeed, it was fourfithat the effective one-body dynamics

of two-body bound states is thereby encoded in the formulé’vgfs_glven Ey an Hamilton-Jacobi equation of the fawith
giving the bound state energy as a function of the two guanpa = 95/ IXen)

tum numbers L and N: E;=Ea(L,N)=Mc B eff _off

— (G Mym,) N+ Epp(L,N) + Epn L, N) + Ezpn(L,N). 0=u*+gefipl i+ Qa(p™), 219
The basic idea of the effective one-body method is to map . . . . .
(in a one-to-one manngthe discrete set of real two-body with a simple(spherically sy_mmetrbceffgcyve metric of the .
bound state&,.,(L,N) onto the discrete set of bound states "M (2.1 and some additional quartic-in-momenta contri-
of an auxiliary (“effective”) one-body Hamiltonian bution Q4(p). Remarkgblyz It was foynd that, at t_he 3PN
Her(Xeft, o) . BECaUse of the special labeling bynly) two IeveI,_the energy mapping is again unlqugly dete_rrr_uned to be
integer quantum numbeis/A,N/A one is naturally led to the S|mple_ relat|or(2_.16). As _foreghe metric coeff|c_|ents of
imposing that (i) the EOB Hamiltonian be spherically the (covariant effective metricg,;, and the quartic terms

symmetric® and (i) the integer-valued quantum numbers be Q4(P), they were found to be
identified in the two problems, i.elL,/Ai=L /% and N/#A

=Ng¢/%. On the other hand, one caand onea priori A(r)=1-2u+2pu+a,(v)u?, (2.18
should leave free gone-to-ong continuous functiorf map-
ping the real energies onto the effective on&sy(L,N) D(r)=1—6vu2+2(3v—26)vu°, (2.19

=f(Eea(L,N)). Evidently, for this method to be advanta-

geous we wish the effective dynamics to be significantly Q4(p)
== -2
2

M

(4—3v)vU?(n-p)*, (2.20

SWe are making this very explicit because some people, when
they hear about the EOB approach, think that the effective metric
describing the one-body dynamics should, at some level of approxi- ©In fact, [10] found that it was possible to map the real dynamics
mation, include some Kerr-like features to model the velocity-onto the geodesic dynamics of a test particle. However, both the
dependent two-body interactions. This is not true for the orbitaleffective metric and the modified energy map needed for this rep-
dynamics, whatever the PN accuracy level is. On the other hand, weesentation are rather complicated. It was felt that it is more con-
shall see that we need Kerr-like features to accomodate the intrinsigincing to keep a simple effective metric, and a simple energy map,
spin effects. but to relax the constraint afeodesianotion.
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whereu=GM/r, p=p/u, and of A(r) so as to ensure the stable presence of a similar “ho-
rizon” when 0<v<j%. We shall also do so here, but only

94 41 , after having introduced the spin effects, which modify the
ay(v)= 3 327 20| v. (2.21) radial function which is the analog &f(r).
As we said above, the correct value ©f has been recently B. Effective spin

found[21] to be simplyw,=0. We shall find it convenient,
however, to keem as a free parameter in order to assess th
guantitative importance of 3PN effects.

Let us emphasize again the streamlined nature of the e
fective one-body description of the orbital dynamics. Succes
sively, as the PN order increases, one can say(thdbe 6
terms of the Newtonian plus the first post-Newtonian relativ

Hamilt_onian(2.3),(2.4) can be mappeflia Eq._(2.167 _and_ @ order where they entgthe interactions which arknear in
canonical transformation ok(p) ] onto geodesic motion in a the spins. Then, we shall incorporai® some approxima-

Schwarzschild spacetime of mass (i.e., Ajpy=1—2U,  tion) the interactions which are quadratic in the spins. Con-
Dipy=1); (ii) to take into account the 7 additional terms trary to the case of the spin-independent interactions where
enteringH,py, Eq.(2.5), it is enough to add- 2vu® to A(r) many years of work have yielded high-PN-accuracy informa-
and — 6202 to D(r); and (iii) to take into account the 11 tion which allowed one to refine and test the EOB approach,

additional terms enterindHspy, it is enough to further ©ON€ does not have in hand enough information for gauging
add +a,(v)0* to A(r) and +2(3v—26)v0® to D(r), and the reliability of the spin-dependent interactions in the case
to add 4the simple quartic tern2.20 to the mass-shell of fast spins. As a consequence, we will be able to trust the

condition(2.17). Note that the effective one-body dynamics presently introduced EOB Hamiltpni_an only when .Spin ef-
is a “deformation” of a geodesic dynamics for a particle fects are not too large. As we said in the Introduction, one

of massy in a Schwarzschild spacetime of mags with will need new informationeither from numerical relativity,

. o _ b or from improved analytical methog#o find a reliable form
the symmetric mass ratie=u/M=m;m,/(m;+m,)* as L ;
. PR . . of the EOB Hamiltonian for large spins.

deformation parameter (Qv<z, with v being small ifm; We h . d in Ed2.9 th ibuti h
<m, or my<m,, and reaching its maximal value gfwhen € have written down in Ed2.9 the contribution to the
m —2m %\Ioteléilso that. at this stace. we have not vet in_real, PN-expanded, two-body Hamiltonian which is linear in

1=M;). ) ' age, X y the two spins. Our first proposal is to map this contribution
troduced any particular resummation technique. The effec-

. o o : to the spin-orbit coupling of dspinless effective particle
tive quantitieg2.18—(2.20 are still given as straightforward moving in a suitably “spinning” effective metric, i.e. some

PN expansions in powers of=GM/c’r. However, this al-  yne of generalized Kerr metric. If we formally considsy
ready means an appreciable gain over the original PN expagngs, as deformation parametefsn top of the basiorbital
sions, Egs(2.3—(2.6). Indeed, there are far less terms in the yeformation parameter), the effective dynamics we are
“effective” PN expansions and they generically have signifi- |5oking for should be a “spin deformation” of the currently
cantly smaller coefficientewhich are now all multiplied by st accurate orbital dynamics, as described by the 3PN
v<'1/4). For instance, the “radial” potential determining the effective dynamics Eqs(2.19—(2.21. In particular, we
cirfcf:ular orbits is now fully encoded in the simple function ghoyid keep the non-geodesic Hamilton-Jacobi equation
9oo=~A(rer) Which differs from the test-masSchwarzs-  (2.17). Note that the spin effecfsiotably Eq.(2.9)] break the
child) result, Ai,—oy=1—2u, only by two numerically O(3) symmetry of the orbital interaction. At the quantum
smallish terms when one is above the last stable orbit. Inlevel, this means that spin interactions lift the degeneracy
deed, whenr>6GM/c?, 2103<0.23%, and a4(v)ﬁ4 (lack of dependence on the “magnetic” quantum number
<0.36% (for ws=0). When working at the 2PN level it was, L/#) of the orbital energy states. This shows that the effec-
in fact, found unnecessafg] to further “resum” the effec-  tive (cometric ggf entering Eq(2.17) should no longer be
tive PN expansions of(r) andD(r). As they stand, they spherically symmetric, but should contain special directions
led to small deviations from the test-mass—0) results. linked to the spins. For generality, let us first consider an
However, it was found if10] that the situation is not quite arbitrary (time-independenteffective cometric

as good at the 3PN level. Because of the largish coefficient in B 002 oi i

Eq. (2.20), %-—%47°=18.688, the additional term Jeit PaPp= JeitPo+ 20eiPoPi + JerPiPj - (2.22
+ay(v)u* in Eq. (2.18 significantly modifies the qualitative
behavior of the metric coefficier(r) for rz<<6GM. In
particular, whenws=0, the straightforward PN-expanded

Let us now tackle the central task of this work: to intro-
Quce spin effects in the effective one-body approach. Let us
Lirst emphasize that the ambition of the present work is
somewhat limited. Our main goal is to derive a spin-
dependent EOB Hamiltonian which is physically reliable for
small and moderate spins. We shall proceed toward this goal
8h successive steps. First, we consider dallythe lowest PN

Let us define

0i 0i 0j
function A(r) no longer features a zero neay=2GM for a=(—g%0)~12 Biz% Y=gl _ YertJerr

all possible values of the deformation parametet6< ;. o g%’ g

As this zero(which corresponds to the Schwarzschild hori- (2.23

zon) is a crucial qualitative feature of the=0 limit, it was
argued in[10] that one should Padesum the PN expansion i.e.,
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i i ni C. A deformed Kerr metric
B BB

00__ 0i _
Qefi= — 22 efi= T2 g Y= 2 (2.24 Remembering that the main message of the effective one-
body method is that the orbital dynamics of two comparable-
mass black holes can be described in terms of a slightly
deformed (with deformation parameter) Schwarzschild
metric, we expect that the orbital-plus-spin dynamics of two
black holes can be described in terms of some deformation
A2 220 i of the Kerr metric. In other words, we are expecting that not
(Ber= B'pi) = e p™+ v7pipy + Qu(p)]. - (229 only the effects linear in the spins, such as &99), but also
Solving Eq.(2.25 for E¢ [using the fact thaQ,4(p), Eq. the spin-dependent non-linear effects, can be described in

(2.20, depends only on thp;'s] yields the effective Hamil- terms of some deformed, effective Kerr metric. At this stage
toﬁiar; : it is therefore very natural to construct a suitable “deformed

