PHYSICAL REVIEW D, VOLUME 64, 123527

Probing dark energy: Methods and strategies

Dragan Huterer
Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, lllinois 60637-1433

Michael S. Turner
Department of Physics, Enrico Fermi Institute, The University of Chicago, Chicago, Illinois 60637-1433,
Department of Astronomy & Astrophysics, The University of Chicago, Chicago, lllinois 60637-1433,
and NASA/Fermilab Astrophysics Center, Fermi National Accelerator Laboratory, Batavia, lllinois 60510-0500
(Received 28 December 2000; published 28 November 2001

The presence of dark energy in the Universe is inferred directly from the accelerated expansion of the
Universe, and, indirectly, from measurements of cosmic microwave backgr@i@®) anisotropy. Dark
energy contributes about two-thirds of the critical density, is smoothly distributed, has large negative pressure,
and is very mysterious. For now, all of its discernible cosmological consequences follow from its effect on the
expansion rate of the Universe. Absent a compelling theoretical nfjodelen a class of modejsve describe
the dark energy by its equation of state=py/px which is allowed to vary with time. We describe and
compare different approaches for determinind), including a magnitude-redshifHubble diagram, number
counts of galaxies and clusters, and CMB anisotropy. We focus particular attention on the use of a sample of
several thousand type la supernova with redshiftd.7, as might be gathered by the proposed SNAP satellite.
Among other things, we derive optimal strategies for constraining cosmological parameters using type la
supernovae. The redshift range=0.2—2 has the most leverage for probimg,; supernovae and number
counts appear to have the most potential to probe dark energy. Because the expansion rate depends upon both
w(t) andQ, , an independent measurement of the matter density is critical for obtaining the most information
about dark energy from cosmological observations.
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[. INTRODUCTION comes from detailed studies of how galaxies and clusters of
galaxies formed from primeval density perturbations. The
There is good evidence that a mysterious form of darkcold dark mattefCDM) paradigm for structure formation
energy accounts for about two-thirds of the matter and ensuccessfully accounts for most of the features of the Uni-
ergy in the Universe. The direct evidence comes from disverse we observe toddgo much so that there is virtually no
tance measurements of type la supernoi@ee I3 which  competing theory Of the flat CDM modelsthot + cold,
indicate the expansion of the Universe is speeding up, ndilted, enhanced radiation, or very low Hubble constdhe
slowing down[1-3]. one with a cosmological constant (CDM) is the most suc-
Equally strong indirect evidence now comes from the faccessful and consistent with virtually all observatiqdS—
tor of three discrepancy4,5] between cosmic microwave 18].
background CMB) anisotropy measurements which indicate Even before the evidence for dark energy discussed
0,=1.0+0.04[6-10 and measurements of the matter den-above, there was a dark-energy candidate: the energy density
sity (,=0.35+0.07[11] together with the consistency be- of the quantum vacuurfor cosmological constantor which
tween the level of inhomogeneity revealed by CMB anisot-p= — p. However, the inability of particle theorists to com-
ropy and the structure that exists toddy(is the fraction of  pute the energy of the quantum vacuum—contributions from
critical density contributed by all forms of matter and en-well understood physics amount to *20times critical
ergy). The former implies the existence of a smooth compo-density—casts a dark shadow on the cosmological constant
nent of energy(or mattej that contributes two-thirds of the [19]. It is possible that contributions from “new physics”
critical density; and the latter argues for it having large,add together to nearly cancel those from known physics,
negative pressure, which leads to its repulsive gravity. Beleaving a tiny cosmological constant. However, the fine tun-
cause a smooth component of matter or energy interfereiag required(a precision of at least 54 decimal plagesakes
with the growth of linear density perturbations and the for-a complete cancellation seem more plausiileecently,
mation of structure, the energy density of the smooth comThomas has suggested that the holographic principle sets an
ponent must evolve more slowly than that of matter. Theupper limit to the quantum vacuum energy which is compa-
amount of growth needed to form the structure seen todayable to the other forms of energy density in the Universe. If
from the initial inhomogeneity revealed by the CMB implies this is correct, the fine tuning needed is far less sej20g)
that the bulk pressure of the smooth component must be If the cosmological constant is zero, something else must
more negative than aboutp/2 [12]. (Because its pressure is be causing the Universe to speed up. A host of other possi-
comparable in magnitude to its energy density, it is relativ-bilities have been discussed: rolling scalar fiédd quintes-
istic and energylike—hence the term dark energy. sencé [21-33; a network of frustrated topological defects
Finally, additional indirect evidence for dark energy [34—34; the energy of a metastable vacuum s{&@]; ef-
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fects having to do with extra dimensioh38]; quantum ef- H2(z)/H2=Q\(1+2)%+Qy
fects of a massive scalar fie[@9]; particles with a time-
varying mas$40]; and “solid” or “generalized” dark matter
[41,42. While all of these models have some motivation and
attractive features, none are compelling. On the other hand,

the cosmological constant is extremely well motivated, butyhere (),, (Qy) is the fraction of critical density contrib-

equally problematic. This in essence is the dark-energy probyted by matter(dark energy today, a flat universe is as-

lem. sumed, and the dark-energy term in the second equation fol-
The two most conspicuous features of dark energy argyws from integrating its equation of motionl(pya®)=

smooth spatial distribution and large negative pressure. pyda® (a is the cosmic scale factot

While only vacuum energy is absolutely uniform in its spa- Another crucial quantity is the comoving distance to an

tial distribution, all the other examples of dark energy only gpject at redshiftz, which is determined by the expansion
clump on the largest scales at a level that can be neglectggsory:

for most purpose$25,29,43 (more on this in the Conclu-
siong. Motivated by this as well as the absence of compel- 2 dx
ling theoretical model or framework for dark energy, Turner r(z)=f —_ 2
and White[44] have suggested parametrizing dark energy by oH(x)
its bulk equation of staten={pyx)/{px). For different dark
energy modelsw takes on different valuege.g., —1 for ~ assuming a flat universe.
vacuum energy, or-N/3 for topological defects of dimen-
sionality N); w can be time-varyinde.g., in models with a A. Age and growth of density perturbations
rolling scalar field. In this language, the first step toward
solving the dark-energy problem is determiniwgt).
While the dark-energy problem involves both cosmology
and fundamental physics, because of its diffuse nature it t w dz
seems likely that cosmological rather than laboratory mea- to:f dtzf —_— 3
surements have the most probative powkrhas been em- 0 0 (1+2)H(2)
phasized that if the dark energy involves a very light scalar
field, there will be a new long-range force that could bewhich depends upon the equation-of-state of dark energy.
probed in the laboratorl45].) It is the purpose of this paper The more negativey is, the more accelerated the expansion
to lay out the cosmological consequences of dark energy thas and the older the Universe is today for fixed (see Fig.
allow its nature to be probed, and to assess their efficacyl). To make use of this requires accurate measurements of
Further, we present in more detail some of the calculation$l, andty. Because the uncertainties in each are about 10%
that appeared in the SNAP propog4b]. In Sec. Il we begin  (with possible additional systematic errprage of the Uni-
with an overview of the cosmological observables that mayerse is not an accurate probe wf In any case, current
be of use as well as a discussion of their sensitivity to thaneasurements;lo=(70+7) kmsec! Mpc ! andt,=13
dark-energy equation of state In Sec. Ill we discuss the =*=1.5 Gyr[54-56, imply Hgtg=0.93+0.15 and favorw
relative merits of different cosmological observations in=<-—1/2.
probing the average value uf. Section IV addresses strate-  The dependence éiyty andr(z) uponw are very similar
gies for the more difficult problem of probing the possible for z~0.5—-2, and further, their ratio is insensitive @,
time variation ofw. Section V discusses optimal strategies(see Fig. 1L Thus, a measurement ¢fyt, can add little
for determining dark-energy properties. In the final sectioncomplementary information to that provided by precise de-
we summarize our results and end with some general reeerminations ofr (z). Of course, because of this degeneracy,
marks. We note that there are other studies of how best to gétere is a valuable consistency check and measurements of
at the nature of dark energ$7-52, and where appropriate r(z) have great leverage in fixinglyt, without regard to
we compare results. Q. None of this is very surprising since the formulas tfigr
andr(z) are very similar.
The effect on density perturbations is to suppress the
Il. PRELIMINARIES growth in the linear regime, relative to the Einstein—de Sitter

Xexr{SJ:[ler(x)]dln(lﬂLx) (1)

The age of the Universe today is related to the expansion
history of the Universe,

Although dark energy does not clump significantly, it does——
affect the large-scale dynamics of the Universe, including the 1,4 nave implicitly assumed that=w(z). In general, this need
age of the Universe, the growth of density perturbations ang; pe the case. If, for example, we had assumedn(p), thenpy
the classic cosmological testS3]. All of the consequences 4 not have been expressed in closed form. Nevertheles&l)Eq.
of dark energy follow from its effect on the expansion rate: can pe solved if it is supplemented by the equation governing the
behavior ofpy, dInpyx/[1+W(px)]=—3dIna. Another example
is a minimally coupled scalar field, whepg = H22+ V(¢), and its
H2= @( T py) evolution is determined by the equation of motion of the scalar
3 PMTPX field, B+ 3Hb+V'(4)=0.

