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Perturbation evolution with a nonminimally coupled scalar field
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We recently proposed a simple dilaton-derived quintessence model in which the scalar field was nonmini-
mally coupled to cold dark matter, but not to “visible” matter. Such couplings can be attributed to the dilaton
in the low energy limit of string theory, beyond the tree level. In this paper we discuss the implications of such
a model on structure formation, looking at its impact on matter perturbations and CMB anisotropies. We find
that the model only deviates froldCDM and minimally coupled theories at late times, and is well fitted to
current observational data. The signature left by the coupling, when it breaks degeneracy at late times, presents
a valuable opportunity to constrain nonminimal couplings given the wealth of new observational data promised
in the near future.
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[. INTRODUCTION to dust domination to push a quintessence field off scaling
behavior, and produce acceleration in the background nowa-

There is recent eviden¢é—3] that the Universe’s expan- days.
sion is accelerating. If this is so, it would have fundamental In this paper we consider the impact of such a nonmini-
cosmological implications, for progressing the dark mattermal coupling on the evolution of perturbations to the back-
problem and reconciling a high Hubble constamt;0.65, ground and the subsequent implications for both structure
with an old Universe,>11 Gyr. To explain such an accel- formation and the cosmic microwave backgrol@vB).
eration, the Universe would have to have a matter compo- We start by giving an overview of the coupled quintes-
nent, additional to ordinary matter and radiation, since theééence model, and then go on to discuss the implications of
latter two have equations of state that are unable to genera€@upling for perturbation evolution and structure formation.
the required kinematics. In line with current observational
constr_aints, the addition_al matter would have to have an Il. COUPLED QUINTESSENCE MODEL
equation of statp=wp with we (—1,—0.4) [4-6].

A pure cosmological constant cannot explain the observed Nonminimal theories are commonly expressed in one of
acceleration without running into fine-tuning problems; onetwo frames. In one, the problem is posed in the Jordan frame
would needA ~10"1?%3/(4G), several hundreds of orders and the scalar field is directly coupled to curvature, in the
of magnitude lower than one would expect from a vacuunform f(¢)R, and produces a departure from Einstein’s grav-
energy originating at the Planck tinig]. This has lead to a ity, as is seen in Brans-Dicke theorigkd]. This effect was
wealth of proposals using a scalar “quintessence” field,used by[20] to force the quintessence field out of scaling
minimally coupled to matter through gravity, which can be behavior, necessary to give accelerated dynamics, however
cajoled into acting as an effective cosmological constant irthis “R-boost” occurs early in the radiation epoch and can-
the presence of a suitable potential. Models of particular innot explain acceleration today. In the second, the Einstein
terest use “tracker” potentialée.g.[8—-13]) which allow the  frame is used and the scalar field instead couples to terms in
scalar field to produce the required dynamics without depenthe matter Lagrangian resulting in dynamical, field-
dence on initial conditions, but these still require small-scaledependent, masses and polarizations. These two groups are
parameters. More recently, a model was propdsketi1l5  interrelated through conformal transformation of the metric;
with a potential whose parameters were, a more physicallpny theory in one frame can be rephrased in the other. How-
agreeable, Planck scale. Explaining why the acceleration haver, usually a simple function in one frame is mapped into a
only arisen recently, however, still requires some degree ofomplicated function in the other. Such couplings are heavily
fine-tuning in the model parameters, if not in the initial con-constrained when applied to the visible matter in the Uni-
ditions, in order to confine acceleration to the current epoclverse, whether to photoj21], or to what is usually called
[16]. A more practical explanation for the coincidental accel-baryons[22]. However, it could be that the dilaton coupled
eration nowadays is that we are in close proximity to thedifferently to visible matter and to the dark matter of the
cosmological transition from radiation to dust domination.Universe. This hypothesis was suggeste{2i8], and allows
Armendariz-Picon, Mukhanov and Steinhafdf7] utilized for large couplings to be consistent with observatigsse
this proximity to drive the dynamics of theik-essence also[24,25]). We consider a scenario in which such a case
model although the Lagrangian used is somewhat complexxists.
consisting of a series of nonlinear kinetic terms. We choosey*” to have conventiori+ — — —) in a flat

