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Numerical testbed for singularity excision in moving black hole spacetimes
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We evolve a scalar field in a fixed Kerr-Schild background geometry to test simptd J-8limensional
algorithms for singularity excision. We compare both centered and upwind schemes for handling the shift
(advection terms, as well as different approaches for implementing the excision boundary conditions, for both
static and boosted black holes. By first determining the scalar field evolution in a static frame with a
(1+1)-dimensional code, we obtain the solution to very high precision. This solution then provides a useful
testbed for simulations in full (3 1) dimensions. We show that some algorithms which are stable for non-
boosted black holes become unstable when the boost velocity becomes high.
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[. INTRODUCTION ing the singularity from the computational domain, may al-
low for long term binary BH evolutions(see [18] for
The long-term numerical evolution of black holes is onepreliminary results There have also been proposdls—21
of the most important and challenging problems in numericafor alternative families of binary initial data based on the
relativity. Simultaneously, it is a problem for which a solu- Kerr-Schild form of the Schwarzschiltbr Kerr) metric to
tion is very urgently needed; binary black holes are amongepresent each of the BHs. The use of Kerr-Schild coordi-
the most promising sources for the gravitational wave lasenates is desirable for the numerical evolution of BHs and
interferometers currently under development, including thesuitable for applying singularity excision techniques because
Laser Interferometric Gravitational Wave Observatorythe coordinates smoothly penetrate the horizon of the holes.
(LIGO), VIRGO, GEO, TAMA and Laser Interferometer Moreover, they provide a natural framework for constructing
Space AntenndLISA), and theoretically predicted gravita- initial data without assuming conformal flatness, essential for
tional wave templates are crucial for the identification andrepresenting non-distorted Kerr black holes.
interpretation of possible signals. Typically, the numerical grid extends into the black hole
Numerical difficulties arise from the complexity of Ein- in singularity excision applications. Moreover, the shift vec-
stein’s equations and the existence of a singularity inside theor sometimes becomes larger than unity, so that some finite
black hole(BH). Numerical simulations based on the tradi- difference stencils become “acausal” and therefore unstable.
tional Arnowitt-Deser-Misner(ADM) decomposition in 3 To avoid this problem, “causal differencing[14,16 or
+1 dimensions, for example, often develop instabilities“causal reconnection” schemel22] have been suggested
[1,2]. The gauge(coordinate freedom inherent to general (see also[17,23-2§). Unfortunately, these schemes are
relativity constitutes a further complication. Singularity fairly involved and complicated.
avoiding slicings[3—5] can follow evolutions involving Alcubierre et al. [29,30 recently proposed a simple BH
black holes only for a limited time, since the stretching of excision algorithm for a non-boosted distorted BH evolution
time slices typically causes simulations to crash on timewhich avoids the complications of causal differencing. Their
scales far shorter than the time required for a binary BHalgorithm is based on the following simplification®) ex-
orbital period. cise a region adapted to Cartesian coordinatBs,use a
Recently, there have been several very promising numerisimple inner boundary condition at the boundary of the ex-
cal breakthroughs. Stable formulations of Einstein’s equacision zone(c) use centered differences in all terms except
tions using a conformal-tracefree decomposition have beethe advection terms on the shift, where upwind differencing
developed by Shibata and Nakam(ifd and by Baumgarte along the shift direction is used. Their algorithm is quite
and Shapird2]. The so-called Baumgarte-Shapiro—Shibata-successful and allows for accurate and stable evolution of
NakamuraBSSN formulation has shown remarkable stabil- non-boosted distorted BHs for hundreds of dynamical times.
ity properties when compared to the ADM formulation in a  Here we devise an experiment to test some simple singu-
wide range of numerical simulatiofig—12]. Also, the devel- larity excision algorithms for evolving dynamical fields in
opment of “singularity excision” techniqugd3—-17, excis-  numerical 3D black hole spacetimes. Our goal is to identify a
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numerical scheme which is simple and stable like the one 7"1,0,=9*" ,1,=0, (2.2
presented irf29] for non-boosted BHs but can also handle _
moving BHs. Our experiment consists of tracking the propaand we havelt2=l'li. The spacelike hypersurfaces extend

gation of a scalar field in the fixed background spacetime oémoothly through the horizon, and gradients near the horizon
a Kerr-Schild BH. By first solving for the evolution in a are well-behaved. Comparing the metri2.1) with the
static frame by means of a 1D code, we obtain the solution t6ADM” metric typically used in 3+1 formulations, one
arbitrary accuracy. We then perform simulations in full 3D identifies the lapse functioa, shift vectorg; and the spatial
for both stationary and boosted Kerr-Schild BHs, using our3-metri¢®)g;; as