Kerr metric” which combines the orbital deformations
(2.18,(2.19 with the full spin effects linked to the “effec-
26) tive spin” (2.30). After constructing this deformed Kerr met-
ric, we shalla posterioricheck that it approximately incor-
where we have suppressed, for readability, the labels “eff’Porates the expected two-body interactions which are
on the orbital phase space variabiét, p°f. The ellipsis in ~ quadraticin the spins. _
the arguments o are added to remind us thil.g will Let us st_art from th(_a_3|mplest fprm of the Kerr cometric,
ultimately also depend on the spin variab®s S, which underlying its separability properti¢S3]
enter the metric coefficients, B', y" as parameters.
We also assume that E(.16) (which was found to hold

The effective energ¥ = — pgﬁ is conservedbecause of
the assumed stationarity gﬁf'?). Using the parametrization
(2.23, Eq.(2.17 reads

Eer=Her(X,p, . ..)=B'pi+au’+ 7”pipj+Q4(p(i%,

1
A(rpf+p+ ——-

URePaPp=

at 1PN, 2PN, and 3PNstill holds. Solving it for the real r’+a?cosé Sirfe
energyE,., in terms of the effective one finally yields the 1
real Hamiltonian X (p,+asinp,)?— G
Her—
Erca=Hrea(X,P, - . .)=M\/1+2v . (2.27
X[(r?+a?)p;+ap,]?|, (2.32

We recall that, at the linearized level and at the lowest PN
order, the addition of a spiB.s onto an initially spherical

. _ 2_ 2 _ . . . .
symmetric metric leads to an off-diagonal term in the metric:Vith Ak(r)=r"—2Mr+a’ In the non-spinning limit &

—0) the coefficients ofpr2 and pt2 become, respectively,
°G . Aw(r)/r? and —r?/A(r). However, we know that in this
lgi: _QOiz —goi=+ —Ssij"SJeﬁx". (2.28 limit we should geffrom (2.15] A(r)/D(r) and —1/A(r),
r respectively. It is therefore very natural to generalize the
Kerr metric (2.32 (while still keeping its separability prop-
Inserting this term in Eq(2.26), and expanding Eq2.27)  ertieg by assuming that the coefficients of the first and last
in a PN series yields, as leading spin-orbit couplifigear-  terms in the large square brackets of E232) involve two
ized in Se and taken to formal ordeP(1/c?)]in Hyea, the  different functions ofr, say A,(r) and —1/A(r), whose
term product reduces to-1/D(r) when a—0. This reasoning
leads us, as the simpl&giossibility for combining spin ef-
i 2 ik o ok fects with orbital effects, to postulating that the effective
Os,q Hrea™ B Pi= 23° Pi e (229 metric entering2.17) has the form

This term can exactly reproduce the leadingo-body spin- 1
orbit coupling(2.9) if we define B pp=————| A (1)pE+pi+t ——
geﬁp pﬁ r2+a2cos’-0 r( )pr pf) sin20
$'=0,8+0,S,, (2.30 1
X (p,+asi _—
with (py+asin0py)*= 1
3 m; 3my 2, .2 2
—14 -2 —q+- 1 X((re+a%)pita , (2.33
(o] 1+4 ml, (o) 1+4 m2. (23]) (( )pt p¢)

8We leave untouched the dependenceacio ensure that, when
"We use here the fact that the real phase-space coordix8tes GM—0 with a being fixed, the metri(ggf? be Minkowski in dis-
p'ed differ only by O(1/c?) from the effective ones enteritdj4[8].  guise.
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- 2(4-3r——o(n-pt (2
Qup)= - 2(4=30 o . (23

r2APN(r)+a?
ArPN(r)=%, APN(ry=r2APN(r) + a2,
D™(r) Equation (2.33 definesg2f only with respect to some

(2.34 (instantaneouys polar coordinate system with the-axis
Here, the superscripts “PN” indicate that, at this stage, wedligned with the effective spif2.30. Such a coordinate sys-
are only comparing PN expansions. We already know fronf€M cannot be used for describing the evolution of two gravi-
the 3PN study of10] that this is unsatisfactory because it tationally interacting spinning black holes. Indeed, we expect

tends to change the qualitative behavior of the radial func{@nd shall check belowthat the total real Hamiltonian im-
tions and, in particular, the presence of a horizon in the metP©S€S some type of precession motion $or S, and there-

ric (2.33. To get a regular horizon in E¢2.33 we need the  f0'€ Serr. TO get the full dynamics of the system we need to
two functionsA,(r) and A,(r) to have a zero at the same ewrite ggﬁﬁlln a general, Cartesian-like coordinate system.
value ofr. The simplestand most robugtway of ensuring ~ This is achieved by explicitly introducing, besides=x'/r,

this is (as discussed if10]) to define them as the quantitied Ser= ( 325S%Ser) 2]
2 PN ! S
a 1 i eff eff .-
—2pl| APN b — . s=—, a=—-, cos#=n's, p’=r?+a’col.
Ay(r)=rePz| AT(r)+ 2| A(r) At(r)(D(r)) . » M p

Here, PM[ fPN(u)], with u=1/r, denotes theN,(u)/Dp(u) This leads to the following, Cartesian-like, effective metric
Padeof a certain PN-expanded functioi™(u)=c,+c,u

+Coul+ -+ Cpmu"™™ [N, (u) andD,(u) being polyno- —p’get= A , (2.39
mials inu of degrees andm, respectively. We do not write t
down the(uniquely define@lexplicit expression of - a[r?+a?—A|] - 40
— =——(s , .
A(u)=P3[A"Nu) +a%u’] P et A (9
=Pi1-20u+a%0%+2vus+a,(v)ut y . o a? _ _
3l ()] nggﬁ=Arn'nJ+r2(5”—n'n')—A—(sxx)'(sxx)J,
~ t
_ A1+ n:}\u ] (241)
1+d,u+d,u?+dgu® .
from which follows
(Whereu=GM/r, a=a/GM) becausi) it is rather com- .
plicated and not illuminating, andi) modern algebraic ma- \/ pA (2.42
nipulators compute it directly from its Pédigfinition. B (r2+a2)2—a?A, sirt6’ :
In the definition ofA,(r) [which is less important than
that of A,(r)] we have factorized the Padesummed\(r) 2, .2 i
and assumed that it was enough to work with the non- [ ar’+a A‘](SX_X) , (2.43
resummed PN expansion of the inverse of Bdunction, (r®+a??-a®A,sino
i.e.,[from Eq.(2.19]
. . i BB
[D~1(r)]PN=1+6v0U%+2(26—3v)v03.  (2.36 Y=gdt —5- (2.44
o

If the need arises, it would be easy to define improued ) , )
summed versions ofD ~(r). Because of the positive coef- NOte that near the “horizon,” i.e., a8,—0, the quantityx
ficients in Eq.(2.36 the present definition does not interfere tends to zero likeyA;, while g' and ' have finite limits.
(as would the consideration D”Y(r) 1] with the desired ~[The singular last term on the right-hand side of ’31-4]23 IS
feature of having a simple zero ik, (r) located at the same cancelled near the horizon by the contributiors' 8'/ o to
value as that im\(r). y', Eq.(2.44.] o

Finally, we shall see later that there are some advantages Finally, the spin-dependent, real two-body Hamiltonian
in defining the quartic-in-momenta contributi@y(p) inthe  Ha(X,0,$;,S;) is defined by pi=p;/u, upEGM/\/—Z,
following (deformed way: n'=x'r)

Hrea(x.p,sl,sz)EMJ1+2v[/s‘f>i+a¢1+y”fnb,—+2<4—3v>va§<nif>i)4—1], (2.45
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where we recall that the basic effective Kerr spin vector is ) 1o,
defined by Qij=—Ma‘ssj+ §Ma Sij - (2.49
Mas=S,=0,S +0,S), (2.4  This corresponds to an additional term in the interaction

Hamiltonian equal to

with o4 and o, defined in Eq(2.31). The phase-space coor-
dinates appearing in this Hamiltonian are the effective ones
(xgﬁ,pfﬁ). They differ[8,10] by O(1/c?) terms from the co-
ordinates used in usual PN calculations, such as ADM ones. (2.50
The evolution equations defined by the Hamiltoni@m5

are obtained by the Poisson bracket equati@s0—(2.13.
Before discussing them let us show how the Hamiltonian 16
(2.45 contains spin-quadratic effects of the good sign and H[ga':Jr it
magnitude. 2¢c2M

1 1 1 o1
ngaI:Hlef:_ EMQijaij F: + E,uMazs'SJé’ij F

In terms of the effective spin this readia standard units
[ o 1
SeffSJeff&ij F . (25])

Such is the prediction from our Hamiltonian. Let us now
compare it to the expected real two-body, spin-quadratic ef-
Note first that if we introduce the “non-relativistic” effec- fects. As sketched in Eq2.8) there are several sources of
tive Hamiltonian HQ;*EHE“_MCZ, and similarly H::F; spin-quadratic effects. At leading PN order, it is enough to
=H,.,—Mc?, one has consider:(i) the term proportional t(DnZSf/m1 which arises
because of the interaction of the monopuwig with the spin-
NR L INR 1 r'\‘eF; induced quadrupole moment of the spinning black hole of
Heff =Hreal 1+ 5 ez (247 massm,, (ii) the term proportional ton; S2/m, obtained by
¢ exchanging -2, and (iii) the term proportional t&5;S,
coming from the direct, one-graviton interaction between the
two spin dipoles. The first term is obtained by relabeling the

