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Probing dark energy: Methods and strategies
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The presence of dark energy in the Universe is inferred directly from the accelerated expansion of the
Universe, and, indirectly, from measurements of cosmic microwave background~CMB! anisotropy. Dark
energy contributes about two-thirds of the critical density, is smoothly distributed, has large negative pressure,
and is very mysterious. For now, all of its discernible cosmological consequences follow from its effect on the
expansion rate of the Universe. Absent a compelling theoretical model~or even a class of models!, we describe
the dark energy by its equation of statew5pX /rX which is allowed to vary with time. We describe and
compare different approaches for determiningw(t), including a magnitude-redshift~Hubble! diagram, number
counts of galaxies and clusters, and CMB anisotropy. We focus particular attention on the use of a sample of
several thousand type Ia supernova with redshiftsz&1.7, as might be gathered by the proposed SNAP satellite.
Among other things, we derive optimal strategies for constraining cosmological parameters using type Ia
supernovae. The redshift rangez.0.222 has the most leverage for probingwX ; supernovae and number
counts appear to have the most potential to probe dark energy. Because the expansion rate depends upon both
w(t) andVM , an independent measurement of the matter density is critical for obtaining the most information
about dark energy from cosmological observations.
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I. INTRODUCTION

There is good evidence that a mysterious form of d
energy accounts for about two-thirds of the matter and
ergy in the Universe. The direct evidence comes from d
tance measurements of type Ia supernovae~SNe Ia! which
indicate the expansion of the Universe is speeding up,
slowing down@1–3#.

Equally strong indirect evidence now comes from the f
tor of three discrepancy@4,5# between cosmic microwav
background~CMB! anisotropy measurements which indica
V0.1.060.04 @6–10# and measurements of the matter de
sity VM50.3560.07 @11# together with the consistency be
tween the level of inhomogeneity revealed by CMB anis
ropy and the structure that exists today (V0 is the fraction of
critical density contributed by all forms of matter and e
ergy!. The former implies the existence of a smooth comp
nent of energy~or matter! that contributes two-thirds of the
critical density; and the latter argues for it having larg
negative pressure, which leads to its repulsive gravity.
cause a smooth component of matter or energy interf
with the growth of linear density perturbations and the f
mation of structure, the energy density of the smooth co
ponent must evolve more slowly than that of matter. T
amount of growth needed to form the structure seen to
from the initial inhomogeneity revealed by the CMB implie
that the bulk pressure of the smooth component must
more negative than about2r/2 @12#. ~Because its pressure
comparable in magnitude to its energy density, it is rela
istic and energylike—hence the term dark energy.!

Finally, additional indirect evidence for dark energ
0556-2821/2001/64~12!/123527~20!/$20.00 64 1235
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comes from detailed studies of how galaxies and cluster
galaxies formed from primeval density perturbations. T
cold dark matter~CDM! paradigm for structure formation
successfully accounts for most of the features of the U
verse we observe today~so much so that there is virtually n
competing theory!. Of the flat CDM models~hot 1 cold,
tilted, enhanced radiation, or very low Hubble constant! the
one with a cosmological constant (L CDM) is the most suc-
cessful and consistent with virtually all observations@13–
18#.

Even before the evidence for dark energy discus
above, there was a dark-energy candidate: the energy de
of the quantum vacuum~or cosmological constant! for which
p52r. However, the inability of particle theorists to com
pute the energy of the quantum vacuum—contributions fr
well understood physics amount to 1055 times critical
density—casts a dark shadow on the cosmological cons
@19#. It is possible that contributions from ‘‘new physics
add together to nearly cancel those from known phys
leaving a tiny cosmological constant. However, the fine tu
ing required~a precision of at least 54 decimal places! makes
a complete cancellation seem more plausible.~Recently,
Thomas has suggested that the holographic principle set
upper limit to the quantum vacuum energy which is comp
rable to the other forms of energy density in the Universe
this is correct, the fine tuning needed is far less severe@20#.!

If the cosmological constant is zero, something else m
be causing the Universe to speed up. A host of other po
bilities have been discussed: rolling scalar field~or quintes-
sence! @21–33#; a network of frustrated topological defec
@34–36#; the energy of a metastable vacuum state@37#; ef-
©2001 The American Physical Society27-1
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DRAGAN HUTERER AND MICHAEL S. TURNER PHYSICAL REVIEW D64 123527
fects having to do with extra dimensions@38#; quantum ef-
fects of a massive scalar field@39#; particles with a time-
varying mass@40#; and ‘‘solid’’ or ‘‘generalized’’ dark matter
@41,42#. While all of these models have some motivation a
attractive features, none are compelling. On the other ha
the cosmological constant is extremely well motivated,
equally problematic. This in essence is the dark-energy p
lem.

The two most conspicuous features of dark energy
smooth spatial distribution and large negative press
While only vacuum energy is absolutely uniform in its sp
tial distribution, all the other examples of dark energy on
clump on the largest scales at a level that can be negle
for most purposes@25,29,43# ~more on this in the Conclu
sions!. Motivated by this as well as the absence of comp
ling theoretical model or framework for dark energy, Turn
and White@44# have suggested parametrizing dark energy
its bulk equation of state:w[^pX&/^rX&. For different dark
energy modelsw takes on different values~e.g., 21 for
vacuum energy, or2N/3 for topological defects of dimen
sionality N); w can be time-varying~e.g., in models with a
rolling scalar field!. In this language, the first step towa
solving the dark-energy problem is determiningw(t).

While the dark-energy problem involves both cosmolo
and fundamental physics, because of its diffuse natur
seems likely that cosmological rather than laboratory m
surements have the most probative power.~It has been em-
phasized that if the dark energy involves a very light sca
field, there will be a new long-range force that could
probed in the laboratory@45#.! It is the purpose of this pape
to lay out the cosmological consequences of dark energy
allow its nature to be probed, and to assess their effic
Further, we present in more detail some of the calculati
that appeared in the SNAP proposal@46#. In Sec. II we begin
with an overview of the cosmological observables that m
be of use as well as a discussion of their sensitivity to
dark-energy equation of statew. In Sec. III we discuss the
relative merits of different cosmological observations
probing the average value ofw. Section IV addresses strate
gies for the more difficult problem of probing the possib
time variation ofw. Section V discusses optimal strategi
for determining dark-energy properties. In the final sect
we summarize our results and end with some general
marks. We note that there are other studies of how best to
at the nature of dark energy@47–52#, and where appropriate
we compare results.

II. PRELIMINARIES

Although dark energy does not clump significantly, it do
affect the large-scale dynamics of the Universe, including
age of the Universe, the growth of density perturbations
the classic cosmological tests@53#. All of the consequences
of dark energy follow from its effect on the expansion rat

H25
8pG

3
~rM1rX!
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H2~z!/H0
25VM~11z!31VX

3expF3E
0

z

@11w~x!#d ln~11x!G ~1!

whereVM (VX) is the fraction of critical density contrib
uted by matter~dark energy! today, a flat universe is as
sumed, and the dark-energy term in the second equation
lows from integrating its equation of motion,d(rXa3)5
2pXda3 (a is the cosmic scale factor!.1

Another crucial quantity is the comoving distance to
object at redshiftz, which is determined by the expansio
history:

r ~z!5E
0

z dx

H~x!
, ~2!

assuming a flat universe.

A. Age and growth of density perturbations

The age of the Universe today is related to the expans
history of the Universe,

t05E
0

t0
dt5E

0

` dz

~11z!H~z!
, ~3!

which depends upon the equation-of-state of dark ene
The more negativew is, the more accelerated the expansi
is and the older the Universe is today for fixedH0 ~see Fig.
1!. To make use of this requires accurate measurement
H0 and t0. Because the uncertainties in each are about 1
~with possible additional systematic errors!, age of the Uni-
verse is not an accurate probe ofw. In any case, curren
measurements,H05(7067) km sec21 Mpc21 and t0513
61.5 Gyr @54–56#, imply H0t050.9360.15 and favorw
&21/2.

The dependence ofH0t0 andr (z) uponw are very similar
for z;0.522, and further, their ratio is insensitive toVM
~see Fig. 1!. Thus, a measurement ofH0t0 can add little
complementary information to that provided by precise d
terminations ofr (z). Of course, because of this degenera
there is a valuable consistency check and measuremen
r (z) have great leverage in fixingH0t0 without regard to
VM . None of this is very surprising since the formulas fort0
and r (z) are very similar.