123527-2



PROBING DARK ENERGY: METHODS AND STRATEGIES PHYSICAL REVIEW B4 123527

1.1 T T T a matter-dominated model until then. The growth suppres-
- - sion increases with increasing since the onset of dark-
K energy domination occurs earliesee the top panel of Fig.
= 2). Forw=— 3 the suppression of the growth of linear per-
turbations is sufficiently large that structure observed today
2 could not have evolved from the density perturbations re-
J vealed by CMB anisotropj12,44.
’f To be more specific, the suppression of growth affects the
s overall normalization of the power spectrum today, most eas-
o] ily expressed in terms of the rms mass fluctuations in spheres
i ] of 8h™1 Mpc, or og (see Fig. 3 Further, the number den-
P L Cl L sity of bound objects formed by a given redshift is exponen-

-1 -5 0 tially sensitive to the growth of density perturbatiof&].
w The number density can be accurately estimated by the

FIG. 1. Age times Hubble constant as a functiofafnstantw  Press-Schechter formalisf8],
for Q,,=0.25,0.3,0.35solid curves, top to bottoyn current mea-
surements indicate th&tyty=0.93+0.15. To illustrate the degen-
eracy between age and comoving distance measurememgsplot dn 2 pu 5. do(M,z)
their ratio (dashed curves; top to bottonf),,=0.35,0.30,0.25). —(z,M)=\/—— 5 am
Note, this ratio is insensitive tl,,, thusr(z) can be used to fix dM ™ o (M,z)
Hto without reference to the matter density.

<o

3

" 202(M,2) ©

model, where the growth is proportional to the cosmic scale
factor. The growth of linear perturbations is governed by the
familiar equation,

. . wherea(M,z) is the rms density fluctuation on mass-scale
Ot 2H O —47Gpy 6¢=0 (4) M evaluated at redshit and computed using linear theory,

, ) ) pm IS the present-day matter density, afg=1.68 is the
where density perturbations in the pressureless cold dafk,oar threshold overdensity for collapse.

matter have been decomposed into their Fourier mddes, The right panel of Fig. 2 illustrates that the recent growth

Ejz~0—3) depends uponv. For rare objectse.g., clusters
this dependence is amplified exponentially, cf. E5). The
effect of dark energy on the growth of linear density pertur-

energy models since the level of inhomogeneity revealed ilj?atéc;ns for tr:je clufer-nglﬂ?er-clolunt Fest IS d|s|cuszed be(ljo;/v.
the CMB is just about right to explain the structure seen rong and weak gravitational lensing may also be used to

today. constrain the growth of structure and thus probe dark energy.
The reason the growth is not affected much is because fof/e will not address them here as detailed modeling of the

1 . lenses, their distribution, and the evolution of nonlinear
w= -~z the Universe only recently became dark'en(_'\rgystructure is required to address their efficacy. We refer the
dominated [py=py for 1+z<1+zy=(Qy/Qy) Y3, d 4

and the growth of perturbations is essentially the same as iqueader to Refs.59-61.

that k>H;,. As can be seen in the left panel of Fig. 2, the
effect on the growth of linear perturbations is not very sig-

nificant for w=— 3, which is one of the virtues of dark-

1
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FIG. 2. Left panel: growth of linear perturbations since redshift 1000 relative to the Einstein—de Sitter model as a function of
(constant w for Q= 0.3. Right panel:growth of linear perturbations, normalized to its value today, for two different values afid
0O\ =0.3. Growth was computed by integrating E4) starting atz>1000, neglecting radiation, and assuming that dark energy does not
clump.

123527-3



DRAGAN HUTERER AND MICHAEL S. TURNER PHYSICAL REVIEW D64 123527

1.4 y T y T . 1.1 T T T T

12

—1

-
o
o

l—;|
~N
N
I
~N 1 =
© e S

0.8 = \\?: ________
L\‘/ ~\.\"::\\.
T 095} T

0.6 ~
N
} —

0.4 L . 0.9 L ) . A

-1 -0.8 -0.6 -0.4 0 1 2 3 4 5
W Z

FIG. 3. The rms amplitude of matter perturbations on the scale FIG. 4. The Alcock-Paczynski test, which compares the angular
8h~! Mpc as a function ofconstantw for a Cosmic Background size (A6) of a spherical object at redshiftto its redshift extent
Explorer (COBE) normalized, scale-invariant model with=0.7  (AZ), can determine (2)H(z). Its sensitivity is shown here for
(see Ref[44] for detaily. The present cluster abundance fixes ~ !m=0.3 and constanv=—0.4,-0.6,-0.8,~ 1.0.
=(0.56+0.1)Q,,%" (95% C.L) [62], indicated by the dashed lines
for O\, =0.3. The downward trend ing with increasingw is the Az
suppression of the growth of linear density perturbations as dark H(2)r(z)= Ik (8)
energy domination occurs earlier, and leads to an upper limitab

around—1/2.
The trick is to find objectgor ensembles of objedtshat

B. Classical tests are spherical. One idea involves the correlation function of
. . galaxies or of Lymanx clouds, which, because of the isot-
Other cosmological probes of the dark energy involve the, ., of the Universe, should have the same dependence upon
classical tests: magnitude vs redshifdubble diagram, separation along the line-of-sight or across the sky. A large
number count vs redshift, a_nd angular size vs redshift. FOL 4 \iniform sample of objects is needed to implement this
the flat models that we consider, all of these depend upon thggt- frther, the effects of peculiar velocities induced by den-
comoving distance to an objeetz). _ sity perturbations must be separated from the st or
Luminosity distance, which is the distance inferred from 0 cosmological effec64].
measurements of the apparent luminosity of an object of The authors of Ref§65—67 have discussed the feasibil-
known intrinsic luminosity, lofd, (2)]=0.2(m—M) =5, ISy of using the correlation function of Lymaa-clouds seen
related tor (2) along the lines of sight of neighboring high-redshift quasars
_ to distinguish between a low-density model and a flat model
d(2)=(1+2)r(2), © with dark energy. Figure 4 shows the sensitivity of this tech-
nique tow; whether or not it has the power to probe the
wherem is apparent luminosityM the absolute luminosity nature of dark energy remains to be seen.
and distances are measured in Mpc. The magnitude-redshift The comoving volume elemenifferential comoving
(Hubble diagram is a plot om(z) vs z volume per unit redshift per unit solid anglis at the heart
The angular-diameter distance, which is the distance inof number-count testge.g., counts of lensed quasars, galax-
ferred from the angular size of an object of known size,ies, or clusters of galaxigésee Fig. 5. It is given in terms of
da(z)=D/8, is related tor (z) r(z) andH(z):

_ _ 2
da=1(2)/(1+2)=d (2)/(1+2)2. 7 f(z)Edgyﬂ:rz(z)/H(z). .

The angular-diameter distance also comes into play in using
CMB anisotropy(more below or the Alcock-Paczynski test Note too that
to probe dark energy.

The Alcock-Paczynski test compares the angular size of dF(2) , r3(2)
an object on the sky with its the redshift extd6B]. The f(z2)= ——, F(z):f f(z)dz= i (10)
diameterD of a spherical objectof fixed size or comoving dz 0 3

with the expansionat redshiftz is related to its angular size The ability of these cosmological observables to probe the
on the skydé by d,(z)dé and to its redshift extent by dark-energy equation of state depends upon their sensitivity
Az/[(1+2)H(2)]. Thus, measurements dafz and A9 can  to w. To begin, consider the case of constantThe sensi-

be combined to determind(z)r(z): tivity of r(z), H(z), andf(z) to w is quantified by
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0.6

FIG. 5. Comoving volume elemeii{z) =dV/dQdz vs redshift
for constantw=—1,—0.8,—0.6,—0.4 (from top to bottom and
QM = 03

dw 2

dr(z) 3JzQXH§(1+x)3<1+W>|n(1+x)dx
0 H3(x)

df(z) 2r(z) dr r%z) dH
dw  H(z) dw HZ%(z) dw’

(11)

dH(z) 3 QyxH3(1+2)3E " Win(1+2)
dw 2 H(z) '

The comoving distance to an object at redshitind its
sensitivity tow is shown in Fig. 6. At small redshifty z) is
insensitive tow for the simple reason thatll cosmological
models reduce to the Hubble law= Halz) for z<1,

-1 3 2 3 2
r(zy=Hg Z—ZZ —ZQXWZ +. for z<1.
(12
4.0
30
20
10 |
—dr/dw

0.0 = N .

