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Can we live in a self-tuning universe?
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The self-tuning brane scenario is an attempt to solve the cosmological constant problem in the context of
extra dimensions. Rather than making the vacuum energy small, this approach proceeds by removing the
gravitational effect of vacuum energy on the expansion of the universe. Such behavior is only possible through
changing the Friedmann equation of conventional cosmology, and we discuss difficulties in obtaining cosmo-
logical evolution compatible with observation in this context. Specific models considered include a bulk scalar
field coupling to the brane via a conformal transformation of the brane metric, and via a rescaling of the brane
volume element.
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I. INTRODUCTION

The fact that the observed cosmological constant is m
smaller than the expected value@1–3# may provide a crucial
clue in our attempts to understand the nature of spacet
Most attempts to solve the problem can be characterize
making the vacuum energy much smaller than its natu
value. Alternatively, however, we can imagine keeping
large vacuum energy but changing the gravitational dyna
ics in such a way that the vacuum does not act as a~signifi-
cant! source of spacetime curvature. Since it is only throu
its gravitational influence that the vacuum energy can
measured, such an arrangement could reconcile the n
estimatesrvac>(1018 GeV)4 with the observationally fa-
vored resultrvac;(1023 eV)4 @4,3#.

The idea of brane-worlds and large extra dimensions@5#
opens up a new set of ways to think about the cosmolog
constant problem. In these scenarios, our observed f
dimensional theory of gravity is descended from a high
dimensional embedding, and in principle the resulting d
namics can differ dramatically from a straightforward fou
dimensional expectation.

An example of such an altered dynamics is provided
the idea of self-tuning branes@6,7#. Here, matter fields on a
three-brane with a single extra dimension are coupled
bulk scalar field. With an appropriate choice of coupling
Minkowskian solutions on the brane can be found with a
brane cosmological constant. In this paper, we put aside
damental issues of the feasibility of the self-tuning idea~e.g.,
the role of singularities! to concentrate on whether this kin
of scenario can be made compatible with conventional c
mology.~See@8,9# for investigations of brane-world cosmo
ogy, and@10,11# for studies of the self-tuning scenario.!

On a self-tuning brane, there is vacuum energy~essen-
tially the tension of the brane!, but the spacetime geometry
nevertheless flat. Somehow, then, the geometry is insens
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to the vacuum energy. It is necessary, however, that sp
time respond to at least some sorts of energy density
particular, the success of big bang nucleosynthesis~BBN!
@12# provides evidence in favor of the standard picture in
radiation-dominated era. It is therefore necessary to reco
at least some portion of conventional cosmology, while
moving the effects of the cosmological constant.

In this work we attempt to characterize the empirical ch
lenges to a successful self-tuning cosmology. In the next s
tion we discuss in general how the self-tuning mechan
may be understood in terms of the energy and pressure
the brane, pointing out the distinctions with convention
Friedmann cosmology. We then consider two specific mod
of self-tuning, and derive effective Friedmann-like equatio
relating the Hubble parameter to the energy and pressur
Sec. IV we compare these models with what we know ab
the universe, and discuss whether they may be brought
agreement with observation. Although such agreement se
unlikely, we are unable to rule it out entirely.

II. THE SECRET OF SELF-TUNING COSMOLOGY

In this section we consider how a theory of gravity may
principle be insensitive to vacuum energy while allowin
other forms of energy-momentum to influence spacetime c
vature. We consider a flat Robertson-Walker metric in 311
dimensions,

ds252dt21a2~ t !dxW2, ~1!

wherea(t) is the scale factor anddxW2 is the flat Euclidean
metric. An energy-momentum tensor consistent with
Robertson-Walker metric will be spatially isotropic, takin
the form

Tn
m5diag~2r,p,p,p!, ~2!

wherer is the energy density andp the pressure. The con
ventional Friedmann equation of general relativity is then
©2001 The American Physical Society08-1
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H2[S ȧ

a
D 2

5
8pG

3
r, ~3!

where H is the Hubble parameter andG is the ~four-
dimensional! Newton’s constant.

