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Perturbation evolution with a nonminimally coupled scalar field

Rachel Bean
Theoretical Physics, The Blackett Laboratory, Imperial College, Prince Consort Road, London SW7 2BZ, United Kingdom

~Received 3 May 2001; published 27 November 2001!

We recently proposed a simple dilaton-derived quintessence model in which the scalar field was nonmini-
mally coupled to cold dark matter, but not to ‘‘visible’’ matter. Such couplings can be attributed to the dilaton
in the low energy limit of string theory, beyond the tree level. In this paper we discuss the implications of such
a model on structure formation, looking at its impact on matter perturbations and CMB anisotropies. We find
that the model only deviates fromLCDM and minimally coupled theories at late times, and is well fitted to
current observational data. The signature left by the coupling, when it breaks degeneracy at late times, presents
a valuable opportunity to constrain nonminimal couplings given the wealth of new observational data promised
in the near future.

DOI: 10.1103/PhysRevD.64.123516 PACS number~s!: 98.80.Cq
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I. INTRODUCTION

There is recent evidence@1–3# that the Universe’s expan
sion is accelerating. If this is so, it would have fundamen
cosmological implications, for progressing the dark mat
problem and reconciling a high Hubble constant,h;0.65,
with an old Universet0.11 Gyr. To explain such an acce
eration, the Universe would have to have a matter com
nent, additional to ordinary matter and radiation, since
latter two have equations of state that are unable to gene
the required kinematics. In line with current observation
constraints, the additional matter would have to have
equation of statep5wr with wP(21,20.4) @4–6#.

A pure cosmological constant cannot explain the obser
acceleration without running into fine-tuning problems; o
would needL;102122c3/(\G), several hundreds of order
of magnitude lower than one would expect from a vacu
energy originating at the Planck time@7#. This has lead to a
wealth of proposals using a scalar ‘‘quintessence’’ fie
minimally coupled to matter through gravity, which can
cajoled into acting as an effective cosmological constan
the presence of a suitable potential. Models of particular
terest use ‘‘tracker’’ potentials~e.g.@8–13#! which allow the
scalar field to produce the required dynamics without dep
dence on initial conditions, but these still require small-sc
parameters. More recently, a model was proposed@14,15#
with a potential whose parameters were, a more physic
agreeable, Planck scale. Explaining why the acceleration
only arisen recently, however, still requires some degree
fine-tuning in the model parameters, if not in the initial co
ditions, in order to confine acceleration to the current ep
@16#. A more practical explanation for the coincidental acc
eration nowadays is that we are in close proximity to
cosmological transition from radiation to dust dominatio
Armendariz-Picon, Mukhanov and Steinhardt@17# utilized
this proximity to drive the dynamics of theirk-essence
model although the Lagrangian used is somewhat comp
consisting of a series of nonlinear kinetic terms.

In a recent paper@18#, we proposed a simpler mode
which harnesses the dynamical shift in the radiation-d
transition using a nonminimally coupled~NMC! scalar field.
We showed that a coupling of this form can use the transi
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to dust domination to push a quintessence field off sca
behavior, and produce acceleration in the background no
days.

In this paper we consider the impact of such a nonm
mal coupling on the evolution of perturbations to the bac
ground and the subsequent implications for both struct
formation and the cosmic microwave background~CMB!.

We start by giving an overview of the coupled quinte
sence model, and then go on to discuss the implication
coupling for perturbation evolution and structure formatio

II. COUPLED QUINTESSENCE MODEL

Nonminimal theories are commonly expressed in one
two frames. In one, the problem is posed in the Jordan fra
and the scalar field is directly coupled to curvature, in t
form f (f)R, and produces a departure from Einstein’s gra
ity, as is seen in Brans-Dicke theories@19#. This effect was
used by@20# to force the quintessence field out of scalin
behavior, necessary to give accelerated dynamics, how
this ‘‘R-boost’’ occurs early in the radiation epoch and ca
not explain acceleration today. In the second, the Eins
frame is used and the scalar field instead couples to term
the matter Lagrangian resulting in dynamical, fiel
dependent, masses and polarizations. These two group
interrelated through conformal transformation of the metr
any theory in one frame can be rephrased in the other. H
ever, usually a simple function in one frame is mapped int
complicated function in the other. Such couplings are hea
constrained when applied to the visible matter in the U
verse, whether to photons@21#, or to what is usually called
baryons@22#. However, it could be that the dilaton couple
differently to visible matter and to the dark matter of th
Universe. This hypothesis was suggested in@23#, and allows
for large couplings to be consistent with observations~see
also @24,25#!. We consider a scenario in which such a ca
exists.

We choosegmn to have convention~1 2 2 2! in a flat
Friedmann-Robertson-Walker~FRW! background. All quan-
tities are expressed in units withM P5(8pGN)21/251
where M P is the Planck mass andGN is the Newtonian
gravitational constant. We consider a Lagrangian of the fo
©2001 The American Physical Society16-1



r
e
i

n

ng
-
th

fo
ld
t

new
al

tes-
o

ith

mal
t

-
ng.
less

x
sure

ling

ee
ible
rgy
the
to
im-
be-

the

an-

to
s

RACHEL BEAN PHYSICAL REVIEW D 64 123516
L5A2gS 2
R

2
1

1

2
]mf]mf2V~f!1LV1 f ~f!LcD

~1!

in which LV is the Lagrangian of ‘‘visible matter’’~baryons,
photons, and also baryonic and neutrino dark matter!, andLc
the Lagrangian of a dominant nonbaryonic form of cold da
matter. We takeV(f)5V0e2lf the standard quintessenc
potential, which drives scaling behavior when the coupling
minimal @11,12#.