In a recent papefl8], we proposed a simpler model Friedmann-Robertson-WalkéFRW) background. All quan-
which harnesses the dynamical shift in the radiation-dustities are expressed in units witMp=(87Gy) Y?=1
transition using a nonminimally couplédiMC) scalar field. where Mp is the Planck mass an@, is the Newtonian
We showed that a coupling of this form can use the transitiorgravitational constant. We consider a Lagrangian of the form
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R —— n lj°'|'5f % where G, is the Einstein tensor and the variolly, are

stress-energy tensors. Heuristically, we may interpret the new
term driving ¢ as a contribution to an effective potential
Verr=V—1(¢)L.. Bianchi’'s identity ¥ ,G =0) leads to

v, TV=0 (4)

Wiot

05 [ acceleration ,

f
VT = (gH L= TE) =V, (5)
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These are to be contrasted with Amendola’s coupled quintes-
sence[27] (for which the interaction term is proportional to
T).

Evaluating the components of the field equations, with

scale factora, we find Friedmann equations:

3 [al® 1¢°
Zla =potpytH(dlpct 5 o +V(P) (6)
.2 ()¢
+3=p.=——F(pct+L,)=0 7
Pc apc () (pc ¢) (7)
FIG. 1. The evolution of}, andw for a model withA=8, )
B=8, a=50, and ¢y=32.5 (and Q,=0.053h=0.65). An early a
period of scaling is broken near the transition from radiation to pb+35pb=0 ®)
matter, first with a period of kination, then inflation. At late times
the universe returns to a matter dominated scaling solution. A
Pyt 4apy: 0 9
R 1
L=\=g| = 5+ 50,40 $=V($)+ Ly+ ()L .
. a.
D dr2spratV'=f'($)Lea’=—1(¢)pea’ (10

in which Ly is the Lagrangian of “visible matter{baryons, ~where dots represent derivatives with respect to conformal
photons, and also baryonic and neutrino dark matéerd £, time, and the prime’() indicates differentiation with respect
the Lagrangian of a dominant nonbaryonic form of cold darkto ¢.
matter. We takeV(¢)=Vye ¢ the standard quintessence  One notices in Eq(7) that the evolution of the back-
potential, which drives scaling behavior when the coupling isground coupled dark matter is unaffected by the coupling.
minimal [11,172]. This simply arises because we are coupling to pressureless
The coupling investigated is of the forfif¢)=1+a(¢  matter for whichL.=—p.; if we had instead coupled to
— ¢bo)”. Couplings of this form could arise as generalizationsradiation we would find.=0 and the coupling would have
of an effective action for massless modes of a dildi®?] altered the background evolutigas discussed in Appendix
after performing a conformal transformation from the stringA). However as will be discussed later, observations measure
frame into the Einstein framex and 8 are parameters re- the coupled energy densify ¢)p. not simply p. so that the
flecting the shape of the minimum being approached by th&agnitude of the observed matter is affected by the coupling
coupling[26]. through Eq.(10).
Figure 1 shows the evolution &1, and overall equation
of statew,q:= piot/Piot fOr one model scenario. One can see
A. Background evolution that deep in the radiation epoch the coupling has a negligible
Here we discuss the background equations in the confogffect on the overall dynamics and the scalar field’s energy
mal FRW metric, which are derived in Appendix A. The field density scales with that of the dominant radiation, as in the
equations are obtained by varying the action with respect téhinimally-coupled case. As the transition from radiation to

the metric and the scalar field: matter domination is approached the coupling becomes im-
portant and the dynamics are driven away from scaling be-
G=TW+T D +1()TL) (2)  havior. The driving term on the right-hand side of Ef0)

first, transiently, drives the field to kinate, suppressing the

evolution of the scalar field an@ ,~0, then it re-emerges
V2g= ﬂ _ ﬂ r 3) into inflationary behavior to provide the accelerated expan-
dp I © sion we observe today. The model requires {adbe even
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FIG. 2. The amount of accelerated expansion produced with the FIG. 4. Plot of the effective bolumetric magnitude for the ®@ala

model for various values of3, measured in the number of Tololo (open diamondsand SCP data poini{solid circles against
e-foldingsN.=a;/a;. a; and a; are the expansion scales when redshift. The curves correspond to two models considered in this
inflation begins and ends, respectively;,€ay<a;, whereay=1 paper; the cold dark matter model with a cosmological constant
is the expansion scale nowadpyd/e have giverw=25 as an ex- (ACDM) model (solid line) with Q.=0.347,Q,=0.053 andQ ,
ample with ¢po=260A. =0.6 and a nonminimally coupled model witl{).=0.347,
0,=0.053 and ,=0.6 with model parameters specified in Fig. 1.