D. Effects quadratic in the spins

Therefore, if we are interested in the leading PN approxima

tion to any additional term irH[.y, one can neglect the result (2.51) by x—m,, M—m,, S,,—S, . Therefore the
[O(1/c?) smallei difference betweeh .4 andH e, . By this sum of (i) and (ii) reads

argument, the leading PN approximation to the term linear in
the spins is

a[r2+a%—A,]
(r’+a?)?—aA,sirfe

(SX X)ipi ) (252
(2.48 The term(iii) has been computed 47,48 and reads

Heais= Heﬁszﬁi pi=

We write it explicitly in the form in which it appears in our Hgg~+ isilSjZ(Bn‘nj — 8=+ c ) Sha E
Hamiltonian for the reader to see how the tetth29 is 152 2r3 c? r
generated(The important feature here is that+a®— A, (2.53
=2GMr at the leading PN approximation. ) )

Let us now consider the interaction termsHn,, or Hy; 't 1S €asily checked that the sum of Eq®.52 and (2.53,
which are quadratic in the spins, and therefore quadratic if®Y Hss=Hs;s, THs,s,*Hss,, can be written as
the Kerr-like parametea, Eq. (2.46). First, one should re-
member that most terms of ordef, as they appear in the Howe
effective metric(2.39—(2.41), do not directly correspond to ss—
physical effects proportional tsgﬁ. Indeed, we are using
here Boyer-Lindquist-type coordinates which differ, even inwith Sy/M=aj=a), +a,=S)/m,;+S,/m,, i.e., explicitly,
the flat space limitGM—O0, from usual (flat-space,
Cartesian-likg coordinates by terms of ordé?(a?). As we P
are interested in the leading PN effects quadratic in the spins, So=
we can view the Kerr-like metri€2.39—(2.41) as a defor-
mation, by thea-dependent terms, of the Schwarzschild met-The result(2.54),(2.55 is remarkably similar to the predic-
ric (which is the leading PN version of the orbital effective tion (2.51) [with Egs.(2.30 and(2.31]. The only discrep-
metric). We then expect that the leading physical effects quaancy is a 25% difference in the coefficient of the mass ratios
dratic a will be those linked to the-dependent quadrupole in the definition of the effective spin. Though there might be
moment deformation of the Schwarzschild metric. The quadphysical situations where this smallish difference might play
rupole moment of the Kerr metrigvhich coincides with our  a significant role, we think that in most cases where one will
metric when we neglect additional 2PN fractional correc-be entitled to trust the approximate spin-dependent EOB
tions) has been determined to p&4] Hamiltonian introduced here this difference will not matter.

Gu_ ;.. 1
2 v oS0 7 (2.59

N| =

14+ 2l gy 1+ﬂs‘2 (2.59
ml 1 m2 . .
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Indeed, because of the partialad hocway in which we  some consequences of this Hamiltonian. Let us start by writ-
constructed our deformed Kerr metric, we cannot trust ouing down explicitly the evolution equations for all the dy-
predictions beyond the domain where spin effects are modaamical variables. From the basic PB%10—(2.14) we get
erate corrections to orbital effects. However, it is useful to
incorporate in a qualitatively correct manner the non-linear d—l—{x Hipah = + e <9Hrea|
spin effects. This is what our prescription achieves. For in- rea ap;
stance:(i) in the limit where, saym,<m, (and|S,|<m?)
Egs.(2.51) and(2.54 become equivalent, dii) in the case dp; IH real
where S, and S, are parallel(in the same direction Egs. dr = P Hreal == o (3.2
(2.51) and (2.54 differ only by a numerical factor which is
near one for all mass ratios. qg

It might, however, be useful to define another Hamil- Sl_{sn y=¢ll
tonian, sayH .., which (a) reduces(like H,,) to the Kerr dt Flres
one in the test-mas@nd test-spinlimit, (b) contains(like
H.ea) the spin-orbit termg2.9), and (c) contains the exact ds, i Hreal
spin-spin termg2.54 [instead of their “25%" approxima- T ——={S) Hieap =& —= s,
tion (2.51) contained inH .,]. A simple way to do that is to
defineH/ea=M y1+2»(He— )/ with a modified effec- | vectorial notation, the spin evolution equations réad.
tive Hamiltonian defined as the sum of EQ.26), written  for the first spin
with the replacemerﬁeﬂﬂsO and of an additional spin-orbit

(3.9

&Hreal K
9 —regk (3.3

(3.9

interaction termA B8'p', with Ap' proportional to the differ- ds; IH eal
enceo_|_SIff SO W:lesl’ QlEE. (3.5
Her(X,P,S1,S2) =Hert(X, P, So) + AHsd(X,p, S, ), A first consequence of these results is that the magnitudes of
(2.56 the two spins are exactly conserved:
where(denotingay=S,/M, cosf,=n'Sy/|S|) SP=const, S2=const. (3.6
AHsdX.p,Sp, 0) = r?+ag—Ay(ao) ' pialx Another general consequence is the exact conservation of the
sdX,P,=0, )= (121 a2)2—a2A (ag)siPg, M total angular momentum
2.57 I=L+S,+S,, 3.7
with

whereL'=¢'*xIp, . Indeed, it is easily checked thaltgen-
o 4 o .My erates, by Poisson brackets, global rotations of all the vecto-
0'=Sg—Sp=— Z(m—8'1+m—s'2)_ (2.58  rial dynamical quantitiestd’,Vi}=¢*VX for V=x, p, S, or
! 2 S,. As the Hamiltonian is a scalar constructed oukop, S;
The consideration of the new Hamiltonia,, would ~ andS;, we have
considerably complicatéeven at the qualitative levethe d
discussion of the following section. As we are not sure that _Jl {3' H ea} =0. (3.9
this complication really entails a bettquantitativedescrip-
tion of spin effects, when these become important, we shall,
in the following, content ourselves with studying the conse-
quences of the simpletthough slightly less “accuratg”
HamiltonianH, .5, Eq.(2.45 with Eq. (2.46. However, we
mention that it might be useful to consider simultaneouslygyidently, we have also the conservation of the total energy
H ea@andH /., and to trust their predictions only in the cases
where they differ only by a slight amount. This gives a useful dH eq
measure of the domain of validity of the present spin- dt
dependent effective-one-body approach.

Therefore

J'=const and, in particularJ?= const. (3.9

={Heal Hreal = 0=H ¢q=cCONSt. (3.10

This closes the list of generic first integrals of the evolution.

IIl. DYNAMICS OF TWO SPINNING BLACK HOLES It should be noted that, in general, quantities suct.%asr
S,-S, are not conserved in time. This means, in particular,
that the magnitude of the effective spa’=M ~2S%, will

In the previous section we have explicitly constructed anot stay constant during the evolution.
Hamiltonian H,co(X,p,S;,S,) describing(to some approxi- Evidently, in particular situations, more quantities might
mation the (conservative part of thegravitational interac- be approximately conserved. An interesting case is that in
tion of two spinning black holes in the center-of-mass framewhich the spins are small enough for one to retain only the
of the binary system. In the present section we shall describeerms linear in them. In this approximation

A. Equations of motion and exact or approximate first integrals
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[r2=Af"]
T

(3.1

He(X,p,S1,S;) =Ho(X,p) +

whereHq(x,p) is spherically symmetric.

Let us, more generalf,assume thaH.;, as well as
Hea» @re spherically symmetric, functions wfandp except
for a dependence on the combinationS:

HreaI:Hrea(rypr’Lz’L'Seff)7 (3.12

where p,=n'p; is canonically conjugated to({r,p,}=1).
Under the assumptio(8.12 the angular momenta evolution
equations becomjgvith (LS)=L - S.x]

dSl_ IH real

W—mO’lLXSl, (3.13
dSZ_ aHreaI

W_(?(LS) oL XS, (3.19
dL_ IH eal %L 3.1
E_a(LS)Seff ' (319

These evolution equations imply not onlgs in the gen-
eral casgthe conservation of=L+S;+S,, and of§ and
S5, but also that of

L2=const, L-S.=-const. (3.1

Note, however, thaB% is not conserved. Moreover, the ra-
dial motion is governed by the equations

i': aHrea(r’pr !LZ!L' Seﬁ)
Py ’

. ﬁHrea(r’pr rLZrL‘Seff)
ar '

(3.17

pr= (3.18

In view of the constancy of >°=C, andL-S,s=C;, we see
from these equations that the function of and p,,
Hadr,Pr) =Healr,pr ,Co,Cq), defines a reduced Hamil-
tonian describing the radial motion, separately from the an
gular degrees of freedom. In particular, we gesing the fact
that p, enters at least quadratically H,.,) that, under our
current(approximatg¢ assumptior(3.12), there exists a class
of spherical orbits i.e. of orbits satisfying

aHrea(rvprzoyLz’L'Seff)
ar

=0.
(3.19

Because of th¢possibly non-linearspin-orbit coupling, i.e.,
the dependence df,.50nL- Sy, the orbital plane of these
“spherical” orbits is not fixed in space. But the radial coor-

r=const, p,=0,

9For instance, we can assume Eg11) for H4, but we make no
further approximation in computing ;ea= f (Hef) -

PHYSICAL REVIEW D 64 124013

dinater being constant, these orbits trace a complicated path
on a spherghence the nameThese orbits are the analogs,
in our two-body problem, and in the approximati@12), of
similar exact “spherical” orbits for the geodesic motion of
test particles in a Kerr spacetirfi@5]. Their existencéunder
some approximationin the two-body problem is interesting
for the following reason. One expects most black hole binary
sources of interest for the LIGO-VIRGO-GEO network to
have had the time to relax, under radiation reaction, to cir-
cular orbits. When the two black holes get closer, these cir-
cular orbits will adiabatically shrink until they come close
enough for feeling the effect of the spin-orbit coupling
(which varies proportionally ta ~3). In some intermediate
domain where the spin-orbit coupling is significant, but cou-
plings quadratic in the spins are still small, the initially cir-
cular orbit will evolve into an adiabatic sequence of “spheri-
cal” orbits of the type just discusse@Ve are here adding by
hand the effect of radiation reaction, treated as an adiabatic
perturbation of the conservative dynamics discussed in this
papern These considerations indicate that, in first approxima-
tion, the total amount of gravitational radiation emitted by
coalescing spinning black holes will be determined by the
binding energy of the last stable spherical ohi8S0O, i.e.,

the last stable solution of Eq&3.19), which will satisfy

H real

ar

(r,pr:O,LZ,L'Seﬁ)ZO,

azHreaI
ar?