1D “exact” results for detailed comparison. We use this test-

bed to compare schemes which handle advection terms by a=11+2HIZ,

centered versus upwind differencing. We also run our experi-

ment for different implementations of the excision boundary Bi=2HI;,

conditions. Our aim is to find numerical stencils which we (2.3
can later adapt to a BSSN scheme for evolving dynamical

spacetimes with movinge.g., binary BHs. While the prov- ®gij =7+ 2HIjl; .

ing ground we construct here employs a fixed background L . :
geometry, we feel that it furnishes necessary, if not sufficientr " _the time-independent Schwarzschild spacetiftiee
Eddington-Finkelstein form"32]) in Cartesian coordinates

conditions that must be met for a field evolution scheme in h
any numerical spacetime containing BHs. We provide thigV€ Nave

report to convey the utility of this testbed as a quick diag- H=M/r

nostic of alternate differencing stencils and with the hope ' 2.4

that it might prove helpful for other 3D code builders. l,=(1x/r) '
P ; )

Our results show that, in general, an upwind scheme is
more stable than a centered scheme. This is consistent withhere M is the total mass-energy and = (x)%+ (x?)?
the results of29]. We also find that a higher resolution is + (x3)2. The Kerr-Schild metri¢2.1) is form-invariant under
needed for an upwind than for a centered scheme to achieuerentz transformations. Applying a constant Lorentz trans-
a desired accuracy, due to the diffusive character of an ugormation A (with boost velocityv as specified in the back-
wind scheme. We find that the numerical implementationground Minkowski spacetimeto Eq. (2.1) preserves the
used in[29] is stable in the non-boosted case but unstable irKerr-Schild form, but with transformed values ferandl ,
the boosted case. However, the stability can be restored hgee[19])
using an alternative excision boundary condition which is

stable in both the non-boosted and boosted cases. In all the X’“=A“,3X’B,
cases studied, the use of a third-order extrapolation condition
at the excision boundary is required for stable runs. H(x*)—H(A ™1 5x'#),

The paper is organized as follows: We describe the Kerr- ) . (2.5
Schild BH spacetime and the scalar field equation in this L= A7 (A X P),
background geometry in Sec. Il. Section IIl is devoted to a
discussion of initial data, numerical algorithms, and different g;w= Nuvt 2"”;2' v

boundary conditions. We present our 3D numerical results, Now letx® andx'? be th dinates in the lab frant
and compare them to very accurate 1D results in Sec. IV. We ow letx™anax ™ be the coordinates in the ab frame

summarize and discuss the implications of our findings inand_ the co_moving_(with the BH fra”?e X'. For the
Sec. V. We also include two Appendixes. Appendix A Eddington-Finkelstein system boosted in thg-plane @3

sketches the von Neumann stability analysis of the 1D cen— 0), in the lab frameX we have

tered and upwind schemes. Appendix B describes the Lor-
entz transformation of a scalar wave. Throughout the paper
we adopt geometrized units with=c=1.

r2= 72(0174- UJ)Z+Y2+V2+ z2,

ly=[1— (v x+vy)/r],
Il. BASIC EQUATIONS

=X/t —v4l,, (2.6)
A. Kerr-Schild form of the Schwarzschild spacetime .
The ingoing Kerr-Schild form of the Kerr metric is given ly=ylr—v,ly,
by
l,=2lr,

ds?=(7,,+2HI I, )dx*dx" (2.2 -
wherey=1/\/1-v? andv?=v3+v3. x andy are defined as
(see [19,31])), where u,v run from 0 to 3, 5,,=diag x=x—vt andy=y—uv,t. Under a boost the metric becomes
(—=1,1,1,1) is the Minkowski metric in Cartesian coordi- explicitly time dependent. Since the boost of the Schwarzs-
nates H is a scalar function. The vectdy, is null both with  child solution merely “tilts the time axis,” we can consider
respect top,,, andg,, all the boosted 31 properties at an instarit=0, in the
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frame which sees the hole moving. Subsequent tisimply
offset the solution by an amount. With Egs.(2.6) @ and 3
are defined via Eg(2.3).

B. The scalar field equation

The field equation for a massless scalar field is

d¢=0, (2.7
which can be expanded as
ke - (V—-99""¢ ) ,=0 (2.9
9" ¢, =7—H—-99""¢ ,) ,=0. :
" \/—_g "
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(D’tr:ﬁr,(b’rr+7T,
(2.12
Wyt/:ﬂr W,r’+f!
where

2H 2H

f —_— - ———— 7
r'(1+2H)3 r'(1+2H)

_ 2
= @r2n2 vt

2H

-, 2.1
r'?(1+2H) 13

2H

r’_
We can decompose this second-order equation into two firslg 1+2H°

order-in-time equations by defining the auxiliary variakie
=d ,—p'd;, whered=r ¢, obtaining