and that. the value o, is of the .order of magnitude .Of the In minimally coupled models with exponential potentials,
scalar field today. However given these constraints, th?h

. X . e value of the parametar is limited by big-bang nucleo-
model provides acceleration for a wide range of parameterg nthesis(BBN) constraints[28] to be A=8: however the
as shown in the parameter space plots for the nonminimall y -

coupled model in Figs. 2 and 3. XIMC model avoids this_ co_nstraint _through the suppression

of Q, at nucleosynthesis, irrespective & value. Param-
eter constraints for the nonminimal case can only therefore
come from CMB and matter power spectrum predictions dis-
cussed below. In order to compare the nonminimal models
with analogous minimally coupled ones, however, we con-
sider cases withh =8 in our discussion below.

varying «
10 p=s .
$,=260/A

B. Observational implications

It is pertinent to consider whether the effect of the non-
minimal coupling on the background at late times could be
seen in current observations, i.e. when looking at the pre-
dicted apparent magnitude versus redshift relation<a2.

The apparent bolumetric magnitude is given by

m(z)=M +5 logd, (z) +25 (11

whereM is the absolute bolumetric magnitude, ahdis the
luminosity distance in Mpc

d =(1+2) " dz : (12
foH(Z’)

FIG. 3. The amount of accelerated expansion produced with th& Fig. 4 we p|0tftfhe effective bqu[netriC magnitude from the
model asa is varied, measured again in the number of e-foldingsB-band filter, mg''(z), from the Cala Tololo [29] and SCP
N.. We have given3=6 as an example witkp,=260A. [6] surveys and predicted () curves for the nonminimally
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coupled model in Fig. 1 and a comparatixCDM model. ~ Whereh is the trace of the metric perturbation. To obtain the
The effective magnitude is obtained from the apparent maglinear perturbation evolution equations we consider the per-
nitude after taking into account the lightcurve width- turbed Einstein equations

luminosity correction, galactic extinction and tKecorrec- 1

tion from the differences in the observed band and 2 C 2 10

restframe B-band filter6]. Within current observational er- Ko7 5Hh_47TGa oTo (15

ror constraints, the non-minimally coupled model cannot be

distinguished from theA CDM model. Recently proposed k2p=4nGalik;sT? (16
observational projectésee for exampl¢30]) may offer fu-
ture hope to discriminate between the effect of quintessence h+2Hh—2k2p= —87G a25T§ 17)

models on the background evolution.
In the remainder of the paper, we consider an alternative
approach to distinguishing between quintessence model$, 67+ 2H (h+617) — 2k2 = 247G a?
through their effect not on the background but on the pertur-
bations about it. (18)

k= 2o |3
(| 371 ]

whereEij is the traceless shear. Writing the perturbations to

IIl. IMPLICATIONS FOR STRUCTURE FORMATION energy densitiess, pressures, and the scalar field, in terms

. i o of a homogeneous background plus a perturbation, we have
The addition of the scalar field has implications for struc-

ture formation both due to the addition to the homogeneous p(x,7)=p(D[1+8(x,7)] (19
background energy density, and secondly by the generation
and evolution of scalar field perturbations. The additional p(X,7)=p(7)+ Sp(X,7) (20)
background energy density shifts the equality redshift and
alters the angular distance to the last scattering surface. The (X, 7)= p(7)+ (X, 7). (22)

scalar field also introduces extra terms in the perturbed Ein-
stein equations and opens up the possibility of isocurvaturghe only perturbation ifT“ to be affected by the coupling is

perturbations evolving. _ 5TY, the other perturbations are the same as for a minimally
We study the impact of these effects by calculating thecoupled model

linear perturbation equations and specifying the initial con-

ditions. These are then evolved from early on in the radiation 1
epoch when the coupling is unimportant through to nowa- 51-8: _pygy—(<pf’+f60)pc—(—£pq'b+ oV'| (22
days. The matter and CMB power spectra are then calculated a?
and compared with those obtained with minimally coupled
models and observations. . o 4 1. )
ikioTP= 50,0, + ?cﬁv ¢ (23
A. Linear perturbation evolution
We follow the approach and notation of Ma and Bertsch- i1 1.. )
inger[31] extended by Ferreira and Joyd] for minimally OTi=3| 3py0,F ;‘Pd’_ ad (24)

