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Can we live in a self-tuning universe?
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The self-tuning brane scenario is an attempt to solve the cosmological constant problem in the context of
extra dimensions. Rather than making the vacuum energy small, this approach proceeds by removing the
gravitational effect of vacuum energy on the expansion of the universe. Such behavior is only possible through
changing the Friedmann equation of conventional cosmology, and we discuss difficulties in obtaining cosmo-
logical evolution compatible with observation in this context. Specific models considered include a bulk scalar
field coupling to the brane via a conformal transformation of the brane metric, and via a rescaling of the brane
volume element.
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[. INTRODUCTION to the vacuum energy. It is necessary, however, that space-
time respond to at least some sorts of energy density; in
The fact that the observed cosmological constant is mucparticular, the success of big bang nucleosyntheBBN)
smaller than the expected val[e-3] may provide a crucial [12] provides evidence in favor of the standard picture in the
clue in our attempts to understand the nature of spacetiméadiation-dominated era. It is therefore necessary to recover
Most attempts to solve the problem can be characterized & least some portion of conventional cosmology, while re-
making the vacuum energy much smaller than its naturamoving the effects of the cosmological constant.
value. Alternatively, however, we can imagine keeping a In this work we attempt to characterize the empirical chal-
large vacuum energy but changing the gravitational dynamlenges to a successful self-tuning cosmology. In the next sec-
ics in such a way that the vacuum does not act &signifi-  tion we discuss in general how the self-tuning mechanism
canb source of spacetime curvature. Since it is only throughmay be understood in terms of the energy and pressure on
its gravitational influence that the vacuum energy can bdhe brane, pointing out the distinctions with conventional
measured, such an arrangement could reconcile the naiV@iedmann cosmology. We then consider two specific models

estimatesp,,= (10'® GeV)* with the observationally fa- Of self-tuning, and derive effective Friedmann-like equations
vored resultp,,~ (1072 eV)* [4,3]. relating the Hubble parameter to the energy and pressure. In

The idea of brane-worlds and |arge extra dimensi[@js Sec. IV we compare these models with what we know about
opens up a new set of ways to think about the cosmologicdhe universe, and discuss whether they may be brought into
constant problem. In these scenarios, our observed fouRdreement with observation. Although such agreement seems
dimensional theory of gravity is descended from a higherunlikely, we are unable to rule it out entirely.
dimensional embedding, and in principle the resulting dy-
namics can differ dramatically from a straightforward four- Il. THE SECRET OF SELF-TUNING COSMOLOGY
dimensional expectation.

An example of such an altered dynamics is provided by In this section we consider how a theory of gravity may in
the idea of self-tuning brand$,7]. Here, matter fields on a Principle be insensitive to vacuum energy while allowing
three-brane with a single extra dimension are coupled to &ther forms of energy-momentum to influence spacetime cur-
bulk scalar field. With an appropriate choice of couplings,vature. We consider a flat Robertson-Walker metric #13
Minkowskian solutions on the brane can be found with anydimensions,
brane cosmological constant. In this paper, we put aside fun-
damental issues of the feasibility of the self-tuning idea., ds?= —dt?+a2(t)dx?, (1)
the role of singularitiesto concentrate on whether this kind
of scenario can be made compatible with conventional cos- . > .
mology. (See[8,9] for investigati%ns of brane-world cosmol- wher.ea(t) is the scale factor andx® is the flat' Euclldegn
ogy, and[10,11] for studies of the self-tuning scenayio. mefric. An energy-momentum tensor consistent with a

On a self-tuning brane, there is vacuum enefggsen- Robertson-Walker metric will be spatially isotropic, taking
tially the tension of the brangbut the spacetime geometry is the form
nevertheless flat. Somehow, then, the geometry is insensitive

T, =diag —p,p,p.p), )
*Email address: carroll@theory.uchicago.edu wherep is the energy density anglthe pressure. The con-
"Email address: mersini@cibs.sns.it ventional Friedmann equation of general relativity is then
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a\? snxG struction. This is important, as our most precise quantitative
H%=| - =3 P (3 evidence in favor of conventional cosmology comes
a from BBN, which occurs while the universe is

radiation-dominated.Finally, this relation would solve the
cosmological constant problem, Bis=0 whenp= —p.
Unfortunately, we do not have a theory that predicts Eq.
(7). As we shall see below, the specific self-tuning scenarios
we consider lead to additional derivatives of the metric, as
well as explicit dependence on the bulk scalar field, and extra
terms which are quadratic in the energy and pressure. Gen-
erally, it seems unlikely that a theory which did predict a
inear dependence ¢4 on (p+p) would both get the cor-
rect coefficient 2rG (or very close to it and successfully
recover Newton’s lawF=Gmm,/r? in the solar system.
However, this unlikelihood does not seem so great that

where H is the Hubble parameter an@ is the (four-
dimensional Newton’s constant.