=0+
. (2.9
my=pm;+F.
Here
1 . . C
F==—| Oglo; j+A® +Bm+ 5P|,
g " : r
Ai_ [y 2 i,ul Vv Ou i B i
=4 ,u_Fg (p,+ ,u)+g B,M+ ﬁl
0 2 0
B=g% ,— —g%(1,+V,),
C=g""13(1,+V)U,+V,)=n,,~V,V,]
—rg”” (1, +V,),
B 1
go”ﬁ',fT a2(3|t—27)—27—3ﬂ'Vi+H
Vi
+T(l—a2), (2.10

andV,=vy(—1y;) is the 4-vector of the velocity in Car-
tesian coordinates.
In the comoving(non-boosted frame, the scalar field

equation(2.7) can be cast into a 1D radial equation which,

for spherical waves, reduces to
2 2 2
—(1+2H)(9t,+4Hﬁt,a,,+(1—2H)(9r,—r—,Hat,

2 2H
+ = Hay——

& =0.
r r'?

(2.12)

The characteristicfwhich can be derived from metric Eq.
(2.1)] of the scalar field Eq(2.12 have speeds-1 and
(r'=2M)/(r’'+2M).

In the following sections we solve E@2.9 with a 3D
code and Eq(2.12 with a 1D code and compare the results.
Since the 1D code can be used with almost arbitrary resolu-
tion, we can effectively compare our 3D results with an “ex-
act” numerical solution.

IIl. INITIAL DATA, NUMERICAL ALGORITHMS AND
BOUNDARY CONDITIONS

A. Initial value

As initial data for the scalar field in the comoving frame
of the BH, we choose a spherical Gaussian of widthen-
tered at radius

’ N N2
q)(o,x',y’,z')=exp(—[r*(r) :*(rO)]

(3.9

o

wherer, =r'+2M In(r'/2M —1) is the tortoise coordinate
(compare 33]). For all calculations in this paper we choose
ro=10M ando=1M. According to Eq(3.1) ® vanishes on
the event horizon. We also assume time symmetity=ad

a®(0x'y',2')=0 (3.2

so that

m(0x',y' 2 )=—B" 3, d0x"y",z). (3.3

As the wave packet evolves in time, it splits, with one part
of it propagating outwards towards null infinity and the other
propagating inwards towards the horizon. Near the horizon,
the wave undergoes partial transmission and reflection. We
calculate the waveform of the scattered scalar wave as ob-
served at some fixed distance from the BH and compare the
3D results with the “exact” 1D waveform.

For the boosted cases, the initial data are different from
the non-boosted case due to the tilt of akese Fig. 1. The

Equation (2.11) can again be decomposed into two first- frame X’(t’,x’) (comoving with the BH moves along the

order-in-time equations

x-axis with a boost velocity relative to the lab fraét,x).
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shift vecter

FIG. 1. The initial data in the lab fram¥ and in the comoving
frameX’. The bold solid line segments represent the wave packets ‘excision
(initial datg in different frames, the dashed lines indicate the propa- - zone
gations of the wave packets in spacetime. The initial dat4 (at t
t=0) can be obtained by the future and past evolution of the scalar
field with the initial data inX’ (att’=0).

The initial data inX can be derived by evolving the scalar
field in X', followed by a Lorentz transformatioiRefer to
Appendix B for details.

4 boundary points
O centered scheme
[Jupwind scheme

B. Differencing scheme

We are looking for simple and robust recipes and focus, as
in [29], on the shift terms in the field equation, which we

regard as a generic “advection” ternerms that look like FIG. 2. Schematic diagram of shift advection stencils in the
B'd;). We apply both centered and upwind schemes to thesgomputational domain and around an excision zone. The dashed
advection terms to test their stability. All other derivative circles inside the excision zone are the grid points to which the
terms are evaluated using centered differencing. extrapolated values are assigned by using (Bd).

Consider the gridpoint with array indicésj, andk in the
X, y, andz directions, respectively. With centered differenc- the BH and the centered scheme is used outside the BH for
ing, the first derivative ofP with respect tox at this grid-  the shift term. In BIl, upwind differencing is used every-

point is where.
Recipe BI, which is based on the implementatiori 2],
d ) Lt d =D 34 differs from the other schemes in its excision boundary con-
( vX)':l'k_zAx[ 10k~ Pizaj k- (34 dition. Alcubierre and Brgmann[29] use a cubic excision