In a self-tuning model, it is possible to find a Minkowsk
spacetime solution (H50) regardless of the value ofrvac
~when all other energy densities vanish!. Clearly, for this to
be possible Eq.~3! will have to be modified, either in its
explicit form or in the definition ofr. If, however, we con-
sider theories which arise from varying a specified act
with respect to the metric tensor to derive gravitational fi
equations, the energy density and pressure~in this coordinate
system! are defined by

r52T0
052

1

Ag
g00

]Lmatter

]g00
, p5T1

1522
1

Ag
g11

]Lmatter

]g11
,

~4!

whereg is the absolute value of the determinant of the me
andLmatter is the matter Lagrange density. These definitio
do not discriminate between different forms of energy d
sity; there is no way for the gravitational field to tell th
difference between energy density from the vacuum and
ergy density from any other source.

How, then, can we modify the theory to allow flat sol
tions in the presence of vacuum energy, while remain
sensitive to the influence of other sources on the expan
rate? Given the metric~1! and energy-momentum tensor~2!,
we seek an equation written in terms ofr, p, a and its de-
rivatives~which appear in the curvature tensor!, and possibly
explicit additional fields. Although vacuum energy shou
enter any such equation in the same way as other energy
vacuum does have a distinguishing characteristic, namel
equation of state:

pvac52rvac. ~5!

With the ingredients at our disposal, this relation sugges
form for a modified Friedmann equation:

H25 f ~r,p!~r1p!1other terms, ~6!

where f (r,p) is a well-behaved function atp52r. Such a
relation would allow for a Minkowski solution (H50) in the
presence of arbitrary vacuum energy.

Although Eq.~6! differs from the conventional Friedman
law, it is not necessarily incompatible with observation. Co
sider for example a hypothetical relation

H252pG~r1p!. ~7!

During a matter-dominated era,p50, and the Hubble pa
rameter will differ by a factorA3/2'0.87 for a given value
of the energy density. However, since the scaling ofH with r
is as in the conventional theory, andA3/2 is close to unity, it
would be hard to distinguish between the behavior predic
by Eq. ~7! and the usual Friedmann equation during ma
domination. During radiation domination,p5r/3, and Eq.
~7! precisely recovers the conventional expectation~by con-
12400
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struction!. This is important, as our most precise quantitat
evidence in favor of conventional cosmology com
from BBN, which occurs while the universe i
radiation-dominated.1 Finally, this relation would solve the
cosmological constant problem, asH50 whenp52r.

Unfortunately, we do not have a theory that predicts E
~7!. As we shall see below, the specific self-tuning scena
we consider lead to additional derivatives of the metric,
well as explicit dependence on the bulk scalar field, and e
terms which are quadratic in the energy and pressure. G
erally, it seems unlikely that a theory which did predict
linear dependence ofH2 on (r1p) would both get the cor-
rect coefficient 2pG ~or very close to it! and successfully
recover Newton’s lawF5Gm1m2 /r 2 in the solar system.
However, this unlikelihood does not seem so great t
searching for such a theory would be a waste of time.

III. SPECIFIC EXAMPLES

A. Setup

We start with an action of the form@6,7#

S5S5@f,g(5)#1S4@f,g(4),c i #. ~8!

Here,S5 is the bulk action andS4 that of the brane;f is a
scalar field in the bulk with interactions on the brane, wh
thec i ’s are matter fields confined to the brane. The metric
the bulk is gab

(5) , and we choose coordinates such that
induced metric on the brane is

gmn
(4)5dm

a dn
bgab . ~9!

The indicesa,b run over $0,1,2,3,y% and m,n run over
$0,1,2,3%.

The bulk action can be written

S55E d5x L55E d5xAg(5)S M5
3

2
R2a~¹f!2D , ~10!

with a a coefficient which we leave unspecified for the m
ment,M5 is the five-dimensional Planck mass,R is the five-
dimensional Ricci scalar, and the brane action is

S45E d5x L45E d5xAg(4)L̂4d~y!5E d4xAg(4)L̂4 .

~11!

We will leave the actual form ofL̂4(f,g(4),c i) unspecified
in this section, and consider different possibilities in Se

1The anisotropy spectrum in the cosmic microwave backgro
~CMB!, although it does provide precision constraints on the exp
sion of the universe, does not do so in a model-independent w
Since a novel theory of gravity which predicted a different Frie
mann equation could also predict different behavior for the evo
tion of large-scale density perturbations, it is impossible to comp
directly a phenomenological relationship such as Eq.~7! to CMB
observations. In any specific full theory, CMB anisotropies a
likely to provide an interesting test.
8-2
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III B and III C. We will always consider geometries that ha
a Z2 symmetry with the brane at the fixed point, so that
need not include a boundary term in the brane action.