In a self-tuning model, it is possible to find a Minkowski-
spacetime solutionH=0) regardless of the value gf,,.
(when all other energy densities vanisglearly, for this to
be possible Eq(3) will have to be modified, either in its
explicit form or in the definition ofp. If, however, we con-
sider theories which arise from varying a specified actio
with respect to the metric tensor to derive gravitational field
equations, the energy density and pressur¢his coordinate
system are defined by

o il oLt L 1 0Lmaner searching for such a theory would be a waste of time.
p To—ZTQ 2q%0 " D—Tl——ZTg Pt
g g g g Ill. SPECIFIC EXAMPLES

(4)

whereg is the absolute value of the determinant of the metric ) )

and £, is the matter Lagrange density. These definitions Ve start with an action of the forij6,7]

do not discriminate between different forms of energy den- _ (5) @

sity; there is no way for the gravitational field to tell the S=S 4,971+ Sl .97 41l ®
difference_between energy density from the vacuum and eN4ere, S is the bulk action and, that of the braneg is a
ergy density from any other source. scalar field in the bulk with interactions on the brane, while

_ How, then, can we modify the theory to allow flat Solu- g s are matter fields confined to the brane. The metric in
tions in the presence of vacuum energy, while remainingpe pulk isg(®)

. ; : sy, and we choose coordinates such that the
sensitive to the influence of other sources on the expansiof 4. .ced metric on the brane is
rate? Given the metril) and energy-momentum tens@,
we seek an equation written in terms @f p, a and its de- g9 =62 5%, . 9)
rivatives(which appear in the curvature tensand possibly prooe
explicit additional fields. Although vacuum energy should The indicesa,b run over {0,1,2,3y} and u,v run over
enter any such equation in the same way as other energy, thg,1,2,3.
vacuum does have a distinguishing characteristic, namely itS The bulk action can be written
equation of state:

A. Setup

M 3
Pvac™ ~ Pvac- 5 Sszf d°x ‘CSIJ d°x Vg > TSR_ a(v¢)2)! (10
With the ingredients at our disposal, this relation suggests a . L ) »
form for a modified Friedmann equation: with « a coefficient which we leave unspecified for the mo-
ment, M5 is the five-dimensional Planck ma#gjs the five-
H2=f(p,p)(p+ p)+other terms, (6) dimensional Ricci scalar, and the brane action is

wheref(p,p) is a well-behaved function g=—p. Such a 5 5 o 4 o
relation would allow for a Minkowski solutionH=0) in the S4:f d X£4:f d°xvg E45(Y):j d™xVg*Ly.

presence of arbitrary vacuum energy. (11
Although Eq.(6) differs from the conventional Friedmann

law, it is not necessarily incompatible with observation. Con-We will leave the actual form of 4(¢,9®, 1) unspecified

sider for example a hypothetical relation in this section, and consider different possibilities in Secs.

H2=27wG(p+p). (7)

The anisotropy spectrum in the cosmic microwave background

o o . (CMB), although it does provide precision constraints on the expan-
rameter will differ by a factor\/§/2~0.87 for a given value sion of the universe, does not do so in a model-independent way.

_Of the_ energy denSIt_y. However, since the scallngi(vﬁlt_h P Since a novel theory of gravity which predicted a different Fried-
is as in the conventional theory, aR@/2 is close to unity, it mann equation could also predict different behavior for the evolu-
would be hard to distinguish between the behavior predicteglon of large-scale density perturbations, it is impossible to compare
by Eg.(7) and the usual Friedmann equation during mattefdirectly a phenomenological relationship such as &j.to CMB
domination. During radiation dominatiom=p/3, and Eq. observations. In any specific full theory, CMB anisotropies are
(7) precisely recovers the conventional expectation con-  likely to provide an interesting test.