The effect on density perturbations is to suppress
growth in the linear regime, relative to the Einstein–de Sit

1We have implicitly assumed thatw5w(z). In general, this need
not be the case. If, for example, we had assumedw5w(r), thenrX

could not have been expressed in closed form. Nevertheless, Eq~1!
can be solved if it is supplemented by the equation governing
behavior ofrX , d ln rX /@11w(rX)#523d ln a. Another example

is a minimally coupled scalar field, whererX5ḟ2/21V(f), and its
evolution is determined by the equation of motion of the sca

field, f̈13Hḟ1V8(f)50.
7-2
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PROBING DARK ENERGY: METHODS AND STRATEGIES PHYSICAL REVIEW D64 123527
model, where the growth is proportional to the cosmic sc
factor. The growth of linear perturbations is governed by
familiar equation,

d̈k12H ḋk24pGrMdk50 ~4!

where density perturbations in the pressureless cold d
matter have been decomposed into their Fourier modes,k is
the comoving wavenumber of the mode, and it is assum
that k@H0. As can be seen in the left panel of Fig. 2, t
effect on the growth of linear perturbations is not very s
nificant for w&2 1

2 , which is one of the virtues of dark
energy models since the level of inhomogeneity reveale
the CMB is just about right to explain the structure se
today.

The reason the growth is not affected much is because

w&2 1
2 the Universe only recently became dark-ener

dominated @rX>rM for 11z<11zX5(VX /VM)21/3w],
and the growth of perturbations is essentially the same a

FIG. 1. Age times Hubble constant as a function of~constant! w
for VM50.25,0.3,0.35~solid curves, top to bottom!; current mea-
surements indicate thatH0t050.9360.15. To illustrate the degen
eracy between age and comoving distance measurementsr, we plot
their ratio ~dashed curves; top to bottom,VM50.35,0.30,0.25).
Note, this ratio is insensitive toVM , thus r (z) can be used to fix
H0t0 without reference to the matter density.
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a matter-dominated model until then. The growth suppr
sion increases with increasingw since the onset of dark
energy domination occurs earlier~see the top panel of Fig
2!. For w*2 1

2 the suppression of the growth of linear pe
turbations is sufficiently large that structure observed tod
could not have evolved from the density perturbations
vealed by CMB anisotropy@12,44#.

To be more specific, the suppression of growth affects
overall normalization of the power spectrum today, most e
ily expressed in terms of the rms mass fluctuations in sph
of 8h21 Mpc, or s8 ~see Fig. 3!. Further, the number den
sity of bound objects formed by a given redshift is expone
tially sensitive to the growth of density perturbations@57#.
The number density can be accurately estimated by
Press-Schechter formalism@58#,

dn

dM
~z,M !5A2

p

rM

M

dc

s2~M ,z!

ds~M ,z!

dM

3expS 2
dc

2

2s2~M ,z!
D ~5!

wheres(M ,z) is the rms density fluctuation on mass-sca
M evaluated at redshiftz and computed using linear theor
rM is the present-day matter density, anddc'1.68 is the
linear threshold overdensity for collapse.

The right panel of Fig. 2 illustrates that the recent grow
(z;0 –3! depends uponw. For rare objects~e.g., clusters!,
this dependence is amplified exponentially, cf. Eq.~5!. The
effect of dark energy on the growth of linear density pert
bations for the cluster-number-count test is discussed be

Strong and weak gravitational lensing may also be use
constrain the growth of structure and thus probe dark ene
We will not address them here as detailed modeling of
lenses, their distribution, and the evolution of nonline
structure is required to address their efficacy. We refer
reader to Refs.@59–61#.
of

not
FIG. 2. Left panel: growth of linear perturbations since redshiftz51000 relative to the Einstein–de Sitter model as a function
~constant! w for VM50.3. Right panel:growth of linear perturbations, normalized to its value today, for two different values ofw and
VM50.3. Growth was computed by integrating Eq.~4! starting atz@1000, neglecting radiation, and assuming that dark energy does
clump.
7-3
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DRAGAN HUTERER AND MICHAEL S. TURNER PHYSICAL REVIEW D64 123527
B. Classical tests

Other cosmological probes of the dark energy involve
classical tests: magnitude vs redshift~Hubble! diagram,
number count vs redshift, and angular size vs redshift.
the flat models that we consider, all of these depend upon
comoving distance to an object,r (z).

Luminosity distance, which is the distance inferred fro
measurements of the apparent luminosity of an objec
known intrinsic luminosity, log@dL(z)#[0.2(m2M )25, is
related tor (z)

dL~z!5~11z!r ~z!, ~6!

wherem is apparent luminosity,M the absolute luminosity
and distances are measured in Mpc. The magnitude-red
~Hubble! diagram is a plot ofm(z) vs z.

The angular-diameter distance, which is the distance
ferred from the angular size of an object of known siz
dA(z)5D/u, is related tor (z)

dA5r ~z!/~11z!5dL~z!/~11z!2. ~7!

The angular-diameter distance also comes into play in u
CMB anisotropy~more below! or the Alcock-Paczynski tes
to probe dark energy.

The Alcock-Paczynski test compares the angular size
an object on the sky with its the redshift extent@63#. The
diameterD of a spherical object~of fixed size or comoving
with the expansion! at redshiftz is related to its angular siz
on the skydu by dA(z)du and to its redshift extent by
Dz/@(11z)H(z)#. Thus, measurements ofDz and Du can
be combined to determineH(z)r (z):

FIG. 3. The rms amplitude of matter perturbations on the sc
8h21 Mpc as a function of~constant! w for a Cosmic Background
Explorer ~COBE! normalized, scale-invariant model withh50.7
~see Ref.@44# for details!. The present cluster abundance fixess8

5(0.5660.1)VM
20.47 ~95% C.L.! @62#, indicated by the dashed line

for VM50.3. The downward trend ins8 with increasingw is the
suppression of the growth of linear density perturbations as d
energy domination occurs earlier, and leads to an upper limit tow of
around21/2.
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H~z!r ~z!5
Dz

Du
. ~8!

The trick is to find objects~or ensembles of objects! that
are spherical. One idea involves the correlation function
galaxies or of Lyman-a clouds, which, because of the iso
ropy of the Universe, should have the same dependence u
separation along the line-of-sight or across the sky. A la
and uniform sample of objects is needed to implement
test; further, the effects of peculiar velocities induced by d
sity perturbations must be separated from the small~5% or
so! cosmological effect@64#.

The authors of Refs.@65–67# have discussed the feasibi
ity of using the correlation function of Lyman-a clouds seen
along the lines of sight of neighboring high-redshift quas
to distinguish between a low-density model and a flat mo
with dark energy. Figure 4 shows the sensitivity of this tec
nique to w; whether or not it has the power to probe th
nature of dark energy remains to be seen.

The comoving volume element~differential comoving
volume per unit redshift per unit solid angle! is at the heart
of number-count tests~e.g., counts of lensed quasars, gala
ies, or clusters of galaxies! ~see Fig. 5!. It is given in terms of
r (z) andH(z):

f ~z![
dV

dzdV
5r 2~z!/H~z!. ~9!

Note too that

f ~z!5
dF~z!

dz
, F~z!5E

0

z

f ~z!dz5
r 3~z!

3
. ~10!

The ability of these cosmological observables to probe
dark-energy equation of state depends upon their sensit
to w. To begin, consider the case of constantw. The sensi-
tivity of r (z), H(z), and f (z) to w is quantified by

le

rk

FIG. 4. The Alcock-Paczynski test, which compares the angu
size (Du) of a spherical object at redshiftz to its redshift extent
(Dz), can determiner (z)H(z). Its sensitivity is shown here for
VM50.3 and constantw520.4,20.6,20.8,21.0.
7-4
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dr~z!

dw
52

3

2E0

zVXH0
2~11x!3(11w)ln~11x!dx

H3~x!
,

d f~z!

dw
5

2r ~z!

H~z!

dr

dw
2

r 2~z!

H2~z!

dH

dw
, ~11!

dH~z!

dw
5

3

2

VXH0
2~11z!3(11w)ln~11z!

H~z!
.

The comoving distance to an object at redshiftz and its
sensitivity tow is shown in Fig. 6. At small redshiftsr (z) is
insensitive tow for the simple reason thatall cosmological
models reduce to the Hubble law (r 5H0

21z) for z!1,

r ~z!'H0
21Fz2

3

4
z22

3

4
VXwz21•••G for z!1.

~12!

FIG. 5. Comoving volume elementf (z)5dV/dVdz vs redshift
for constantw521,20.8,20.6,20.4 ~from top to bottom! and
VM50.3.

FIG. 6. r (z) anddr/dw as a function ofz ~in units ofH0
21) for

VM50.3 andw521.
12352
At redshift greater than about five, the sensitivity ofr (z)
to a change inw levels off because dark energy becomes
increasingly smaller fraction of the total energy densi
rX /rM}(11z)3w. As we shall discuss later, the fact th
dr/dw increases monotonically with redshift means that
measurements of fixed error, one would want to make
measurement at the highest redshift possible in order to m
mize the uncertainty in the inferred value ofw.