The 5-dimensional Einstein’s equations are

Gab5M5
23Tab , ~12!

where the energy-momentum tensor is defined by

Tab522
1

Ag(5)

]L
]g(5)

ab
. ~13!

We choose the metric

ds(5)
2 52n2~y,t !dt21a2~y,t !dxW21b2~y,t !dy2, ~14!

where xW5$x1,x2,x3% are the spatial coordinates along t
brane, andy is the transverse spatial dimension. The Einst
tensor is then

G0053F ȧ2

a2
1

ȧḃ

ab
2

n2

b2 S a9

a
1

a82

a2
2

a8b8

ab D G , ~15!

G0i50 ~16!

G0y53S 2
ȧ8

a
1

a8ḃ

ab
1

ȧn8

an
D , ~17!

Gi j 5
a2

n2 S 22
ä

a
2

b̈

b
2

ȧ2

a2
22

ȧḃ

ab
12

ȧṅ

an
1

ḃṅ

bnD d i j

1
a2

b2 S 2
a9

a
1

n9

n
1

a82

a2

22
a8b8

ab
12

a8n8

an
2

b8n8

bn D d i j , ~18!

Giy50 ~19!

Gyy53Fb2

n2 S 2
ä

a
2

ȧ2

a2
1

ȧṅ

anD 1
a82

a2
1

a8n8

an G . ~20!

The energy-momentum tensor decomposes into contr
tions from the bulk and the brane,

Tab5Tab
(5)1Tab

(4)522
1

Ag(5) S ]L5

]g(5)
ab

1
]L4

]g(4)
mn

da
mdb

nD . ~21!

The components of the bulkTab
(5) receive contributions only

from the scalar fieldf, given by

T00
(5)5an2S ḟ2

n2
1

f82

b2 D ~22!

T0y
(5)52aḟf8 ~23!
12400
n

u-

Ti j
(5)5aa2S ḟ2

n2
2

f82

b2 D d i j ~24!

Tyy
(5)5ab2S ḟ2

n2
1

f82

b2 D . ~25!

The contribution to the energy-momentum tensor from
brane will depend on the chosen brane action; in terms ofL̂4
defined in Eq.~11!, we have

Tab
(4)5Ag(4)

g(5)S gmn
(4)L̂422

]L̂4

]g(4)
mn D d~y!da

mdb
n . ~26!

In addition to Einstein’s equations, we need the equat
of motion forf. With the action~10!, ~11!, thef equation is

¹a

]L5

]~¹af!
5

]L4

]f
, ~27!

since we will be considering brane actions that depend of
but not its derivatives. The left-hand side is

¹a

]L5

]~¹af!
522aAg5hf, ~28!

yielding an equation of motion

hf52
1

2a

1

b

]L̂4

]f
d~y!, ~29!

whereL̂4 is defined by Eq.~11! and the D’Alembertian on
scalars is given by

hf52
1

n2 F f̈1S 2
ṅ

n
13

ȧ

a
1

ḃ

b
D ḟG

1
1

b2 Ff91S n8

n
13

a8

a
2

b8

b Df8G . ~30!

The equations of motion generally involve distribution
sources localized on the brane. It is therefore convenien
separate the equations into distinct relations valid in the b
and on the brane. The bulk equations are simply the
equations with distributional sources omitted; they inclu
the bulk Einstein equations:

3F ȧ2

a2
1

ȧḃ

ab
2

n2

b2 S a9

a
1

a82

a2
2

a8b8

ab D G5
a

M5
3 n2S ḟ2

n2
1

f82

b2 D
~31!

3S 2
ȧ8

a
1

a8ḃ

ab
1

ȧn8

an
D 5

2a

M5
3ḟf8 ~32!
8-3
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a2

n2 S 22
ä

a
2

b̈

b
2

ȧ2

a2
22

ȧḃ

ab
12

ȧṅ

an
1

ḃṅ

bnD
1

a2

b2S 2
a9

a
1

n9

n
1

a82

a2
22

a8b8

ab
12

a8n8

an
2

b8n8

bn D
5

a

M5
3 a2S ḟ2

n2
2

f82

b2 D ~33!