During a matter-dominated erg@~=0, and the Hubble pa-
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[l B and 1l C. We will always consider geometries that have
a Z, symmetry with the brane at the fixed point, so that we

need not include a boundary term in the brane action.
The 5-dimensional Einstein’s equations are

Gab=Ms *Tap, (12)
where the energy-momentum tensor is defined by

1 Jc

2—— .
T o

Tap=— 13

We choose the metric

dsfs,= —n%(y,H)dt?+a(y,))dx?+ b2(y,)dy?, (14)

where x={x!,x?,x% are the spatial coordinates along the
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42 12
Ti(js): aa2< % - i—z) 6ij (24)
('ﬁZ ¢12

. (25

T®)=ab? —+
n2

b2

The contribution to the energy-momentum tensor from the

brane will depend on the chosen brane action; in term&,of
defined in Eq(11), we have

(4) s
g N Ly Y
TS = Vﬁ( 9%354—2@) o(y)856,.  (26)

(4)

In addition to Einstein’s equations, we need the equation

brane, ang is the transverse spatial dimension. The Einsteirf motion for ¢. With the action(10), (11), the ¢ equation is

tensor is then

S -a2 . ab n2 all . a!2 a/br 15
0= 2" ab b?la g2 ab]| (15
G =0 (16)
o _3 a’ . a'b an’ L
=3 "3 @ Tan ) 17
o _ a? Zé b a2 Zéb +Zéh .\ bn
17 n2 a b g2 “ab “an bn)V
. a2 Zar/ . nn . a/Z
b2\ “a " n ' 32
a'b’ 2a’n’ b'n’ 18
ab an bn | (18
Gy=0 (19)
o 3 b2[ a é2+ an| a'? a'n’ -
e I R R Tl

. ILs L,
29(Vap) dg’

(27)

since we will be considering brane actions that depeng on
but not its derivatives. The left-hand side is

ILs

Vam:—za@5¢, (28)

yielding an equation of motion

o= L L%y, (29
2ab ag VY

where Z, is defined by Eq(11) and the D’Alembertian on
scalars is given by

e 1 - h+3a+b .
R IR~
1 nl ! b!
+m¢%ﬁ*%“ﬂw- 30

The equations of motion generally involve distributional

The energy-momentum tensor decomposes into contribusources localized on the brane. It is therefore convenient to

tions from the bulk and the brane,

1 (aLs oL
Tap=TO+TW=—2 ( > 2

( + 5M5V) (21
b " b|-
¢ Vo agl®  agpy

The components of the bulk{3) receive contributions only

from the scalar fieldp, given by

(-1)2 ¢/2
G2 L P
Tog =an (nz + 0 (22
TS =2a¢e’ (23)

separate the equations into distinct relations valid in the bulk
and on the brane. The bulk equations are simply the full

equations with distributional sources omitted; they include
the bulk Einstein equations:

é2+'ab n2 arr+a/2 a'b’ - o ) ('JSZ ¢72
a2 ab b?la 42 ab ‘Mg” nZz  p2
(31)

2 a’ a’b+én’ 2a. -
2 " ab Tan) T wmEt? (32
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a2 A b a2 ab an bn The next step is to express the spatial derivatives on the right
el [ —2—2—b +2—+ on hand side of Eq(39) in terms of energy and momentum on
n a a a an n the brane, which requires a specification of the brane La-
2 " " )2 L L L, grangian L. In the original papers on self-tuning branes
il PN b PGl b’n [6,7], the matter Lagrangian was taken to be a cosmological
b* n a2 ab an  bn constant\ times an exponential ap:
_a ¥ ¢'2) @3 L=~ g@e2P\s(y), (40
=—a? =-—
M3 n?  b? with B a coupling constant. In what follows we consider two

o o distinct generalizations of this form to actions with dynami-
b2< a a’ an) a'? a’n’] cal fields: conformal coupling, in which matter fields on the

brane couple exclusively to a rescaled me@g:eﬁd’gﬁfg,
or volume element rescaling, in which the four-dimensional
»? ¢/2) volume element is taken to lx\/g®e?#¢ (and the four-
, (34) dimensional metric is otherwise simply the induced metric
from five dimensions Both approaches reduce to Eg0)
when brane tension is the only contribution to the four-
dimensional action, but give different results for other forms

and the bulk scalar field equation

1 5 h +3é . b 4 of matter.
-5 43—t —
n n a b B. Conformal coupling
1 ! ’ ’ . . . .
. = o'+ FJFSE_ " ¢,} ~0. (35 In this section we consider an action of the form