Figure 7 shows the relative change inr (z), H(z) and in
the comoving volume elementf (z) due to a change inw as a
function of redshift. The sensitivities ofH(z) and f (z) peak
at redshiftz;0.7.

As noted earlier, observations at redshifts 0&z&2 will be
most useful in probing dark energy. This fact is made m
quantitative in Fig. 8. The left panel shows the accuracy
the determination of the equation of statew ~assumed con-
stant! as a function of maximum redshift probedzmax and
marginalizing over the other parameter,VM . The right panel
shows the accuracy in determiningw18 , assumingw(z)
5w11w18z and marginalizing overw1 ~see Sec. IV!. For the
upper curve in both panels we use the fiducial SNAP dis
bution with 2566 SNe~see Fig. 12! cutoff atzmax and renor-
malizing to keep the total number of SNe constant~for
zmax.1.7, we assume 12 SNe per each interval of 0.1
redshift!. Lower curves assume the mathematically optim
distribution of 2566 SNe, with equal number of SNe locat
at each of three redshifts:z50, z'2/5zmax, andz5zmax ~see
Sec. V!. In all cases,sw(zmax) was computed using the
Fisher-matrix formalism; see Appendix A. For 0.2&zmax
&1, the 1s uncertaintysw decreases sharply and then le
els, with little decrease forzmax*1.5.

C. CMB anisotropy

The gravity-driven acoustic oscillations of the baryo
photon fluid at the time of last scattering gives rise to a se
of acoustic peaks in the angular power spectrum of CM
anisotropy~see Fig. 9! @68#. The CMB is a snapshot of the
Universe atz5zLS.1100 and the peaks correspond to d
ferent Fourier modes caught at maximum compression

FIG. 7. The relative sensitivity ofr (z), f (z), and H(z) to a
change in the constant value ofw.
7-5
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FIG. 8. Left panel:Estimated 1s errors in determining~constant! w as a function of maximum redshift probedzmax. We assume a flat
Universe and marginalize over the other parameter,VM . The upper curve shows the uncertainties using the fiducial SNAP distribution c
at zmax and renormalizing to keep the total number of SNe constant. The lower curve shows uncertainties obtained using the mathe
optimal distribution, with equal number of SNe located at each of three redshifts:z50, z'2/5zmax, andz5zmax ~see Sec. V!. Right panel:
1s errors in the determiningw18 as a function of maximum redshift probedzmax, assuming a flat Universe withVM known precisely and
w(z)5w11w18z ~see Sec. IV!, and marginalizing overw1.
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rarefaction, when the fluctuation in the photon temperatur
at an extremum. The condition for this iskhSH.np, where
the odd ~even! n modes are compression~rarefaction!
maxima andhSH is the sound horizon:

hSH5E
0

tLS vsdt

R~ t !
5E

zLS

` vs~z8!dz8

H~z8!
~13!

vs
25

1/3

113rB/4rg
. ~14!

Modes captured at maximum compression or rarefac
provide standard rulers on the last-scattering surface w

FIG. 9. COBE-normalized angular power spectrum of CMB a
isotropy for a flat model withVBh250.02, VX50.7, h50.65, and
w521, obtained usingCMBFAST @69#. The acoustic peaks corre
spond to modes that at the moment of last scattering are at m
mum compression~odd! or rarefaction~even!.
12352
is

n
th

physical sizesd;p/@k(11zLS)#;hSH/@n(11zLS)#. Their
angular sizes on the sky are given by

un;
hSH/n

~11zLS!dA~zLS!
~15!

dA~LS!5~11zLS!21E
0

zLS dz8

H~z8!
. ~16!

This can be made more precise for the angular po
spectrum. The angular power at multipolel is dominated by
modes aroundk. l /hLS , and so the positions of the peak
are given approximately by~see, e.g., Ref.@70#!

l n5np
hLS

hSH
. ~17!

For a flat universehLS is just the coordinate distance to th
last-scattering surfacer (zLS).

The positions of the acoustic peaks are the primary se
tivity of the CMB upon the equation of state of dark ener
~see Fig. 10!. Most of that sensitivity arises from the depe
dence of the distance to the last-scattering surface upow.
Using the approximation above, and taking into account
other important cosmological parameters, it follows that

D l 1

l 1
520.084Dw20.23

DVMh2

VMh2 10.09
DVBh2

VBh2 10.089
DVM

VM

21.25
DV0

V0
~18!

for w521, h50.65, VM50.3, VBh250.02, andV051.
Other features of the CMB power spectrum~e.g., heights of
the acoustic peaks and damping tail! can precisely determine
the matter density (VMh2) and the baryon density (VBh2);

-

xi-
7-6



th

n
is
e
a
o

hi
ue

s

nl
m
n
y

rg

tiv

f
n
fe
n

l

-

y a

of

o
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therefore, for a flat Universe the main dependence of
position of the acoustic peaks is uponVM and w. For VM
;0.3, l 1 is about three times more sensitive toVM thanw.
Interestingly enough, the recent data from the BOOMERa
and MAXIMA-1 experiments indicate that the first peak
located at aroundl .200 @8#, which indicates a larger valu
of w, w;20.6, than the supernova data and suggests d
energy may be something other than a cosmological c
stant. However, there is little statistical significance to t
result. ~More recent results put the peak at a higher val
consistent withw521 @9,10#.!

@The CMB angular power spectrum has additional sen
tivity to dark energy which is not captured by Eq.~18!. It
arises through the late-time integrated Sachs-Wolfe~ISW!
effect as well as any clumping of dark energy, and mai
affects the low-order multipoles. Because of the large cos
variance in the low-order multipoles, this dependence is
likely to significantly enhance the ability of CMB anisotrop
to probew.#

D. Time-varying w

There is no compelling reason to believe that dark ene
is characterized by a constantw. In particular, if dark energy
is associated with an evolving scalar field then the effec
equation of state,

w~ t ![pf /rf5

1

2
ḟ22V~f!

1

2
ḟ21V~f!

, ~19!

varies with time. Thus, sensitivity to the value ofw(z) at a
given z is an important measure of the probative power o
given test. Needless to say, in order to probe the variatio
w with redshift, one has to perform measurements at dif
ent redshifts. Thus, CMB anisotropy and the age of the U
verse cannot probe this aspect of dark energy.

We now consider the effect of a change inw at redshift
z* ; specifically, a change inw over a small redshift interva

FIG. 10. The position of the first acoustic peak as a function
w for VBh250.02 andVMh250.13.
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around z5z* , such that*dw(z)d ln z51. The effect on
H(z) for z.z* , which we denote by the functional deriva
tive dH/dw(z), is

dH~z!

dw~z!
5

3

2

z*
11z*

VXH0
2 expF3E

0

z

~11w!d ln~11z!G
H~z!

.

~20!

For z,z* there is no effect onH(z). Note that the effect of
dw(z) on the expansion rate is essentially to change it b
fixed amount forz.z* .

The sensitivity ofr (z) and f (z)5r (z)2/H(z) follows by
simple calculus:

d ln r

dw~z!
5

1

r ~z!
E

0

zS 2
dH

dwD dz

H~z!2 ~21!

d ln f

dw
52

d ln r

dw
2

1

H~z!

dH

dw
. ~22!

The sensitivity ofr (z) and f (z) to a localized change inw
is shown in Fig. 11, where we takez* 50.9z. Both r (z) and
the comoving volume element are insensitive to the value
w(z) at small redshift~since r and H are insensitive to the
form of dark energy! and at large redshifts~becauserX /rM
decreases rapidly!. They are most sensitive tow(z) over the
redshift rangez;0.2–1.5, with the sweet spot being atz
'0.4.

As discussed in Ref.@71#, measurements ofr (z) can in
principle be used to reconstruct the equation of state~or
scalar-field potential in the case of quintessence!. The recon-
struction equation forw(z) is

11w~z!5
11z

3

3H0
2VM~11z!212~d2r /dz2!/~dr/dz!3

H0
2VM~11z!32~dr/dz!22

.

~23!

f

FIG. 11. The relative sensitivity of the comoving distancer (z)
and the comoving volume elementf (z) to a localized change in the
value ofw at redshiftz* characterized by*dw(z)d ln z51.
7-7
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DRAGAN HUTERER AND MICHAEL S. TURNER PHYSICAL REVIEW D64 123527
This equation can be used to illustrate yet again the d
culty of probing dark energy at high redshift. Suppose t
r (z) and its derivatives are measured very accurately
that the only uncertainty in reconstructingw(z) is due to
VM . The uncertainty inw(z) due to the uncertainty inVM
can be obtained by differentiating Eq.~23! with respect to
VM :

Dw~z!5
2~11z!3

VX expF3E ~11w!d ln~11z!G DVM ~24!