) ] zone and copy the time derivative of every field at a grid-
For the upwind scheme the second-order accurate first deyint just inside the excision zone from the neighboring grid-

rivative along thex-direction is point just outside. Our excision zone is spherical with radius
. r’=M (in the comoving framk To generalize the scheme of
(D )i jk=— Xl)([q>i+2h’j’k_4q>i+y1’j’k+ 3D; 4], [29] we interpolate neighboring gridpoints to the normal on

the surface of the excised region. More specifically, for a
(3.9 gridpoint (i,j,k) just inside the excised region we take its

where, is defined as nearest neighbors along the coordinate axes away from the
center of the black hole, sayi{1,,k), (i,j+1k) and
Bt 1 for p*>0, (i,j,k+1). These three points define a plane, and we inter-
=717 1 (3.6 polate to the intersection of this plane with the normal on the
| B 1 for pi<o.

surface of the excised region. If one of these three neighbors

We use analogous differencing in ti#eandz-directions(see s still in the excised region, we project the normal into the
Fig. 2. plane spanned by the remaining two coordinate axes, and do

Different schemes can be used inside/outside the eveithe interpolation there; if two of the neighbors are inside the
horizon in each recipe to further isolate where and how angxcised region we directly copy the remaining third point. If
instability arises. In this paper, we consider 4 different reci-all three points are inside the excised region we repeat the
pes which we call Al, All, Bl, and Bli(see Table). Recipes procedure with the three points {1,j+1k), (i+1,,k
Al, All, and BIl all use the extrapolation inner boundary +1) and {,j+1k+1); if that is also not successful we
condition (see Sec. Il D beloy In recipe Al, the centered finally copy the point {(+1,j + 1 k+1). This particular algo-
scheme is used for finite differencing on the shift advectiorrithm is only one of many possibilities. We have experi-
term everywhere. This scheme is stable according to a vormented with a number of other schemes, and have found that
Neumann stability analysis singg' is never greater than the stability properties do not depend on the details of this
unity in the Kerr-Schild metrigrefer to Appendix A for a implementation. Like BllI, Bl also uses the upwind scheme to
stability analysig In All, the upwind scheme is used inside compute the shift advection terms everywhere.
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TABLE I. Summary of recipes Al, All, Bl, and Bll, and their stability properties for the three different
boosts. The boldface letters dendie centered schemdy: upwind schemeg: third-order extrapolation
condition; P: copying the time derivative of every field at the boundary from the interpolated value just
outside the excision zone along the normal direction. We analyzed the stability of these recipes for static
black holes ¢ =0) and boosts with spead=0.2 andv =0.5. Recipe BI, which is based on the implemen-
tation of[29] passes the non-boosted case but fails in the boosted cases. Recipe Al passes the non-boosted
case and the=0.2 boosted case but fails in the=0.5 case. Recipes All and BIl pass all tests that we have

performed.
recipe advection term advection term inner stable?
outside BH inside BH boundary v=0 v=0.2 v=0.5
Al C C E Yes Yes No
All C U E Yes Yes Yes
Bl U U P Yes No No
Bl U U E Yes Yes Yes
C. Outer boundary conditions variables at gridpoints just inside the masked region from

At the outer boundary, we impose an outgoing wavedridpoints just outside this region. These values can then be
the functions are of the formb=f(At—R) (since®=r ¢), ables at gridpoints just outside the excision zone. We have
wherex = (R—2M)/(R+2M) is the outgoing characteristic implemen'Fed such a boundary condition using a third-order
speed. The valuef(t+At,R) of the grid points at the outer €Xxtrapolation scheme
boundary are updated by using the vafife, R—\At) with
second-order interpolation. In the boosted cases, the charac- fi_,=4f—6f; ,+4f, ,,—f.3,, (3.7
teristics\ at the outer boundary are derived from the rela-
tivistic addition of the characteristic in the comoving frame
and the boost velocity. - . in all recipes except Bl. Hergis a gridpoint just outside the

This boundary condition provides a stable outer boundargycised region, and, witr either +1 or —1, j— v is just
provided that the outer boundary is placed at a sufficientlyqjge see Fig. 2. We apply this algorithm along whichever
large distance. With the outer boundary at finite radii, as INyvis the second derivative is taken, for example along the

our cases, some reflected waves are created at the bounda}g)éxis for a second derivative with respect xoWith this

(We find that reflection waves with larger amplitude will extrapolation, the second spatial derivatives using centered

appear if t_he true characteristic speeih f is replaced by 3. . differencing are second-order accurate. This is equivalent to
The amplitude of the reflected wave decreases as resolution .

is increased. In boosted cases, the effect of the inaccuraEbS'ng a seconQ—_order one-s@ed d|fferenc!ng ;cheme.-These
outer boundary condition cannot be ignored as the BH ap® oundary conditions do not violate causality since no infor-
proaches the outer boundary. For our tests, however, the r81ation is extracted from within the excision zone. This pre-
flected waves from the boundary are small perturbations ofC'iPtion is simple to implement and does not require special

the field and do not affect the stability of different recipes, 25SUmptions on the behavior of the variables in the proximity
only the accuracy. of the excision zone. A similar implementation has proven to

be stable for wave propagation int2l dimensions on a flat
spacetimg 35].

