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Numerical testbed for singularity excision in moving black hole spacetimes
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We evolve a scalar field in a fixed Kerr-Schild background geometry to test simple (311)-dimensional
algorithms for singularity excision. We compare both centered and upwind schemes for handling the shift
~advection! terms, as well as different approaches for implementing the excision boundary conditions, for both
static and boosted black holes. By first determining the scalar field evolution in a static frame with a
(111)-dimensional code, we obtain the solution to very high precision. This solution then provides a useful
testbed for simulations in full (311) dimensions. We show that some algorithms which are stable for non-
boosted black holes become unstable when the boost velocity becomes high.
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I. INTRODUCTION

The long-term numerical evolution of black holes is o
of the most important and challenging problems in numer
relativity. Simultaneously, it is a problem for which a sol
tion is very urgently needed; binary black holes are amo
the most promising sources for the gravitational wave la
interferometers currently under development, including
Laser Interferometric Gravitational Wave Observato
~LIGO!, VIRGO, GEO, TAMA and Laser Interferomete
Space Antenna~LISA!, and theoretically predicted gravita
tional wave templates are crucial for the identification a
interpretation of possible signals.

Numerical difficulties arise from the complexity of Ein
stein’s equations and the existence of a singularity inside
black hole~BH!. Numerical simulations based on the trad
tional Arnowitt-Deser-Misner~ADM ! decomposition in 3
11 dimensions, for example, often develop instabilit
@1,2#. The gauge~coordinate! freedom inherent to genera
relativity constitutes a further complication. Singulari
avoiding slicings @3–5# can follow evolutions involving
black holes only for a limited time, since the stretching
time slices typically causes simulations to crash on ti
scales far shorter than the time required for a binary
orbital period.

Recently, there have been several very promising num
cal breakthroughs. Stable formulations of Einstein’s eq
tions using a conformal-tracefree decomposition have b
developed by Shibata and Nakamura@6# and by Baumgarte
and Shapiro@2#. The so-called Baumgarte-Shapiro–Shiba
Nakamura~BSSN! formulation has shown remarkable stab
ity properties when compared to the ADM formulation in
wide range of numerical simulations@7–12#. Also, the devel-
opment of ‘‘singularity excision’’ techniques@13–17#, excis-
0556-2821/2001/64~12!/124011~12!/$20.00 64 1240
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ing the singularity from the computational domain, may
low for long term binary BH evolutions~see @18# for
preliminary results!. There have also been proposals@19–21#
for alternative families of binary initial data based on t
Kerr-Schild form of the Schwarzschild~or Kerr! metric to
represent each of the BHs. The use of Kerr-Schild coo
nates is desirable for the numerical evolution of BHs a
suitable for applying singularity excision techniques beca
the coordinates smoothly penetrate the horizon of the ho
Moreover, they provide a natural framework for constructi
initial data without assuming conformal flatness, essential
representing non-distorted Kerr black holes.

Typically, the numerical grid extends into the black ho
in singularity excision applications. Moreover, the shift ve
tor sometimes becomes larger than unity, so that some fi
difference stencils become ‘‘acausal’’ and therefore unsta
To avoid this problem, ‘‘causal differencing’’@14,16# or
‘‘causal reconnection’’ schemes@22# have been suggeste
~see also@17,23–28#!. Unfortunately, these schemes a
fairly involved and complicated.

Alcubierre et al. @29,30# recently proposed a simple BH
excision algorithm for a non-boosted distorted BH evoluti
which avoids the complications of causal differencing. Th
algorithm is based on the following simplifications:~a! ex-
cise a region adapted to Cartesian coordinates,~b! use a
simple inner boundary condition at the boundary of the
cision zone,~c! use centered differences in all terms exce
the advection terms on the shift, where upwind differenc
along the shift direction is used. Their algorithm is qu
successful and allows for accurate and stable evolution
non-boosted distorted BHs for hundreds of dynamical tim

Here we devise an experiment to test some simple sin
larity excision algorithms for evolving dynamical fields i
numerical 3D black hole spacetimes. Our goal is to identif
©2001 The American Physical Society11-1
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YO, BAUMGARTE, AND SHAPIRO PHYSICAL REVIEW D64 124011
numerical scheme which is simple and stable like the
presented in@29# for non-boosted BHs but can also hand
moving BHs. Our experiment consists of tracking the pro
gation of a scalar field in the fixed background spacetime
a Kerr-Schild BH. By first solving for the evolution in
static frame by means of a 1D code, we obtain the solutio
arbitrary accuracy. We then perform simulations in full 3
for both stationary and boosted Kerr-Schild BHs, using o
1D ‘‘exact’’ results for detailed comparison. We use this te
bed to compare schemes which handle advection term
centered versus upwind differencing. We also run our exp
ment for different implementations of the excision bounda
conditions. Our aim is to find numerical stencils which w
can later adapt to a BSSN scheme for evolving dynam
spacetimes with moving~e.g., binary! BHs. While the prov-
ing ground we construct here employs a fixed backgro
geometry, we feel that it furnishes necessary, if not sufficie
conditions that must be met for a field evolution scheme
any numerical spacetime containing BHs. We provide t
report to convey the utility of this testbed as a quick dia
nostic of alternate differencing stencils and with the ho
that it might prove helpful for other 3D code builders.