→ 2~11z!23w

VX
DVM ~const w!. ~25!

Therefore, the uncertainty inw(z) increases with redshif
sharply, as (11z)23w. This happens becausew,0 and the
dark energy constitutes an increasingly smaller fraction
the total energy at high redshift.

The reconstruction equations based upon number co
can simply be obtained by substituting@3F(z)#1/3 for r (z) in
Eq. ~23!. Since the expansion historyH(z) can in principle
be obtained from measurements off (z) and r (z) ~number
counts and Hubble diagram!, or from r (z) and r (z)H(z)
~Hubble diagram and Alcock-Paczynski test!, with a sense of
great optimism we write the reconstruction equation ba
upon a determination ofH(z):

11w~z!5
1

3

2~11z!H8~z!H~z!23H0
2~11z!3VM

H2~z!2H0
2VM~11z!3

~26!

which follows from

dr~z!52dt/a~ t !5dz/H~z!. ~27!

This reconstruction equation has the virtue of depend
only upon the first derivative of the empirically determin
quantity.

E. Summing up

In sum, the properties of dark energy are best revealed
probes of the moderate-redshift (z;0.2–2! Universe—SNe
Ia, number counts and possibly the Alcock-Paczynski t
The CMB has an important but more limited role to pl
since it can only probe an average value ofw. SNe Ia are
currently the most mature probe of dark energy, and alre
impose significant constraints onw @73,72,1#, w,20.6
~95% C.L.!. The efficacy of any of these tests will depen
critically upon the identification and control of systema
errors~more on this below!.

The classical cosmological tests that involver (z) alone
have the virtue of only depending uponVM , VX , and w,
which can be reduced to two parameters (VM andw) with a
precision measurement ofV0 from the CMB. A precise, in-
dependent measurement ofVM would reduce this to one
parameter.
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On the other hand, CMB anisotropy depends upon a m
larger number of parameters~e.g., VBh2, h, n, dn/d ln k,
ionization history, etc!. The number-count tests can also d
pend upon the growth of structure which brings in oth
parameters that affect the shape of the power spectrum~e.g.,
n, VBh2, h).

In the remainder of this paper we pay special attention
SNe Ia, and in particular consider how well dark ener
could be probed by a high-quality dataset provided by
proposed satellite mission SNAP@46#. As the fiducial
dataset, we consider a total of 2566 SNe Ia with individu
statistical uncertainties of 0.15 mag~the impact of systematic
uncertainties on this dataset was studied in Refs.@46,49,50#!.
The bulk of the SNe are assumed to have 0.2,z,1.2, with
about a hundred at 1.2,z,1.7 and another two hundred o
so at z,0.2. ~See Fig. 12.! The low-z sample is expecte
from near-future ground-based searches, such as the Ne
Supernova Factory@74#.

The number-count technique can be implemented in a
riety of ways—for example, halos of a fixed mass@75#, clus-
ters of galaxies of fixed mass@76#, and gravitationally lensed
quasars@77#. All of these methods, however, are susceptib
to redshift evolution of the objects in question, as well
considerable uncertainties in theoretical modeling.

Unless otherwise indicated, we use the Fisher-matrix
malism throughout to estimate uncertainties~see Appendix
A!. In several instances we have checked that the va
obtained agree well with those using Monte Carlo simu
tion. The fiducial cosmological model isVM512VX50.3,
w521, unless otherwise indicated.

III. CONSTRAINTS ON „CONSTANT… w

To begin, we assume that the equation of state of d
energy does not change in time,w(z)5w5const. Not only
does this hold for models with truly constantw ~vacuum
energy, domain walls and cosmic strings, etc.! but models

FIG. 12. Histogram of projected SNe Ia distribution from SNA
The number of SNe atz.1.2 is smaller because spectra of SNe
such highz are redshifted into the infrared region, where obser
tions are more difficult. About 200 SNe atz,0.2 are assumed to b
provided by ground-based SNe searches.
7-8
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PROBING DARK ENERGY: METHODS AND STRATEGIES PHYSICAL REVIEW D64 123527
with time-variable equation of state can havew'const in the
redshift range probed (z;0.2–2!.

A. SNe Ia and CMB

Figure 13 shows that a supernova program, such as S
@46#, will enable very accurate measurement ofw: after mar-
ginalization overVM and assuming a flat Universe,sw
'0.05~if VM is known, this improves by a factor of 3!. This
figure also shows constraints anticipated from the Sl
Digital Sky Survey ~SDSS! and Microwave Anisotropy
Probe~MAP! and Planck satellites~with polarization infor-
mation!. As expected, the fact that dark energy is smooth
observable scales implies that its properties cannot be pro
well by galaxy surveys. The CMB, on the other hand,
weakly sensitive to dark energy, mainly through the dep
dence of the distance to the surface of last scattering upow.
The orientation of the CMB ellipses is roughly predict
from Eq. ~18!, indicating that this equation captures most
the CMB dependence upon dark energy.

The CMB provides only asingle measurement of the
angular-diameter distance to the surface of last scatter
albeit an accurate one. In the Planck~P! case, the angular
diameter distance to the last-scattering surface is measur
0.7% @D. Eisenstein~private communication!#. Figure 13 il-
lustrates that ultimately CMB is not likely to be as precise
a well-calibrated SNe dataset, even in the optimis
Planck~P! case. However, CMB does provide importa
complementary information and a consistency check; for
ample, combining SNAP and Planck~P! improves the SNAP
constraints onVM andw by a factor of three.

FIG. 13. Projected SNAP constraint compared to those p
jected for MAP and Planck~with polarization information! and
SDSS ~MAP, Planck and SDSS constraints are from Ref.@78#!.
Also shown are the present constraints using a total of 54 SNe
All constraints assume a flat Universe andVM512VX50.28, w
521 as fiducial values of the parameters. The CMB analysis
lowed 8 cosmological parameters to vary independen
VMh2, VBh2, VX , w, spectral indexn, reionization optical depth
t, fluctuation in Bardeen curvaturedz ~representing normalization!,
and tensor-to-scalar ratioT/S. All contours are 68% C.L., and wer
obtained using the Fisher-matrix analysis.
12352
P

n

n
ed

-

f

g,

to

s
c

-

The uncertainty in the determination ofw varies as a func-
tion of the central value of this parameter. Forw greater than
21, the SNe constraint becomes weaker. This is because
variation of dark energy with redshift becomes more simi
to that of matter, and it is more difficult to disentangle. F
example, forw520.7 and keepingVM50.3, the constraints
on these two parameters from SNAP deteriorate by 10%
100% respectively relative to thew521 case. On the othe
hand, the CMB constraint becomes somewhatstrongerwith
increasingw because the ISW effect increases~see Fig. 5 in
Ref. @78#!.

B. Number counts

Davis and Newman@75# have argued that the comovin
abundance of halos of a fixed rotational speed varies we
with the cosmological model and can be calibrated with n
merical simulations, leaving mostly the dependence on
volume element@75#. We follow these authors in assumin
10000 galaxy halos divided into 8 redshift bins at 0.7,z
,1.5. The redshift range for the DEEP survey roughly c
responds to the redshift range of the greatest sensitivity
dark energy.

Figure 14 shows the constraints obtained using the Fis
matrix formalism assuming Poisson errors only, and then
lowing for an additional 5% or 10% error per bin for th
uncertainty in the evolution of the comoving halo densi
Assuming no uncertainty in the comoving halo density, t
error ellipse is somewhat larger than that of SNAP. Howev
allowing for a modest uncertainty due to evolution~5 or
10%!, the size of the error ellipse increases significan
~Newman has recently estimated that the anticipated sys
atics correspond to the 5% contour; see figure.! Finally, any
probe sensitive primarily todV/dVdz will have its error

-

a.

l-
:

FIG. 14. Constraints in theVM-w plane using galaxy-halo
counts from the DEEP survey@75#. Innermost region shows the
constraint assuming Poisson errors only, while the outer two reg
assume an additional, irreducible uncertainty of 5% and 10%~per
bin! in the comoving number density of halos due to evolution. A
regions are 68% C.L. The middle contour~5% additional error!
corresponds to a recent estimate of anticipated systematics@J. New-
man ~private communication!#.
7-9
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ellipse oriented in the direction shown, which is similar
that of the SNe.