In recipe Bl, we generalize the implementation [@B)]

At the inner boundary we use a singularity excisingand copy the time derivative of every field variable at the
method(see, e.9[14,16,17,24,34—36 In general dynamic boundary from interpolated values just outside the excised
spacetimes, the location of the apparent horizon is not knowregion as described in Sec. 11l B. As we will show in Sec. IV,
a priori, and must be computed at each time step with anhis inner boundary condition will produce stable results in
“apparent horizon finderfe.g.[37-39). This is not the case the non-boosted BH case, but results in an instability when
for the present static Schwarzschild background since théhe BH moves and grid points emerging from the excision

location of the appareriand event horizon is known at all  zone must be assigned by extrapolation.
times[40]. On the other hand, it is not necessary to know the

exact location of the apparent horizon to implement the

singularity-excising method, provided the excision zone is E. Extrapolation to newly emerging grid points

sufficiently small that one can be confident that it lies en-

tirely inside the horizon. We choose to excise the region with We use a second-order extrapolation scheme to set values
radiusr’=1M from the center of BH where’ is the radial  at gridpoints that are newly emerging from the excision zone
distance measured in the comoving fraXe The simplest as the BH travels through the numerical grid. If available, we
inner boundary condition obtains, by extrapolation, the fieldcarry out the extrapolation along tlzeaxis, because the BH

D. Inner boundary conditions
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is boosted in thexy-plane, and the extrapolated values along 0.075
the z-direction are least affected by numerical errors from
previous extrapolations in the evolution. If the points needed
for this extrapolation are themselves excised, we instead av-
erage between extrapolations along xhendy directions or

use only one of the two if the other one is not available
(because the necessary points are exgidédeither one is
available we continue through the following hierarchy of
preferred extrapolation directiong; thenx andy, thenxz
andyz, finally the xy- andxyzdirections. We have experi-
mented with other extrapolation prescriptions and have
found that the stability properties of the code are fairly in-
sensitive to the details of this scheme. —0.075 5 10 15

Em,=®, ,-®,

IV. NUMERICAL RESULTS 04

We numerically solve both the 1D and 3D scalar wave
equations(2.9) and Eq.(2.12 using an iterative Crank-
Nicholson scheme with two corrector stefgil]. Since the
1D code can be run with an essentially arbitrary number of
radial grid points and hence essentially arbitrary accuracy,
we use this solution as the “exact” solution for comparisons.

We compare the results from the 3D simulations using the
four recipes(see Table )l for both the non-boosted and
boosted cases. There are two subcases of the boosted case:
“slow” boost speedv=0.2 and a “fast” boost speed !

- Erry 00 X 16
=0.5. The results for both boosted cases are summarized in f’ — ErrmerM
Table I, but we will discuss in detail only the=0.5 boost -0.4 - ! ‘
case. 0 5 10 15
In each case, we compare the waveforms with the 1D t/M

result for three uniform grid resolutiond =0.5M, A FIG. 3. Convergence tests for our 1D evolution calculations,
=0.25, and A=0.123M. We choose a time step\t  gjng recipe Al(left pane) and BIl (right pane). To demonstrate
=A/4 in all cases, and assume equatorial symmetry acrosgcond order convergence, we plot the appropriately rescaled finite
the z=0 plane. difference error Ef;,=®,,,— ®,, at the check point=14M for

In the non-boosted case, the computational domain igarious resolutiongr.

32M X 32M X 16M (—16M<x<16M,—16M<y<16M,0
<z<16M). In thev=0.5 case, the domain is extended to B. 3D results in co-moving coordinates
48M X 48BM X 24M  (—20M <x<28M, —24M <y<24M,0 We first study the four recipes Al, All, Bl and BII for the

<Z<24M). A larger spatial domami IS needeq in the high on-boostedcomoving case. All four recipes give stable
speed case to observe the BH's motion before it moves out Qb ts and converge to the 1D result, as shown in Fig. 4. The
the computational -domam. In each 3D case the codg W'tgtability of recipe Bl is consistent with the conclusion29]
A=0.123/ resolution is run only td=10M to check its j, \hich the recipe gives a stable and accurate solution in a
stability and convergence; the lower resolution non-boosteq, hoosted distorted BH.
cases are run unitit=100M, and the lower resolution In Fig. 4 the first peak and the first minimum in the wave-
boosted cases are run urtti 48M. form curves are produced by the part of the wave packet
which moves outwards and leaves the computational grid.
The minimum observed at~10M is a numerical artifact
and converges away for increasing grid resolution. We dem-
We verify the second-order accuracy of our 1D codes inonstrate the second order convergence of the algorithms in
Fig. 3. We compare the amplitude difference between théhe insets in Fig. 4. For the upwind schemes of recipes Bl
results observed from the check point 14M by continual  and Bll the convergence is much slower than for the centered
doubling of the grid resolution. We present results for recipeschemes of recipes Al and All, as expected from the 1D
Al in the left panel of Fig. 3 and for Bll in the right panel. results(see Fig. 3 There are several bumps &t 10M, t
Comparing the scales of Egrin the two panels shows that, ~30M, andt~50M. These are the reflection waves coming
while both schemes are second order accurate, the center)dm the outer boundaries due to the approximate outer
scheme of recipe Al converges much faster than the morboundary condition. We find that these bumps can always be
diffusive upwind scheme of recipe Bll. We find very similar diminished significantly by extending the outer boundary to
results in the 3D codes below. a larger radius and/or increasing the resolution.