0.0 0.1 1.0 10.0 100.0  1000.0

Y4

FIG. 6. r(z) anddr/dw as a function of (in units ongl) for
Qy=0.3 andw=—1.

PHYSICAL REVIEW B4 123527
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04 —-dinf/dw |
0.2 ~dinr/dw

FIG. 7. The relative sensitivity of(z), f(z), andH(z) to a
change in the constant value wf

At redshift greater than about five, the sensitivityr§z)
to a change iw levels off because dark energy becomes an
increasingly smaller fraction of the total energy density,
px!pme(1+2)3". As we shall discuss later, the fact that
dr/dw increases monotonically with redshift means that for
measurements of fixed error, one would want to make the
measurement at the highest redshift possible in order to mini-
mize the uncertainty in the inferred value wf

Figure 7 shows the relative changerifz), H(z) and in
the comoving volume elemeffifz) due to a change iw as a
function of redshift. The sensitivities ¢1(z) andf(z) peak
at redshiftz~0.7.

As noted earlier, observations at redshifts D=2 will be
most useful in probing dark energy. This fact is made more
guantitative in Fig. 8. The left panel shows the accuracy of
the determination of the equation of state(assumed con-
stan} as a function of maximum redshift probeg,,, and
marginalizing over the other paramet€r,, . The right panel
shows the accuracy in determining;, assumingw(z)
=w, +w;z and marginalizing ovew, (see Sec. IY. For the
upper curve in both panels we use the fiducial SNAP distri-
bution with 2566 SNésee Fig. 12 cutoff atz,,,, and renor-
malizing to keep the total number of SNe constdfur
Zmax> 1.7, we assume 12 SNe per each interval of 0.1 in
redshify. Lower curves assume the mathematically optimal
distribution of 2566 SNe, with equal number of SNe located
at each of three redshiftg=0, z=2/5z,.x, andz=z,,, (see
Sec. V. In all cases,o(zZna) Was computed using the
Fisher-matrix formalism; see Appendix A. For 62,
=<1, the 1o uncertaintyo,, decreases sharply and then lev-
els, with little decrease for,,5,= 1.5.

C. CMB anisotropy

The gravity-driven acoustic oscillations of the baryon-
photon fluid at the time of last scattering gives rise to a series
of acoustic peaks in the angular power spectrum of CMB
anisotropy(see Fig. 9[68]. The CMB is a snapshot of the
Universe atz=z,¢=1100 and the peaks correspond to dif-
ferent Fourier modes caught at maximum compression or
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FIG. 8. Left panel:Estimated b errors in determiningconstant w as a function of maximum redshift probeg,,. We assume a flat
Universe and marginalize over the other paramélgy, The upper curve shows the uncertainties using the fiducial SNAP distribution cutoff
at z,,.x and renormalizing to keep the total number of SNe constant. The lower curve shows uncertainties obtained using the mathematically
optimal distribution, with equal number of SNe located at each of three redshift¥; z~ 2/5z,,,,,, andz=z,,, (see Sec. ¥ Right panel:
1o errors in the determiningv; as a function of maximum redshift probeg,,, assuming a flat Universe witf},, known precisely and
w(z)=w,+w;z (see Sec. I¥, and marginalizing ovew;.

rarefaction, when the fluctuation in the photon temperature iphysical sizesd~ 7/[k(1+2.5)]~ 7su/[n(1+2.5)]. Their
at an extremum. The condition for thisks)sy=nm, where  angular sizes on the sky are given by
the odd (ever) n modes are compressiofrarefaction

maxima andygy is the sound horizon: 7su/n
Oy~ ————— (15
(1+2z.8)da(z.s)
fthdet foc vy(z')dzZ' 13
NSH™ =
R(t) ! 25 d7
o RO Jas H(z) dA(LS):(1+zLS)—1f - . (16)
o H(z')
2 13 14 This can be made more precise for the angular power
VST T4 3paldp, (14 P gular p

spectrum. The angular power at multipdlss dominated by

modes aroundk=1/7%_5, and so the positions of the peaks
Modes captured at maximum compression or rarefactioire given approximately bisee, e.g., Ref.70])

provide standard rulers on the last-scattering surface with
s

|, =nm——. (17
100 T T n Nsh

For a flat universey, g is just the coordinate distance to the
last-scattering surfacgz, s).

The positions of the acoustic peaks are the primary sensi-
tivity of the CMB upon the equation of state of dark energy
(see Fig. 10 Most of that sensitivity arises from the depen-
dence of the distance to the last-scattering surface wpon
Using the approximation above, and taking into account the
other important cosmological parameters, it follows that

Tewe [(+1)C/(2m)]™ (UK)

Al _ 0.084AW—0 2’)AQMhZ 0 OGAQBhZLO osnAQM
T— . W . UQMhZ + . JQBhZ T . JQM
20 10 100 1000 AQ
Multipole | ~1.25—-2 (18)

Qg
FIG. 9. COBE-normalized angular power spectrum of CMB an-
isotropy for a flat model with)5h2=0.02, =07, h=0.65, and for w=—1, h=0.65, 0),=0.3, Qgh*=0.02, andQ,=1.
w=—1, obtained usingmBrasT [69]. The acoustic peaks corre- Other features of the CMB power spectryeg., heights of
spond to modes that at the moment of last scattering are at maxthe acoustic peaks and damping)taén precisely determine
mum compressiofiodd or rarefaction(even. the matter density(@,,h?) and the baryon densit¥Xgh?);
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FIG. 10. The position of the first acoustic peak as a function of

w for Qgh?=0.02 and2yh?=0.13. FIG. 11. The relative sensitivity of the comoving distam¢e)
and the comoving volume elemeffiz) to a localized change in the

therefore, for a flat Universe the main dependence of thaalue ofw at redshiftz, characterized by dw(z)d Inz=1.
position of the acoustic peaks is upéh, andw. For Q,
~0.3,1, is about three times more sensitiveq, thanw. around z=z, , such thatféw(z)dInz=1. The effect on
Interestingly enough, the recent data from the BOOMERanGH(z) for z>z, , which we denote by the functional deriva-
and MAXIMA-1 experiments indicate that the first peak is tive sH/éw(z), is
located at aroundi=200 [8], which indicates a larger value

of w, w~ —0.6, than the supernova data and suggests dark ) z
OyHgex 3f (1+w)dIn(1+2z)
0

energy may be something other than a cosmological con- SH(z) 3 z

stant. However, there is little statistical significance to this =—_*

result. (More recent results put the peak at a higher value, oW(2) 214z, H(2)

consistent withw=—1 [9,10].) (20)

[The CMB angular power spectrum has additional sensi- .
tivity to dark energy which is not captured by E@8). It Forz<z, there is no effect ol (z). Note that the effect of

arises through the late-time integrated Sachs-WAIgWV) %g)a?nnobhn? ;eoxrerinzsmn rate is essentially to change it by a
effect as well as any clumping of dark energy, and mainly The sensitivity ofr*(z.) and f(2) =1 (2)2/H(2) follows by

affects the low-order multipoles. Because of the large cosmicim le calculus:
variance in the low-order multipoles, this dependence is not "'P '
likely to significantly enhance the ability of CMB anisotropy

to probew.] ﬂ_if(_ﬁ) dz 21
| W2 1)\ ow/H(z)? @)

D. Time-varying w Sinf sinr 1 SH
There is no compelling reason to believe that dark energy SW =2 oW H(z) ow’ (22)
is characterized by a constamt In particular, if dark energy

is associated with an evolving scalar field then the effective ¢ sensitivity off (z) andf(z) to a localized change w

equation of state, is shown in Fig. 11, where we takg =0.9z. Bothr(z) and
1 the comoving volume element are insensitive to the value of
~d*—V(¢) w(z) at small redshift(sincer andH are insensitive to the
w(t)=p,/p :2 (19 form of dark energyand at large redshiftébecausepy/py
(A ) ’ decreases rapidlyThey are most sensitive t8(z) over the
§¢ +V(¢) redshift rangez~0.2—1.5, with the sweet spot being at
~0.4.