(r,p,=0,L%2L-S.)=0. (3.20

Before studying the energetics of these LSSO’s let us
mention the existence of other approximate first integrals in
the dynamics of binary spinning black holes. Let us keep all
the terms non-linear irSs, i.e., the full expression of
Hiea(X:P,S1,S,), but let us try to approximately decouple
the orbital motion from the spin degrees of freedom by con-
sidering that the two spin vectors evolve adiabaticéllg.,
slowly on the orbital time scale through Egs.(3.3) and
(3.4). In this adiabatic-spin approximation, the orbital motion
is described by the Hamilton-Jacobi equati@ri?), with an
adiabatically fixed effective metrigZf . With the definition
(2.37) of the quadratic-in-momenta teriQ,(p), one can
check that, in this approximation, there will exist a two-body
analog of the Carter constant for geodesic motion in Kerr
[53]. Indeed, we have constructed our deformed Kerr metric
(2.33 so as to respect its separability properties. Let us work
in an (adiabati¢ Boyer-Lindquist-type coordinate system
(t,r,0,¢), as in Eq.(2.33. We find that the separability of
the effective Hamilton-Jacobi equation yields the following
first integrals(of the effective Hamiltonian

Pt=—Eert, Po=L., (3.21)

(L,— aEqgsinf6)?
Sirte

2

2 + n?a®cogh
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=K=0+(L,~aEq)?, (3.22 R(r,Eef,L,,Q)=[(r?+a?Eq—al,]?
2 —A(N)[?r?+ Q+(L,—aE)?].
p2+cog 6| ——+a?(u’—EZ) (3.27)
Sirf e
5 The spherical orbits are the solutions of
=0=K—(L,—aE)"*. (3.23
J
The last two equations are equivalent to each other, but, de- R(r,Eefi Lz, Q)= - -R(r Ee, L, Q)=0. (3.2
pending on the context, one can be more convenient than the
other. Let us note the connection of the first integf@l2)—  The solutions of Eq(3.28 yield a two-parameter family of

(3.23 with the above analysis of the first integrals of the solutions, along which, for instanceandEg; are functions
Hamiltonian depending only on the combinationS.;. The  of L, and Q. The last stable spherical orlitSSO along
conservation of.,, Eq.(3.21), corresponds to the conserva- such a family of solutions must satisfy the three equations
tion of L- Se¢, EQ.(3.16), while the conservation of or Q

corresponds to the conservationldt. Indeed, if we neglect R(r,Eoq L Q)ziR(r E.e.L,. 0)

the terms proportional ta? in Eq. (3.23 we get ez gr ez

2

1-sirg _ _
Q=piLi— o —=Li-Li. (3.24 oz R(Eeinlz, Q) =0. (3.29

) ) ) . There is a one-parameter family of LSSO’s. For instance,
This suggests that, even beyond the adiabatic-spin approxine can take as a free parameter the dimensionless ratio
mation, the quantities, now defined in an arbitrary frame asg/|.2 which is a measure of the maximum angle between the

orbital plane and the equatorial plane definedpy. [Note
— — 2
L=L-s, Q=L*—(L-9)°+a%(n-s)*(u*—Egy, that Q=0 for an orbit in the equatorial plarjeFor each
(325  value of this angle, and for each value of the effective spin
parameten, there will be some LSSO, with particular values
will be [as well asSiﬁ and K= Q+ (L,—aEgx)?] conserved  of r, Ee, andL,.
to a good approximation. We are mentionning here these To study the values of théeffective and real binding
approximate conservation laws because they could be helpfhergy, and of the orbital angular momentum along this one-
in qualitatively understanding the full two-body dynamics. parameter family of LSSO’s, it is convenient to work with
slightly different variables. Let us introduce
B. Spherical orbits and last stable spherical orbits

L,=L,~aEy, Kk=0Q+L2. 3.3
We discussed above the existence of spherical orbits un- 2oz Sl el (3-30

der the assumptiofor the approximationthatH, depends et us also work with the radial variable=1/r and denote
only on the “spin-orbit” combinatiorL - Sy (as it does at the
linear-in-spin level. More generally, we have seen that if we _ A(r) PN -
treat the evolution of the spins as being adiabatic, we have A(u)=——=P3[Agp(u) +au?]. (3.31
the (approximatg first integrals(3.29. If we use(as a heu- r
ristic mean of studying the main features of the orbital dy-\ye have
namicg this adiabatic approximation, we can define a family
of spherical orbits by drawing on the conservation of the | ~4R(y)=y(u)=(E4—aLu?)2—A(u)(u2+Ku?).
guantities(3.25. Indeed, inserting the definitior{8.25 into (3.32
Eq. (2.17) we get an equation controlling the radial motion:

The equatiorlJ (u)=0 [i.e., R(r)=0] is now solved as

A pZ+2(4=3v) v(GM)?p;/ u?
1 Eer=Wa(u,L,,K)=aLu?+ VA(u)(u2+Ku?).
A Lo @) Eer-al,)? 333
The two-parameter family of spherical orbits is now obtained
—[pPr?+ Q+(L,~aEp)?].  (3.26

(as functions of the parametels, and K) by solving
dW/du=0, while the one-parameter family of LSSO’s is ob-
The right-hand side of Eq.3.26 defines (when a@®>  tained by solvinggW/du=aW/du?=0. The advantage of
=S/M?, L,, andQ are considered as adiabatic constants this formulation is that it exhibits in the simplest way the
a radial potential whose local minima, indeterminesadia-  analogy with the effective radial potential discussef8iyi0]
batic) spherical orbits. The last stable spherical orbit is ob-for the pure(3PN) orbital motion(without spin, namely,
tained when this radial potential has an inflection point.

More precisely let us define Wo(u,L)=VA(u)(u?+L%u?), (3.39
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with A(u)=P3[A"N(u)]. Apart from the replacement eésf?:o:—0.01429&4(1+clv4). (3.38
L?>—K, the only two differences between the spinning ¢

case[Eqg. (3.33] and the spinless ongeq. (3.34)] is the
[Eq. (3.33] P =g ] Here, the numerical value-1.4298% (/5 —1) is one-

addition of the spin-orbit energy term-al,u?, and the o S

" 2 9 . L= fourth the specific binding LSO energy of a test particle in
additionala®u® term in the PN expansion @(u). [Note that o sehyarzschild spacetime. The numerical coefficignt
A(u) #A(u) +a’u? because the Padesumming is done af- which condenses the effect of resummed PN interactions was
ter the addition ofa®u®.] We have chosen to parametrize found to have a valug?”™=0.048 at 2PN anct3"Nw,
Wj,(u) in terms ofL, and K because it simplifies very much =0)=0.168 at 3PN, and fow,=0. [The dependence of
its expression and thereby renders more transparent the nea@PN on ws is also roughly linear: ci’PN(wS):O.168
physics incorporated in our effective one-body approach.-0.0126v, at least when-10<w=<0.]
The fact thalL, depends both oh, andE is not a problem We expect that the dependence op of the spin-
for solving Eq.(3.32 for E¢;. Indeed, we are discussing a dependent effects will also be roughly lindafter factoriza-
continuous family of solutions and it is essentially indifferenttion of an overall factow, which comes from expanding the
to parametrize them in terms &f, or L,. We could have square rootin Eq3.36]. In the following we shall generally
introduced another effective potentMl’(r,L,,Q) by solv- consider(in our numerical investigationsghe casev,=1,
ing R(r,Eer,L,,Q)=0, with Eq. (3.27, which would be @nd concentrate on the dependence on the other parameters.
more complicated, but which would describe the same phys- Let us clarify the meaning of the parametarand cog, g
ics. [Note thatW,(r) would directly exhibit the correct fact introduced in Eq(3.37). The quantitiesSy, fz and KC en-

that the spin-orbit energy, for giveln,, decreases like 3,  tering these definitions are all supposed to be computed at
while this fact is hidden inW,(u) which assumes thdt,  the last stable spherical orbit of an adiabatic sequence of
=L,—aEq is given] spherical orbits(in the sense discussed abnvBhysically,
we have in mind the sequence of inspiralling orbits driven by
C. Binding energy of last stable spherical orbits radiation reaction. Technically, we defieév,,a,cosé, s) by

T t a first id f the phvsical f solving the effective radial potential problem defined in Sec.
0 get a hirst idea ot In€ physical Consequences ol OUfy g \ya are aware of the fact that we cannot really attach to

effective one-body description of coalescing spinning bIaCkcoseLs the meaning of being the cosinus betwéeand Sy

holes we have numerically investigated the properties of th?as the name would sugggsbut this is not important. What

g&eﬁsrgrrgegﬁtrefg:tlydOifnl‘gstﬁ:"b}_:;nrgoztngpg@og?r&gUIZZES important is that there is indeed a physical degree of free-
stable spherical orbit because it is the prime quantity deter(-jom related to the misalignment betwerand Sy at the

mining the detectability of the GW emitted during the in- LSSO and Tat we measure it by a parameter normalized so
. . that cosfs=1 (or —1) when all angular momenta are
spiral. We recall that the real, two-body energy is related tg lianedin this limit th f the | ble circul
the effective energy entering the equations of Sec i g'9ne [mt Is limit the concept of the last stable circuar
through ' equatorial orbit is meaningful and coincides with the

cosf s=1 (or —1) limit of our formal definitions.