While clusters are simpler objects than galaxies, they
‘‘rare objects’’ and their abundance depends exponenti
upon the growth of density perturbations and varies m
orders-of-magnitude over the redshift range of interest@57#.
The sensitivity to the growth factor outweighs that of t
cosmological volume, and the error ellipses for the clus
number-count test are almost orthogonal to the halo num
count test~see Fig. 15!. The information provided is thus
complementary to halo counts and SNe data.

Because of the exponential dependence of the abunda
control of the systematic and modeling errors is critical. E
pecially important is accurate determination of clus
masses~use of weak-gravitational lensing to determine clu
ter masses might be very useful@79#!. Shown in Fig. 15 are
the estimated constraints for a sample of one hundred c
ters with 0,z,3 selected in a future Sunyaev-Zel’dovic
survey and one thousand clusters with 0,z,1 selected in a
future x-ray survey@76#.

IV. PROBING THE TIME HISTORY OF DARK ENERGY

Time variation of the dark-energy equation of state is
important probe. For topological defects and vacuum ene
w is constant; thus, evidence for time variation ofw would
exclude these possibilities. For rolling scalar-field modelsw
is generically time variable~though its variation in the rel-
evant redshift range could be very small!. In some cases
@e.g., with pseudo Nambu-Goldstone boson~PNGB! scalar

FIG. 15. Projected one, two and threes constraints onVM and
w in a flat Universe using counts of galaxy clusters~adopted from
Ref. @76#! for an x-ray selected sample of one thousand clusters~top
panel! and a Sunyaev-Zel’dovich selected sample of hundred c
ters ~bottom!.
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field models @43# and some tracker quintessence mod
@30#! w(z) can exhibit significant variation out toz;1.

A. Constraining the redshift dependence ofw

Given a dark-energy model it is easy to computew(t) and
from it the prediction forr (z). There is little theoretical guid-
ance as to the nature of dark energy, so we seek way
parameterizew(z) as generally as possible. A further com
plication is the degeneracy ofw(z) with VM and VX . To
make useful progress, we assume that by the time a ser
attempt is made to probe the rate of change ofw, VM andVX
will be measured accurately: the total energy densityVM
1VX can be determined from the location of the acous
peaks of the CMB power spectrum, whileVM follows by
combining CMB peak morphology~which is sensitive to
VMh2) and large-scale structure surveys~which measure the
same quantity in redshift space—henceVMh) @81,80#. For
example, Planck satellite with polarization information com
bined with SDSS could determineVM to 0.01@78#. In prac-
tice ~see below!, a precision of better thansVM

'0.03 is
needed.

B. Case I: w„z…Äw1¿w18„zÀz1…

The simplest way to parametrize the rate of change ofw is
to write the first-order Taylor expansion@77#

w~z!5w11w18~z2z1!, ~28!

wherew15w(z1) and w18[(dw/dz)z1
are constants andz1

is the redshift around which we expand~chosen according to
convenience!. The energy density in the dark-energy comp
nent is then given by

rX~z!5rX~0!~11z!3[11w12w18(11z1)]exp~3w18z!. ~29!

Using the Fisher-matrix formalism, we determine the
ror ellipses in thew1-w18 plane. We choosez1 so thatw1 and
w18 become uncorrelated~how to do this analytically is
shown in Ref.@80#!. For uncorrelatedw1 and w18 , the con-
straint tow(z) follows by computing

sw(z)5@sw1

2 1sw
18

2
~z2z1!2#1/2. ~30!

Figure 16 illustrates the error ellipse forw1 andw18 ~top
panel! and the constraint tow(z) ~bottom panel!. As we dis-
cussed in Sec. II, cosmological observations have dimin
ing leverage at both high and low redshift, which is reflect
in the narrow ‘‘waist’’ atz;0.35, and this is the sweet spo
in sensitivity tow(z) ~see Fig. 11!.

The uncertainty in the slope,sw
18
50.16, is about 8 times

as large as that inw(z1), sw1
50.02. Despite the relatively

large uncertainty inw18 , this analysis may be useful in con
straining the dark-energy models.

Finally, we also show in Fig. 16 the significant effect of
Gaussian uncertainty of 0.05 inVM ; it roughly doublessw1

andsw
18

and moves the value ofz1 that decorrelates the two

parameters to less than zero.

s-
7-10
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FIG. 16. Herew(z) was Taylor-expanded aroundz150.31 with fiducial modelw(z)520.810.1z. The left panel shows 68% and 95%
C.L. constraints in thew1-w18 plane. The right panel shows the same constraint in thew-z plane, with the fiducial model~heavy line! and
confidence regions~shaded!. The dashed lines in both panels show the effect of assuming a Gaussian uncertainty of 0.05 inVM .
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C. Case II: w„z…Äw1Àa ln†„1¿z…Õ„1¿z1…‡

There are other ways to parametrize the variation ofw(z)
with redshift. Efstathiou@82# argues that many quintessen
models produce equation-of-state ratio that is well appro
mated byw(z)5w12a ln(11z) with w0 and a constants.
We generalize this by expanding around an arbitrary reds
z1

w~z!5w12a lnS 11z

11z1
D . ~31!

Here, the energy density in dark energy evolves as

rX~z!5rX~0!~11z!3[11w11a ln(11z1)]

3expF2
3

2
a ln2~11z!G . ~32!

As with the Taylor expansion, we have a 2-parame
form for w(z) and, using the supernova data, we examine
12352
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constraints that can be imposed onw1 and a. We again
choosez1 so thatw1 anda are decorrelated; this occurs fo
z150.30.

Figure 17 shows 68% and 95% C.L. constraint regions
the w1-a plane ~top panel! and w-z plane ~bottom!. The
fiducial model (w1520.75,a520.2) is chosen to produce
w(z) similar to that from linear expansion~case I!. The un-
certainty in parameter determination issw1

50.02 andsa

50.21. The bottom panel of this figure shows that using
logarithmic expansion we obtain similar constraints tow(z)
as with the linear expansion. This is not surprising, as n
the leverage pointz1'0.3, the two expansions are essentia
equivalent witha5(11z1)w18 andsa5(11z1)sw

18
. This is

consistent with our results.

D. Case III: Constant w in redshift bins

An even more general way to constrainw(z) is to param-
etrize it by constant values in several redshift bins, since
FIG. 17. Here dark energy is parametrized byw(z)5w12a ln@(11z)/(11z1)#, with w1520.75 anda520.2. The left panel shows 68%
and 95% C.L. constraints in thew1-a plane. The right panel shows the same constraint in thew-z plane, with the fiducial model~heavy line!
and 68% and 95% C.L. confidence region~shaded!.
7-11
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particular form forw(z) need be assumed. Of course, mo
redshift bins lead to weaker constraints in each bin.

We divide the SNAP redshift range intoB bins centered a
redshiftszi with corresponding widthsDzi and equation-of-
state ratioswi( i 51, . . . ,B). The energy density of the dar
component evolves as~for z in bin j )

rX~z!5rX~z50!S 11z

11zj2Dzj /2
D 3(11wj )

3)
i 51

j 21 S 11zi1Dzi /2

11zi2Dzi /2
D 3(11wi )

. ~33!

To obtain the constraints using this approach, we again
ploy the Fisher-matrix formalism, treating thewi as the pa-
rameters to be determined.

FIG. 18. Herew(z) is parametrized by constant values in re
shift bins. The outer region shows 68% C.L. constraints correspo
ing to each redshift bin. The inner region shows 68% C.L. c
straints when, in addition, a Gaussian prior is imposed t
penalizes models with a large change inw between two adjacen
bins.
12352
-

Figure 18 shows constraints onw(z) when w is param-
eterized by values in three redshift bins whose widths
chosen so that the uncertainty in each is about the sa
Precise knowledge ofVM andVX was assumed.

The constraints are not strong (sw'0.12) in part because
the values ofw in adjacent bins are uncorrelated. Most re
istic models with time-dependent equation of state havew(z)
that varies slowly~or does not vary at all! out toz;1. There-
fore, we also show results when a Gaussian prior is impo
that penalizes models with large change inw between two
adjacent bins~the prior has the spreadsw50.10 for change
in Dwi between adjacent bins!. The 1s constraints improve
by more than a factor of 2.

E. Nonparametric reconstruction

The most general approach is the direct reconstruction
w(z) from the measured luminosity distance—redshift re
tion provided by the SNe Ia data@71,83–85#. This method is
nonparametric and no assumptions about dark energy o
equation of state are needed. This is also the most chall
ing approach, since the reconstructed potential and equa
of-state ratio will depend on first and second derivatives
the distance with respect to redshift, cf. Eq.~23!. This leads
to a fundamental problem: even very accurate and de
measurements ofr (z) allow great freedom inr 8[dr/dz and
r 9[d2r /dz2, because they themselves are not probed
rectly.