3Fb2

n2 S 2
ä

a
2

ȧ2

a2
1

ȧṅ

anD 1
a82

a2
1

a8n8

an G
5

a

M5
3 b2S ḟ2

n2
1

f82

b2 D , ~34!

and the bulk scalar field equation

2
1

n2 F f̈1S 2
ṅ

n
13

ȧ

a
1

ḃ

b
D ḟG

1
1

b2Ff91S n8

n
13

a8

a
2

b8

b Df8G50. ~35!

The corresponding equations on the brane can be expre
without explicitd-functions by integrating them in the vicin
ity of the brane to obtain jump conditions@8#. AssumingZ2
symmetry, the jump conditions relate second derivatives w
respect toy to the coefficients ofd-function sources. That is
expressions of the form

f 9~y!5Ad~y!1B ~36!

imply, on the brane,

f 085
1

2
A, ~37!

where a subscript 0 indicates that a quantity is evaluated
the brane by taking the limit asy→01. For the scalar field,
Eqs.~29! and ~30! imply

f0852
1

4a
b0S ]L̂4

]f
D

0

. ~38!

For the metric, it is convenient to express the jump con
tions for a08 andn08 separately for each model, which we d
below.

To get a Friedmann-like equation on the brane, we c
sider theyy component of Einstein’s equations~34!, evalu-
ated on the brane.@There is nod-function inTyy , so the bulk
equation~34! holds true on the brane as well.# We can scale
our time coordinate such thatn051, ṅ050 ~althoughn will
generally vary off the brane!. We then have

ä0

a0
1

ȧ0
2

a0
2

5
a08

2

a0
2b0

2
1

a08n08

a0b0
2

2
a

3M5
3

f08
2

b0
2

2
a

3M5
3ḟ0

2 . ~39!
12400
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The next step is to express the spatial derivatives on the r
hand side of Eq.~39! in terms of energy and momentum o
the brane, which requires a specification of the brane
grangianL4. In the original papers on self-tuning brane
@6,7#, the matter Lagrangian was taken to be a cosmolog
constantl times an exponential off:

L452Ag(4)e2bfld~y!, ~40!

with b a coupling constant. In what follows we consider tw
distinct generalizations of this form to actions with dynam
cal fields: conformal coupling, in which matter fields on th
brane couple exclusively to a rescaled metricg̃mn5ebfgmn

(4) ,
or volume element rescaling, in which the four-dimension
volume element is taken to bed4xAg(4)e2bf ~and the four-
dimensional metric is otherwise simply the induced met
from five dimensions!. Both approaches reduce to Eq.~40!
when brane tension is the only contribution to the fou
dimensional action, but give different results for other form
of matter.

B. Conformal coupling

In this section we consider an action of the form

S5S5@f,gab
(5)#1S4@c i ,ebfgmn

(4)#, ~41!

where the five-dimensional action is as in Eq.~10!, and the
four-dimensional action is

S45E d5x L4

5E d5xAg̃ f ~c i ,g̃mn!d~y!

5E d4xAg̃ f ~c i ,g̃mn!. ~42!

Here, c i represents an unspecified set of matter fields,
the metric to which matter on the brane couples is related
the induced metric by a conformal transformation,

g̃mn5ebfgmn
(4) , ~43!

equivalent toL̂45e2bf f (c i ,g̃mn) in the notation defined by
Eq. ~11!.

In this model, test particles on the brane move along g
desics ofg̃mn ; this is the only metric perceived by observe
on the brane. It therefore is sensible to define all brane qu
tities in terms of this metric. The energy-momentum ten
as measured by observers living on the brane takes the

T̃mnd~y!522
1

Ag̃

]L4

]g̃mn
. ~44!

The energy density and pressure as seen by brane obse
will be, in our coordinate system,

r̃52g̃00T̃00 ~45!
8-4



e

va

ts

-

e

we

n-
gy-

CAN WE LIVE IN A SELF-TUNING UNIVERSE? PHYSICAL REVIEW D64 124008
and

p̃5g̃11T̃11, ~46!

so we have

T̃005n2ebfr̃ ~47!

T̃i j 5a2ebfp̃d i j . ~48!