Our results show that, in general, an upwind scheme
more stable than a centered scheme. This is consistent
the results of@29#. We also find that a higher resolution
needed for an upwind than for a centered scheme to ach
a desired accuracy, due to the diffusive character of an
wind scheme. We find that the numerical implementat
used in@29# is stable in the non-boosted case but unstable
the boosted case. However, the stability can be restore
using an alternative excision boundary condition which
stable in both the non-boosted and boosted cases. In al
cases studied, the use of a third-order extrapolation cond
at the excision boundary is required for stable runs.

The paper is organized as follows: We describe the K
Schild BH spacetime and the scalar field equation in t
background geometry in Sec. II. Section III is devoted to
discussion of initial data, numerical algorithms, and differe
boundary conditions. We present our 3D numerical resu
and compare them to very accurate 1D results in Sec. IV.
summarize and discuss the implications of our findings
Sec. V. We also include two Appendixes. Appendix
sketches the von Neumann stability analysis of the 1D c
tered and upwind schemes. Appendix B describes the
entz transformation of a scalar wave. Throughout the pa
we adopt geometrized units withG5c51.

II. BASIC EQUATIONS

A. Kerr-Schild form of the Schwarzschild spacetime

The ingoing Kerr-Schild form of the Kerr metric is give
by

ds25~hmn12Hl ml n!dxmdxn ~2.1!

~see @19,31#!, where m,n run from 0 to 3, hmn5diag
(21,1,1,1) is the Minkowski metric in Cartesian coord
nates,H is a scalar function. The vectorl m is null both with
respect tohmn andgmn ,
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hmnl ml n5gmnl ml n50, ~2.2!

and we havel t
25 l i l i . The spacelike hypersurfaces exte

smoothly through the horizon, and gradients near the hori
are well-behaved. Comparing the metric~2.1! with the
‘‘ADM’’ metric typically used in 311 formulations, one
identifies the lapse functiona, shift vectorb i and the spatial
3-metric(3)gi j as

a51/A112Hl t
2,

b i52Hl tl i ,
~2.3!

(3)gi j 5h i j 12Hl i l j .

For the time-independent Schwarzschild spacetime~the
‘‘Eddington-Finkelstein form’’@32#! in Cartesian coordinate
we have

H5M /r ,
~2.4!

l m5~1,xi /r !,

where M is the total mass-energy andr 25(x1)21(x2)2

1(x3)2. The Kerr-Schild metric~2.1! is form-invariant under
Lorentz transformations. Applying a constant Lorentz tra
formationL ~with boost velocityv as specified in the back
ground Minkowski spacetime! to Eq. ~2.1! preserves the
Kerr-Schild form, but with transformed values forH and l m
~see@19#!

x8a5La
bxb,

H~xa!→H~L21a
bx8b!,

~2.5!
l m8 5Ln

ml n~L21a
bx8b!,

gmn8 5hmn12Hl m8 l n8 .

Now let xa andx8b be the coordinates in the lab frameX
and the comoving~with the BH! frame X8. For the
Eddington-Finkelstein system boosted in thexy-plane (v3
50), in the lab frameX we have

r 25g2~v1x̄1v2ȳ!21 x̄21 ȳ21z2,

l t5g@12g~v1x̄1v2ȳ!/r #,

l x5 x̄/r 2v1l t , ~2.6!

l y5 ȳ/r 2v2l t ,

l z5z/r ,

whereg51/A12v2 andv25v1
21v2

2. x̄ andȳ are defined as

x̄[x2v1t andȳ[y2v2t. Under a boost the metric become
explicitly time dependent. Since the boost of the Schwar
child solution merely ‘‘tilts the time axis,’’ we can conside
all the boosted 311 properties at an instantt50, in the
1-2
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NUMERICAL TESTBED FOR SINGULARITY EXCISION . . . PHYSICAL REVIEW D64 124011
frame which sees the hole moving. Subsequent timet simply
offset the solution by an amountvt. With Eqs.~2.6! a andb i
are defined via Eq.~2.3!.

B. The scalar field equation

The field equation for a massless scalar field is

hf50, ~2.7!

which can be expanded as

gmnf ;m;n5
1

A2g
~A2ggmnf ,m! ,n50. ~2.8!

We can decompose this second-order equation into two fi
order-in-time equations by defining the auxiliary variablep
[F ,t2b iF ,i , whereF[rf, obtaining

F ,t5b iF ,i1p,
~2.9!

p ,t5b ip ,i1F.