To address this problem, various authors have advoc
polynomials and Pade´ approximants@71# and various fitting
functions@84,85,49# to representr (z) and thereby reduce th
inherent freedom inr 8 and r 9.

In Fig. 19, we show the simulated reconstruction of t
quintessence model with potentialV(f)5M4@exp(mPl /f)
21# @30# andVX50.50. We assumed 2000 SNe uniform
distributed out toz51.5 with individual uncertainties of 0.15
mag. Data were fit by a three-parameter Pade´ approximant of
the form

d-
-
t

uniformly

FIG. 19. Reconstruction of the quintessence model with potentialV(f)5M4@exp(mPl /f)21# @30# andVX50.50. The solid line is the

input model, and the shaded regions are the 68% and 95% confidence, produced from Monte Carlo simulation of 2000 SNe
distributed out toz51.5 with individual uncertainties of 0.15 mag~7% in distance!. A three-parameter Pade´ approximant fit tor (z) was

used. In the right panel the reconstruction is shown asw(z)5( 1
2 ḟ22V)/( 1

2 ḟ21V).
7-12
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H0r ~z!5
z~11az!

11bz1cz2
. ~34!

We have also tried other fitting functions that have be
suggested@49,84,85#, as well as a piecewise cubic splin
with variable tension. We find that all are able to fit th
predicted form forr (z) well ~about 0.2% accuracy!. How-
ever, a good fit is not the whole story—r 8(z) and r 9(z) are
equally important—and the small bumps and wiggles
tween the between the fit and the actual form predicted
the dark-energy model are important because they lea
reconstruction error.

In sum, nonparametric reconstruction is very challengi
and an oxymoron: as a practical matter the data must b
by a smooth function. Nevertheless, in the absence o
handful of well motivated dark-energy models, reconstr
tion offers a more general means of getting at the time
pendence ofw and the very nature of dark energy. Finally,
goes without saying that the best way to test a specific mo
is to useit as a representation of dark energy.

F. Number counts

Probingw(z) by number counts will involve all the diffi-
culties just discussed for SNe Ia, and the additional issu
separating the evolution of the comoving density of obje
~galaxies or clusters! from the cosmological effects of dar
energy. To test the probative power of number counts,
consider a cosmological probe that is primarily sensitive
the volume elementdV/dzdV, such as the galaxy-halo te
using the DEEP survey@75#. In order to achieve comparabl
constraints to those provided by SNe Ia, we find th
dV/dzdV must be measured to 2–3% in each redshift b
Even with thousands of halos, the accuracy in the num
counts in each redshift bin must be Poisson-limited—a v
challenging goal when the ever-present uncertainties in
oretical predictions of abundances of these objects are ta
into account.

The solid line in Fig. 20 shows the 95% C.L. constraint
w(z) when this function is parametrized byw1 andw18 ~case
I above!, with the choice ofz150.35 to decorrelate these tw
parameters. Two cases were considered, each with a tot
10000 halos. In the first, the objects were binned into 8 r
shift bins with 0.7,z,1.5, as expected for the DEEP samp
@75#. In the second case, the objects were binned in 15
shift bins with 0,z,1.5 ~herez150.27). Filling in the low
redshift end improves the constraint.

Finally, we show the constraint tow(z) in the case of
10000 halos with 0.7,z,1.5, but now assuming that ther
is a 10%~per bin! additional uncertainty due to the evolutio
of the comoving number density of halos. The constrain
now considerably weaker, and onlyw(z'0.4) is determined
accurately.

V. OPTIMAL STRATEGIES

Here we consider strategies for the most accurate de
mination of the cosmological parameters,VM , VX and the
equation of state of dark energy,wX , using high-redshift
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supernovae~we add subscript ‘‘X’’ to distinguish the
equation-of-state from the weight functions defined belo!.
To this end, we ask, given the cosmological parameters
want to determine, what is the optimal redshift distribution
best constrain those parameters?

At first glance this problem may appear of purely ac
demic interest since we are not free to put supernovae w
we please. However, supernova observers have conside
freedom in choosing redshift ranges for their searches,
using filters sensitive to wavelengths corresponding to sp
tra at observed redshifts. Moreover, supernovae are easi
discover than follow up, and the answer to the question
pose could well be implemented in the choice of which s
pernovae are followed up.

In this section we make four assumptions:
~i! Magnitude uncertainty,sm , is the same for each su

pernova irrespective of redshift~this is a pretty good ap-
proximation for the current data sets!.

~ii ! Total number of supernovae observed is fixed~e.g.,
rather than the total observing time!.

~iii ! The number of supernovae that can be found at
redshift is not a limiting factor~this is not likely to be a
serious consideration!.

~iv! For simplicity we assume that type Ia supernovae
standard candles; in fact, they are~at best! standardizable
candles whose peak luminosity is related to their rate
brightness decline.

None of these assumptions are required to use the form
ism we develop; rather, we make them for concreteness
simplicity. Moreover, any or all of these assumptions can
relaxed with the framework we present. Finally, unless
assumptions prove to be wildly wrong, the results will n
change much.

A. Preliminaries

We tackle the following problem: givenN supernovae and
their corresponding uncertainties, what distribution of the

FIG. 20. The 95% C.L. constraint onw(z) when dark energy is
parametrized byw1 andw18 and the halo counts are divided into
redshift bins with 0.7,z,1.5 ~solid lines! and 15 redshift bins with
0,z,1.5 ~dashed lines!. The light dotted lines show the result wit
8 bins and 0.7,z,1.5, but now with a 10%~per bin! additional
uncertainty due to the systematics.
7-13
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supernovae in redshift would enable the most accurate d
mination ofP cosmological parameters? In the case of m
than one parameter, we need to define what we mean
‘‘most accurate determination.’’ Since the uncertainty
measuringP parameters simultaneously is described by
P-dimensional ellipsoid~with the assumption that the tota
likelihood function is Gaussian!, we make a simple and, as
turns out, mathematically tractable requirement that the
lipsoid have minimal volume. This corresponds to the b
local determination of the parameters.

The volume of the ellipsoid is given by

V}det~F !21/2, ~35!

whereF is the Fisher matrix~see Appendix A!. In Appendix
B we present the derivation of Eq.~35!. Therefore, to mini-
mize the volume of the uncertainty ellipsoid we must ma
mize det(F).

In addition toVM , VX , andwX , the magnitude-redshif
relation also includes the ‘‘nuisance parameter’’M, which is
a combination of the Hubble parameter and absolute ma
tude of supernovae, and which has to be marginalized ove
order to obtain constraints on the parameters of interest
noring M ~that is, assuming thatM is known! leads to a
10–40 % underestimate of the uncertainties in other par
eters.~Of course, accurate knowledge ofH0 and a large local
sample of supernovae could be used to precisely determ
M and eliminate this additional parameter.! For the moment
we will ignore M for clarity; later we will show that it is a
simple matter to includeM as an additional paramete
which is marginalized over.

The Fisher matrix can further be written as@88#

Fi j 5
N

sm
2 E

0

zmax
g~z!wi~z!wj~z!dz, ~36!

where

E
0

`

g~z!dz51. ~37!

g(z) is the~normalized! distribution of redshifts of the data
wi(z) is defined in Appendix A, andzmax is the highest red-
shift probed in the survey.@g(z) is essentially a histogram o
supernovae which is normalized to have unit area.# Our goal
is to find g(z) such thatdet(F) is maximal. Note that the
maximization of det(F) will not depend onN andsm , so we
drop them for now. To consider nonconstant errorsm(z), one
can simply absorbsm(z) into the definition of weight func-
tions w(z).

B. Results

One parameter.As a warm-up, consider the case of me
suring a single cosmological parameterp1. We need to maxi-
mize *0

zmaxg(z)w1
2(z)dz, subject to *0

zmaxg(z)dz51 and
g(z)>0. The solution is a single delta function forg(z) at
the redshift wherew1(z) has a maximum. Forany of our
parameters,w1(z) will have a maximum atzmax. This result
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is hardly surprising: we have a one-parameter family
curvesm(z), and the best way to distinguish between them
to have all measurements at the redshift where the cu
differ the most, atzmax.

For example, Fig. 21 shows magnitude-redshift curves
the fiducial VM50.3 model with the assumptionVL51
2VM ~flat Universe!. As VM is varied, the biggest differ-
ence inm(z) is at the highest redshift probed. In order
best constrainVM , all supernovae should be located
zmax51.0.