A. 1D result
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FIG. 4. The scalar field as a
function oft at radiusr =14M in
the non-boosted 3D case. In each
panel, the solid curve is the 1D
solution, while the dotted, dashed
and dot-dashed line are 3D solu-
tions computed for grid widtha
=0.125, A=0.29M, and A
=0.5M, respectively. We also in-
clude convergence tests for each
recipe in the insets, where the dot-
ted line is 16<Errg 05, the
dashed line is X Erry,g5, and
the dot-dashed line is Ey¥gy -
Here the finite difference error is
computed from Er,=®,,

0 50 100 0 50 100
t/M t/M

The waveforms in Fig. 4 also show that the upwindresolution to 0.55 at high resolution. We restricted the high
scheme(recipes Bl and Bll efficiently eliminates high fre- resolution run to a computational domain—8M <x
quency noise. This property is very helpful in keeping the<24M,—16M<y<16M,0<z<16M) in order to save
code stable, but the solution with low resolution can be verycomputational resources. Accordingly, no high resolution re-
inaccurgte. Therefore, higher resolution and, thus, greatejy|ts are available for the check point {4M,0,0). Figure 5
computing resources are needesdmpared to the centered ghows that the 3D results of All and Bl still converge to the

schemg to achieve a desired accuracy. 1D solution although the rate of convergence for both recipes
. is somewhat worse than in the non-boosted case.
C. 3D results in boosted frames Recipe Bl produces an instability for boosted BHs. We

We now describe the boosted case with the boost spedeelieve that this instability arises as a result of combining the
v=0.5. In this case the BH, initially located in the origin of simple inner boundary condition of recipe Bl with the treat-
the lab frame, is boosted along tlxeaxis with the boost ment of gridpoints that newly emerge from inside the exci-
velocity v=(0.5,0,0). We stop the evolution when the sepa-sion zone. The error expands outward as the BH moves.
ration between the center of BH and the boundary is les®hysically, nothing can emerge from the BH, but numerically
than 4M to avoid the BH being too close to the boundary. noise can propagate outward through the event horizon.
Since the origin of the lab frame is set such that the positiveSince the third-order extrapolatidB.7) condition is equiva-
boundary of thec-axis is atx=28M, the total evolution time lent to using a one-sided scheme at the excision boundary, it
is 24M/0.5=48M. propagates any numerical errorsvards We believe that

Figure 5 shows the waveforms of the scalar field. Thethis extrapolation produces the improved behavior seen in
boosted 1D results are derived from the non-boogted  recipe BIl. Furthermore, E43.7) is viable in all casegnon-
moving 1D result with a Lorentz transformatiofsee Ap- boosted and boostg@s long as the excision zone is inside
pendix B. We observe the scalar waveforms at three checlthe event horizon.
points, located at (1M,0,0), (0,1#M,0), and (- 14M,0,0). Al is stable in thev =0.2 case but produces instability in
In the first column of Fig. 5, there are two peaks in eachthe v=0.5 case. We believe that this instability is again
waveform observed at (M,0,0). The first peak is the in- caused by the treatment of the grid points emerging from
coming wave packet, and the second peak is the outgoinigside the excision zone, where numerical errors are allowed
wave packet. This is more obvious in the 2D snapshots o propagate outwards by the centered scheme. The instabil-
Fig. 6 (see also Fig. 1 The waveforms are masked at ity can be avoided by using the upwind scheme, which
=26.3—29.™ in the first column of Fig. 5 because the propagates the numerical errors inwafdgy., recipe Al).
excision zone passes over the check point during that time. Recipe Bll is stable in all the cases. Figure 6 shows the
The waveforms in the first column have larger amplitudestable evolution of the scalar field with recipe BIl. The exci-
changes from low resolution to high resolution. The situationsion zone can be seen in the snapshots=t2M, t=16M
is especially obvious for recipe Bllusing the upwind andt=24M where the residual wave amplitude is seen to
schemeg in which the peak of® varies from 0.32 at low hover about the excision zones centeredxay = (6M,0),
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All
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04 -