coupled scalar fields. A simplified model containing no bary-

ons is used for the discussion, although a full theory containyhere ¢ is the velocity divergence. The evolution equations
ing baryons and relativistic neutrinos is used to obtain theyf the density perturbations for radiation and the dark matter
CMB and matter power spectrum predictions presented. Thgomponent are the final requirement. One finds, as is shown
essential results are presented here, while a full derivation gf Appendix B, that the coupling does not effect the first

the equations can be found in Appendix B. order equation for the matter perturbation so that

Consider perturbations to a flat FRW metric in the syn-
chronous gauge, with line element 4 2.

X . 57: - § 07—§h (25)
ds?=a(7)?{—dr?+(8;+h;)dxdx}. (13

We will only be concerned with the scalar modes of the 0c=—0c— Eh' (26)
perturbation, for which we can parametrize the metric per-
turbation as The spare degree of freedom in the synchronous gauge al-

lows us to choose the background, synchronous coordinates.
As is conventional, we do this by constraining the dark mat-
ter field such tha#,= 0, which fixess,= — :h. We are now
able to write down the perturbation equations for the non-
(14 minimally coupled system

N PO ~a 1
hij:f ket kik;h(k,7)+ kikj—§5ij67](k,7'))
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i} . 3H2Q.f ) o
O+t HO+ Tﬁc= —3H Q75y—2(p¢)
3H2Qf’
(27)
p ) 2 2\ /" " 1. 2¢7
o+2He+[ko+as (V"' +f pc)]zpz—thﬁ—a f'pede
(28)
.. k2 - 4. h=0.65, 0,=0.053 _
57_ E 5y_ §6C ' (29 L —.— 9,=00, 0,=0.947 |

.. . . . — 0,=08, 0,=0.347 |
The nonminimal coupling introduces extra terms into the

equations for matter and scalar field perturbations, altering — - %08 MMEAZE

the mass terms and source terms, the latter shown on th o e 0,=0.6, AS A=8
right-hand side of the equality for clarity. The coupling will D Y Y R SRR "y
only affect the radiation perturbations indirectly through the 10 100 1000 10
background bulkvia H) and throughd. . log tau

Deep in the radiation epoch, the coupling to dark matter is FIG. 5. Time evolution of the effective growth rate for 4 sce-
unimportant. The adiabatic perturbation evolution closelyn(,ﬂrios('a”'h:O_65 0,=0.053), 3 of which produce acceleration
follows the power-law solutions for the minimally coupled today: (1) ACDM’ 0,=06 (f,uII line), (2) NMC model Q,
model with an exponential potential as discussed by Ferreira g g \ —g g=8, $,=32.5 (long dash, (3) MC model Q,

and Joycd 12]. The growing modes 06,,5; and¢ evolve  —gg \=8 A=0.01,B=2, $o="32.5(short dash and, one which

o 7 does not(4) SCDM model().=0.947 (dot-dash.
5= — EC(kT)Z So= — Eh= §5 ior, around the transition time. It is only at very late times,
Y 3 ' ¢ 2 477 after last scattering, whefd, is no longer small, that the

isocurvature perturbations may start to grow. For the follow-

2 . 2. ing discussion, therefore, we only consider adiabatic pertur-
¢=——nh, ¢=——h B0 pati
S5\ 5\ ations.
whereC is an arbitrary normalization constant. B. Implications for matter perturbations

It is only at very late timesz=~2, that the coupled
matter establishes itself as the dominant effect on growthrh
This is when we would expect the coupling’s signature to
start to be seen.