Here

F52
1

g00S (3)gi j F ,i , j1AiF ,i1Bp1
C

r 2 F D ,

Ai5gim
,m2

2

r
gim~ l m1Vm!1g0mb i

,m1Bb i ,

B5g0m
,m2

2

r
g0m~ l m1Vm!,

C5gmn@3~ l m1Vm!~ l n1Vn!2hmn2VmVn#

2rgmn
,n~ l m1Vm!,

g0mb i
,m5

b i

r S a2~3l t22g!22g23b iVi1
1

l t
D

1
Vi

r
~12a2!, ~2.10!

andVm[g(21,v i) is the 4-vector of the velocityv in Car-
tesian coordinates.

In the comoving~non-boosted! frame, the scalar field
equation~2.7! can be cast into a 1D radial equation whic
for spherical waves, reduces to

S 2~112H !] t8
2

14H] t8] r 81~122H !] r 8
2

2
2

r 8
H] t8

1
2

r 8
H] r 82

2H

r 82D F50. ~2.11!

Equation ~2.11! can again be decomposed into two firs
order-in-time equations
12401
t-

,

F ,t85b r 8F ,r 81p,
~2.12!

p ,t85b r 8p ,r 81 f ,

where

f 5
1

~112H !2 ] r 8
2 F1

2H

r 8~112H !3
] r 8F2

2H

r 8~112H !
p

2
2H

r 82~112H !
F, ~2.13!

b r 85
2H

112H
.

The characteristics@which can be derived from metric Eq
~2.1!# of the scalar field Eq.~2.12! have speeds21 and
(r 822M )/(r 812M ).

In the following sections we solve Eq.~2.9! with a 3D
code and Eq.~2.12! with a 1D code and compare the resul
Since the 1D code can be used with almost arbitrary res
tion, we can effectively compare our 3D results with an ‘‘e
act’’ numerical solution.

III. INITIAL DATA, NUMERICAL ALGORITHMS AND
BOUNDARY CONDITIONS

A. Initial value

As initial data for the scalar field in the comoving fram
of the BH, we choose a spherical Gaussian of widths cen-
tered at radiusr 08

F~0,x8,y8,z8!5expS 2
@r

*
8 ~r 8!2r

*
8 ~r 08!#2

s2 D ~3.1!

where r
*
8 [r 812M ln(r8/2M21) is the tortoise coordinate

~compare@33#!. For all calculations in this paper we choos
r 08510M ands51M . According to Eq.~3.1! F vanishes on
the event horizon. We also assume time symmetry att50

] tF~0,x8,y8,z8!50 ~3.2!

so that

p~0,x8,y8,z8!52b i 8] i 8F~0,x8,y8,z8!. ~3.3!

As the wave packet evolves in time, it splits, with one p
of it propagating outwards towards null infinity and the oth
propagating inwards towards the horizon. Near the horiz
the wave undergoes partial transmission and reflection.
calculate the waveform of the scattered scalar wave as
served at some fixed distance from the BH and compare
3D results with the ‘‘exact’’ 1D waveform.

For the boosted cases, the initial data are different fr
the non-boosted case due to the tilt of axes~see Fig. 1!. The
frame X8(t8,x8) ~comoving with the BH! moves along the
x-axis with a boost velocity relative to the lab frameX(t,x).
1-3
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YO, BAUMGARTE, AND SHAPIRO PHYSICAL REVIEW D64 124011
The initial data inX can be derived by evolving the scal
field in X8, followed by a Lorentz transformation.~Refer to
Appendix B for details.!

B. Differencing scheme

We are looking for simple and robust recipes and focus
in @29#, on the shift terms in the field equation, which w
regard as a generic ‘‘advection’’ terms~terms that look like
b i] i). We apply both centered and upwind schemes to th
advection terms to test their stability. All other derivativ
terms are evaluated using centered differencing.

Consider the gridpoint with array indicesi, j, andk in the
x, y, andz directions, respectively. With centered differen
ing, the first derivative ofF with respect tox at this grid-
point is

~F ,x! i , j ,k5
1

2Dx
@F i 11,j ,k2F i 21,j ,k#. ~3.4!

For the upwind scheme the second-order accurate first
rivative along thex-direction is

~F ,x! i , j ,k52
n1

2Dx
@F i 12n1 , j ,k24F i 1n1 , j ,k13F i , j ,k#,

~3.5!

wheren1 is defined as

n1[
b1

ub1u
5H 1 for b1.0,

21 for b1,0.
~3.6!

We use analogous differencing in they- andz-directions~see
Fig. 2!.