0 25 50 0 25 50 0 25 50
t/M t/M t™M

FIG. 5. The scalar fieldb as a function of time for a boost with=0.5 for checkpoints at (1,0,0), (0,1M,0), and (- 14M,0,0)

(from left to righd. The inset in each panel is the blowup of the waveform for early times. The first and second rows are the results for
recipes All and BIl respectively. In each panel, the solid curve is the 1D solution, while the dotted, dashed and dot-dashed line are 3D

solutions for grid resolutiondA =0.125M, A=0.25M, andA=0.5M. In the third column, for checkpoint<{14M,0,0), we only show the
two coarser resolutions.

(8M,0), and (121,0) before disappearing entirely at later [29]. Both All and BIl use an extrapolation boundary condi-
time inside the masked region. Recipe All is also stable in altior) for treating 'ghe excision. zone. However, recipg BI,
the cases, although the numerical errors in All are biggewhich follows the implementation ¢29] and simply copies

than in BIl. We have also confirmed that recipes All and Bl time derivatives as opposed to extrapolating at the boundary
are stable for boosts in off-axis directions by studying aof the excision zone, fails in the boosted case. The instability

boost ofv=0.5 in thev=(0.4,0.3,0) direction. is probably caused by the inner boundary condition and its
treatment of the grid points emerging from inside the exci-
sion zone. We find that stability requires a higher-order ex-
trapolation condition to update the values of the grid points
We have compared four different numerical recipes forat the boundary of the excision zone when the BH moves.
numerically evolving a scalar field in a Kerr-Schild BH  Our study may be useful for the numerical evolution of
spacetime. We have integrated the equations both in comofinary BHs. It suggests that a simpler schetaempared
ing and lab frames. We study the stability and convergenc¥ith the causal differencing schemesight be implemented
with the goal of identifying simple promising techniques for {0 handle evolution and excision for a moving BH. Our sca-
more general evolution problems. We used singularity excil" field model problem provides necessary criteria for sta-
sion and have experimented with the boundary conditions fopIIIty of_a numerical recipe. We_ are now gearing up to apply
the excision zone. these S|mpl_e_but stable numerical recipes to a full dynamical
Our results show that, in general, an upwind scheme i€°d€ containing black holes.
superior to a centered scheme for maintaining stability. This
is consistent with the results ¢29]. We find that higher ACKNOWLEDGMENTS
resolution is needed for an upwind scheme than for a cen- It is a pleasure to thank M. Saijo and M. Duez for many
tered one to achieve a desired accuracy due to the diffusivieelpful discussions. This work was supported in part by NSF
character of an upwind scheme. Grants PHY 99-02833 and PHY 00-90310, and NASA
As summarized in Table I, two of the four recipes areGrants NAG 5-10781 and NAG 5-8418 at the University of
stable in all testbed scenarios: recipe All, in which the upAllinois at Urbana-ChampaigfUIUC). Much of the calcula-
wind scheme is used on the shidvection term only inside  tion was performed at the National Center for Supercomput-
the event horizon, and recipe BIl, in which the upwind ing Applications at UIUC. H.J.Y. acknowledges the support
scheme is used on the shift term everywhere, as suggested bf/the Academia Sinica, Taipei.

V. CONCLUSION
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t=0M t=24M

FIG. 6. The snapshots of the scalar field as evolved by recipe Bll in the bowst8db case £=0.125M).
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APPENDIX A: STABILITY ANALYSIS
To analyze the 1D radial field equatié®.11) for stability,

we simplify it by retaining only the highest order derivative

terminfin Eq. (2.12), i.e.,
b =B+,
(AL)
7T|t:Br7T,r+a(D,rr )

wherea=1/(1+2H)2.

1. The centered scheme

We use an iterated Crank-Nicholson method with one pre-

dictor step and two corrector steps to evolve Efl) (see

PHYSICAL REVIEW D64 124011

B sinkAXx B coskAx—1 A5
= 2ax 0 Q7 (Ax)Z (A5)

To find the eigenvaluek’s for the matrixA, we require

[41]). To apply a von Neumann stability analysis we assume

—d ikjA
D= gnelkiax
(A2)

77-;": ﬂ_gnelk]Ax,

and adopt the following finite differencing for the predictor

step(“forward time centered space”

1
® i (O] -0]),

1
77,t—>A_t(7T?+1_7T?),

n

T,

w1~y i sinkAx

T T 2Ax Ax
© <I>}‘+1—CDJ°,1_ i sinkAx(D
oA Ax N
n n n (AS)
j+1_2(Dj+(I)j—1
T (AX)Z
— 2 kA n
= W(COS X—l)q)j .