The energy-momentum tensor to which the fiv
dimensional Einstein’s equations couple is given by Eq.~21!.
Since the brane action depends ongmn only through g̃mn

5ebfgmn , we can write

]L 4

]gmn
5

]g̃rs

]gmn

]L4

]g̃rs
52

1

2
e2bfAg̃T̃mnd~y!. ~49!

Using Ag5na3b andAg̃5e2bfna3, from Eq. ~21! we get

Tab
(4)5e2bfAg̃

g
T̃mnda

mdb
nd~y!

5
ebf

b
T̃mnda

mdb
nd~y!, ~50!

or, more explicitly,

T00
(4)5

n2

b
e2bfr̃d~y! ~51!

Ti j
(4)5

a2

b
e2bfp̃d~y!d i j , ~52!

with other components vanishing.
Our primary interest is in the cosmological equation~39!,

where we are now in a position to evaluate the first deri
tives of the metric coefficientsa andn on the brane. These
are derived using the general relation~37! applied to Ein-
stein’s equationsGab5M5

23Tab , with Gab given by Eqs.
~15!–~20! and the relevant components ofTab by Eqs.~51!
and ~52!. The jump conditions for the metric componen
then yield

a08

a0
52

1

6M5
3 b0e2bf0r̃, ~53!

n08

n0
5

1

6M5
3 b0e2bf0~2r̃13p̃!. ~54!

Finally we need the jump condition forf, derived from
the equation of motion~29!. In the case of conformal cou
pling the brane source forf can be expressed in terms ofr̃

and p̃ by using the fact thatL4 depends onf only through
g̃mn to write
12400
-

-

]L4

]f
5

]g̃mn

]f

]L4

]g̃mn

5~2bg̃mn!S 2
1

2
Ag̃T̃mnD d~y!

52
b

2
Ag̃~ r̃23p̃!d~y!. ~55!

Putting it together gives

]L̂f

]f
52

b

2
Ag̃

g
~ r̃23p̃!d~y!. ~56!

The f equation is thus

hf5
b

4a

e2bf

b
~ r̃23p̃!d~y!, ~57!

where the D’Alembertian is given by Eq.~30!. The jump
equation forf is therefore

f085
b

8a
b0e2bf0~ r̃23p̃!. ~58!

Now we plug in the brane equations to Eq.~39!, yielding

ä0

a0
1

ȧ0
2

a0
2

52
1

576M5
6e4bf0F S 1613

b2

a
M5

3D r̃2

1S 48218
b2

a
M5

3D r̃ p̃127
b2

a
M5

3p̃2G2
a

3M5
3ḟ0

2 .

~59!

For a pure cosmological constant on the brane, we havr̃

52 p̃5l. Then Eq.~59! becomes

ä0

a0
1

ȧ0
2

a0
2

5
1

36M5
6 e4bf0S 223

b2

a
M5

3Dl22
a

3M5
3ḟ0

2 . ~60!

We see that this can vanish for any value ofl, if ḟ050 and
we choose

b2

a
M5

35
2

3
. ~61!

This is the condition for self-tuning, as derived by@6,7#. ~Of
course, making this choice is a kind of fine-tuning, as
discuss briefly in the Appendix.!

In this case, our cosmological equation~59! for more gen-
eral matter sources becomes

ä0

a0
1

ȧ0
2

a0
2

52
1

32M5
6e4bf0~ r̃1 p̃!22

1

2
b2ḟ0

2 . ~62!

If the brane tension isl, we can decompose the energy de
sity and pressure into tension plus dynamical ener
8-5
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momentum~e.g., from matter and radiation on the bran!:
r̃5l1rdyn, p̃52l1pdyn. From Eq. ~62!, however, the
tension simply cancels out, and we are left with an identi
equation relating for the dynamical density/pressure as
have for the total density/pressure. As this equation is q
dratic rather than linear in the energy density, it will not yie
anything close to conventional Friedmann behavior, and c
not be taken seriously as a description of the real world.~We
note that matter on the brane does not respond directly to
scale factora, but to the conformally-transformed scale fa
tor; however, for constantf the functional dependence o
the energy density will still be quadratic.!