Two parameters.A more interesting—and relevant—
problem is minimizing the area of the error ellipse in the ca
of two parameters, e.g.,VM and wX or VM and VX . The
expression to maximize, det(F), becomes

S N

sm
2 D 2F E

0

zmax
g~z!w1

2~z!dzE
0

zmax
g~z!w2

2~z!dz

2S E
0

zmax
g~z!w1~z!w2~z!dzD 2G

5
1

2 S N

sm
2 D 2E

0

zmaxE
0

zmax
g~z1!g~z2! W2~z1 ,z2!dz1dz2 ,

~38!

whereW(z1 ,z2)[w1(z1)w2(z2)2w1(z2)w2(z1) is a known
function of redshifts and cosmological parameters~see Fig.
22! andg(z) is subject to the same constraints as before

Despite the relatively harmless appearance of Eq.~38!, we
found it impossible to maximize it analytically. Fortunatel
it is simple to find the solution numerically. To this end, w
divide the interval (0,zmax) into B bins withgiN supernovae
in bin i ~i.e., we now representg by its values in redshift
bins!. The expression to be maximized, Eq.~38!, now reads

1

2 S N

sm
2 D 2

(
i , j 51

B

gigjW
2~zi ,zj ! ~39!

subject to

FIG. 21. Dependence of the magnitude-redshift relation up
the single parameterVM , relative to a flat universe withVM50.3.
The maximum difference occurs at the highest redshift.
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FIG. 22. Left panel:FunctionW2(z1 ,z2) for the case whenVM50.3 andVL50.7. Right panel:Dependence of the magnitude-redsh
relation upon two parameter,VM andVL , relative to a flat universe withVM50.3. Observations at more than one redshift are neede
distinguish different models.
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gi51 and gi>0. ~40!

Equations~39! and ~40! define a quadratic programmin
problem—extremization of a quadratic function subject
linear constraints. SinceW2(z1 ,z2) is neither concave no
convex~see Fig. 22!, the elegant numerical algorithms ca
not be applied@89#, and we have to resort to brute forc
maximization and consider all possible values ofgi . We first
divide the interval (0,zmax) into 10 bins, and find values o
gi in each that maximize the expression~39!.2 We find that
only two gi will be nonzero. Then we subdivide the tw
intervals with nonzerogi and repeat the procedure, relyin
on the fact thatg(z) outside of those intervals is zero. Th
number of nonvanishinggi ’s is again two. To verify thatall
othergi ’s are zero even with this finer resolution in redshi
we perform a series of checks~for example, we consider th
two locations with nonvanishinggi plus various other red
shift locations, and always find the same answer!. We repeat
the procedure we described until the locations of nonvan
ing gi and their magnitudes are known to 0.01.

The result of this numerical maximization is therefore th
the optimal distribution is two delta functions of equal ma
nitude:

g~z!50.50d~z20.43!10.50d~z21.00!, ~41!

where all constants are accurate to 0.01. Thus, half of
supernovae should be at the highest available redshift, w
the other half at about 2/5 of the maximum redshift.

This result is not very sensitive to the maximum redsh
probed, or fiducial parameter values. If we increase the m
mum available redshift tozmax51.5, we find two delta func-

2There is a trade-off here due to finite computer resources: m
redshift bins imply smaller resolution ingi in each bin. We have
varied these two parameters and found consistent results fo
distributiong(z).
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tions of equal magnitude atz50.57 andz51.50. If we
change the fiducial values of parameters toVM50.3 and
VL50 ~open Universe!, we find delta functions of equa
magnitude atz50.47 andz51.00.

For a different choice for the two parameters,VM and
wX , with fiducial valuesVM50.3 andwX521 and with the
assumption of flat Universe (VX512VM), we find a similar
result

g~z!50.50d~z20.36!10.50d~z21.00!. ~42!

Three or more parameters.We now consider paramete
determination with three parametersVM , VX , andwX . We
maximize det(F) as in the case of two parameters: we co
sider the discretizedg(z) and perform the numerical searc
to determine the parametersgi that maximize det(F). The
result is

g~z!50.33d~z20.21!10.34d~z20.64!10.33d~z21.00!,
~43!

with all constants accurate to 0.01. Hence we have th
delta functions of equal magnitude, with one of them at
highest available redshift.

In practice, the number of cosmological parameters to
determined from SNe Ia data is usually between one
three, and considering more than three parameters is so
what less relevant.3

Marginalization overM. So far we have been ignorin
the parameterM, assuming that it is known~equivalently,
that the value ofH0 and the absolute magnitude of supern
vae are precisely known!. This, of course, is not necessari
the case, andM must be marginalized over to obtain pro
abilities for the cosmological parameters. Fortunately, wh
M is properly included, our results change in a predicta
and straightforward way.

re

he3One could think of exceptions here—for example, a fitting fun
tion for w(z) that has more than three parameters.
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FIG. 23. Top panels:Uniform ~dark! vs optimal~light! distribution in redshift. Shown are constraints onVM andVL ~top left! and on
VM and w for a flat Universe~top right! when M was marginalized over. For these results, 100 SNe were assumed with indiv
uncertainties ofsm50.15 mag; the area of the error ellipse scales assm

2 /N. Bottom panel:The thinnest possible ellipse for givenN andsm

~dark! is infinitely long in one direction. However, the smallest-area ellipse~light! is almost as thin.
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IncludingM as an undetermined parameter, we now ha
an (P11)-dimensional ellipsoid (P cosmological param-
eters plusM), and we want to minimize the volume of it
projection onto theP-dimensional space of cosmological p
rameters. The Fisher matrix for the projectionFproj is ob-
tained as follows:~1! Invert the originalF to obtain the origi-
nal covariance matrixF21; ~2! pick the desiredP3P subset
of F21 and call it Fproj

21 ; ~3! invert it to get Fproj . ~This
prescription can be proven by writing out the Gaussian li
lihood for P11 parameters with inverse covarianceF and
integrating it over any one parameter. The remaining like
hood for P parameters has inverse covariance matrixFproj
which follows the recipe above.!

Minimizing the volume of the projected ellipsoid we ob
tain the result that the optimal supernova distribution is
tained withP delta functions in redshift obtained when ig
noring M, plus a delta function atz50. All P11 delta
functions have the same magnitude. The explanation
simple: the additional low redshift measurements pin do
M.

Redshift dependentsm . The optimal redshift distribution
changes slightly if the uncertainty in supernova measu
ments is redshift dependent. Suppose for example thatsm
12352
e
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50.151s8z with s8 a constant, and thatzmax52. In the
case of one parameter, the optimal location of SNe st
changing fromzmax52 only for s8.0.1, decreasing toz
51.5 for s850.2. For the case of two or more paramete
the optimal distribution is even more robust–significa
change occurs only fors8*0.3 in the case of two param
eters, and only fors8*1 in the case of three.

Optimal vs uniform distribution.Are the advantages of th
optimal distribution significant enough that one should co
sider them seriously? In our opinion the answer is yes, as
illustrate in the top panels of Fig. 23. These panels sho
that the areas of theVM-VL and VM-w uncertainty ellip-
soids are more than two times smaller if the SNe have
optimal distribution as opposed to the uniform distribution

Thinnest ellipse.If we are using SNe Ia alone to dete
mine the cosmological parameters, then we clearly wan
minimize the area of the error ellipse. However, superno
measurements will also be combined with other methods
determine cosmological parameters. A good example of
symbiosis is combining CMB measurements with those
supernovae@88,90#. These methods together can improve t
determination ofVM and VL by up to a factor of 10 as
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PROBING DARK ENERGY: METHODS AND STRATEGIES PHYSICAL REVIEW D64 123527
compared to either method alone by breaking the degene
between the two parameters.~The improvement is larges
when the error ellipses from the two methods are compar
in size and have orthogonal directions in parameter spac!

Finding the thinnest ellipse is a problem that we can so
using our formalism. Since the length of each axis of
ellipse is proportional to the inverse square root of an eig
value of the corresponding Fisher matrix, all we need to d
maximize the larger eigenvalue ofF with respect to the dis-
tribution of the supernovaeg(z). We perform this maximi-
zation in exactly the same way as when maximizing det(F).

The result is perhaps not surprising: to get the thinn
ellipse, all supernova measurements should be at the s
~maximum! redshift, which leads to an infinitely long ellipse
We find that changing the supernovae redshift distribut
does not change the width of the error ellipse greatly,
does change its length. As a practical matter, we find
smallest areaellipse is very close to being the thinnest e
lipse ~see the bottom panel of Fig. 23!.

Reconstruction.In the spirit of our analyses above, w
ask: what redshift distribution of supernovae gives the sm
est 95% confidence region for the reconstructed quintess
potential V(f)? To answer this question, we perform
Monte Carlo simulation by using different distributions
supernovae and computing the average area of the c
dence region corresponding to each of them.