Heren labels the time level andiabels the spatial grid point.
Substituting Eqs(A3) into Eqgs.(Al) yields

+1
u:Aun (A4)
At I
where
O
J 1
al
2P 1
| 2aQ 2ip'P)’

de(A—\1)=0, (AB)
which gives
(N—2i8"P)?=2aQ, (A7)
or
A=2i é, (A8)
where
zZ= g sin(kAx/2)[ B cog kAx/2) = /a]
(A9)

_AtsinkAX2) g
T Ax (Trzm (R cotkRRELL

Here |Z|<1 for the value of the shift #<1) and a if
At/Ax=<1.

For the convenience of analysis, we would like to de-
couple the equation séf4) into two independent equations.
By using a suitable coordinate transformati@rwe can di-
agonalize the matriA

z
A'=RAR 1=2i —1,

A (A10)

so that Eq.(A4) decouples into two independent equations
for the components of the vectaf =Ru,

u/nJrl_uj!n:ZiZuj!n,

J (A11)

whereZ takes two different valueg.e., different choices of
sign in Eq.(A9)] for the two different components of .
Now we can use the procedure describef#it] to derive
the spectral radiuG@mplification factoy . The first iteration
of the iterated Crank-Nicholson method starts by calculating

an intermediate variabl€”u using Eq.(A11)
@yt —ul=2izul, (A12)

where we have dropped the prime for convenience. Averag-
ing to an intermediate time level+ 1/2 yields

~ 1o~
W= S(OU Ul = (1+HZ)u]. (AL3)

This value is now used in the first corrector step, in
which Mu"*12 js used on the right-hand side of Ee@11)

@t -yl =2iz MM =2iz(1+iZ)u] . (A14)
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@ygn+ 1/2_ E( (@yn+iy un)
J 2 J ]

=(1+iZ-Z%u). (A15)

The secondand fina) corrector step now use€u"* 2 on
the right-hand side of EQA11)

u]rH—l_ UT: 2iZ (2)ajrl+1/2

=2iZ(1+iZ-ZHu]. (A16)
Inserting Eq.(A2) we finally find
E=1+2iz2—-27°-2iz°%. (A17)

Since|Z|<1 providedAt/Ax<1, we find|&|<1 so that the
centered differencing scheme is stable.

2. The upwind scheme

Here we apply a first-order upwind scheme only to the

shift term. The finite differencingA3) will not change ex-
cept for the termsb , and 7 ,, where

d" . — PN
jt+1 ] _ n
P TSP
(A18)
W?+1_7T;1_S n
T A O

where S=(e'***—1)/Ax. Substituting into Eq.(A1) now
yields

1
u o B A19
where
B'S 1
= 2aQ g's)’ (A20)

With the same argument in the last section EjL9) can be
rewritten as

utt—u=2wa, (A21)
where
W=izZ-Y,
Y= At B'sirt(kAx/2)= At 2H sim(kAx/2) SmZ(kAX/Z), (A22)
AX AX (1+2H)

Z=rhs of Eq. (A9).

PHYSICAL REVIEW D64 124011

Following the same procedure as in the last section one finds
the spectral radius

E=1+2W+2W2+2W8, (A23)

which again satisfiesé|<1 providedAt/Ax<1. The first-
order one-sided scheme is therefore stable as well. For our
second-order one-sided scheme, we must change the finite
differencing in Eq.(A3) to

—d)}‘+2+4d>}‘+1—3<b?
2AX ’

D, —
(A24)
— iyt 4w, =37
2AX '

Ty —

Analytic analysis becomes complicated in this case, so we
rely on empirical results, which again exhibit stability.

APPENDIX B: LORENTZ TRANSFORMATION OF A
SCALAR WAVE

In order to produce the initial data for the boosted cases as
well as the “exact” boosted waveforms to compare with the
3D numerical results, we need to know the transformation of
the scalar wave solution in the 1D static BH background to
the solution as viewed in a frame in which the BH is boosted.

Assume a boost velocity= (v 4,v5,0). The Lorentz trans-
formation between the comoving frarXé and the lab frame
Xis x"P=AP x% ie.,

t'=yt—yv X—yvyy,

!

wmxs YOt
Y+ 1 U1XTUY)— yual,

B1

, (B1)

, Y U2
y :y+ 7+1(U1X+U2y)_'}’U2t,

zZ =1,

where y=1/J1—v? andv?=v3+v3. Since¢ is a scalar, it
transforms according td®’(x’#)=d(x%).
For the initial data, we also need to knaw(t=0x) using

e _ ., 0P 5
axn N (B2

We obtain# from its definition WE(D’t—,Bi(D’i. By using
these formulas we can derive the initial data=Q) and the
1D waveform ¢>0) in the all boosted cases.
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