Different schemes can be used inside/outside the e
horizon in each recipe to further isolate where and how
instability arises. In this paper, we consider 4 different re
pes which we call AI, AII, BI, and BII~see Table I!. Recipes
AI, AII, and BII all use the extrapolation inner bounda
condition ~see Sec. III D below!. In recipe AI, the centered
scheme is used for finite differencing on the shift advect
term everywhere. This scheme is stable according to a v
Neumann stability analysis sinceb i is never greater than
unity in the Kerr-Schild metric~refer to Appendix A for a
stability analysis!. In AII, the upwind scheme is used insid

FIG. 1. The initial data in the lab frameX and in the comoving
frameX8. The bold solid line segments represent the wave pac
~initial data! in different frames, the dashed lines indicate the pro
gations of the wave packets in spacetime. The initial data inX ~at
t50) can be obtained by the future and past evolution of the sc
field with the initial data inX8 ~at t850).
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the BH and the centered scheme is used outside the BH
the shift term. In BII, upwind differencing is used ever
where.

Recipe BI, which is based on the implementation of@29#,
differs from the other schemes in its excision boundary c
dition. Alcubierre and Bru¨gmann@29# use a cubic excision
zone and copy the time derivative of every field at a gr
point just inside the excision zone from the neighboring gr
point just outside. Our excision zone is spherical with rad
r 85M ~in the comoving frame!. To generalize the scheme o
@29# we interpolate neighboring gridpoints to the normal
the surface of the excised region. More specifically, fo
gridpoint (i , j ,k) just inside the excised region we take i
nearest neighbors along the coordinate axes away from
center of the black hole, say (i 11,j ,k), (i , j 11,k) and
( i , j ,k11). These three points define a plane, and we in
polate to the intersection of this plane with the normal on
surface of the excised region. If one of these three neighb
is still in the excised region, we project the normal into t
plane spanned by the remaining two coordinate axes, an
the interpolation there; if two of the neighbors are inside
excised region we directly copy the remaining third point.
all three points are inside the excised region we repeat
procedure with the three points (i 11,j 11,k), (i 11,j ,k
11) and (i , j 11,k11); if that is also not successful w
finally copy the point (i 11,j 11,k11). This particular algo-
rithm is only one of many possibilities. We have expe
mented with a number of other schemes, and have found
the stability properties do not depend on the details of t
implementation. Like BII, BI also uses the upwind scheme
compute the shift advection terms everywhere.

ts
-

ar

FIG. 2. Schematic diagram of shift advection stencils in t
computational domain and around an excision zone. The das
circles inside the excision zone are the grid points to which
extrapolated values are assigned by using Eq.~3.7!.
1-4
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TABLE I. Summary of recipes AI, AII, BI, and BII, and their stability properties for the three differ
boosts. The boldface letters denoteC: centered scheme;U: upwind scheme;E: third-order extrapolation
condition; P: copying the time derivative of every field at the boundary from the interpolated value
outside the excision zone along the normal direction. We analyzed the stability of these recipes fo
black holes (v50) and boosts with speedv50.2 andv50.5. Recipe BI, which is based on the impleme
tation of @29# passes the non-boosted case but fails in the boosted cases. Recipe AI passes the non
case and thev50.2 boosted case but fails in thev50.5 case. Recipes AII and BII pass all tests that we h
performed.

recipe advection term advection term inner stable?

outside BH inside BH boundary v50 v50.2 v50.5

AI C C E Yes Yes No
AII C U E Yes Yes Yes
BI U U P Yes No No
BII U U E Yes Yes Yes
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C. Outer boundary conditions

At the outer boundary, we impose an outgoing wav
boundary condition. In this approximation, we assume th
the functions are of the formF5 f (lt2R) ~sinceF5rf),
wherel5(R22M )/(R12M ) is the outgoing characteristic
speed. The valuesf (t1Dt,R) of the grid points at the outer
boundary are updated by using the valuef (t,R2lDt) with
second-order interpolation. In the boosted cases, the cha
teristicsl at the outer boundary are derived from the rel
tivistic addition of the characteristic in the comoving fram
and the boost velocity.

This boundary condition provides a stable outer bounda
provided that the outer boundary is placed at a sufficien
large distance. With the outer boundary at finite radii, as
our cases, some reflected waves are created at the boun
~We find that reflection waves with larger amplitude wi
appear if the true characteristic speedl in f is replaced by 1.!
The amplitude of the reflected wave decreases as resolu
is increased. In boosted cases, the effect of the inaccu
outer boundary condition cannot be ignored as the BH a
proaches the outer boundary. For our tests, however, the
flected waves from the boundary are small perturbations
the field and do not affect the stability of different recipe
only the accuracy.