. _ . As discussed in Ref.71], measurements af(z) can in
varies with time. Thus, sensitivity to the value w{z) at a principle be used to reconstruct the equation of state

givenzis an important measure of the probative power of ascajar-field potential in the case of quintessentae recon-
given test. Needless to say, in order to probe the variation of\,ction equation fow(z) is

w with redshift, one has to perform measurements at differ-

ent redshifts. Thus, CMB anisotropy and the age of the Uni- 2 2 2 3

verse cannot probe this aspect of dark energy. 1+w(z)= 1+2 3HoQu(1+2)°+2(d*r/dZ’)/(dr/d2)
We now consider the effect of a changevinat redshift 3 HéQM(lJrz)S—(dr/dz)‘2

z, ; specifically, a change iw over a small redshift interval (23

123527-7



DRAGAN HUTERER AND MICHAEL S. TURNER PHYSICAL REVIEW D64 123527

This equation can be used to illustrate yet again the diffi- 300

culty of probing dark energy at high redshift. Suppose that
r(z) and its derivatives are measured very accurately and 5
that the only uncertainty in reconstructing(z) is due to 5

Q. The uncertainty irw(z) due to the uncertainty if, Q o9 | 4
can be obtained by differentiating ER3) with respect to %
QM . N
~(1+2)3 N

Aw(z)= AQy (29 @ 100 :
Qxexp{SJ (1+w)dIn(1+2) 'g
3
P

—(1+2)73" T

——————AQ), (constw). (25 0 0 : 05 : ” 15

Qx

Therefore, theiugncertalllnty W(z) increases with redshift FIG. 12. Histogram of projected SNe la distribution from SNAP.
sharply, as (¥2) °". This happens because<0 and the  The number of SNe at>1.2 is smaller because spectra of SNe at
dark energy constitutes an increasingly smaller fraction ofych highz are redshifted into the infrared region, where observa-
the total energy at high redshift. tions are more difficult. About 200 SNe &£ 0.2 are assumed to be

The reconstruction equations based upon number coungiovided by ground-based SNe searches.
can simply be obtained by substitutifgF (z) ]*® for r(z) in
Eq. (23). Since the expansion histoly(z) can in principle
be obtained from measurements fg¢z) andr(z) (number
counts and Hubble diagramor from r(z) and r(z)H(z)
(Hubble diagram and Alcock-Paczynski festith a sense of
great optimism we write the reconstruction equation base
upon a determination dfl (z):

On the other hand, CMB anisotropy depends upon a much
larger number of parametefs.g., Qgh?, h, n, dn/dInk,
ionization history, etc The number-count tests can also de-
8end upon the growth of structure which brings in other
parameters that affect the shape of the power specteugn,

n, Qgh?, h).
In the remainder of this paper we pay special attention to
’ _ 2 3
1+W(Z)=1 2(1+2)H'(2)H(2) = 3Ho(1+2)"Qy SNe la, and in particular consider how well dark energy
3 H2(z)—H(2,QM(1+z)3 could be probed by a high-quality dataset provided by the

(26)  proposed satellite mission SNAP46]. As the fiducial
dataset, we consider a total of 2566 SNe la with individual

which follows from statistical uncertainties of 0.15 métpe impact of systematic
uncertainties on this dataset was studied in Ré#$,49,5Q).
dr(z)=—dt/a(t)=dz/H(2). (27 The bulk of the SNe are assumed to have<z 1.2, with

about a hundred at 1s2z<1.7 and another two hundred or
This reconstruction equation has the virtue of dependingo atz<0.2. (See Fig. 12. The low-z sample is expected
only upon the first derivative of the empirically determined from near-future ground-based searches, such as the Nearby
quantity. Supernova Factor74].
The number-count technique can be implemented in a va-
E. Summing up riety of ways—for example, halos of a fixed m4g$), clus-
. ters of galaxies of fixed ma$g6], and gravitationally lensed
In sum, the properties of dark energy are best revealed by,55ar477]. All of these methods, however, are susceptible
probes of the moderate-redshitt0.2—2 Universe—SNe (5 regshift evolution of the objects in question, as well as
la, number counts and possibly the Alcock-Paczynski tesiyqnsiderable uncertainties in theoretical modeling.
The CMB has an important but more limited role to play  ypless otherwise indicated, we use the Fisher-matrix for-
since it can only probe an average valuewofSNe la are  pajism throughout to estimate uncertaintiege Appendix
currently the most mature probe of dark energy, and already) | several instances we have checked that the values
impose significant constraints ow [73,72,], w<—0.6  gptained agree well with those using Monte Carlo simula-

(95% C.L). The efficacy of any of these tests will depend tjon The fiducial cosmological model By, =1-Q,=0.3,
critically upon the identification and control of systematic,,— _1 _nless otherwise indicated.

errors(more on this below

The classical cosmological tests that invoiMg) alone
have the virtue of only depending updbd,,, Qyx, andw,
which can be reduced to two parametetk(andw) with a To begin, we assume that the equation of state of dark
precision measurement 6f, from the CMB. A precise, in- energy does not change in tim&(z) =w=const. Not only
dependent measurement 6fy; would reduce this to one does this hold for models with truly constamt (vacuum
parameter. energy, domain walls and cosmic strings, etmut models

I1l. CONSTRAINTS ON (CONSTANT) w
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FIG. 13. Projected SNAP constraint compared to those pro- FIG. 14. Constraints in th&)y,-w plane using galaxy-halo
jected for MAP and PlancKwith polarization information and  counts from the DEEP survel75]. Innermost region shows the
SDSS (MAP, Planck and SDSS constraints are from Ré&®]). constraint assuming Poisson errors only, while the outer two regions
Also shown are the present constraints using a total of 54 SNe lassume an additional, irreducible uncertainty of 5% and 10é6
All constraints assume a flat Universe afig,=1—Qy=0.28,w bin) in the comoving number density of halos due to evolution. All
=—1 as fiducial values of the parameters. The CMB analysis altegions are 68% C.L. The middle conto(5% additional error
lowed 8 cosmological parameters to vary independently:corresponds to a recent estimate of anticipated systenatibkew-
Quh?, Qgh?, Qy, w, spectral index, reionization optical depth man (private communicatior.

7, fluctuation in Bardeen curvatu (representing normalization
and tensor-to-scalar ratity S. All contours are 68% C.L., and were

obtained using the Fisher-matrix analysis. The uncertainty in the determinationwfvaries as a func-

tion of the central value of this parameter. Rogreater than

—1, the SNe constraint becomes weaker. This is because the
variation of dark energy with redshift becomes more similar
to that of matter, and it is more difficult to disentangle. For
example, fow= —0.7 and keepind,,= 0.3, the constraints

A. SNe la and CMB on these two parameters from SNAP deteriorate by 10% and
0% respectively relative to the= —1 case. On the other

nd, the CMB constraint becomes somewsdtaingerwith

with time-variable equation of state can have const in the
redshift range probedz(-0.2-2.

Figure 13 shows that a supernova program, such as SNA#g
[46]' .W|Il_enable very accurate megsuremenmfafter mar- increasingw because the ISW effect increagsse Fig. 5 in
ginalization over(),, and assuming a flat Universes,, Ref. [78])
~0.05(if O, is known, this improves by a factor 0§.3This ' '
figure also shows constraints anticipated from the Sloan
Digital Sky Survey (SDSS and Microwave Anisotropy
Probe(MAP) and Planck satellitegwith polarization infor- Davis and Newmaif75] have argued that the comoving
mation. As expected, the fact that dark energy is smooth orabundance of halos of a fixed rotational speed varies weakly
observable scales implies that its properties cannot be probeuth the cosmological model and can be calibrated with nu-
well by galaxy surveys. The CMB, on the other hand, ismerical simulations, leaving mostly the dependence on the
weakly sensitive to dark energy, mainly through the depenvolume elemen{75]. We follow these authors in assuming
dence of the distance to the surface of last scattering upon 10000 galaxy halos divided into 8 redshift bins at0Z
The orientation of the CMB ellipses is roughly predicted <1.5. The redshift range for the DEEP survey roughly cor-
from Eq.(18), indicating that this equation captures most of responds to the redshift range of the greatest sensitivity to
the CMB dependence upon dark energy. dark energy.