So far only pure curvaturéadiabati¢ perturbations have
been considered, however isocurvature perturbations mig
also exist in quintessence modgB2]. For this nonminimal . .
model we bglieve that their impact is negligibly small. gble and r.10t constant_ Newtonian grav@,i. So we are
Isocurvature perturbations are known to be negligible innterested in the effective dark matter densiy
minimally coupled tracking quintessence models. This will 5(fpy) £
also be so for the nonminimally coupled case early on in the 3C:i =5t —o. (32)
radiation epoch, where the couplings effect is unimportant. fpc f

When the field is driven off tracking, cl to the transition o .
en the field is driven off tracking, close to the transitio fAn insightful way to look at the coupling’s effect on pertur-

from matter to radiation, we cannot assume this, howeveb i th is by looki tits effect on the di ionl
During the period when tracking is broken, the scalar field is ation growth Is by looking at Its efiect on the dimensioniess

suppressed an@ ,~0 (see Fig. 1 In general, the nonadia- growth rate

batic pressure perturbatia?p,,onaq IS given by %
Nest= 7',\5_C . (33)

In Fig. 5 the growth rate for one scalk=0.1 Mpc %, is
Therefore, since the quintessence contribution to the totahown for various models, in each case=h65,

energy density is highly suppressed, the isocurvature contri=0.053. A nonminimally coupled model wit ,=0.6 and
butions will continue to be small away from tracking behav-A=8 (B8=8,$,=32.5), is compared with A CDM model,

An important consequence of nonminimal coupling is
at, when considering the coupled matter, it is toeipled
energy densityfp., that should be interpreted as the matter
density measured in observations, pgt an analogous case
IJ]% nonminimally coupled gravityf(¢)R, in which we con-
sider the varying gravitational field strength as the observ-

5pnon—ad
ptp

123516-5



RACHEL BEAN PHYSICAL REVIEW D 64 123516

0,=0.6, a SCDM modelQ).=0.947, and an analogous Lol B
minimally coupled quintessence model using the potential 0,=0.6
developed by Albrecht and Skordigld] V=V,e *[A [ ____ 0,0.6, NMC A-8
+(¢p— o) B] with A\=8 (A=0.01, B=2, ¢o=32.5). Forz -

>2 the growth rates for the scalar field models do not differ
greatly from that in theA CDM model.

The addition of a scalar field or cosmological constant,
with Q¢=1 fixed, will act to reduce. and therefore the
size of the mass term in Eq27). This is the main factor
responsible for the suppression of growth at later times,?
rather than the nonclumping behavior of the scalar field com-=,
monly cited as the cause. Subhorizon scalar field perturba_—_
tions have oscillatory time evolution with decaying ampli- =%;g00 -
tudes, their contribution to the evolution of matter A~ |
perturbations therefore is small for the observationally inter-
esting scales. For NMC models, the coupling suppre€sges
aroundz,q, making the scalar field contribution & growth
negligible. Subsequently, the growth rate for NMC models is

100 |

/Mpc~3)

closer to that created by a cosmological constant than for the L. ., N I B C N
MC models. 0.01 0.1 1
At late times however, for<2, the coupling and scalar k (h/Mpc)

field become important, and act to suppress the growt, in o
to a far greater extent than and MC models, offering a FIG. 6. Matter power spectrum for the 3 scenarios in Fig. 5
potential way to distinguish nonminimal from minimal the which produce acceleration todayCDM (full), NMC (long dash

NMC model. and MC(short dash together with the de-correlated data points of
The dampening effect can be also seen in the mattefamilton et al. Parameters in the 3 models are the same as in
power spectrum (R), Fig. 5

~2, observable potentially through future weak lensisge

_ ) s | K n-1 e.g.[37] and references thergiand damped Lyman cloud
P(k)=(|6.(k)|“)=(100C)87°h k(k_0> (349  measurementsee e.g[38]).

C. Impact on CMB anisotropies

whereC is the normalization factor frorsMBFAST [33] aris- Introducing a scalar field can potentially have several ef-
ing form the Bunn and White normalizatidi34] at I=10  fects on the CMB power spectrum. Firstly, as we have al-
multipole,k is in units ofh/Mpc andko=0.05 Mpc ~andn  ready mentioned in Sec. Il A, the scalar field gives rise to
is the tilt, chosen hera=1 for a scale invariant spectrum. extra mass and source terms in the linear evolution equations