Uniform distribution of supernovae gives the best res
among the several distributions we put to test. This is
surprising, because reconstruction of the potential consis
taking first and second derivatives of the distance-reds
curve, and the most accurate derivatives are obtained if
points are distributed uniformly. For comparison, Gauss
distribution of supernovae with meanz̄50.7 and spreadsz
50.4 gives the area that is 10–20 % larger.4

VI. CONCLUSIONS

Determining the nature of the dark energy that accou
for two-thirds of the matter-energy in the Universe and
causing its expansion to accelerate ranks as one of the
important problems in both physics and astronomy. At
moment, there is very little theoretical guidance, and ad
tional experimental constraints are urgently needed. Beca
of its diffuse nature, the effect of dark energy on the larg
scale dynamics of the Universe offers the most promis
way to get this empirical information.

The first step is to determine the average equation of s
of dark energy. CMB anisotropy, supernovae distance m
surements and number counts all appear promising.
Alcock-Paczynski shape test and the age of the Unive
seem somewhat less promising; the former because of
small size of the effect~around 5%!; and the latter becaus
the errors in the two needed quantities,H0 and t0, are not
likely to become small enough in the near future.

4We have not attempted to determine optimal strategies using
Fisher-matrix formalism for the case of reconstruction. This issu
clearly important, however, and will be the subject of future wo
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The main sensitivity of the CMB to dark energy is thew
dependence of the distance to the surface of last scatte
which moves the positions of the acoustic peaks in the
gular power spectrum. The CMB is much more sensitive
V0 than w, and the ultimate sensitivity of the CMB aniso
ropy to w will come from Planck,sw.0.25.

Probes of the moderate-redshift Universe~supernovae and
number counts! seem more promising. In contrast to th
CMB, they only depend upon three cosmological parame
(VM , VX , andw), which will be effectively reduced to two
(VX andw) when precision CMB measurements determ
V05VM1VX to better than 1%. They are most sensitive
w betweenz;0.2 andz;2 ~with ‘‘sweet spot’’ atz.0.4).

A high-quality sample of about 2500 supernovae out
redshift z;1.7 could determinew to a precision ofsw

50.05. This could be improved: by about a factor of three
other measurements precisely pin downVM , or by up to a
factor of two better if the optimal redshift distribution i
achieved. Of course, it is assumed that systematics assoc
with type Ia supernovae can be controlled~e.g., luminosity
evolution, photometric errors, and dust!. A similar accuracy
might be achieved by number counts of galaxies out toz
;1.5 or of clusters of galaxies, if systematic error proves
be less troublesome than expected.

More difficult, but very important, is a determination o
or constraint to, the possible time variation ofw. If w(z) is
parametrized to vary linearly~or logarithmically! with red-
shift, w(z)5w11w18(z2z1), a precision sw

18
.0.16 and

sw1
50.02 could be achieved by supernova distance m

surements, assuming perfect knowledge ofVM and a flat
Universe.

While uncertainty inVM significantly degradessw
18

~see

Fig. 16!, in practice,sVM
!0.03 is sufficient. A recent analy

sis based upon CMB and large-scale structure data putVM
50.3360.035@91#. With much better CMB and large-scal
structure data to come, the goal of reducingsVM

to much
less than 0.03 seems achievable.

Nonparametric reconstruction of eitherw(z) or the
potential-energy curve for a quintessence model is the m
demanding test, as it requires the first and second derivat
of the luminosity distancedL . Supernovae are in principle
well suited to this problem: they can be used as cosmic m
posts whose spatial resolution is controlled by the size of
sample. However, even very accurate measurements odL
cannot constrain the small bumps and wiggles that are
cial to reconstruction. Without some smoothing of the co
mological measurements, reconstruction is impractical. S
reconstruction is an important goal to keep in mind, and o
supernovae are well suited.@The combination of numbe
counts and supernova measurements could determineH(z)
directly and eliminate the dependence upon the second
rivative of dL .#

We have not addressed systematic error in any detail,
for this reason our error forecasts could be optimistic. On
other hand, the number of supernovae measured could
larger and the uncertainties could be smaller than assu
~in general, our error estimates scale assm /AN!.

he
is
.

7-17



rg
e
le

o
o

tle
tim

t
in

u
lig
an
e

e
. F
b

os
u
lu
d

-
ra
x
ro

a

pe

e
e-

dard

ted,

-
this

the
es.

-
he

DRAGAN HUTERER AND MICHAEL S. TURNER PHYSICAL REVIEW D64 123527
We are at a very early stage in the study of dark ene
Ways of probing dark energy not discussed here could w
prove to be equally or even more important. Four examp
come to mind. First, the existence of a compelling model~or
even one or two-parameter class of models! would make the
testing much easier, as the predictions fordL(z) and other
cosmological observables could be directly compared to
servations. Second, we have shown that one of the m
powerful cosmological probes, CMB anisotropy, has lit
leverage because dark energy was unimportant at the
CMB anisotropies were formed (z;1100). Interesting ideas
are now being discussed where the ratio of dark energy to
total energy density does not decrease dramatically with
creasing redshift~or even stays roughly constant! @31,32#; if
correct, the power of the CMB as a dark energy probe co
be much greater. Third, we have assumed that the s
clumping of dark energy on large scales is not an import
probe. While there are presently no models where dark
ergy clumps significantly, if it does~or if the clumping ex-
tends to smaller scales! CMB anisotropy and large-scal
structure measurements might have additional leverage
nally, it is possible that dark energy leads to other observa
effects such as a new long range force@45#.
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APPENDIX A: FISHER MATRIX

The Fisher matrix is defined as@86,87#

Fi j 52 K ]2 ln L

]pi]pj
L

y

, ~A1!

whereL is the likelihood of observing data sety given the
parametersp1 . . . pP . The Crame´r-Rao inequality guaran
tees that the variance of an unbiased estimator of any pa
eterpi cannot be less thanFii

21 . Therefore, the Fisher matri
gives the best possible statistical error bars achievable f
an experiment.

The Fisher matrix for supernova measurements w
worked out in Ref.@88#; we briefly review their results, with
slightly different notation and addition of parameterM.

The supernova data consist of measurements of the
apparent magnitude of the individual supernovae,mi , which
are related to the cosmological parameters by

m~zn!55 log@H0dL~zn ,VM ,VL!#1M1en ~A2!

where dL is the luminosity distance to the supernova,M
[M25 logH0125, M is the absolute magnitude of a typ
Ia supernova, anden is the error in the magnitude measur
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ment ~assumed to be Gaussian with zero mean and stan
deviationsm). Note thatM contains all dependence onH0,
sincedL}1/H0.

Assuming that supernova measurements are uncorrela
it follows that

Fi j 5
1

sm
2 (

n51

N

wi~zn!wj~zn! ~A3!

where thew’s are weight functions given by

wi~z![
]m~z!

]pi
~A4!

5
5

ln 10H kS8@kI ~z!#

S@kI ~z!# F ]I

]pi
2

I ~z!

2k2G1
1

2k2J ~A5!

if the parameterpi is VM or VX , or else

wi~z![
5

ln 10FkS8@kI ~z!#

S@kI ~z!#

]I

]pi
G ~A6!

if pi is wX . Also

H0dL5~11z!
S~kI !

k
, ~A7!

S~x!5H sinh~x! if V0.1,

x if V051,

sin~x! if V0,1,
~A8!

I ~z,VM ,VX ,wX!5E
0

z

H0dx/H~x! ~A9!

k2512VM2VX . ~A10!

WhenwX521 ~the cosmological constant case!, we useVL

in place ofVX .

APPENDIX B: PROOF OF EQ. „35…

To derive Eq.~35!, consider a general uncertainty ellip
soid in n-dimensional parameter space. The equation of
ellipsoid is

XTFX51, ~B1!

whereX5(x1x2 . . . xP) is the vector of coordinates andF
the Fisher matrix. Let us now choose coordinates so that
ellipsoid has its axes parallel to the new coordinate ax
Here Xrot5UX, where U is the orthogonal matrix corre
sponding to this rotation. The equation of the ellipsoid in t
new coordinate system is

Xrot
T F rotX rot51, ~B2!
7-18
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whereF rot5UFUT is the Fisher matrix for the rotated ellip
soid, and has the formF rot5diag(1/s1

2 , . . . ,1/sP
2 ). The vol-

ume of the ellipsoid is just

V})
i 51

P

s i5det~F rot!
21/2. ~B3!
y

ev

n.

et

y

r
e,
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Then, since det(F)5det(F rot) and rotations preserve vol
umes, we have

V}det~F rot!
21/25det~F !21/2. ~B4!

This completes the proof.
ited
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