The CMB provides only asingle measurement of the Figure 14 shows the constraints obtained using the Fisher-
angular-diameter distance to the surface of last scatteringnatrix formalism assuming Poisson errors only, and then al-
albeit an accurate one. In the Plaflkcase, the angular- lowing for an additional 5% or 10% error per bin for the
diameter distance to the last-scattering surface is measured tmcertainty in the evolution of the comoving halo density.
0.7%]D. Eisenstein(private communicatior). Figure 13 il-  Assuming no uncertainty in the comoving halo density, the
lustrates that ultimately CMB is not likely to be as precise aserror ellipse is somewhat larger than that of SNAP. However,
a well-calibrated SNe dataset, even in the optimisticallowing for a modest uncertainty due to evoluti¢h or
PlanckP) case. However, CMB does provide important 10%), the size of the error ellipse increases significantly.
complementary information and a consistency check; for extNewman has recently estimated that the anticipated system-
ample, combining SNAP and Plar(& improves the SNAP atics correspond to the 5% contour; see figukénally, any
constraints or(),, andw by a factor of three. probe sensitive primarily taV/dQdz will have its error

B. Number counts

123527-9
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(T T ] field models[43] and some tracker quintessence models
C ] [30]) w(z) can exhibit significant variation out to~1.
_04 — —
i ] A. Constraining the redshift dependence ofw
®E -0.6 = Given a dark-energy model it is easy to compuig) and
i ] from it the prediction forr (z). There is little theoretical guid-
o8 A ance as to the nature of dark energy, so we seek ways to
- 1 parameterizev(z) as generally as possible. A further com-
:| N o lamarl .: plication is the degeneracy a¥(z) with Q,, and Qy. To
-1 A make useful progress, we assume that by the time a serious
C ] attempt is made to probe the rate of change/,af),, and()
-0.4 | — will be measured accurately: the total energy dens$ly
i ] +Qy can be determined from the location of the acoustic
s _06 ] peaks of the CMB power spectrum, whi{¢,, follows by
Tt . combining CMB peak morphologywhich is sensitive to
i ] Q,,h?) and large-scale structure survdyghich measure the
-0.8 [~ 7 same quantity in redshift space—heng,h) [81,80. For
- . example, Planck satellite with polarization information com-
PR I 1 SN O Y P bined with SDSS could determinf@,, to 0.01[78]. In prac-
025 03 035 04 tice (see below, a precision of better thaw, ~0.03 is
Uy needed.
FIG. 15. Projected one, two and threeconstraints orf), and
w in a flat Universe using counts of galaxy clustéasiopted from B. Case L:w(z)=w;+w;(z—2;)
Ref.[76]) for an x-ray selected sample of one thousand clusteps The simplest way to parametrize the rate of change isf

pane) and a Sunyaev-Zel'dovich selected sample of hundred clust0 write the first-order Taylor expansidi7]
ters (bottom).
W(z)=wq+wi(z—2), (29

ellipse oriented in the direction shown, which is similar to _ ,
that of the SNe. wherew,=w(z;) and wl=(dwldz)zl are constants ang,

While clusters are simpler objects than galaxies, they aré® the redshift around which we expafahosen according to
“rare objects” and their abundance depends exponentialhyfOnvenienck The energy density in the dark-energy compo-
upon the growth of density perturbations and varies man;?em is then given by
orders-of-magnitude over the redshift range of intefB%t. B W w (14 ,
The sensitivi?y to the growth factor outwgc]eighs that of the Px(2)=px(0)(1+2)*T el Zl)]exp(Swlz). (29)
cosmological volume, and the error ellipses for the cluster Using the Fisher-matrix formalism, we determine the er-
number-count test are almost orthogonal to the halo numbefor ellipses in thav,-w; plane. We choose, so thatw,; and
count test(see Fig. 15 The information provided is thus ! pecome uncorrelatedhow to do this analytically is

complementary to halo counts and SNe data. shown in Ref[80]). For uncorrelatedv; andw}, the con-
Because of the exponential dependence of the abundancgaint tow(z) follows by computing

control of the systematic and modeling errors is critical. Es-

pecially important is accurate determination of cluster UW(Z)=[0§,1+ ofv,(z—zl)z]l/z. (30)
masseguse of weak-gravitational lensing to determine clus- '
ter masses might be very usefid]). Shown in Fig. 15 are Figure 16 illustrates the error ellipse far, andw; (top

the estimated constraints for a sample of one hundred clugane) and the constraint ter(z) (bottom panel As we dis-
ters with 0<z<3 selected in a future Sunyaev-Zel'dovich cussed in Sec. I, cosmological observations have diminish-
survey and one thousand clusters with £<1 selected in a ing leverage at both high and low redshift, which is reflected

future x-ray survey 76]. in the narrow “waist” atz~0.35, and this is the sweet spot
in sensitivity tow(z) (see Fig. 11
IV. PROBING THE TIME HISTORY OF DARK ENERGY The uncertainty in the slopes,;=0.16, is about 8 times

) L . . as large as that iw(z,), =0.02. Despite the relativel
Time variation of the dark-energy equation of state is an 9 (1) Tw, P y

important probe. For topological defects and vacuum energlf’d€ uncertainty iy, this analysis may be useful in con-
w is constant; thus, evidence for time variationvefvould ~ Straining the dark-energy models. o

exclude these possibilities. For rolling scalar-field models F'”?"V' we also_ show in Fig. 16 Fhe significant effect of a
is generically time variabléthough its variation in the rel- Gaussian uncertainty of 0.05 {2y ; it roughly doubleso,,,
evant redshift range could be very smalin some cases andawi and moves the value & that decorrelates the two
[e.g., with pseudo Nambu-Goldstone bodBNGB) scalar  parameters to less than zero.
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FIG. 16. Herew(z) was Taylor-expanded arourzgd=0.31 with fiducial modeiv(z) = — 0.8+ 0.1z. The left panel shows 68% and 95%
C.L. constraints in thev,-w; plane. The right panel shows the same constraint intheplane, with the fiducial modeheavy ling and
confidence regionsshadegl The dashed lines in both panels show the effect of assuming a Gaussian uncertainty of(@p5 in

C. Case II: w(z2) =w;—a In[(1+2)/(1+2z)] constraints that can be imposed on and «. We again
There are other ways to parametrize the variatiow () choosez, so thatw, and « are decorrelated; this occurs for
with redshift. Efstathioy82] argues that many quintessence 2129-30- . ) )
models produce equation-of-state ratio that is well approxi- Figure 17 shows 68% and 95% C.L. constraint regions in
mated byw(z)=w,— « In(1+2) with w, and @ constants. e Wi-a plane (top panel and w-z plane (bottom). The

We generalize this by expanding around an arbitrary redshiffducial model v; = —0.75,a=—0.2) is chosen to produce
z w(z) similar to that from linear expansiaftase ). The un-

certainty in parameter determination ¢s, =0.02 ando,,
=0.21. The bottom panel of this figure shows that using the
logarithmic expansion we obtain similar constraintsi()
o as with the linear expansion. This is not surprising, as near
Here, the energy density in dark energy evolves as the leverage point;~0.3, the two expansions are essentially
p(2) = pr(0) (1 2L+ Wt ain(i-+2y)] equivalent witha = (1+2z;)w; ando,=(1+2z;) oy, This is
consistent with our results.

w(z)=w;—aln . (3D

1+2z,

3
Xexr{—zalnz(lJrz) ) (32

D. Case lll: Constant w in redshift bins

As with the Taylor expansion, we have a 2-parameter An even more general way to constrav(z) is to param-
form for w(z) and, using the supernova data, we examine thetrize it by constant values in several redshift bins, since no

1-0 T T T T 0
05 - .
—
S 00Ff 1 N s
=
—05 | 1
-1.0 I 1 1 1 1 1 ) X .
-1 209 08 -07 -06 05 9 05 1 15
W, z

FIG. 17. Here dark energy is parametrizedvio§z) =w; — a In[(1+2)/(1+2y)], with w;=—0.75 ande= —0.2. The left panel shows 68%
and 95% C.L. constraints in thve;-a plane. The right panel shows the same constraint im#zeplane, with the fiducial modéheavy ling
and 68% and 95% C.L. confidence regi@hadegl

123527-11



DRAGAN HUTERER AND MICHAEL S. TURNER PHYSICAL REVIEW D64 123527

0 y T y T Figure 18 shows constraints am(z) whenw is param-
eterized by values in three redshift bins whose widths are
chosen so that the uncertainty in each is about the same.
Precise knowledge dR,, and()x was assumed.

The constraints are not strong,(~0.12) in part because
the values ofw in adjacent bins are uncorrelated. Most real-
= 05} - istic models with time-dependent equation of state ha{z
that varies slowlyor does not vary at glbut toz~1. There-
fore, we also show results when a Gaussian prior is imposed
that penalizes models with large changewirbetween two
adjacent bingthe prior has the spread,=0.10 for change
in Aw; between adjacent binsThe 1o constraints improve
1 . . . i by more than a factor of 2.