In Fig. 6 the matter power spectra for the both the NMCsor ¢, and 5,. These then indirectly affect the radiation per-
and MC models mimic aACDM model for scalesk<  tyrpations, altering the acoustic peak positions and heights at
~0.1i.e. thos_e modes havmg_ entered the horlzon bef_ore anfle time of last scatteringr(ss). However, the scalar pertur-
around equality. There is a slight suppression but a bias fagyations are effectively negligible aroursd,, especially in
tor could in theory resolve the discrepancy. Certainly allthe NMC scenario, so this effect will be minimal.
three models give reasonable predictions for matter fluctua- Secondly, the time varying Newtonian potential after de-
tions over a sphere of size h8' Mpc with og  coupling will be affected by the coupling, altering the
=0.89,0.91,1.13 for NMC, MC and CDM models, respec-  gnisotropies produced at large angular scéles integrated
tively, in comparison to the observed valug=0.560,"*"  sachs-Wolfe effegt This can be seen in Fig. 7 where the
~0.9[35]. NMC model has a different profile at smalfrom the MC

For larger scales, however, the coupling does make a difand ACDM models. However the effect is not large enough
ference. In scales that have only entered the horizon in recef$ be disentangled from the effect of cosmic variance.
times, whilst the coupling is important, we see a distinctive  Thirdly, the inclusion of the scalar field alters the compo-
reduction of power in comparison to the MC andCDM  sition of the energy density, altering the angular diameter
models which tend to similar behavior. Although the sup-distance of the acoustic horizon size at recombination. This
pression clearly distinguishes the coupled model, its profilean be parametrized by the value ®f
is still consistent with current observational resulgs].
There may be an opportunity with the future SLOAN galaxy
survey results to constrain the power spectrum at these larger
scales(to k~0.01).

Another potential impact of the late time importance of Altering the value of3 shifts the positions of the peaks. The
the coupling is that it will affect small scale featureszat critical problem one confronts when trying to use CMB spec-

Z
B=0Yn " dzs080 w12, (35)

Zrec
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FIG. 8. CMB power spectra showing acoustic peaks for the 3

B scenarios in Fig. 5ACDM (full), NMC (dash and MC (short
for the 3 scenarios in Fig. SLCDM (full), NMC (long dash and dash), together with the data from Boomerar(golid circles,

MC (short_ das_hwnh COBE datapoints. Model parameters are the Maxima (crosses and DASI (open diamonds Model parameters
same as in Fig. 5. The 3 models evolve differently at late tlmesare the same as in Fig. 5

producing slightly different ISW anisotropies shown in the plateau T

at low|. However, observations at this scale are dominated by cos-

mic variance, so that the differences would not be observable. o™ Tiss

ol=m——— (36)
rS

FIG. 7. CMB power spectra showing loiv(plateay behavior

tra to differentiate between models is the degeneracy that

exists between models with identic@l., Oy, and 3 [39]. It : ;

has been shown that this degeneracy can be broken for sca?'&vgfggrsbz;hgf SV(V)EE?] Zzgzgg Zr;gsu’n;tgg Z?f;yc(iir:/eslpesgngrant
field models in which a large fraction of the energy density atacross’ the models. The NMC model 12530 ir¥com-

Tiss IS from the scalaf28]; the scalar field acting as an ef- : RS

fective increase in the number of relativistic degrees of freePa1Son to7o=13077 for theACDM model. This reduces
dom. However for models in which=8 the degeneracy the separation slightly preaklng the degeneracy, as shown;
still exists in minimally coupled models. In Figs. 7 and 8, the separation of the first and second peaks in the NMC
CMB spectra are plotted for the scenarios discussed in th&10del isdl=309 in comparison to 32ACDM scenario.
previous section against Cosmic Background Explorer Although distinguishable from the cosmological constant
(COBE) [40], MAXIMA [41], Boomerang[42] and DASI  spectrum, the difference is still too small to be resolved with
[43] data. All the models discussed hae 1.77 and yet one current observational data, including the most recent Boo-
can see that the degeneracy of the first peak is slightly bronerang[42] and DASI[43] data, showing highly improved
ken, with the NMC model havingj,e,=215 in comparison definition in the second and third peaks. However with a
to 224 for both the MC andA CDM models. It is also inter- number of observational projects continuing to focus atten-
esting to note that the CMB spectra for coupled models withttion on resolving the higher peaks, the breaking of degen-
different A values are effectively degenerate in themselveseracy may offer a way to constrain non-minimally coupled
as shown in the figure. This implies that, although couplingmodels. In Fig. 9 we plot the residual differences between
itself may be distinctive, CMB spectra will not be able to the ACDM and NMC C, spectra in Fig. 8 when compared
isolate the parameter in the potential. with estimated Microwave Anisotropy Proki®AP) errors.