S=Ss[ ¢,9%1+ Sul v . &g )], (4D
The corresponding equations on the brane can be expressed ) ) ) o .
without explicit 5-functions by integrating them in the vicin- Where the five-dimensional action is as in Ef0), and the
ity of the brane to obtain jump conditiofi§]. Assumingz, ~ four-dimensional action is
symmetry, the jump conditions relate second derivatives with

respect toy to the coefficients ob-function sources. That is, Sy= J’ d°x £,
expressions of the form
7(y) =AS(y) +B 36 - [ @Bt Buaty)
imply, on the brane, ~
1 =f d“X\/Sf(l//i,gW)- (42)
fo=5A, (37) . .
2 Here, i, represents an unspecified set of matter fields, and

. . o the metric to which matter on the brane couples is related to
where a subscript 0 indicates that a quantity is evaluated o

fhe induced metric by a conformal transformation,
the brane by taking the limit ag—0". For the scalar field, y
Egs.(29) and (30) impl ~ 4
gs.(29) and(30) imply 9,.,=¢7g), (43)
by=— 1 0(07_54) . (39  equivalent tol,=e**f(4;,9,,) in the notation defined by
4o |, Eq. (11).

o . . ~Inthis model, test particles on the brane move along geo-
For the metric, it is convenient to express the jump condiesics ofg,,, ; this is the only metric perceived by observers
tions fora, andn, separately for each model, which we do o the brane. It therefore is sensible to define all brane quan-
below. tities in terms of this metric. The energy-momentum tensor

~ To get a Friedmann-like equation on the brane, we conas measured by observers living on the brane takes the form
sider theyy component of Einstein’s equatioii34), evalu-

ated on the bran¢There is nos-function inT,,, so the bulk - 1 9L,
equation(34) holds true on the brane as wé¢NVe can scale

our time coordinate such thay=1, ny=0 (althoughn will
generally vary off the braneWe then have

T,0(y)=—2—F=—. (44)
Vg 79"
The energy density and pressure as seen by brane observers
a ¢ will be, in our coordinate system,
0

bt 2 12 ot
g Qg adg apNg a .,

2+ 2= — g3 (39
IVEA

- =0
a8 a3 afb3 aghy 3Ms b3

p=—9%Tg (45)
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and
p=0"Tu, (46)
so we have
Too=n’e"%p (47
Tij=a%f%ps; . (48)

The energy-momentum tensor
dimensional Einstein’s equations couple is given by(Eq)

Since the brane action depends gp, only throughg v
=ef?g,,, we can write

Iy

89°" L 1 ~
e = SetgT,Le).

agH? ,96/30 2

(49

Using yg=na®b and \g=e?**na®, from Eq.(21) we get

T =e" B¢\/§ L 8L(Y)

eh?_
=5 Tur%ad0(y), (50)
or, more explicitly,
2
n .
TEo = 5 e paty) (51
T = gempa(y) 3. (52

with other components vanishing.
Our primary interest is in the cosmological equati@8),

where we are now in a position to evaluate the first derivado

tives of the metric coefficienta andn on the brane. These
are derived using the general relati(8v) applied to Ein-
stein’s equationsG,,=M; °T,,, with G,, given by Egs.
(15-(20) and the relevant components ®f,, by Egs.(51)

and (52). The jump conditions for the metric components

then yield
ag 1 B~
T Boo
ag 6M g bOe P (53)
ng 1 5 ~ o~
—_—— Beo + )
n, " Gni3Poe” (20 +3P) (54

Finally we need the jump condition fap, derived from
the equation of motiori29). In the case of conformal cou-

pling the brane source fap can be expressed in terms of
andp by using the fact thatt, depends onrp only through
9, to write

to which the five-
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9" AL,
ap Ggrv

7
v

- 1 .
=(—Bg“”)( - EJET,W) a(y)

- L VaG-ama. (55)
Putting it together gives
&£¢
(p 3p)a(y). (56)
The ¢ equation is thus
B e 2B
D=5 (p=3p)ay), (57)

where the D’Alembertian is given by E@30). The jump
equation for¢ is therefore

T ) e

Now we plug in the brane equations to £§9), yielding

ag a0 1, B? )~
— 4 —=— ———e*%| | 16+ 3—M3|p?
a, aZ  576M% a 5P

2
+(48—18'%M§

2
-3 P ousze|_ Y 2
(59
For a pure cosmological constant on the brane, we fiave
=—p=X\. Then Eq.(59) becomes