0 0.5 1
Zz

. ) ) E. Nonparametric reconstruction
FIG. 18. Herew(z) is parametrized by constant values in red-

shift bins. The outer region shows 68% C.L. constraints correspond- The most general approach is the direct reconstruction of
ing to each redshift bin. The inner region shows 68% C.L. con-W(z) from the measured luminosity distance—redshift rela-
straints when, in addition, a Gaussian prior is imposed thation provided by the SNe la daf&1,83—85. This method is
penalizes models with a large changewnbetween two adjacent nonparametric and no assumptions about dark energy or its
bins. equation of state are needed. This is also the most challeng-
ing approach, since the reconstructed potential and equation-
particular form forw(z) need be assumed. Of course, moreof-state ratio will depend on first and second derivatives of
redshift bins lead to weaker constraints in each bin. the distance with respect to redshift, cf. EB3). This leads
We divide the SNAP redshift range inBbins centered at to a fundamental problem: even very accurate and dense
redshiftsz; with corresponding widthdz; and equation-of- measurements of(z) allow great freedom im’=dr/dz and

state ratiosw;(i=1, ... B). The energy density of the dark r”=d?r/dz?, because they themselves are not probed di-
component evolves g$or z in bin j) rectly.
1 (1w To address this problem, various authors have advocated
px(2)=px(z=0) L) ) polynomials and Padapproximantg71] and various fitting
X X 1+z—Az/2 functions[84,85,49 to represent(z) and thereby reduce the
-1 a+w) inherent freedom im” andr”. _
<1 1+2z+Az/2 ' 33 In Fig. 19, we show the simulated reconstruction of the
i1 \1+z—Az/2 quintessence model with potentis( ¢)=M*[exprp/ )

—1] [30] andQx=0.50. We assumed 2000 SNe uniformly
To obtain the constraints using this approach, we again endistributed out taw= 1.5 with individual uncertainties of 0.15
ploy the Fisher-matrix formalism, treating the as the pa- mag. Data were fit by a three-parameter Pagigroximant of

rameters to be determined. the form
0.4 . r T : 0.0 r .
-0.2
4. 0.3 E
% -0.4
> —~~
- N,
= 2
~ -0.6
Lozt |
>
-08 | E
0.1 L L L L _1 O 1 L 1 1
0.3 0.32 0.34 0.36 0.38 0.4 “0 0.2 04 06 0.8 1
¢/mPL Z

FIG. 19. Reconstruction of the quintessence model with potevifial) = M*[ exp(mg/ ¢) — 1] [30] and Q= 0.50. The solid line is the
input model, and the shaded regions are the 68% and 95% confidence, produced from Monte Carlo simulation of 2000 SNe uniformly
distributed out taz=1.5 with individual uncertainties of 0.15 md@% in distancg A three-parameter Padgpproximant fit tor (z) was

used. In the right panel the reconstruction is showwés) = (3 $2—V)/(3 ¢>+V).
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z(1+az)

Hor(2) = ————.
of (2) 1+bz+c?

(34)

We have also tried other fitting functions that have been
suggested49,84,89, as well as a piecewise cubic spline
with variable tension. We find that all are able to fit the
predicted form forr(z) well (about 0.2% accuragy How-
ever, a good fit is not the whole storyz) andr”(z) are
equally important—and the small bumps and wiggles be-
tween the between the fit and the actual form predicted by
the dark-energy model are important because they lead to
reconstruction error.

In sum, nonparametric reconstruction is very challenging,
and an oxymoron: as a practical matter the data must be fit
by a smooth function. Nevertheless, in the absence of a
handful of well motivated dark-energy models, reconstruc- FIG. 20. The 95% C.L. constraint am(z) when dark energy is
tion offers a more general means of getting at the time deparametrized byv; andw; and the halo counts are divided into 8
pendence ofv and the very nature of dark energy. Finally, it redshift bins with 0.% z<1.5(solid line9 and 15 redshift bins with
goes without saying that the best way to test a specific mode&l<z< 1.5 (dashed lines The light dotted lines show the result with
is to useit as a representation of dark energy. 8 bins and 0.%z<1.5, but now with a 10%per bin additional

uncertainty due to the systematics.

F. Number counts supernovae(we add subscript “X” to distinguish the

Probingw(z) by number counts will involve all the diffi- €quation-of-state from the weight functions defined bglow
culties just discussed for SNe Ia, and the additional issue of© this end, we ask, given the cosmological parameters we
separating the evolution of the comoving density of objectdVant to determlne, what is the optimal redshift distribution to
(galaxies or clustejsfrom the cosmological effects of dark best constrain those parameters?
energy. To test the probative power of number counts, we At first glance this problem may appear of purely aca-
consider a cosmological probe that is primarily sensitive tgdemic interest since we are not free to put supernovae where
the volume elementV/dzdQ, such as the galaxy-halo test W€ pIeasc_e. However, supernova observers hgve considerable
using the DEEP survel75). In order to achieve comparable fre_edor_n in choo_s!ng redshift ranges for their se_zarches, by
constraints to those provided by SNe la, we find thatiSIng filters sensitive _to wavelengths corresponding to spec-
dV/dzd) must be measured to 2—3% in each redshift bintra at observed redshifts. Moreover, supernovae are easier to
Even with thousands of halos, the accuracy in the numbefiscover than follow up, and the answer to the question we
counts in each redshift bin must be Poisson-limited—a veryP©S€ could well be implemented in the choice of which su-
challenging goal when the ever-present uncertainties in thg?ernovae are followed up.

oretical predictions of abundances of these objects are taken [N this section we make four assumptions:
into account. (i) Magnitude uncertaintyg,, is the same for each su-

The solid line in Fig. 20 shows the 95% C.L. constraint onPernova irrespective of redshifthis is a pretty good ap-
w(z) when this function is parametrized ly; andw/ (case ~Proximation for the current data sgts o
| above, with the choice ofz; =0.35 to decorrelate these two (1) Total number of supernovae observed is fixed.,
parameters. Two cases were considered, each with a total gther than the total observing time
10000 halos. In the first, the objects were binned into 8 red- ('")_ The numbgr C.)f. supernovae that can'be found at any
shift bins with 0.7 z< 1.5, as expected for the DEEP Sampleredshlft is not a limiting factor(this is not likely to be a

[75]. In the second case, the objects were binned in 15 reds_eri_ous con_sidera_tic)n
shift bins with 0< z< 1.5 (herez,=0.27). Filling in the low (V) For simplicity we assume that type la supernovae are
redshift end improves the constraint standard candles; in fact, they afat best standardizable

Finally, we show the constraint t(z) in the case of candles whose peak luminosity is related to their rate of

10000 halos with 0.%z< 1.5, but now assuming that there brl?\lhtnessf ?ﬁdme' i ired t the f |
is a 10%(per bin additional uncertainty due to the evolution . onedo Iesg astﬁump lons ?(retrﬁqwrfe 0 uset € orma(;
of the comoving number density of halos. The constraint jgSm We deveiop, rather, we make tnhem for concreteness an

now considerably weaker, and ony(z~0.4) is determined simplicity. _Moreover, any or all of these as;umptlons can be
accurately. relaxed with the framework we present. Finally, unless the

assumptions prove to be wildly wrong, the results will not

change much.
V. OPTIMAL STRATEGIES

Here we consider strategies for the most accurate deter- A. Preliminaries

mination of the cosmological parametefs,,, (1« and the We tackle the following problem: giveN supernovae and
equation of state of dark energwy, using high-redshift their corresponding uncertainties, what distribution of these
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supernovae in redshift would enable the most accurate deter- 0.2 T T - T
mination of P cosmological parameters? In the case of more
than one parameter, we need to define what we mean by 0.15 B
“most accurate determination.” Since the uncertainty in 9 T
measuringP parameters simultaneously is described by a 2 0.1 - g;M:O,z, flat
P-dimensional ellipsoidwith the assumption that the total S //"
likelihood function is Gaussianwe make a simple and, as it g 0.05 - _
turns out, mathematically tractable requirement that the el- o -
. . .. . >
lipsoid have minimal volume. This corresponds to the best = 0
local determination of the parameters. ) Q,=0.3, flat

The volume of the ellipsoid is given by o ~0.05 i

Vode(F) Y2 (35
0 0.2 0.4 0.6 08 1

whereF is the Fisher matrixsee Appendix A In Appendix
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Redshift z

B we present the derivation of E(B5). Therefore, to mini-
mize the volume of the uncertainty ellipsoid we must maxi- FIG. 21. Dependence of the magnitude-redshift relation upon
mize detf). the single paramete®,, , relative to a flat universe witf,,=0.3.

In addition toQ)y,, Qy, andwy, the magnitude-redshift The maximum difference occurs at the highest redshift.
relation also includes the “nuisance parameta, which is o )
a combination of the Hubble parameter and absolute magnis hardly surprising: we have a one-parameter family of
tude of supernovae, and which has to be marginalized over ifurvesm(z), and the best way to distinguish between them is
order to obtain constraints on the parameters of interest. Ig0 have all measurements at the redshift where the curves
noring M (that is, assuming thaM is known leads to a differ the most, azy,.
10-40 % underestimate of the uncertainties in other param- For example, Fig. 21 shows magnitude-redshift curves for
eters.(Of course, accurate knowledgeldf and a large local the fiducial (), =0.3 model with the assumptiof2 ,=1
sample of supernovae could be used to precisely determine v (flat Universe. As Qy, is varied, the biggest differ-
M and eliminate this additional parameldfor the moment €nce inm(z) is at the highest redshift probed. In order to
we will ignore M for clarity; later we will show that it is a best constrainQy, all supernovae should be located at

simple matter to includeM as an additional parameter Zmax=1.0. _ .
which is margina"zed over. Two parameterS.A more IntereStlng—and relevant—

The Fisher matrix can further be written [88] problem is minimizing the area of the error ellipse in the case
of two parameters, e.gQy andwy or Qy, and Qy. The

N (Zmax expression to maximize, dé&tf, becomes
Fij:U_zfo g(2)w;(2)wj(2)dz, (36) e
N Zmax 5 Zmax 5
where (Ufn) fo g(Z)Wl(Z)dZL g(z)w3(z)dz
Zmax 2
fmg(z)d2=1. (37) _(fo Q(Z)Wl(Z)Wg(Z)dZ)
0

1/ N 2 Zmax [ Zmax
g(2) is the(normalized distribution of redshifts of the data, = 5(—2) f f 9(21)9(22) WA(24,25)dz,d7,,
w;(z) is defined in Appendix A, and,, is the highest red- Tm/ Jo Jo
shift probed in the surveyg(z) is essentially a histogram of (39
supernovae which is normalized to have unit ar€ar goal
is to find g z) such thatdet(F) is maximal Note that the
maximization of detf) will not depend orN ando,,, so we
drop them for now. To consider nonconstant eerg(z), one
can simply absorler,(z) into the definition of weight func-

tionsw(z).

whereW(z,,2,) =w4(27)W»(25) —W1(Z2)W,(24) is a known
function of redshifts and cosmological parametésse Fig.
22) andg(z) is subject to the same constraints as before.