C. Volume-element coupling

In this section we consider a model in whichf enters
only in an overall factor multiplying the Lagrange densi
not in every appearance of the metric; in the notation of
~11! we have

L̂45e2bf f ~gmn
(4) ,c i !. ~63!

This is equivalent to modifying the four-dimensional spac
time volume element:

d4xAg(4)→d4xAuebfgmn
(4)u5d4x e2bfAg(4), ~64!

while otherwise coupling to the induced metricgmn
(4) . Unlike

the example of conformal coupling, this form of the acti
can be disrupted by quantum corrections; on the other h
we shall see that the volume-coupling ansatz leads t
somewhat more acceptable cosmological model, and
worth exploring for that reason.

Sincef now couples non-universally to matter, it is mo
sensible to think ofgmn as the metric to which matter re
sponds, and the coupling toebf as an interaction. The
energy-momentum tensor therefore takes the conventi
form

Tn
m522

1

Ag(4)
g(4)ml

]L 4

]g(4)ln
5diag~2r,p,p,p!. ~65!

This is related toTab
(4) , the brane contribution to the energ

momentum tensor appearing in the five-dimensional Eins
equations, by

Tab
(4)522

1

Ag(5)

]L4

]g(5)ab
5Ag(4)

g(5)
Tmnda

mdb
n . ~66!

The specific components ofTab
(4) are thus:

T00
(4)5

n2

b
rd~y! ~67!

Ti j
(4)5

a2

b
pd~y!d i j . ~68!
12400
l
e

a-

n-

he

.

-

d,
a
is

al

in

These differ from Eqs.~51! and~52! of the previous section
by the replacement (e2bfr̃,e2bfp̃)→(r,p). As a conse-
quence, the jump conditions for the metric coefficients ar

a08

a0
52

1

6M5
3 b0r, ~69!

n08

n0
5

1

6M5
3 b0~2r13p!. ~70!

To express the jump condition forf in terms ofr andp,
we need to calculate]L̂4 /]f. We can do this by considering
our four-dimensional action to be that of a perfect fluid, c
responding to

L̂45e2bf f ~gmn
(4) ,c i !5p~e,s!2

n

2e
~gmn

(4)VmVn1e2!

~71!

~see @11,13# for a discussion!. In Eq. ~71!, the dynamical
degrees of freedom with respect to which we vary the act
to obtain equations of motion include the entropys, the en-
thalpy e, a Lagrange multipliern, the three Clebsch poten
tials x,a,b, and the thermasyu; these last four scalars defin
the four-vectorVm via

Vm5]mx1a]mb1u]ms. ~72!

Note that varying with respect ton gives the constraint
VmVm1e250; hence, on-shell the Lagrange density is si
ply equal to the pressurep. Therefore, from Eq.~29! the
equation of motion forf is

hf52
1

2a

1

b

]L̂4

]f
d~y! ~73!

52
b

ab
pd~y!. ~74!

This corresponds to a jump condition describing the beha
of f in the vicinity of the brane,

f0852
b

2a
b0p. ~75!

Now we plug in these jump conditions to Eq.~39!, yield-
ing

ä0

a0
1

ȧ0
2

a0
2

52
1

36M5
6 S r213rp13

b2

a
M5

3p2D2
a

3M5
3ḟ0

2 .

~76!

We see that the self-tuning condition is satisfied again o
for

b2

a
M5

35
2

3
, ~77!
8-6
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in which case our cosmological equation~76! for more gen-
eral matter sources becomes

ä0

a0
1

ȧ0
2

a0
2

52
1

36M5
6~r1p!~r12p!2

1

2
b2ḟ0

2 . ~78!

The contribution of the brane tensionl to the Lagrangian
enters in the combinatione2bf0l. We therefore decompos
the energy density and pressure into tension plus dynam
sources in the following manner:

r5e2bf0l1rdyn, ~79!

p52e2bf0l1pdyn. ~80!

Then, unlike the cosmological equation~62! obtained for
conformal coupling, in the case of volume-element coupl
we obtain terms on the right-hand side which are linear in
dynamical energy density and pressure:

ä0

a0
1

ȧ0
2

a0
2

5
1

36M5
6 @e2bf0l~rdyn1pdyn!

2~rdyn
2 13rdyn pdyn12pdyn

2 !#2
1

2
b2ḟ0

2 .

~81!