D. Inner boundary conditions

At the inner boundary we use a singularity excisin
method~see, e.g.@14,16,17,24,34–36#!. In general dynamic
spacetimes, the location of the apparent horizon is not kno
a priori, and must be computed at each time step with
‘‘apparent horizon finder’’~e.g.@37–39#!. This is not the case
for the present static Schwarzschild background since
location of the apparent~and event! horizon is known at all
times@40#. On the other hand, it is not necessary to know t
exact location of the apparent horizon to implement t
singularity-excising method, provided the excision zone
sufficiently small that one can be confident that it lies e
tirely inside the horizon. We choose to excise the region w
radiusr 851M from the center of BH wherer 8 is the radial
distance measured in the comoving frameX8. The simplest
inner boundary condition obtains, by extrapolation, the fie
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variables at gridpoints just inside the masked region fr
gridpoints just outside this region. These values can then
used in a centered evolution scheme to update the field v
ables at gridpoints just outside the excision zone. We h
implemented such a boundary condition using a third-or
extrapolation scheme

f j 2n54 f j26 f j 1n14 f j 12n2 f j 13n , ~3.7!

in all recipes except BI. Herej is a gridpoint just outside the
excised region, and, withn either 11 or 21, j 2n is just
inside~see Fig. 2!. We apply this algorithm along whicheve
axis the second derivative is taken, for example along
x-axis for a second derivative with respect tox. With this
extrapolation, the second spatial derivatives using cente
differencing are second-order accurate. This is equivalen
using a second-order one-sided differencing scheme. T
boundary conditions do not violate causality since no inf
mation is extracted from within the excision zone. This p
scription is simple to implement and does not require spe
assumptions on the behavior of the variables in the proxim
of the excision zone. A similar implementation has proven
be stable for wave propagation in 211 dimensions on a fla
spacetime@35#.

In recipe BI, we generalize the implementation of@29#
and copy the time derivative of every field variable at t
boundary from interpolated values just outside the exci
region as described in Sec. III B. As we will show in Sec. I
this inner boundary condition will produce stable results
the non-boosted BH case, but results in an instability wh
the BH moves and grid points emerging from the excis
zone must be assigned by extrapolation.

E. Extrapolation to newly emerging grid points

We use a second-order extrapolation scheme to set va
at gridpoints that are newly emerging from the excision zo
as the BH travels through the numerical grid. If available,
carry out the extrapolation along thez-axis, because the BH
1-5
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YO, BAUMGARTE, AND SHAPIRO PHYSICAL REVIEW D64 124011
is boosted in thexy-plane, and the extrapolated values alo
the z-direction are least affected by numerical errors fro
previous extrapolations in the evolution. If the points need
for this extrapolation are themselves excised, we instead
erage between extrapolations along thex andy directions or
use only one of the two if the other one is not availab
~because the necessary points are excised!. If neither one is
available we continue through the following hierarchy
preferred extrapolation directions:z, then x and y, then xz
andyz, finally the xy- andxyz-directions. We have experi
mented with other extrapolation prescriptions and ha
found that the stability properties of the code are fairly
sensitive to the details of this scheme.

IV. NUMERICAL RESULTS

We numerically solve both the 1D and 3D scalar wa
equations~2.9! and Eq. ~2.12! using an iterative Crank
Nicholson scheme with two corrector steps@41#. Since the
1D code can be run with an essentially arbitrary number
radial grid points and hence essentially arbitrary accura
we use this solution as the ‘‘exact’’ solution for comparison

We compare the results from the 3D simulations using
four recipes ~see Table I! for both the non-boosted an
boosted cases. There are two subcases of the boosted c
‘‘slow’’ boost speed v50.2 and a ‘‘fast’’ boost speedv
50.5. The results for both boosted cases are summarize
Table I, but we will discuss in detail only thev50.5 boost
case.

In each case, we compare the waveforms with the
result for three uniform grid resolutionsD50.5M , D
50.25M , and D50.125M . We choose a time stepDt
5D/4 in all cases, and assume equatorial symmetry ac
the z50 plane.

In the non-boosted case, the computational domain
32M332M316M (216M,x,16M ,216M,y,16M ,0
,z,16M ). In the v50.5 case, the domain is extended
48M348M324M (220M,x,28M ,224M,y,24M ,0
,z,24M ). A larger spatial domain is needed in the hig
speed case to observe the BH’s motion before it moves ou
the computational domain. In each 3D case the code w
D50.125M resolution is run only tot510M to check its
stability and convergence; the lower resolution non-boos
cases are run untilt5100M , and the lower resolution
boosted cases are run untilt548M .

A. 1D result

We verify the second-order accuracy of our 1D codes
Fig. 3. We compare the amplitude difference between
results observed from the check pointr 514M by continual
doubling of the grid resolution. We present results for rec
AI in the left panel of Fig. 3 and for BII in the right pane
Comparing the scales of ErrDr in the two panels shows tha
while both schemes are second order accurate, the cen
scheme of recipe AI converges much faster than the m
diffusive upwind scheme of recipe BII. We find very simila
results in the 3D codes below.
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B. 3D results in co-moving coordinates

We first study the four recipes AI, AII, BI and BII for the
non-boosted~comoving! case. All four recipes give stabl
results and converge to the 1D result, as shown in Fig. 4.
stability of recipe BI is consistent with the conclusion of@29#
in which the recipe gives a stable and accurate solution
non-boosted distorted BH.