The fourth possible effect is on the separation of theThe parameters used to estimate the MAP errors are shown
peaks. This has been proposed as a possible mechanism withAppendix C. The estimated errors are considerably smaller
which to distinguish minimally coupled modefd4]. They  than these residual levels fox<900 implying that we may

are not distinguishable frorhCDM if Q 4(7ss) is small  be able to distinguish between these various models within
however, as mentioned above. But in the case of nonthe near future.

minimally coupled models the degeneracy in the second and
third peaksis broken because of the effect the coupling has
on 7o the conformal time nowadays. This is of particular
interest given the expected improvements in peak definition We have examined the impact a scalar field, non-
(e.9.[42,41,43,4%. The separation of the peakl$ is given  minimally coupled to cold dark matter will have on the evo-
by lution of matter and radiation perturbations. We considered

IV. CONCLUSION
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L L L L L S R B B B Bianchi’s identity reflects the symmetry of the Riemann ten-
= . sor, the Einstein tensor being convariantly conserved,
*r ] 1
ok i (R"”’— ngR) =[ T () TuvV) f(¢)TMV(C)];V:0_
3r . v
I ] (A2)
Q 2 r /\\ N ]
32 N / \ / \ \4 Since visible matter is minimally coupled in the model we
= , ﬂ/T T\\I T /. \T\ [T I/T I\ N j \1 can immediately separate it out,
%1 ][llll‘\ll ,Lll\ll/ill\ll | \
2o AR i e TV =0. (A3)
o Ll / \ ]
2 \ \
Fe i \ / 7 \ / ] Using the explicit definition of the energy momentum tensor
Al \ \ ] in terms of their Lagrangian,
/
4 v \ | i
sf A 2 [aN=gL)
[ \ : T = —| (A4)
6 - T ’ \/__g ag/“’
| | | | | | | | | |

-7
0 100 200 300 400 500 600 700 800 900 1000 1100

1 so the scalar field component of the Bianchi identity in terms

of ¢ and its derivatives is
FIG. 9. Residual deviation of the NMC model’s temperature ") ) , )

fluctuations from those of th&a CDM model, both shown in Fig. 8, TE Y = (¢, + T, "+ V' (). (A5)
with estimated MAP error bars.

The Euler-Langrange equation, which is just the Klein Gor-
first its impact on the linear evolution equations and foungdon equation, allows us to simplify this further
that even though it did introduce new terms these were ef- LB g ,
fectively negligible for all but very late times. The impact of blat Tapgd TV (P)=1"(S)Lc. (AB)
this late time behavior was then considered for matter per- . ) )
turbations where it was seen to create a suppression &OMbining these two expressions we obtain
growth at large scales. The coupling was also found to break wo(d)_ er v
the degeneracy usually seen in the CMB spectrum, slightly TP =11(9)Lcg"" b, (A7)
shifting the position of the first peak and reducing the sepa-
ration between adjacent peaks. These two distinctive “signa'-:or the coupled matter then,
tures” of the coupled dark energy model are not resolvable
with current observations. However projects currently under-
way look to mapping both the matter power spectrum and . . . -
CMB peaks with much improved accuracy. These may offercombm'ng the resglts in EqeA3) and(A7), Bianchi's iden-
an opportunity to eventually distinguish betwearcDM, % in EQ. (A2) is given by
minimally coupled and nonminimally coupled quintessence ¢
models in the near future. T;”;;V(C):T¢;v(£CgMV_TMV(C))' (A9)

(F(p)TH) =" THHO 4 fTHYO) (A8)

ACKNOWLEDGMENTS We can obtain an expression for the Lagrangian for per-
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La(X)= =My 8(X—Xa())(— g, XX (A10)
APPENDIX A BIANCHI'S IDENTITY By noting that the length of the 4-velocity—g,,,(dx*/

In this section we derive the equations of motion for thed\)(dx"/d\)]*?=ds/d\ equals 1 for dust, this expression

coupled dark matter and scalar fields explicitly from the ac-Simplifies greatly. Averaging over particles in the gas rest
tion frame we findC.= —n{m/u®) wheren is the particle num-

ber density andi*=dx*/d\ is the 4-velocity. For pressure-
R 1 less particlesi”#={1,0,0,0; thereforeL.=—p..