An equivalent equation was derived by Mennim and Bat
@11#.

An equation of this type stands a chance of describing
real world. The terms quadratic in energy/momentum c
presumably be neglected at late times; if we assume tha
ḟ0

2 term is negligible we are left with a relation which ha
some resemblance to the hoped-for Eq.~7!. With this in
mind, we turn now to comparison with observation.

IV. DISCUSSION

Let us consider whether, under favorable circumstan
Eq. ~81! could be consistent with what we know about t
universe.

A time-dependent bulk scalarf would generally lead to
observable time-dependence in the four-dimensional N
ton’s constant, and therefore must be very small. Althou
the models under consideration do not include any mec
nism for stabilizingf, we will proceed optimistically and
imagine that the bulk scalar may be approximated as in
pendent of time,

f~y,t !5f̄~y!. ~82!

We imagine further that they-dependence of the metric co
efficients may be factored out, and the coefficientb2 of dy2

set to unity by an appropriate rescaling~which may always
be done ifb2 is independent oft):

ds25v~y!@2dt21a0
2~ t !dxW2#1dy2. ~83!
12400
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Referring back to the jump conditions~70! and ~75!, such
Ansätzedo not seem unreasonable; in Eqs.~70! and~75! the
symbols r and p refer to the entire energy and pressu
which will be dominated by the brane tension term, which
turn remains constant. Thus, it is reasonable to approxim
the bulk solutions forf̄ andv by their flat-space values a
derived in@6,7#,

f̄~y!5f02
1

2b
ln@v~y!# ~84!

and

v~y!5A12y/yc, ~85!

where yc represents the location of the boundary oppos
our brane, corresponding to a singularity,

yc5
3M5

3

2l
e22bf0. ~86!

In order to compare the modified Friedmann relation~81!
to observations, it is necessary to express the fo
dimensional Planck massM451/A8pG4 in terms of five-
dimensional quantities.M4 is defined by an integral over th
extra dimension,

M4
25M5

3E
0

yc
dy v~y!5

M5
6

l
e22bf0. ~87!

~In fact, we are again ignoring a subtlety: due to the prese
of the scalar field, general relativity is not exactly recover
in four dimensions, and the definition ofG has to be speci-
fied more carefully. It is possible that solar-system tests
gravity would rule out these simple models more definitive
than the cosmological scenario considered here.!

For simplicity we drop the subscript ‘‘dyn’’ fromr andp
for the remainder of this section. In terms of the Hubb
parameterH5ȧ/a, we haveä/a1(ȧ/a)25Ḣ12H2. Then
settingḟ050 and ignoring quadratic terms inr,p, our cos-
mological equation~81! becomes

Ḣ12H25
2pG

9
~r1p!. ~88!

Unlike the ordinary Friedmann equation, which is a co
straint relating the value of the Hubble parameter to the
ergy density, this is a differential equation forH, which will
involve an additional integration constant in its solution.
fact we can integrate Eq.~88! explicitly to obtain

H25
4pG

9
a24E a3~r1p!da. ~89!

Consider a universe dominated by a combination of ma
(rM}a23,pM50) and radiation (rR}a24,pR5rR/3). The
Hubble parameter then obeys
8-7
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H25
4pG

9
rM1

16pG

27
rRlnS a

a*
D , ~90!

wherea* is the integration constant alluded to above.
It is this relation ~90! which is to be compared to th

conventional Friedmann lawH25(8pG/3)r. In a matter-
dominated era, the functional dependence ofH on a is con-
ventional, leading to the familiara}t2/3 behavior. The coef-
ficient of r, however, is different, suggesting a possib
empirical test of the model: in this theory, the Hubble para
eter during matter domination will be smaller by a factor
1/A6'0.41 than the conventional expectation~at fixed r).
Unfortunately, we do not have very precise empirical inf
mation about the expansion rate during the matter-domin
era. Given that our current universe is apparently domina
by a smooth component causing it to accelerate, we ca
directly constrain the coefficient ofrM by contemporary ob-
servations. Since recombination occurred during the ma
dominated era, it would be possible in principle to constr
this coefficient via observations of the CMB anisotro
power spectrum; it is first necessary, however, to relia
calculate what that power spectrum should be, taking i
account possible long-range deviations from general rela
ity due to the extra dimension. Since we have not underta
this task, we are unable to say whetherH25(4pG/9)rM is
consistent with the real universe.