In Fig. 4 the first peak and the first minimum in the wav
form curves are produced by the part of the wave pac
which moves outwards and leaves the computational g
The minimum observed att'10M is a numerical artifact
and converges away for increasing grid resolution. We de
onstrate the second order convergence of the algorithm
the insets in Fig. 4. For the upwind schemes of recipes
and BII the convergence is much slower than for the cente
schemes of recipes AI and AII, as expected from the
results~see Fig. 3!. There are several bumps att'10M , t
'30M , andt'50M . These are the reflection waves comin
from the outer boundaries due to the approximate ou
boundary condition. We find that these bumps can always
diminished significantly by extending the outer boundary
a larger radius and/or increasing the resolution.

FIG. 3. Convergence tests for our 1D evolution calculatio
using recipe AI~left panel! and BII ~right panel!. To demonstrate
second order convergence, we plot the appropriately rescaled fi
difference error ErrDr5FDr /22FDr at the check pointr 514M for
various resolutionsDr .
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FIG. 4. The scalar fieldF as a
function of t at radiusr 514M in
the non-boosted 3D case. In eac
panel, the solid curve is the 1D
solution, while the dotted, dashe
and dot-dashed line are 3D solu
tions computed for grid widthsD
50.125M , D50.25M , and D
50.5M , respectively. We also in-
clude convergence tests for eac
recipe in the insets, where the do
ted line is 163Err0.125M , the
dashed line is 43Err0.25M , and
the dot-dashed line is Err0.25M .
Here the finite difference error is
computed from ErrDx[FDx
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The waveforms in Fig. 4 also show that the upwi
scheme~recipes BI and BII! efficiently eliminates high fre-
quency noise. This property is very helpful in keeping t
code stable, but the solution with low resolution can be v
inaccurate. Therefore, higher resolution and, thus, gre
computing resources are needed~compared to the centere
scheme! to achieve a desired accuracy.

C. 3D results in boosted frames

We now describe the boosted case with the boost sp
v50.5. In this case the BH, initially located in the origin o
the lab frame, is boosted along thex-axis with the boost
velocity v5(0.5,0,0). We stop the evolution when the sep
ration between the center of BH and the boundary is l
than 4M to avoid the BH being too close to the bounda
Since the origin of the lab frame is set such that the posi
boundary of thex-axis is atx528M , the total evolution time
is 24M /0.5548M .

Figure 5 shows the waveforms of the scalar field. T
boosted 1D results are derived from the non-boosted~co-
moving! 1D result with a Lorentz transformation~see Ap-
pendix B!. We observe the scalar waveforms at three ch
points, located at (14M ,0,0), (0,14M ,0), and (214M ,0,0).
In the first column of Fig. 5, there are two peaks in ea
waveform observed at (14M ,0,0). The first peak is the in
coming wave packet, and the second peak is the outg
wave packet. This is more obvious in the 2D snapshots
Fig. 6 ~see also Fig. 1!. The waveforms are masked att
526.3M229.7M in the first column of Fig. 5 because th
excision zone passes over the check point during that ti
The waveforms in the first column have larger amplitu
changes from low resolution to high resolution. The situat
is especially obvious for recipe BII~using the upwind
scheme! in which the peak ofF varies from 0.32 at low
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resolution to 0.55 at high resolution. We restricted the h
resolution run to a computational domain (28M,x
,24M ,216M,y,16M ,0,z,16M ) in order to save
computational resources. Accordingly, no high resolution
sults are available for the check point (214M ,0,0). Figure 5
shows that the 3D results of AII and BII still converge to th
1D solution although the rate of convergence for both reci
is somewhat worse than in the non-boosted case.

Recipe BI produces an instability for boosted BHs. W
believe that this instability arises as a result of combining
simple inner boundary condition of recipe BI with the trea
ment of gridpoints that newly emerge from inside the ex
sion zone. The error expands outward as the BH mov
Physically, nothing can emerge from the BH, but numerica
noise can propagate outward through the event horiz
Since the third-order extrapolation~3.7! condition is equiva-
lent to using a one-sided scheme at the excision bounda
propagates any numerical errorsinwards. We believe that
this extrapolation produces the improved behavior seen
recipe BII. Furthermore, Eq.~3.7! is viable in all cases~non-
boosted and boosted! as long as the excision zone is insid
the event horizon.

AI is stable in thev50.2 case but produces instability i
the v50.5 case. We believe that this instability is aga
caused by the treatment of the grid points emerging fr
inside the excision zone, where numerical errors are allow
to propagate outwards by the centered scheme. The inst
ity can be avoided by using the upwind scheme, wh
propagates the numerical errors inwards~e.g., recipe AII!.