% 4B (2 3[3 M2 |\ 60
— [y 0
aO aé 36M 6 € 3M 3¢0 ( )
We see that this can vanish for any valuexofif ¢,=0 and
we choose
i |v|3 2 61
3 (61)

This is the condition for self-tuning, as derived [§;7]. (Of
course, making this choice is a kind of fine-tuning, as we
discuss briefly in the Appendix.
In this case, our cosmological equati@®) for more gen-
eral matter sources becomes
a, aj;

1 ~, 1
— t — == 4B¢q + 2_ " 2 2.
a0 a2 st PP

(62)

If the brane tension i&, we can decompose the energy den-
sity and pressure into tension plus dynamical energy-
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momentum(e.g., from matter and radiation on the brane These differ from Eqs(51) and(52) of the previous section
P=N+payn, P=—N+Pgyn. From Eq.(62), however, the by the replacementef??p,e**¥p)—(p,p). As a conse-
tension simply cancels out, and we are left with an identicauence, the jump conditions for the metric coefficients are
equation relating for the dynamical density/pressure as we

have for the total density/pressure. As this equation is qua- ay 1

dratic rather than linear in the energy density, it will not yield a_o: - 6—M§bopy (69
anything close to conventional Friedmann behavior, and can-
not be taken seriously as a description of the real wd@

. n¢
note that matter on the brane does not respond directly to the o sto(ZPJF 3p). (70)
scale factom, but to the conformally-transformed scale fac- N 6Mj3
tor; however, for constang the functional dependence on ) » ]
the energy density will still be quadratic. To express the jump condition f@b in terms ofp andp,

we need to calculateZ,/d¢. We can do this by considering
C. Volume-element coupling our four-dimensional action to be that of a perfect fluid, cor-
responding to
In this section we consider a model in whigh enters
only in an overall factor multiplying the Lagrange density, X 4 n .,
not in every appearance of the metric; in the notation of Eq. ~ La=€**f(g%),4i)=p(e,s)— Z(QEW)Q”Q +é)
(11) we have (71)

Ly=e?P1(gl) ). (63)  (see[11,13 for a discussion In Eq. (71), the dynamical
degrees of freedom with respect to which we vary the action
This is equivalent to modifying the four-dimensional space-to obtain equations of motion include the entrapythe en-
time volume element: thalpy €, a Lagrange multiplien, the three Clebsch poten-
tials x, @, B, and the thermasy; these last four scalars define

d*xJg@— dx /eb’¢>gM(4 Vi =d% e2#%\[g™®,  (64)  the four-vectorQ* via

while otherwise coupling to the induced metg) . Unlike Qu=dux+ad,B+09,s. (72)

the example of conformal coupling, this form of the action Note that varying with respect ta gives the constraint
can be disrupted by quantum corrections; on the other han 2_ A L
?),MQ”“%— €“=0; hence, on-shell the Lagrange density is sim-

we shall see that the volume-coupling ansatz leads to gly equal to the pressurp. Therefore, from Eq(29) the

somewhat more acceptable cosmological model, and i quation of motion for is

worth exploring for that reason.

Since¢ now couples non-universally to matter, it is most 119F
sensible to think ofg,, as the metric to which matter re- Oé=— — — —45(y) (73)
sponds, and the coupling te?¢ as an interaction. The 2a b d¢
energy-momentum tensor therefore takes the conventional 5
form

== —5Pa(y). (74

1 L
Th=—2——=g@m (A;V =diag —p,p,p,p). (65  This corresponds to a jump condition describing the behavior
Vg™ 99 of ¢ in the vicinity of the brane,

This is related taT{}), the brane contribution to the energy- B

momentum tensor appearing in the five-dimensional Einstein bo=— 25 Q0P (79
equations, by