In the radiation-dominated era, quantitative constraints
the behavior of the Hubble parameter may be derived fr
big-bang nucleosynthesis~BBN! @12#. Expanding the loga-
rithm in Eq. ~90!, we have

HR
25

16pG

27
rRln a1Ca24, ~91!

where C is an integration constant. This constant is n
merely a nuisance that can be set to zero, but rather refl
the normalization ofa; if we seta51 today, the first term is
always negative in the past, which is clearly unworkable.
the other hand, we can chooseC such that the second term
dominant—and with the correct magnitude to be compat
with observation—during BBN. This seems like an unlike
bit of fine-tuning, although it cannot be rigorously exclude
Therefore we see no way to definitively state that the s
tuning cosmologies we have considered are incompat
with observation, although it would require a mysterious c
incidence to predict the correct light-element abundanc
Since these models were invented to solve the fine-tun
problem associated with the cosmological constant, this m
be considered as a strike against them.

Nevertheless, it is important to keep in mind that we ha
only dealt with specific toy models of self-tuning, which pe
haps it is too optimistic to expect would lead to complete
realistic cosmologies. The general idea that the cosmolog
constant problem may be solved not by making the vacu
energy small, but by making the metric insensitive to
value, is an interesting one, and it seems worth the effor
attempt to construct self-tuning models with more accepta
cosmological behavior.
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APPENDIX: TWO OBSERVATIONS

In this appendix we very briefly mention two issues
somewhat related interest to this work: first, the possibility
inflationary behavior in self-tuning cosmologies, and seco
the ability to tune away other equations of state.

An obvious question which arises in any model whi
would make the metric insensitive to vacuum energy is, h
are we to explain the apparent nonzero value of the cos
logical constant today@3,4#, or implement an inflationary
scenario in the early universe? Of course if a realistic s
tuning theory is found, it is conceivable that the curren
observed vacuum energy is simply a reflection of an imp
fectly tuned universe, once all aspects of the theory are ta
into account. On the other hand, it is interesting to note t
there is no difficulty in obtaining ‘‘accelerating’’ solutions i
the presence of slowly-rolling scalar fields. Consider a mi
mally coupled four-dimensional scalarF, with potential
V(F). The energy density and pressure are given by

rF5
1

2
Ḟ21V~F!, pF5

1

2
Ḟ22V~F!, ~A1!

or

rF1pF5Ḟ2. ~A2!

For a slowly-rolling scalar withḞ'const, Eq.~89! then im-
pliesH'const, just as in conventional theory with a nonze
vacuum energy. Thus there is no obstacle in principle to
taining accelerated expansion either today or in the e
universe. Of course the usual tuning problems associa
with getting the correct nonzero value of the appar
vacuum energy are as severe in such a hypothetical mod
they are in conventional quintessence and inflation scena

Another interesting issue is the possibility of choosi
parameters which work to tune away the effects of a m
general energy component with equation of statep5wr,
wherew is not necessarily21. We know of no compelling
reason why this should happen, but the exercise illustra
the extent to which there really is some tuning going on
our choice of parameters.

Vacuum energy was tuned away by choosing our para
etersa and b to be related by Eq.~77! ~taking the case of
volume-element coupling for definiteness!. Let us imagine
that we instead take
8-8
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b2

a
M5

35
2

3
x, ~A3!

wherex is a parameter to be chosen. The cosmological eq
tion ~76! becomes~settingḟ050 for simplicity!,

ä0

a0
1

ȧ0
2

a0
2

52
1

32M5
6 ~r213rp12xp2!. ~A4!

For a universe dominated by a component withp5wr, the
right hand side will automatically vanish if we choose
of

n

l-

B

n-

t.
s

he
uy

12400
a-

x52
113w

2w2 . ~A5!

The choicex51 tunes away vacuum energy (w521) as
well as an exotic component withp52r/2. With the excep-
tion of matter (w50), the expansion can be made insensit
to any specific equation of state by an appropriate choice
x. Once again, we have no reason to suggest that su
possibility will occur ~nor do we see any need for it!; how-
ever, this phenomenon serves as an illustration that the
cific choice~77! represents a kind of fine-tuning in its ow
right.
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