Eor Note thit, with the definition$3.37) and the additional
Erea=M \/1+2v 7—1). (3.39  definition 1=(K)¥3¥GMu, the effective radial potential

(3.33 yields (in dimensionless formy=GM/r)

We are mostly interested in thdimensionlesshinding en-

ergy per unit total mass, say Eet -~ . —
=Wj;(u,cosf,s,l)

E ea— M E M
esL:\/sz(—eﬁ—l)—l. (3.36 X R — __
M M =2 cos6 ol U2+ VA(D,22)(1+1202).  (3.39

The value ofe at the LSSO depends on three dimensionless _ . .
This form makes it clear theE

LSSQ
€

7°% ., and thereforeetSSC,

parameters . L L
Eq. (3.36), will depend primarily on the combinatiofipro-
w .~ a  |Sl L, jected value ofa”)
V4=4M=4V1 a=M=W, C059L3=\/—E.
-~ - k-
(3.37 a,=a cos¢9,_sz|v|—ss"ff (3.40

Here, the parameter, (renormalized so that€Qv,<1) de-
termines the effect of having comparable masseg=(1) . .
rather than a large mass hierarchy€1). The dependence Wherek=L/[L| (at the LSSQ. For smallish spins, the com-
of eF5%on V4 in the absence of spins was Studie(ﬂgrﬂ_o:l_ It bination ap is the only one entering the problelinearly. As
was found that the ratie"S% v, was essentially linear im, ~ recalled by the notation in E¢3.39 the non-projected value
(even forv, as large as 1, corresponding to the equal-massf a enters only quadratically iA(u,a?).

case Let us consider more closely the crucial quantity
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exploring the “parametric flexibility” of the EOB approach,

N 1 3 m, 3my . o
ap=——|| 1+ am. k-S;+ 1+Z o k-S, we have studied the dependence=b>° on the value of the
(mq+mp) 1 2 parameterwg, as it appears in Eq2.21). We have done
3 A 3 . numerical simulations for three fiducial valuesis=0
= X5+ 7 XXz [k-agt X5+ YRSUCILSES (3.4)  =w"S[21], ws=—1987/846=wS" [16,18,° and also for

ws=—3(% —417°/132)=w? . Note the numerical values:
In the second form, we have defined;=m;/M, X,  ©8F=—-23655 w}=-9.3439. The original motivation
=m,/M (X;+X,=1, X;X,=v), and élel/mf, .’212 (when writing this paper, before the completion of the work
=S,/m3. (We recall that a maximally spinning hole would [21] which determined the correct value @f) was to study
have|a,|=1.) the sensitivity of our results to the “3PN ambiguity.” We

An important questior(for the relevance of the present kept it here as an interesting case study of the sensitivity of

work) is the following: what are the plausible vaIueséqgfin EOB results to modifications of the various coefficients en-
the sources that will be detected by LIGO-VIRGO-GEO?tering the EOB Hamiltonian. The change from=0 to
Present astrophysical ideas about the formation of binaryps= s corresponds to a change of the coefficient
black holes[1,4] suggest neither that the holes be typically as=a4(v)/v from 18.688 to 13.957, i.e., a fractional change
maximally spinning, nor that there be any correlation be-of —25.32%. The value;= w? has the effect of completely
tween the spin and angular momenta, i.e. between the direcancelling the 3PN contribution to the radial functioh@u)

tions ofk, S;, andS,. Not much is known either about the andA(u). Therefore, choosing = w? gives for the LSSO
probable value of the mass ratio. To have an idea of thguantities the same results as the 2PN effective-one-body
plausible values o&, (which is an algebraic quantity which Hamiltonian[8]. Its consideration is useful for exhibiting the
can take positive or negative valiidst us consider the ran- difference between the 2PN-based results and the 3PN-based

dom mean squareéms) value Ofép under the assumption of Ones. Our results are displayed in Table Il and Fig. 1.

random, uncorrelated directiots S;, andS, (so that(ép> The most @portant corlclu5|on Wg wish to draw from
=0). Let us assuméfor simplicity) that m;=m,, i.e., v,  these results is that, whea<0.3 (which, as we argued

=1, which is the most favorable case becagls¥%xv,. We  above, covers a large domain of the physically relevant
rms, 2 casey the binding energy at the LSSO seems to be reliably

assume also thdg?) =(a3)=(aj™)? is some given quantity ; ) : ) 0%
- : o describable by the simple analytical EOB Hamiltonian de-
(to be determined by astrophysical modelhis yields for fined above. Indeed, the differences betwéBnthe non-

aLmSE (aﬁ) spinning case and the spinning ones, éndthe 2PN orbital
approximation and the 3PN one, are all quite moderate
érmszl E a™Ms= .35 7™ (3.42 (which indicates that the effective one-body approach is ef-

P 163 1 ' o ' fective in resumming PN interactions near the LS®ur-

thermore, the difference betweéi) the spinning 3PN case

Even if 2™=1 (which would mean that all black holes are With ws=0=w¢"* [10], and the same case with,=wS"

maximally spinning we geta™=0.357. However, we find [18] is rather small. This is a testjmony of the _rqbustness of
_ ¢ p. 9 Am?S P - the EOB approach. A change of its 3PN coefficient by 25%
I h|ghly plau5|blc_e thai, _W!” _be significantly smgller than . does not affect much the physical predictions. This robust-
1. For instance, if we optimistically assume a uniform distri- nog at the 3PN level is indicative of some robustness against
bution of spin kinetic energy between 0 and the maximakhe aqdition of higher PN effects. Note aléeom Table 1)

value we would getay™= 12 and therefore 3" the confirmation that whefa,|=<0.2, the binding energy at
=7/(16y3)=0.253. In view of these arguments, we find the | SSO depends nearly only on the projected effective spin
plgu5|ble tflat most LIQO—VIRGO b_lnar_y plack hole Sourcesparameterép=écosﬂLs, with a very weak dependence on
will have [a,|<0.3. This consideration is important becausene value of Co%s.

we shall see later that for such smallish valueségfthe On the other hand, it must be admitted that when, g,ay,
simple analytical approach advocated here seems to be quiteg 4 the differences between the three ca@eslii), (iii)
reliable. However, one should also be able to compute physihecome so large, and the radius of the LSSO becomes so
cally reliable (or, at least, sufficiently flexibjetemplates for  sma|, that the present spin-dependent EOB predictions can-
fast spinning binary black holes. As we said in the Introduc-ngt pe quantitatively trustedHowever, as discussed in more

tion, we think that the EOB approach can be an essential toQ{etaj| below, we think that they remain qualitatively corrgct.
for this purpose, in conjunction with numerical data, by feed-

ing the (necessarily spars@umerical data into some multi-

parameter \./ersmn Of_ the EOB Hamlltonlan. 0This value corresponds to taking=0 in ws=—11\/3
This statistical estimate of the plausible valueagfsug-  _19g7/840. Heren denotes the natural ambiguity parameter en-

gests that a typical value of css=k- Seit/|Seql i around  tering the Blanchet-Faye framework. Note that the authors of Refs.