Now we plug in these jump conditions to E®9), yield-

1 9L, g® ing
TH=-2 — = \[ =T, 845, (66)
a /—(‘5g 5 ag(s)ab g(5) uva B

D ,
a dp 2 B 3 5 a -2
ST 2= " agye| P 3PP+ 3——MgpT | — s
The specific components at}) are thus: a8 aj 36Ms a ® 3mM370
(76)
n2
T = 5 po(y) (67)  We see that the self-tuning condition is satisfied again only
for
@_ & 2 5 2
Tij' =5 PoY)Jj . (68) —Ms=3, (77)
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in which case our cosmological equatitfe) for more gen-  Referring back to the jump condition§0) and (75), such
eral matter sources becomes Ansdzedo not seem unreasonable; in E&0) and(75) the
symbolsp and p refer to the entire energy and pressure,
éo ég 1 1., which will be dominated by the brane tension term, which in
+—== (ptp)(p+2p)— 5,32%- (78 turn remains constant. Thus, it is reasonable to approximate

ap a2  36M% ) — .
the bulk solutions forp and w by their flat-space values as

The contribution of the brane tensianto the Lagrangian derived in[6,7],

enters in the combinatioa??#o\. We therefore decompose 1

the energy density and pressure into tension plus dynamical g(y): bo— In[w(y)] (84)
sources in the following manner: 2B

p=e2Bbo) +p dyns (79 and

p=— 2P\ + pyyp. (80) w(y)=V1=-ylye, (85

Then, unlike the cosmological equatid62) obtained for ~wherey, represents the location of the boundary opposite
conformal coupling, in the case of volume-element couplingour brane, corresponding to a singularity,
we obtain terms on the right-hand side which are linear in the

dynamical energy density and pressure: 3M§ 5
=— 2a=2Bd¢g
%4_@_ [82'8‘750)\( + ) . .
a a2 ~ 36M8 Pdyn™ Payn In order to compare the modified Friedmann relati8mh

to observations, it is necessary to express the four-
5 5 1., dimensional Planck masdl ,=1/\/87G, in terms of five-
~ (Paynt 3paynPaynt 2Payn) 1= 5 8o dimensional quantitiedV, is defined by an integral over the
extra dimension,
(81
Yo M
,[Alnl]equivalent equation was derived by Mennim and Battye Mj: Mgfo dy w(y)= T5e—2ﬁ¢o_ (87
An equation of this type stands a chance of describing the o .

real world. The terms quadratic in energy/momentum cad!n fact, we are again ignoring a subtlety: due to the presence
presumably be neglected at late times; if we assume that tHef the scalar field, general relativity is not exactly recovered
iﬁé term is negligible we are left with a relation which has :P (fjour dlmens?r;ls, Elltn'd the d%‘;nlt;ﬁnt(ﬂ‘ Tas to :ae S?ect" ¢
some resemblance to the hoped-for E@. With this in \ed more carefully. 1t IS possibie that solar-system tests o

mind, we turn now to comparison with observation gravity would rule out these simple models more definitively
' ' than the cosmological scenario considered here.

For simplicity we drop the subscript “dyn” fronp andp
IV. DISCUSSION for the remainder of this section. In terms of the Hubble

Let us consider whether, under favorable circumstancesp,aram?teﬂ*=é/a, we havea/a+(a/a)?=H+2H? Then
Eqg. (81) could be consistent with what we know about the setting¢,=0 and ignoring quadratic terms jmp, our cos-
universe. mological equatior{81) becomes

A time-dependent bulk scalat would generally lead to
observable time-dependence in the four-dimensional New- . 271G

: H+2H?=——(p+p). (89
ton’s constant, and therefore must be very small. Although g P
the models under consideration do not include any mecha-

nism for stabilizing¢, we will proceed optimistically and ynlike the ordinary Friedmann equation, which is a con-
imagine that the bulk scalar may be approximated as indestraint relating the value of the Hubble parameter to the en-

pendent of time, ergy density, this is a differential equation fidy which will
_ involve an additional integration constant in its solution. In
d(y.t)=o(y). (82  fact we can integrate E488) explicitly to obtain
We imagine further that thg-dependence of the metric co- ) 471G L 5
efficients may be factored out, and the coefficiefiof dy? H°=—5—2a f a’(ptp)da (89)

set to unity by an appropriate rescalighich may always

2 .
be done ifb” is independent of): Consider a universe dominated by a combination of matter

R (pmxa 3,py=0) and radiation ggxa 4 pr=pr/3). The
ds?=w(y)[ —dt?+af(t)dx?] +dy?. (83 Hubble parameter then obeys
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ficient of p, however, is different, suggesting a possible
empirical test of the model: in this theory, the Hubble param-
eter during matter domination will be smaller by a factor of APPENDIX: TWO OBSERVATIONS