Recipe BII is stable in all the cases. Figure 6 shows
stable evolution of the scalar field with recipe BII. The exc
sion zone can be seen in the snapshots att512M , t516M
and t524M where the residual wave amplitude is seen
hover about the excision zones centered at (x,y)5(6M ,0),
1-7
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FIG. 5. The scalar fieldF as a function of time for a boost withv50.5 for checkpoints at (14M ,0,0), (0,14M ,0), and (214M ,0,0)
~from left to right!. The inset in each panel is the blowup of the waveform for early times. The first and second rows are the res
recipes AII and BII respectively. In each panel, the solid curve is the 1D solution, while the dotted, dashed and dot-dashed lin
solutions for grid resolutionsD50.125M , D50.25M , andD50.5M . In the third column, for checkpoint (214M ,0,0), we only show the
two coarser resolutions.
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(8M ,0), and (12M ,0) before disappearing entirely at lat
time inside the masked region. Recipe AII is also stable in
the cases, although the numerical errors in AII are big
than in BII. We have also confirmed that recipes AII and B
are stable for boosts in off-axis directions by studying
boost ofv50.5 in thev5(0.4,0.3,0) direction.

V. CONCLUSION

We have compared four different numerical recipes
numerically evolving a scalar field in a Kerr-Schild B
spacetime. We have integrated the equations both in com
ing and lab frames. We study the stability and converge
with the goal of identifying simple promising techniques f
more general evolution problems. We used singularity ex
sion and have experimented with the boundary conditions
the excision zone.

Our results show that, in general, an upwind scheme
superior to a centered scheme for maintaining stability. T
is consistent with the results of@29#. We find that higher
resolution is needed for an upwind scheme than for a c
tered one to achieve a desired accuracy due to the diffu
character of an upwind scheme.

As summarized in Table I, two of the four recipes a
stable in all testbed scenarios: recipe AII, in which the u
wind scheme is used on the shift~advection! term only inside
the event horizon, and recipe BII, in which the upwin
scheme is used on the shift term everywhere, as suggeste
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@29#. Both AII and BII use an extrapolation boundary cond
tion for treating the excision zone. However, recipe B
which follows the implementation of@29# and simply copies
time derivatives as opposed to extrapolating at the bound
of the excision zone, fails in the boosted case. The instab
is probably caused by the inner boundary condition and
treatment of the grid points emerging from inside the ex
sion zone. We find that stability requires a higher-order
trapolation condition to update the values of the grid poi
at the boundary of the excision zone when the BH move

Our study may be useful for the numerical evolution
binary BHs. It suggests that a simpler scheme~compared
with the causal differencing schemes! might be implemented
to handle evolution and excision for a moving BH. Our sc
lar field model problem provides necessary criteria for s
bility of a numerical recipe. We are now gearing up to app
these simple but stable numerical recipes to a full dynam
code containing black holes.
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FIG. 6. The snapshots of the scalar field as evolved by recipe BII in the boostedv50.5 case (z50.125M ).
124011-9



e

re

m

or

.

e-
.

ns

ing

ag-

in

YO, BAUMGARTE, AND SHAPIRO PHYSICAL REVIEW D64 124011
APPENDIX A: STABILITY ANALYSIS

To analyze the 1D radial field equation~2.11! for stability,
we simplify it by retaining only the highest order derivativ
term in f in Eq. ~2.12!, i.e.,

F ,t5b rF ,r1p,
~A1!

p ,t5b rp ,r1aF ,rr ,

wherea51/(112H)2.

1. The centered scheme

We use an iterated Crank-Nicholson method with one p
dictor step and two corrector steps to evolve Eq.~A1! ~see
@41#!. To apply a von Neumann stability analysis we assu

F j
n5F̂jneik j Dx,

~A2!
p j

n5p̂jneik j Dx,

and adopt the following finite differencing for the predict
step~‘‘forward time centered space’’!

F ,t→
1

Dt
~F j

n112F j
n!,

p ,t→
1

Dt
~p j

n112p j
n!,

p→p j
n ,

p ,r→
p j 11

n 2p j 21
n

2Dx
5

i sinkDx

Dx
p j

n ,

F ,r→
F j 11

n 2F j 21
n

2Dx
5

i sinkDx

Dx
F j

n ,

~A3!

F ,rr →
F j 11

n 22F j
n1F j 21

n

~Dx!2

5
2

~Dx!2 ~coskDx21!F j
n .

Heren labels the time level andj labels the spatial grid point
Substituting Eqs.~A3! into Eqs.~A1! yields

uj
n112uj

n

Dt
5Au j

n , ~A4!

where

uj
n5S F j

n

p j
n D ,

A5S 2ib r P 1

2aQ 2ib r PD ,
12401
-

e

P5
sinkDx

2Dx
, Q5

coskDx21

~Dx!2 . ~A5!