+1//3. In our numerical estimates @>5°we have used [16-18 do not claim than =0 is a preferred value. However, &s

this value, as well as thémplausiblg value co¥ s==*1 is expected to be of order unity we use=0, i.e., ws=

corresponding to perfect alignment. As a first step towards- 1987/840 as a fiducial deviation from,=0.
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TABLE Il. Binding energiese=(&..a/M)— 1 and(effective Boyer-Lindquistradii of last stable spheri-
cal orbits(LSSO for equal-mass spinning binary systems. The LSSO’s depend on two independent param-

eters:|a|=|S.q/M? and coshs=L,/\KC (which is, morally, the cosine of the angle between the orbital
angular momentum and the effective gpifihe combined paramet655|é| cosf, s (projected spihplays a

primary role for moderate spins. The algebraic quartitjs defined as+|é| if cosf >0 and —|é| if
cosh, s<0. All quantities are computed from the 3PN-level Pagdsummed effective-one-body Hamiltonian
(2.45 with ws=0.

cosfa=+1/3 cosf s==*1
ép é eLSSO FLSSO ép a eLSSO "ELSSO
—0.6 —1.039 —0.01319 6.298 —0.6 —0.6 —0.01150 7.344
—-0.5 —0.8660 —0.01337 6.220 —0.5 —-0.5 —0.01207 6.989
—-04 —0.6928 —0.01364 6.109 —-0.4 —-0.4 —0.01271 6.623
-0.3 —0.5196 —0.01405 5.940 -03 -0.3 —0.01345 6.242
-0.2 —0.3464 —0.01463 5.700 -0.2 -0.2 —0.01433 5.841
-0.1 —0.1732 —0.01547 5.377 -0.1 -0.1 —0.01538 5.415
0. 0. —0.01670 4.954 0. 0. —0.01670 4.954
+0.1 +0.1732 —0.01859 4.391 +0.1 +0.1 —0.01842 4.439
+0.2 +0.3464 —0.02203 3.580 +0.2 +0.2 —0.02091 3.833
+0.3 +0.5196 —0.05146 1.344 +0.3 +0.3 —0.02529 3.005
+0.4 +0.6928 —0.1790 0.7752 +0.4 +0.4 —0.04930 1.538
+0.5 +0.5 —0.1048 1.194
+0.6 +0.6 —0.1474 0.9792

If the orbital dynamics were well described by the 2PN-level
orbital EOB metric(i.e. if wg had been near 9; see upper
curve in Fig. 1, the binding energy, even in such extreme
cases, would differ only moderately from the non-spinning
case, and we could trust the EOB-plus-spin predictions
However, aswg is zero the 3PN EOB+ spin predictions
become, for co§ =1 anda=0.4, very different from the

spinning onegif the spin paramete&p is negative(i.e., if the
effective spin vector, whatever its magnitude may be has a
negative projection on the orbital angular momenkuthe
EOB predictions become extremely reliable because all the
differences between the casé$, (i), (i) become quite
small.
2PN ones and quite sensive to the numerical values of (8c'sean o e basic equations of e EOB approach whih
expansion coeff|C|en§s entering the EOB potentials. Let u$Simplify so much the description of the physical interactions
note, however, that in all casdeven the most extremely by representing them as slightly deformed versions of the
well-known gravitational physics of test particles in

€550 Schwarzschild or Kerr geometries. Indeed, the basic equation
N of the EOB approach determining the binding of the LSO is
\\BD Eq. (3.39 which differs from its well-knowh Kerr limit
cos els=ii -0.02 (i.e., v—0) only by the change
3 BF N A momy — n n
1 o 028 Ax(U,a%)=1-2u+a%u?>—A(u,a?)
V =— =uU.
4 DJS A aon - -
=P3[1-20+a%u?+ 2w+ a,(v)u?].
-0.6 0.4 -0.2 0.2 0.4\ a4 (3.43
~0.035 \ The crucial point(which is, finally, the most important new

information obtained by the 2PN and 3PN orbital calcula-
FIG. 1. Dependence of the binding enems: (£,q./M)—1 of tions) is that the 2PN and 3PN additional terms to the radial

the LSSO on the effective spin parameder S.«/M?2 (taken with functionAEN () have bothpositivecoefficients. This means
the sign of co®), ). We consider an equal-mass system with a typi- that, even before the addition of the effect of spivhich
cal misalignment angle cags= =+ 1/y/3. All three curves used the

Paderesummed effective-one-body approach. The lower curves use

a 3PN-level Hamiltonian: the lowest one uses=0= w2’ [10],
while the middle one usas,= —2.365= w°" [17]. The upper curve
usesws= —9.344= w} , which is(essentially equivalent to using a

2PN-level Hamiltoniar 8].

Hactually, as far as we know, the Kerr limit of E43.39 has
never been written down before. Usual treatmébfg use the more
complicated effective radial potentidV,(r,L,,Q). Anyway, the
physics is the same, but it is more cleanly presented in(E§9.

124013-16



COALESCENCE OF TWO SPINNING BLACK HOLES .. PHYSICAL REVIEW D 64 124013

leads to a+ a2u? additional term inA(U), corresponding to  representative of the binding of typical LSSO’s around typi-
effect of non-linear orbital interactions for comparable =1 (i-€.,in more invariant language, whev0) and when
masses iérepulsive”, i.e., it corresponds to a partial screen-a<1, the LSSO is, in general, moderately perturbed away

ing of the basic Schwarzschild attractive term-20=1  from the Schwarzschild valug so=6 and its binding is cor-
—2GM/c?r by the addition of repulsive terms+v/r3 and ~ respondingly moderately different from its Schwarzschild
+ vir®. Now, paradoxically, the addition of a repulsive term limit esgq~—0.014298,. The present work has shown
leads to a more tightly bound LSSO becauseléiss attrac-  that the location of the LSSO's for binary spinning holes can
tive, but still attractive™? radial functionA(0,32=0) will be € rather simply obtained, in the EOB approach, by balanc-

. . S : ) ing in the specific way of E(3.39 the centrifugal effect of
able to “hold” a particle in spherical orbit down to lawer the orbital angular momentum against the overall attractive

orbit. I_n other words, when a radial potermal becomes I,eS%ﬁect of gravity, but with the critical addition of the 2PN and
attractive, its LSSO gets closer to the horizon, and the b'”dBPN repulsive terms, of the spin-quadratic repulsive term,

ing energy of the LSSO becomes more negative. This beindy of the indefinite-spin effect of the spin-orbit interaction.
said, one understands immediately the additional effects due

to the spin interaction. There are basically two such effects:

(a) a linear “spin-orbit” effect linked to the+ épl_sz term in D. Expected spin of the hole formed by the coalescence

Eq. (3.39 (with a,=acosfs), and (b) a non-linear spin- of wo spinning holes

quadratic modification of the metric coefficient, i.e., the ad- The last topic we wish to discuss concerns the expected
ditional +2a202 term in A(0,32) [or in Ac(U)=1—20  result of the coalescence of two holes. In particular, we are
interested in estimating the maximal spin that the final hole,
resulting from the coalescence of two spinning holes, might
have. It was estimated [®,11] (by using the EOB approath
that the coalescence of two non-spinning holes of the same
massm; =m,= M/2 leads(after taking into account the ef-

+a?u?]. The crucial points are thail) when a, <0, i.e.,
c0s6, s<0 (coarse antialignment of angular momentae
dominant linear spin-orbit coupling iattractive and there-
fore pushes the LSSQpwards towards a less bound orbit,

\;V:'Ielé? V&"r]o?::r?; %’O'tﬁ"tﬁgsﬂkazgr (c;ogrrfgrglltlgr::rgenlt.nof fect of gravitational radiation on the orbital evolution and on
gu ! P! ' UPING  the loss of energy and angular momenjumthe formation

+épl_f1_2 and the spin-quadratic additional terma®u® are  of 4 rotating black hole of magdd g=(1— &,4)0.976M and
B e " pArameteiy 0.0 (we have incuded  fctr 1
’ ' &4 1N Mpy to take into account the energy loss during the

whena,>0, all the new effectéthe v-dependent non-linear ring-down. Ref.[11] found &,4=0.7%). The fractional en-
orbital interactions and the spin effectiend in the same ergy 0.976-1=—0.024 roughly corresponds to theadia-
direction: towards a closer, more bound orbit. As the eXiS'baticaIIy estimaterd LSO binding energy 0.015 in the
tence of a LSSO is due to a delicate balance between thgpn_pased estimate 68]) minus the energy per unit mass
aFtractive gravitational effe_cts and the usual repullsfv:en— radiated during the plunge~(—0.007[11]). We shall leave
trifugal”) effect of the orbital angular momentufhe., the (5 f,ture work a similar estimate, for the 3PN-plus-spin case,
term + 120 +L%/r? in Eq. (3.39], when several attractive of the amount of energy emitted in GW. We wish here to

effects combine their action, they start having a large effeciocus on the issue of the spin of the final hole. The above
on the binding of the LSSO. This is well known to be the 5 e éBH:O-go is rather close to the maximal Va@%ax

case for circular, equatorial, corotating,= +a) orbits of a =1 and there arises the question of whether an EOB treat-
test particle in Kerr, which feature, in the case of an extremenent of the coalescence of two spinning holes might not

Kerr (a=1) an LSO atr=1, with u-fractional binding formally predict a final value ofigy larger than one. By
(Ee— p)/ w=1/\/3—1=—0.42265 [corresponding toe  “EOB treatment” we mean here a completed version of the
=p(Eey— u)/ w=—0.105664]. It is also well known that, EOB approach(as in[9] at the 2PN, non-spinning level
again for extreme Kerr, a counterrotatiray,& —a) circular, ~ obtained by(i) adding a resummed radiation force to the
equatorial orbit in extreme Kerr has a LSO ar9, conservative’ EOB dynamics, andi) pushing the calcula-
with u-fractional  binding  Eeg— w)/ w=5/(3y3)—1 tion of the EOB evolution down to its point of unreliability

= —0.037 750(corresponding t@= —0.009 437 4,,). What (near the lastunstable orbit) where it is matched to a
is less well known is that the extreme binding of4the Circu|ar’p_erturbed-single-black-hole description. A zeroth approxima-

equatorial, corotating LSO around an extreme Kerr is noﬁ'o.n to this compl_eted .EOB approach is th? one we study in
his paper: an adiabatic sequence of solutions of the conser-

vative dynamics, terminated at the LSO. In this approach one
1 , R — . entirely neglects the losses of energy and angular momentum
Remember that we PadesumA(u) andA(u) to ensure that  4ring the plunge phase following the crossing of the LSO.
these functions qualitatively behave like-2u or 1-2u+a’u’  The numbers recalled above show that the energy loss during
(for a®<1), i.e., (generically have a simple zero nea=u"'=1  the plunge(and the ring-dowhis not negligible compared to
++/1—2a?, which means that the effective metric becomes “infi- the binding energy at the LSO. However, for the present
nitely attractive” at some deformed horizon. guestion this is not a problem. What is important is that the
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angular momentum loss during the plunge is a very small i
fraction (a percent or soof the angular momentum at the -0.6 -0.4 -0.2 0.2 0, = 0.6
LSO, and that the final mass of the black hole is nearly equal
to M=m;+m,. This leads us to the following zeroth order cosf;¢=%1 0.9
estimate of the spin parameter of the final hole:
§;=$, BF
. |J| LSSO |J|LSSO m =m,
agH (ErL;? 5 Ve (3.49
DJS
In view of the exact conservation df in our conservative
EOB (rea) dynamics, it is clear that it ik)|~5S° which is a 0.6

good measure of the total angular momentum of the final

spacetime, i.e. of the final black hole.