1/J6~0.41 than the conventional expectaticat fixed p). In this appendix we very briefly mention two issues of
Unfortunately, we do not have very precise empirical infor-gomewhat related interest to this work: first, the possibility of
mation about the expansion rate during the matter-dominategfiationary behavior in self-tuning cosmologies, and second,
era. Given that our current universe is apparently dominateghe ability to tune away other equations of state.
by a smooth component causing it to accelerate, we cannot an obvious question which arises in any model which
directly constrain the coefficient gfy by contemporary ob-  \ould make the metric insensitive to vacuum energy is, how
servations. Since recombination occurred during the matterye we to explain the apparent nonzero value of the cosmo-
dominated era, it would be possible in principle to constrainggical constant today3,4], or implement an inflationary
this coefficient via observations of the CMB anisotropy scenario in the early universe? Of course if a realistic self-
power spectrum; it is first necessary, however, to reliablytyning theory is found, it is conceivable that the currently
calculate what that power spectrum should be, taking intgpserved vacuum energy is simply a reflection of an imper-
account possible long-range deviations from general relativtectly tuned universe, once all aspects of the theory are taken
ity due to the extra dimension. Since we have not undertakefhto account. On the other hand, it is interesting to note that
this task, we are unable to say whettet=(47G/9)py IS there is no difficulty in obtaining “accelerating” solutions in
consistent with the real universe. the presence of slowly-rolling scalar fields. Consider a mini-
In the radiation-dominated era, quantitative constraints Onally coupled four-dimensional scalab, with potential

the behavior of the Hubble parameter may be derived frony/(¢). The energy density and pressure are given by
big-bang nucleosynthesi®BN) [12]. Expanding the loga-

rithm in Eqg.(90), we have
1. 1.
pq,:§q>2+V(¢>), pq,:§q>2—V(q>), (A1)
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or
where C is an integration constant. This constant is not

merely a nuisance that can be set to zero, but rather reflects )

the normalization of; if we seta=1 today, the first term is po+Pep=>02 (A2)

always negative in the past, which is clearly unworkable. On

the other hand, we can chooSesuch that the second term is )

dominant—and with the correct magnitude to be compatiblg=or a slowly-rolling scalar withb ~const, Eq.(89) then im-

with observation—during BBN. This seems like an unlikely pliesH=~const, just as in conventional theory with a nonzero

bit of fine-tuning, although it cannot be rigorously excluded.vacuum energy. Thus there is no obstacle in principle to ob-

Therefore we see no way to definitively state that the selftaining accelerated expansion either today or in the early

tuning cosmologies we have considered are incompatibleniverse. Of course the usual tuning problems associated

with observation, although it would require a mysterious co-with getting the correct nonzero value of the apparent

incidence to predict the correct light-element abundances/acuum energy are as severe in such a hypothetical model as

Since these models were invented to solve the fine-tuninthey are in conventional quintessence and inflation scenarios.

problem associated with the cosmological constant, this must Another interesting issue is the possibility of choosing

be considered as a strike against them. parameters which work to tune away the effects of a more
Nevertheless, it is important to keep in mind that we havegeneral energy component with equation of statewp,

only dealt with specific toy models of self-tuning, which per- wherew is not necessarily- 1. We know of no compelling

haps it is too optimistic to expect would lead to completelyreason why this should happen, but the exercise illustrates

realistic cosmologies. The general idea that the cosmologicdhe extent to which there really is some tuning going on in

constant problem may be solved not by making the vacuunour choice of parameters.

energy small, but by making the metric insensitive to its Vacuum energy was tuned away by choosing our param-

value, is an interesting one, and it seems worth the effort tetersa and 8 to be related by Eq(77) (taking the case of

attempt to construct self-tuning models with more acceptableolume-element coupling for definitengs&et us imagine

cosmological behavior. that we instead take
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1+ 3w

2 2
A X:—Z—z—. (AS)

Mg=§x, (A3)

o
wherex is a parameter to be chosen. The cosmological equalhe choicex=1 tunes away vacuum energw{ —1) as

) e R well as an exotic component with= — p/2. With the excep-
tion (76) becomessetting ¢ =0 for simplicity), tion of matter (v=0), the expansion can be made insensitive

- 2 to any specific equation of state by an appropriate choice of
@+%:——16(P2+3PP+ZXP2)- (A4) X Once again, we have no reason to suggest that such a
a a3 32Mg possibility will occur (nor do we see any need fop;ithow-

ever, this phenomenon serves as an illustration that the spe-
cific choice(77) represents a kind of fine-tuning in its own
right.

For a universe dominated by a component withwp, the
right hand side will automatically vanish if we choose
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