To find the eigenvaluesl ’s for the matrixA, we require

det~A2lI !50, ~A6!

which gives

~l22ib r P!252aQ, ~A7!

or

l52i
Z

Dt
, ~A8!

where

Z5
Dt

Dx
sin~kDx/2!@b rcos~kDx/2!6Aa#

~A9!

5
Dt

Dx

sin~kDx/2!

~112H !
@2H cos~kDx/2!61#.

Here uZu<1 for the value of the shift (b r,1) and a if
Dt/Dx<1.

For the convenience of analysis, we would like to d
couple the equation set~A4! into two independent equations
By using a suitable coordinate transformationR we can di-
agonalize the matrixA

A85RAR2152i
Z

Dt
I , ~A10!

so that Eq.~A4! decouples into two independent equatio
for the components of the vectoru85Ru,

u8 j
n112uj8

n52iZuj8
n , ~A11!

whereZ takes two different values@i.e., different choices of
sign in Eq.~A9!# for the two different components ofu8.

Now we can use the procedure described in@41# to derive
the spectral radius~amplification factor! j. The first iteration
of the iterated Crank-Nicholson method starts by calculat
an intermediate variable(1)ũ using Eq.~A11!

(1)ũj
n112uj

n52iZuj
n , ~A12!

where we have dropped the prime for convenience. Aver
ing to an intermediate time leveln11/2 yields

(1)ũj
n11/25

1

2
~ (1)ũj

n111uj
n!5~11 iZ !uj

n . ~A13!

This value is now used in the first corrector step,
which (1)ũn11/2 is used on the right-hand side of Eq.~A11!

(2)ũj
n112uj

n52iZ (1)ũj
n11/252iZ~11 iZ !uj

n . ~A14!
1-10
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(2)ũj
n11/25

1

2
~ (2)ũj

n111uj
n!

5~11 iZ2Z2!uj
n . ~A15!

The second~and final! corrector step now uses(2)ũn11/2 on
the right-hand side of Eq.~A11!

uj
n112uj

n52iZ (2)ũj
n11/2

52iZ~11 iZ2Z2!uj
n . ~A16!

Inserting Eq.~A2! we finally find

j5112iZ22Z222iZ3. ~A17!

SinceuZu<1 providedDt/Dx<1, we finduju<1 so that the
centered differencing scheme is stable.

2. The upwind scheme

Here we apply a first-order upwind scheme only to the
shift term. The finite differencing~A3! will not change ex-
cept for the termsF ,r andp ,r , where

F ,r→
F j 11

n 2F j
n

Dx
5SF j

n ,

~A18!

p ,r→
p j 11

n 2p j
n

Dx
5Sp j

n ,

where S5(eikDx21)/Dx. Substituting into Eq.~A1! now
yields

uj
n112uj

n

Dt
5Buj

n , ~A19!

where

B5S b rS 1

2aQ b rSD . ~A20!

With the same argument in the last section Eq.~A19! can be
rewritten as

uj
n112uj

n52Wuj
n , ~A21!

where

W5 iZ2Y,

Y5
Dt

Dx
b rsin2~kDx/2!5

Dt

Dx

2H sin2~kDx/2!

~112H !
, ~A22!

Z5rhs of Eq. ~A9!.
12401
Following the same procedure as in the last section one fin
the spectral radius

j5112W12W212W3, ~A23!

which again satisfiesuju<1 providedDt/Dx<1. The first-
order one-sided scheme is therefore stable as well. For o
second-order one-sided scheme, we must change the fin
differencing in Eq.~A3! to

F r→
2F j 12

n 14F j 11
n 23F j

n

2Dx
,

~A24!

p r→
2p j 12

n 14p j 11
n 23p j

n

2Dx
.

Analytic analysis becomes complicated in this case, so w
rely on empirical results, which again exhibit stability.

APPENDIX B: LORENTZ TRANSFORMATION OF A
SCALAR WAVE

In order to produce the initial data for the boosted cases a
well as the ‘‘exact’’ boosted waveforms to compare with the
3D numerical results, we need to know the transformation o
the scalar wave solution in the 1D static BH background t
the solution as viewed in a frame in which the BH is boosted

Assume a boost velocityv5(v1 ,v2,0). The Lorentz trans-
formation between the comoving frameX8 and the lab frame
X is x8b5Lb

axa, i.e.,

t85gt2gv1x2gv2y,

x85x1
g2v1

g11
~v1x1v2y!2gv1t,

~B1!

y85y1
g2v2

g11
~v1x1v2y!2gv2t,

z85z,

whereg51/A12v2 andv25v1
21v2

2. Sincef is a scalar, it
transforms according toF8(x8b)5F(xa).

For the initial data, we also need to knowp(t50,x) using

]F

]xm 5Ln
m

]F

]x8n
. ~B2!

We obtainp from its definitionp[F ,t2b iF ,i . By using
these formulas we can derive the initial data (t50) and the
1D waveform (t.0) in the all boosted cases.
D
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