We are facing here a potential consistency problem of this_ RESTVE

simple-minded EOB treatment: when computing E2}44)
for spinning configurations does one always ggt,<17?
One might worry that, starting with a value ag,~0.80 for

FIG. 2. Approximate prediction for the spin parametayy

of the black hole formed by the coalescence of two
identical spinning holegwith spins parallel or antiparallel to the
orbital angular momentumThe horizontal axis is the effective spin

paramete@= a,= £a,. The three curves correspond to the three

non-spinning holes, the addition of large spins on the holesases plotted in Fig. 1. Note the predictionbust under changing
might quickly exceed the extremal limit. It is plausible that the 3PN contribution to the effective potential by 25tat the final
the most dangerous situation is the “aligned case,” where alfpin parameter is always subextremal, and reaches a maximum

the angular momentd,, S;, andS, are parallel(or antipar-
allel). In this case the numerator of E@@.44) reads

LSSO__ | LSSO
JLSSo-| LSS0y g 1)

(3.495

while the spin parameter of the effective metric reads

~ o kS

= p M2 ao. (346)

X2+§V
174

Here, we consideB,, S,, anda;=S,;/m?, a,=S,/m5 as
algebraic numbergpositive or negative This allows us to

investigate also the case where the spins might be antipar

agy=0.87 fora=+0.3.

effectivea=a,. The result is plotted in Fig. 2 for different
values of the 3PN parameter;.
We see that the final spin parameter reaches a maximum

for a positive value oﬁp, i.e., for parallel(rather than anti-
paralle) spins. For the correct 3PN value,=0 the maxi-

mum value ofagy is comfortably below 1: namelyala*
=0.87, reached fo&p: +0.3. This is not much larger than

the valueagy=0.82 obtained foa,=0. We find that this is
a nice sign of the consistency of the EOB approach. This

fonsistency was net priori evident. In fact forws< —9 one

lel to k. For simplicity, we shall only study the symmetric gets a maximum value afgy slightly larger than 1. In par-

case wheren;=m, andS;=S,. For this case

PO O
a=ap=§al, (3.4
and
. JSso 1) 1. 1. 4.
_ _ LSSO _ LSSO
agy= |\/|2 —ZLZ +§a1—ZLZ +7ap (3.48)

where the dimensionless orbital angular momentim
=L,/uM is related to the dimensionless quantityhen
cosbs=1) I=JKluM=L,/uM appearing in Eq(3.39
through

. — .E
L= ra—o
o

(3.49

It is interesting to note that, even in the case where both
holes are extremeaj=a,=1) the maximum value of the
effective spin parameter &= %< 1. We have numerically

ticular, note that the 2PN treatment of the orbital dynamics
(obtained forws= w} = —9.3439; upper curve in Fig.) Zor-
mally leads to problematic over-extreme values%gﬂ . This

may be interpreted as a confirmation of the need of “repul-
sive” 3PN effects(i.e., wg+9>1). It is (a posteriorl) easy

to understand physically whélBH, after reaching a maxi-
mum, then decreases when one adds more spin on the two
black holes. Indeed, there is here a competition between two
effects: adding spin on the holé¢ise., increasingip) on the

one hand directly contributes to augmentm through the
second term of the right-hand sideHS) of Eq. (3.48), but,

on the other hand, indirectly contributes to reducing the total
J'SSO by reducing:55° (indeed, as we explained above,
positive spin leads to a LSO orbit closer to the horizon, and
therefore with less orbital angular momenturfhe first ef-

fect wins for smallish spins, while the secofwore non-
linean effect wins for larger spins.

IV. CONCLUSIONS

We started by recalling the need of techniques for accel-

investigated the quantigts,, Eq.(3.48), as a function of the  erating the convergence of the post-Newtonih) expan-
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sions in the last stages of the inspiral of binary systems. We Such an increase, though modest, is still a significant frac-
summarized the evidend@able ) showing the remarkable tional modification of the corresponding energy loss pre-
convergence properties of the best current resummation techiicted for non-spinning systemsed=—1.67%M for v,
nique: the effective one-bodyEOB) approach of Refs. =1). In fact, this effect might cause an importdsin the
[8,10]. We showed how to generalize the EOB approach tGirst observations. If the intrinsic spins of the holes ¢an
the case of two spinning black holes with comparable masseg|) take large values, the highest signal-to-noise-ratio events
(v=p/M~1/4). As afirst step towards computing the spin-ij the first years of LIGO observations might select binary
dependent EOB Hamiltonian we constructed an effectiveyysiems with rather large and rather aligned spins. It is there-
metric, which can be viewed either asvedeformation of  ¢5r6 important to include spin effects in the data analysis of
the K_err metric or as a sp|r_1-defor_mat|on .Of then_leformed coalescing black holes. We have argued that, in most cases,
effective meF“C- Th_e eff_ectlvesspln entering this Sdeformedthe simple-minded generalized EOB approach presented here
Kerr me_f_rrl]c IS M3= S_eﬁ=[1.+h;}(m%f/ml_)]51ﬂrl[l+ (M7 hould be a reliable analytical tool for describing the dynam-
gzjzr)n];zn o inealgitr:”(n)plgcrtr;(;anoert e(;I?Nelez(zitilxgs?)ig\-%srb(i)tnceog-) ics of two spinning holes and for computing a catalogue of
gravitational waveforms, to be used as matched filters in the

pling effects, and most of the spin-spin ones, with the rathe . ) ) . )
complex but important 3PN effects, which have been incordetection of GW's. However, it must be admitted that, in the

porated only recently in the EOB approado]. cases where the effective spin vector is coargpbgsitively)

We have also constructed a more complicated modifie@/igned with the orbital angular momentum, and where the
effective Hamiltonian, Eq(2.56), which separately depends spins are so large tha=0.4, the predictions from the
on two (effective) spin vectorsMa,=S,=(1+m,/m;)S;,  above-introduced EOB Hamiltonian start predicting LSSO
+(1+m;/my)S,, and o0=S—Sy=-—3[(m,/m;)S, radii so near the “effective horizon” wherd(r)=0, that
+(my/m,) S,], and which allows @hopefully) more accu- they cannot be quantitatively relied updthough | would
rate representation of spin-spin effects. We recommend thgfill argue that they can be qualitatively trusted, in view of
simultaneous consideration bf.; andH/; to determine the the simple physics they use; see Sec. Il G/e give some
domain of trustability of the presently constructed spin-examples of thatin Table II. In such cases the EOB approach
dependent EOB Hamiltonian. Namely, thnealzf_(Heff) does predict much larger energy Io.sses., possibly larger than

C Ty . . 10%M. In these cases, the uncertainty in the waveform may
and H/,=f(Hg) lead to numerically very similar evolu-

. . . ) L be so large that one may need the type of non-linear filterin
tions, one is entitled to trust them both; while a significant g Y yp g

difference in their predictions sianal breakdown of th search algorithm advocated in REZ]. We wish, however, to
erence €Ir predictions signais a breakdown o eemphasize the differences between our treatment and conclu-
trustability of the simple EOB Hamiltonian proposed here.