Despite the relatively harmless appearance of(B§), we
found it impossible to maximize it analytically. Fortunately,
it is simple to find the solution numerically. To this end, we
divide the interval (0z,,,, into B bins withg;N supernovae
in bin i (i.e., we now represerg by its values in redshift

One parameteAs a warm-up, consider the case of mea-bins). The expression to be maximized, E§8), now reads
suring a single cosmological paramepgr We need to maxi-

mize [{"g(z)wi(z)dz, subject to [i"¥g(z)dz=1 and 1( N)
—
O-m

B. Results

2 B
> 9igWA(z,z)) (39

ij=1

g(z)=0. The solution is a single delta function fgfz) at 2
the redshift wherew;(z) has a maximum. Foany of our
parametersy,(z) will have a maximum at,,,,. This result  subject to
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FIG. 22. Left panel:FunctionW?(z; ,z,) for the case whefi),=0.3 and() , =0.7. Right panel:Dependence of the magnitude-redshift
relation upon two parametef),, and(}, , relative to a flat universe witf},,=0.3. Observations at more than one redshift are needed to
distinguish different models.

B tions of equal magnitude a=0.57 andz=1.50. If we
2 g=1 and g;=0. (40 change the fiducial values of parameters(ig,=0.3 and
=1 0 ,=0 (open Universg we find delta functions of equal
magnitude az=0.47 andz=1.00.

For a different choice for the two parametef$,, and
Wy , with fiducial valueq,,=0.3 andwy= —1 and with the
assumption of flat UniverseXy=1—Q ), we find a similar
result

Equations(39) and (40) define a quadratic programming
problem—extremization of a quadratic function subject to
linear constraints. Sinc®V?(z,,z,) is neither concave nor
convex(see Fig. 22 the elegant numerical algorithms can-
not be applied89], and we have to resort to brute force

maximizatipn and consider. all possiple vaIuesgpf We first g(z)=0.505(z—0.36)+0.505(z— 1.00). (42)
divide the interval (0zyay into 10 bins, and find values of
g; in each that maximize the expressit9).2 We find that Three or more parameterdVe now consider parameter

only two g; will be nonzero. Then we subdivide the two determination with three parameteds,, Qy, andwy. We
intervals with nonzeray; and repeat the procedure, relying maximize detf) as in the case of two parameters: we con-
on the fact thag(z) outside of those intervals is zero. The sider the discretized(z) and perform the numerical search
number of nonvanishing;’s is again two. To verify thaéll  to determine the parametegs that maximize deff). The
otherg;’s are zero even with this finer resolution in redshift, result is

we perform a series of check®r example, we consider the

two locations with nonvanishing; plus various other red- g(z)=0.335(z—0.21)+ 0.345(z—0.64) + 0.335(z—1.00),

shift locations, and always find the same angwéfe repeat (43)
the procedure we described until the locations of nonvanish-
ing g; and their magnitudes are known to 0.01. with all constants accurate to 0.01. Hence we have three

The result of this numerical maximization is therefore thatdelta functions of equal magnitude, with one of them at the
the optimal distribution is two delta functions of equal mag-highest available redshift.
nitude: In practice, the number of cosmological parameters to be
determined from SNe la data is usually between one and
g(z)=0.505(z—0.43+0.505(z— 1.00), (41 three, and considering more than three parameters is some-
what less relevart.
where all constants are accurate to 0.01. Thus, half of the Marginalization overM. So far we have been ignoring
supernovae should be at the highest available redshift, whiltie parameteiM, assuming that it is knowiequivalently,
the other half at about 2/5 of the maximum redshift. that the value o, and the absolute magnitude of superno-
This result is not very sensitive to the maximum redshiftvae are precisely knownThis, of course, is not necessarily
probed, or fiducial parameter values. If we increase the maxithe case, and\f must be marginalized over to obtain prob-
mum available redshift ta,,.= 1.5, we find two delta func- abilities for the cosmological parameters. Fortunately, when
M is properly included, our results change in a predictable
and straightforward way.
There is a trade-off here due to finite computer resources: more
redshift bins imply smaller resolution ig; in each bin. We have
varied these two parameters and found consistent results for the’One could think of exceptions here—for example, a fitting func-
distributiong(z). tion for w(z) that has more than three parameters.
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FIG. 23. Top panels:Uniform (dark vs optimal(light) distribution in redshift. Shown are constraints Qr, and(, (top left) and on
Qy andw for a flat Universe(top right when M was marginalized over. For these results, 100 SNe were assumed with individual
uncertainties otr,,=0.15 mag; the area of the error ellipse scales'ﬁlsN. Bottom panelThe thinnest possible ellipse for givéhand o,
(darKk is infinitely long in one direction. However, the smallest-area elliiggt) is almost as thin.

Including M as an undetermined parameter, we now have=0.15+ ¢’z with o’ a constant, and that,,=2. In the
an (P+1)-dimensional ellipsoid R cosmological param- ase of one parameter, the optimal location of SNe starts
eters p_IusM), and we want to minimize the vqumg of its changing fromz,,,=2 only for o'>0.1, decreasing ta
projection onto thé>-dimensional space of cosmological pa- —1.5 for o’ =0.2. For the case of two or more parameters
rameters. The Fisher matrix for the projectibfy is ob- optimal distribution is even more robust—significant

tained as.follows(l) _In\ielr.t the 9r|g|naF to pbtam the origi- change occurs only for’=0.3 in the case of two param-
nal covariance matrif¥ ~*; (2) pick the desired® X P subset f .
eters, and only for’ =1 in the case of three.

-1 . -1 . . . ) .
of F . a_md call itFpq; (3) mve_rt_ It 10 getFpp;. (T_h|s_ Optimal vs uniform distributionAre the advantages of the
prescription can be proven by writing out the Gaussian like-

X I . optimal distribution significant enough that one should con-
lihood for P+ 1 parameters with inverse covarianeand sider them seriously? In our opinion the answer is yes, as we
integrating it over any one parameter. The remaining likeli- y: P Yes,

hood for P parameters has inverse covariance makij, illustrate in the top panels of Fig. 23. These panels _shows
which follows the recipe above. that the areas of th€y-Q, and Qy-w uncertainty ellip-

Minimizing the volume of the projected ellipsoid we ob- soids are more than two times smaller if the SNe have the

tain the result that the optimal supernova distribution is ob-0Ptimal distribution as opposed to the uniform distribution.
tained with P delta functions in redshift obtained when ig- ~ Thinnest ellipself we are using SNe la alone to deter-
noring M, plus a delta function at=0. All P+1 delta Mine the cosmological parameters, then we clearly want to
functions have the same magnitude. The explanation ig§inimize the area of the error ellipse. However, supernova
simple: the additional low redshift measurements pin dowrimeasurements will also be combined with other methods to
M. determine cosmological parameters. A good example of the
Redshift dependent,,. The optimal redshift distribution symbiosis is combining CMB measurements with those of
changes slightly if the uncertainty in supernova measuresupernova¢88,90. These methods together can improve the
ments is redshift dependent. Suppose for example dhat determination ofQ2,, and 2, by up to a factor of 10 as
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compared to either method alone by breaking the degeneracy The main sensitivity of the CMB to dark energy is tive
between the two parameter§lhe improvement is largest dependence of the distance to the surface of last scattering,
when the error ellipses from the two methods are comparabl@hich moves the positions of the acoustic peaks in the an-
in size and have orthogonal directions in parameter space.gular power spectrum. The CMB is much more sensitive to
Finding the thinnest ellipse is a problem that we can solve) ; thanw, and the ultimate sensitivity of the CMB anisot-
using our formalism. Since the length of each axis of thergpy tow will come from Planck,o,,~0.25.
ellipse is proportional to the inverse square root of an eigen- pygpes of the moderate-redshift Univefsapernovae and
value of the corresponding Fisher matrix, all we need to do i$,, mber counts seem more promising. In contrast to the
m_axir_nize the larger eigenvalue Bfwith respect_to the _di_s— CMB, they only depend upon three cosmological parameters
trlb_utlop of the supernovag(z). We perform t.h's. T“axm" (Qwm, Qy, andw), which will be effectively reduced to two
zation in exactly the same way as when maximizing Eipi( Oy andw) when precision CMB measurements determine

The result is perhaps not surprising: to get the thinnest, ™ 0 o
ellipse, all supernova measurements should be at the sanp~ {1y to better than 1%. They are most sensitive to

(maximun) redshift, which leads to an infinitely long ellipse. W Petweenz~0.2 andz~2 (with “sweet spot” atz=0.4).