Szf \/—_gd“x( —5+§¢’M¢~”—V(¢)+£V+f(¢)ﬁc . We can also obtain an expression for the stress-energy
tensor from the Lagrangian in an analogous way. Using the
relationship betweel*” and £ in Eq. (A4) the stress-energy

(Al)  for a particle is given by
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PERTURBATION EVOLUTION WITH A NONMINIMALLY . ..

TABLE I. MAP CMB experimental specifications.

v (Ghz) O, FwHM 1o ch
40 28’ 8.2 4
60 21’ 11.0 4
90 13’ 18.3 8

O(X—x4(1)). .
ThY = ma—a(x“xVuo. (A11)

\/__g

On averaging over the particles the energy density is
=(T% =n(muw’) and the pressure in thedirection is given
by p=(T*H=n(m(v1)?) where v'=dx/dt=u'/u®, for

dust thereforgp,=0. In addition, in the rest frame there is

zero streaming velocity so thaT®)=n(mu’%')=0.

In this paper we assume that the coupled matter is com

PHYSICAL REVIEW D 64 123516

We are interested in the interacting dark matter and scalar
field, which are not separable in E@4)

1 . d
fpcOc+3HS(fpe) + E(fpc)h'i' a_(ﬂfpc))

b
¢_2+
a

ﬁ

a2

+ ¢—fv'¢+v"¢¢ =0. (B
a

a
+2-
a

Using the equations of motion for the background and per-
turbed scalar field we find that EB5) simplifies substan-
tially. Interestingly, we find that the coupling does not affect
the first order dark matter perturbation equation

prised of cold pressureless dust particles. Putting the expres-

sion for L into Eq.(A9), the background evolution equation
for non-minimally coupled matter is identical to that in the

minimally coupled case:
T = p+3Hp=0. (A12)

APPENDIX B: LINEAR PERTURBATION EQUATIONS

We here derive the linear perturbation equations for the . 3H?f
coupled cdm and scalar fields in detail. We assume the nota- d;+H é.+ >

tion of Ma and Bertschingdi31] and results of Ferreira and

Joyce[12]. Consider perturbations to a flat FRW metric in

the synchronous gauge, with line element

ds?=a(n)}—dr?+ (8 +h;j)dx'dxi}.

(B6)

With the residual degree of freedom in the synchronous
gauge we are free to fix one additional parameter; by con-

vention we setd,=0 so thatd,=3h. Ignoring baryons, for
simplicity, the second order perturbation equation becomes

c

8e=—3H2Q,8,—2¢¢

3H2Q '
+ a2v'—T ¢. (B?)

APPENDIX C: MAP ERROR BAR ESTIMATION

By considering the perturbed Euler-Lagrange equation for )
the scalar field we can obtain the linear evolution equation The standard error on the estimate ©f, AC, for an

for ¢:
@t ST+ T o+ V o=1"0 L+ 5L,
(B1)
Perturbing the particle Lagrangian in E@10)
OLa= = 6Mad(X—Xa(1)(— g, x*x) ¥  (B2)

and averaging over all dust particles, we hadg€=
—n{8m/u®) = — 5p.. The nonminimally coupled scalar per-
turbation equation becomes

;’b 1. a " i ” ’
SNt 2 e+ Vie—gi=—p(f"e+1"5).
a a

(B3)

The perturbed Einstein equations can be used to obtain
expression fodp

1 o
(p+P)0+3H(5p+5P)+ 5 (p+P)h+8p=0. (BA)

experiment withN frequency channel@enoted subscript),
each respectively with angular resolutié gyyw(arcmin)
= 0,(rad)/60< 77/180 and sensitivityo,, per resolution ele-
ment, scanning a fractiofy,, of the sky in bins ofl sizeAl
is given by[47]

0.5

AC~ [Ci+o 57

2
21+ l)fskyA|>
EZE;fl; Bﬁlwn )

_ _ 2
wa=(0on0,) "%,  Bi~e (T (CY

where we have assumed that the experimental beam is ap-
proximately Gaussian filtering scalb=8In 26;1. We

dhve assumed a useful sky fractibg,=0.65 andAl =50,

Table | shows the remaining parameters used, taken from
[48].

The combined errors in Fig. 9 are therefore
A[C|(ACDM)—C,(NMC)]=AC,(ACDM)+AC;(NMC).
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