) . sjons and those of Flanagan and Hughes. These authors de-
The present paper has only investigated a few aspects fhed the “merger” phase aessentially what comes after

the phy_sics predicted_ by our spin-generalized EOB approacrﬂhe binary system crosses the non-spinning L&@ound

In particular, as a first cut toward understanding the rel'GGM) and they assumed that the signal from the “merger”
evance of our construptlon for grawtanona! Wa(\@W). ob- Pase can only be obtained from numerical relativity. More-
servations we have o_hscu_ssec_j the approximate existence §ver they optimistically assumed th@n all caseg 10%M
“spherical orbits” (orbits with fixed radial coordinate, as in are émitted in GW energy during the merger phase, and 3%
the Kerr metrig gnd we studied the binding energy of t_he during the subsequent ring-down phase. By cont’rast, our
last stable spherical orbitsSSO. A message of this study is treatment is based on the idea that a suitable resummed ver-

Space where one randory varies ail angies and all spin vao" ©f the PN-expanded dynamics, namely the EOB-plus-
P y 9 P adeapproach, can, in most cases, give an analytical handle
ue9, the results are only weakly dependent on the exact nu-

merical values of the 3PN coefficients. Moreover, they ex-o the computation of the inspiral signal down to the spin-
hibit moderate deviations from the non-spinning ¢ modified LSSO(and even during the subsequent plunge, as

. . . discussed for the spinless case[&]). We have argued in
Fig. 1 and Table ). To give a numerical flavor of the effects several ways that the simple EOB Hamiltoni@h4s) gives

of spin we note that, when the projected spin paramafer rejiable answers in most cases, and allows one to analytically
=k-a/M, Eq. (3.4D), is smaller than about 0.2, its effect  control the possible amplificatiofor deamplification, when
on the_fracnonal_bmdmg energhe=(Erea—M)/M] of the ép< 0) in GW energy loss due to spin effects. Moreover, it is
LSSO is, approximately, only in rather extreme cases that we could agree {@thn
LSSO predicting=10%M energy losses. In most other cases, we
100e™""= — 1.43v4(1+0.168,) think that the EOB method provides a reliable basis for com-
- puting families of waveforms that will be useful templates
—0.806v,(1+0.8884)a,, 4.9 for the detection of GW’s. Another difference with] is that
) we have argued, on the basis of definite computations, that
where v,=4v=4mm,/(m; +my)?<1. As in most cases the spin of the final hole will never become nearly extremal
(random angles, random spin-kinetic energiess plausible  (even if the initial spins are extremalThis is important for
that |a,|=a,"™~0.25, we expect that spin effects will only the data analysis of the ring-down signal, because the decay
modify the energy emitted as gravitational waves up to thdime of the least damped quasi-normal-mode starts becoming
LSSO by less than about 0.6%M. large only for near extremal holes.
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Let us emphasize that the present work is only a first stepesummed EOB Hamiltonian. In view of the extreme diffi-
toward an improved analytical understanding of the lastulties involved in the 3PN calculatio42-1§ it would
stages of inspiral motion of two spinning compact objéct. seem hopeless to even mention the 4PN level. But, in fact,
The explicit spin-dependent Hamiltonig@.45 (or, better, the EOB approach itself suggests that the current methods
H/., defined at the end of Sec.) Ihas only taken into ac- used in PN calculations are highly inefficient, and unneces-
count the leading effectén a PN expansionof the spin-  sarily complicated. Indeed, as emphasized1f] the final,
dependent interactions. More work is needed to analyticallgauge-invariant content of the 3PN result is contained in
determine more accurate versions of the EOB Hamiltonianonly three quantities,, bs, andz;, and only one of them,

In particular, it would be interesting to explicitly derive the a,(v), is really important for determining the dynamics of
next-to-leading 1PN) corrections to the EOB spin-orkiand  inspiralling quasi-circular binaries. If one could invent a new
spin-spin interactions. Furthermore, we have only providedapproximation scheme which computes direetly(at 3PN,

a resummation of the conservative part of the dynamicsit might be possible to compute its 4PN counterpag(,v).
There remains the important complementary task of resumdi) is not yet possibldat least as a test of the EOB Hamil-
ming the radiation reaction part. This was dong¢9h using  tonian because numerical computations use as initial data
previous results of7], only for the spinless case. geometrical configurations that do not take into account most

Once this is done, we expect, as in our previous sf@lly  of the crucial physics incorporated in PN calculations. Cur-
that the presence of a LSSO along the sequence of adiabatient numerical computations use somewéthoc“binary-
orbits will be blurred and will be replaced by a continuous black-hole-like” data, often of the restricted spatially confor-
transition between inspiral and plunge. There remains alsoally flat type, without trying to match their initial data to
the task of studying the effects of spin-dependent interactionthe near LSO configurations predicted frgsummey ana-
on the gravitational waveform emitted during the last stagedytical approaches. On the other hand, let us stress that the
of inspiral and during the plung@hat we have not Cons.id.- value of the radial PN-expanded potentiﬁ(a)zl—za
ered herg In other words, one needs to redo, by Co_m_b'n'ng+a3(v)03+a4(v)C|4+ ... crucially depends on the non-
the_ EOE’;} appr((j)_ach W'f-E fres;Jmmehd \I/_esrgonshpfhradlatlgn re{near gravitational interactions linked to tHn%T part of the
2?}“2359&?;?\/\/;3’ \Igal\;-ega:]%gjt r?as Lﬂﬁé,vsvﬂ.lcNg)\{gr?ha?se patial metric, i.e. to its nonconformally flat part, and also to

. . - the non-linear interactions linked to the!l; part of the
r resul Vv he primary importan f the singl o . ; 1T
our result above about the primary importance of the sing égrawtatlonal field momenta. For instance, already at the 2PN

parameter, , combined with the understanding] that the e\ ¢| the truncation of the Einsteinian prediction for the two-
number of “useful” cycles in the GW signal for massive 1,4y hroplem(driven into a close orbit by a long past inter-

binaries is rather small, suggests that a rather small numbef(ion inyolving retarded GW interactionsorresponding to
of “spinning templates” will be really needed in a maiched gificially assuming a conformally flat spatial metric

filter data analysis. On the other hand, we recall that it wa ; PN,y ;
found in [5] that the plunge signalbut not the ring-down %?ﬁ?%fs the physically correct ValLﬁ (v)=2v into

_1 _ ;
one, for stellar mass holeplays a significant role in the data as () =3(18-5v)v [10]. [It also shghtl_y changes the
analysis. energy mag.] For equal-mass systems, this corresponds to

It will also be interesting to see, within the EOB ap- multiplying the positiveas(v) by a factor+2.09375. As we

proach, the extent to which the non-linear spin-dependenq'SCUSSEd above, thigrtificial) increase of the “repulsive

reractons migh, 3 has been recnty SuggdSalead < rocerofhe o near gravtalona) eracions ends
to a chaotic dynamical evolution. e priori suspect that y 9 '

P L . efficient is anyway too small to have a large impact on the
two factors will diminish the significance of such chaotic L ) .
evolutions: (1) they occur only in an improbably small re- IEE; %h%rﬁgaetrr']seflfsé’otrgﬁeftpN:] ﬂ]swngseg?fetiig?é’nc?gnlctself'
gion of phase spacénvolving, in particular, large spins 9 ' ! y

and(2) their effect on the crucial GW phasing is rather small 10 Increase the “repulsive cf;aracter ijOf the PN expansion
It would be very useful to have independent means Oi(ca_used by the neglect of t"'% andwTT-dependent Inter-
testing the accuracy of the EOB approach. At this stage w@ctions persists at the&numerically more important3PN

see only three ways of doing thédieyond the performance evel, _this might explain th? current discrepancy pet_ween
of more internal checks of the robustness of the appr)oachanalyt'cal and numerical estimates of LSO characteristics. In

(i) an analytical calculation of the 4PN interaction Hamil- [2Ct, We note that the initial data taken by a recent attempt
tonian, (i) a comparison between numerical computations[sg] at fulfilling the proposal of8] to start a full numerical
and the EOB results, and/diii ) a comparison between the calculation only at the moment where it is really needed, i.e.,
EOB predictions and the forthcoming GW observatiofis.  &ft€r crossing the LSO, uses LSO initial dd&0] with a

would be important for assessing the convergence of the PN2NMING energye so= E/(n;lpt my) —1=—2.3% which is
38% larger than the valueso=—1.67% obtained at 3PN

(with wg=0) by analytical estimates. Similarly, the LSO or-
3Though, in most of the paper we only spoke of binary blackPital period of the initial data of59] is T, so=35(m; + mg?\l
holes, it should be clarified that our EOB Hamiltonian also applied 60l, which is twice smaller than the 3PN estimakécy
to binary spinning neutron stars or to spinning neutron-star—black=71.2(m; +m,) [10]. These discrepancies between state-of-
hole systems, at least down to the stage where the quadrupole dée-art numerical LSO initial data and state-of-the-art ana-
formation of the neutron star becomes significant. lytical estimates of LSO data are significantly larger than the
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natural “theoretical error bar” on th@éesummeganalytical GW templates(In view of the large dimensionality of the
estimategderived, say, by comparing 2PN estimates to 3PNparameter space of the two spinning hole system, it seems
ones. (See, however, the new numerical approactGfff  hopeless to use only numerical techniques to define a dense
whose LSO data agree well with the 3PN EOB estimatesietwork of templates.

[62].) In our opinion, this makes it urgent for the numerical  Finally, even if no decisive progress is made(©nor (i)
relativity community to develop ways of constructing initial pefore the first sources are detected, there remains the possi-
data that correctly mcorporate the crucial non-linear physicg)jjity that the first observations might confirm the soundness
(linked to theh;™ and '} parts of the metricwhich is taken  of (or suggest specific modifications Jothe EOB-based
into account in PN calculations. If a significant discrepancywaveforms, and thereby facilitate further detections by nar-
remains after this is done, one will be entitled to blame theowing the bank of templates. For instance, one might in-
lack of convergence of the EOB-resummed PN CalCUlationSdude a 4PN contribution- a5(V)U to A(u) as a free pa-

If one finds agreement, this will be a confirmation of the rameter in constructing a bank of templates, and wait until
claim made here that the Pameproved EOB is a reliable | |GO-VIRGO-GEO get high signal-to-noise-ratio observa-

description of the last orbits before coalescence. Once ongons of massive coalescing binaries to determine its numeri-
succeeds in matching analytical and numerical results foga| value.

non-spinning black holes, it will be very interesting to use

numerical data on fast-spinning black holes to refine the

EOB Hamiltonian by_ fitting the yalues of the extr_a param- ACKNOWLEDGMENTS
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