We find that changing the supernovae redshift distribution A high-quality sample of about 2500 supernovae out to
does not change the width of the error ellipse greatly, buf€dshift z~1.7 could determinev to a precision ofoy,,
does change its length. As a practical matter, we find thé" 0.05. This could be improved: by about a factor of three if

smallest areaellipse is very close to being the thinnest el- Other measurements precisely pin do@g, or by up to a
lipse (see the bottom panel of Fig. 23 factor of two better if the optimal redshift distribution is

ReconstructionIn the spirit of our analyses above, we achieved. Of course, itis assumed that systematics associated

ask: what redshift distribution of supernovae gives the smallWith type la supernovae can be controlleg., luminosity
est 95% confidence region for the reconstructed quintessen&¥olution, photometric errors, and dusA similar accuracy
potential V(¢$)? To answer this question, we perform a Mmight be achieved by num_ber .counts of gaIaX|es ouk to
Monte Carlo simulation by using different distributions of ~1.5 or of clusters of galaxies, if systematic error proves to
supernovae and computing the average area of the confpe less troublesome than expected. o
dence region corresponding to each of them. More difficult, but very important, is a determination of,
Uniform distribution of supernovae gives the best resultor constraint to, the possible time variation\ef If w(z) is
among the several distributions we put to test. This is noparametrized to vary linearlfor logarithmically with red-
surprising, because reconstruction of the potential consists ighift, w(z)=w;+wj(z—z;), a precisiono, =0.16 and

taking first and second derivatives of the distance-redshiftr, =0.02 could be achieved by supernovzli distance mea-

curve, and the most accurate derivatives are obtained if th§urements assuming perfect knowledge(nf and a flat
points are distributed uniformly. For comparison, Gaussian jiverse. ’

distribution of supernovae with mea+=0.7 and spreadr, While uncertainty inQ),, significantly degradesrwi (see
= I i - 0
0.4 gives the area that is 10-20 % larber. Fig. 16, in practice,chM<0.03 is sufficient. A recent analy-

sis based upon CMB and large-scale structure datd)ppt
VI. CONCLUSIONS =0.33+0.035[91]. With much better CMB and large-scale

Determining the nature of the dark energy that account§Tucture data to come, the goal of reducing,, to much
for two-thirds of the matter-energy in the Universe and isless than 0.03 seems achievable.
causing its expansion to accelerate ranks as one of the most Nonparametric reconstruction of eithew(z) or the
important problems in both physics and astronomy. At thePotential-energy curve for a quintessence model is the most
moment, there is very little theoretical guidance, and addidemanding test, as it requires the first and second derivatives
tional experimental constraints are urgently needed. Becau$¥ the luminosity distancel_ . Supernovae are in principle
of its diffuse nature, the effect of dark energy on the largeWell suited to this problem: they can be used as cosmic mile-
scale dynamics of the Universe offers the most promising?0sts whose spatial resolution is controlled by the size of the
way to get this empirical information. sample. However, even very accurate measurements of
The first step is to determine the average equation of stateannot constrain the small bumps and wiggles that are cru-
of dark energy. CMB anisotropy, supernovae distance mesatial to reconstruction. Without some smoothing of the cos-
surements and number counts all appear promising. Th&wological measurements, reconstruction is impractical. Still,
Alcock-Paczynski shape test and the age of the Universteconstruction is an important goal to keep in mind, and only
seem somewhat less promising; the former because of trfipernovae are well suiteiThe combination of number
small size of the effectaround 5%; and the latter because counts and supernova measurements could deterbh{ag
the errors in the two needed quantitiét; andt,, are not directly and eliminate the dependence upon the second de-

likely to become small enough in the near future. rivative ofdy . ]
We have not addressed systematic error in any detail, and

for this reason our error forecasts could be optimistic. On the

“We have not attempted to determine optimal strategies using theéther hand, the numb?r _Of supernovae measured could be
Fisher-matrix formalism for the case of reconstruction. This issue idarger and the uncertainties could be smaller than assumed

clearly important, however, and will be the subject of future work. (in general, our error estimates scaledgas/ \N).
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We are at a very early stage in the study of dark energyment(assumed to be Gaussian with zero mean and standard
Ways of probing dark energy not discussed here could wellleviationo,,). Note thatM contains all dependence éty,
prove to be equally or even more important. Four examplesinced, «1/H,,.
come to mind. First, the existence of a compelling mddel Assuming that supernova measurements are uncorrelated,
even one or two-parameter class of mogelsuld make the it follows that
testing much easier, as the predictions dgfz) and other

cosmological observables could be directly compared to ob- 1 XN
servations. Second, we have shown that one of the most Fij=— 21 Wi(Z,)W;(z,) (A3)
powerful cosmological probes, CMB anisotropy, has little Tm =

leverage because dark energy was unimportant at the timeh thew’ iaht functi . b
CMB anisotropies were formedz{-1100). Interesting ideas where thew's are weight functions given by
are now being discussed where the ratio of dark energy to the

total energy density does not decrease dramatically with ing,. (z)= Im(2) (A4)
creasing redshiftor even stays roughly constam81,32; if P
correct, the power of the CMB as a dark energy probe could
be much greater. Third, we have assumed that the slight 5 [KS’[KI(Z)] a  1(z) 1
clumping of dark energy on large scales is not an important “In 10[ S«l(z)] |dp; 2«2 + 242 (AS)
probe. While there are presently no models where dark en-
ergy clumps significantly, if it doeor if the clumping ex- f the parametep; is Qy or Qx, or else
tends to smaller scalesCMB anisotropy and large-scale
structure measurements might have additional leverage. Fi- 5 [KS’[KI(Z)] ET
nally, it is possible that dark energy leads to other observable w;(z)= In10 S«l(2)] 5} (AB)
effects such as a new long range fofdé). :
if p;iswy. Also
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APPENDIX A: FISHER MATRIX
The Fisher matrix is defined 86,87 (2,0, Qx ,Wy) = szodx/H(x) (A9)
0
e #InL AL ,
i~ \ aprap, K (AL) K2=1—Qy— Q. (A10)

Whenwy= — 1 (the cosmological constant casee use() ,

wherelL is the likelihood of observing data sgtgiven the place ofQ)y .

parameters, . ..pp. The CrameRao inequality guaran-
tees that the variance of an unbiased estimator of any param- _
eterp; cannot be less thaﬁﬁl. Therefore, the Fisher matrix APPENDIX B: PROOF OF EQ. (39
gives the best possible statistical error bars achievable from To derive Eq.(35), consider a general uncertainty ellip-
an experiment. soid in n-dimensional parameter space. The equation of this
The Fisher matrix for supernova measurements wasgllipsoid is
worked out in Ref[88]; we briefly review their results, with
slightly different notation and addition of parametet. XTEX=1, (B1)
The supernova data consist of measurements of the peak
apparent magnitude of the individual supernovag, which ~ where X=(x;X, . . .Xp) is the vector of coordinates arfé
are related to the cosmological parameters by the Fisher matrix. Let us now choose coordinates so that the
ellipsoid has its axes parallel to the new coordinate axes.
m(z,)=5logHod (z,,Q0m,Q7) ]+ M+e, (A2) Here X,=UX, whereU is the orthogonal matrix corre-
sponding to this rotation. The equation of the ellipsoid in the

whered, is the luminosity distance to the supernovi( new coordinate system is
=M-51logHy+25, M is the absolute magnitude of a type T
la supernova, and, is the error in the magnitude measure- XrotF rotX rot=1, (B2
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whereF,;=UFUT is the Fisher matrix for the rotated ellip- Then, since def)=det(F,,) and rotations preserve vol-
soid, and has the forifi,o=diag(1b3, . ..,13). The vol-  umes, we have
ume of the ellipsoid is just

o Vocdel(F o) ~M2=detF) 2 (B4)
Vo || oy=de(F,q) 2 B3 )
il;[l = detFro) B3 This completes the proof.
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