The coupling investigated is of the formf (f)511a(f
2f0)b. Couplings of this form could arise as generalizatio
of an effective action for massless modes of a dilaton@22#
after performing a conformal transformation from the stri
frame into the Einstein frame.a and b are parameters re
flecting the shape of the minimum being approached by
coupling @26#.

A. Background evolution

Here we discuss the background equations in the con
mal FRW metric, which are derived in Appendix A. The fie
equations are obtained by varying the action with respec
the metric and the scalar field:

Gmn5Tmn
(V)1Tmn

(f)1 f ~f!Tmn
(c) ~2!

¹2f5
]V

]f
2

] f

]f
Lc ~3!

FIG. 1. The evolution ofVf andwtot for a model withl58,
b58, a550, andf0532.5 ~and Vb50.053,h50.65). An early
period of scaling is broken near the transition from radiation
matter, first with a period of kination, then inflation. At late time
the universe returns to a matter dominated scaling solution.
12351
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where Gmn is the Einstein tensor and the variousTmn are
stress-energy tensors. Heuristically, we may interpret the
term driving f as a contribution to an effective potenti
Ve f f5V2 f (f)Lc . Bianchi’s identity (¹mGn

m50) leads to

¹nTmn(V)50 ~4!

¹nTmn(c)5~gmnLc2Tc
mn!

f 8

f
¹nf. ~5!

These are to be contrasted with Amendola’s coupled quin
sence@27# ~for which the interaction term is proportional t
T).

Evaluating the components of the field equations, w
scale factora, we find Friedmann equations:

3

a2 S ȧ

a
D 2

5rb1rg1 f ~f!rc1
1

2

ḟ

a

2

1V~f! ~6!

ṙc13
ȧ

a
rc52

f 8~f!ḟ

f ~f!
~rc1Lc!50 ~7!

rb13
ȧ

a
rb50 ~8!

rg14
ȧ

a
rg50 ~9!

f̈12
ȧ

a
ḟ1a2V85 f 8~f!L ca

252 f 8~f!rca
2 ~10!

where dots represent derivatives with respect to confor
time, and the prime (8) indicates differentiation with respec
to f.

One notices in Eq.~7! that the evolution of the back
ground coupled dark matter is unaffected by the coupli
This simply arises because we are coupling to pressure
matter for whichLc52rc ; if we had instead coupled to
radiation we would findL50 and the coupling would have
altered the background evolution~as discussed in Appendi
A!. However as will be discussed later, observations mea
the coupled energy densityf (f)rc not simplyrc so that the
magnitude of the observed matter is affected by the coup
through Eq.~10!.

Figure 1 shows the evolution ofVf and overall equation
of statewtot5r tot /ptot for one model scenario. One can s
that deep in the radiation epoch the coupling has a neglig
effect on the overall dynamics and the scalar field’s ene
density scales with that of the dominant radiation, as in
minimally-coupled case. As the transition from radiation
matter domination is approached the coupling becomes
portant and the dynamics are driven away from scaling
havior. The driving term on the right-hand side of Eq.~10!
first, transiently, drives the field to kinate, suppressing
evolution of the scalar field andVf;0, then it re-emerges
into inflationary behavior to provide the accelerated exp
sion we observe today. The model requires thatb be even
6-2
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and that the value off0 is of the order of magnitude of th
scalar field today. However given these constraints,
model provides acceleration for a wide range of parame
as shown in the parameter space plots for the nonminim
coupled model in Figs. 2 and 3.

FIG. 2. The amount of accelerated expansion produced with
model for various values ofb, measured in the number o
e-foldings Ne5af /ai . ai and af are the expansion scales whe
inflation begins and ends, respectively (ai,a0<af , wherea051
is the expansion scale nowadays!. We have givena525 as an ex-
ample withf05260/l.

FIG. 3. The amount of accelerated expansion produced with
model asa is varied, measured again in the number of e-foldin
Ne . We have givenb56 as an example withf05260/l.
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In minimally coupled models with exponential potentia
the value of the parameterl is limited by big-bang nucleo-
synthesis~BBN! constraints@28# to be l>8; however the
NMC model avoids this constraint through the suppress
of Vf at nucleosynthesis, irrespective ofl ’s value. Param-
eter constraints for the nonminimal case can only theref
come from CMB and matter power spectrum predictions d
cussed below. In order to compare the nonminimal mod
with analogous minimally coupled ones, however, we co
sider cases withl58 in our discussion below.

B. Observational implications

It is pertinent to consider whether the effect of the no
minimal coupling on the background at late times could
seen in current observations, i.e. when looking at the p
dicted apparent magnitude versus redshift relation atz,2.

The apparent bolumetric magnitude is given by

m~z!5M15 logdL~z!125 ~11!

whereM is the absolute bolumetric magnitude, anddL is the
luminosity distance in Mpc

dL5~11z!E
0

z dz8

H~z8!
. ~12!

In Fig. 4 we plot the effective bolumetric magnitude from th
B-band filter,mB

e f f(z), from the Cala´n Tololo @29# and SCP
@6# surveys and predicted m~z! curves for the nonminimally

e

e
s

FIG. 4. Plot of the effective bolumetric magnitude for the Cal´n
Tololo ~open diamonds! and SCP data points~solid circles! against
redshift. The curves correspond to two models considered in
paper; the cold dark matter model with a cosmological cons
(LCDM) model ~solid line! with Vc50.347,Vb50.053 andVL

50.6 and a nonminimally coupled model withf (f)Vc50.347,
Vb50.053 andVf50.6 with model parameters specified in Fig.
6-3
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RACHEL BEAN PHYSICAL REVIEW D 64 123516
coupled model in Fig. 1 and a comparativeLCDM model.
The effective magnitude is obtained from the apparent m
nitude after taking into account the lightcurve widt
luminosity correction, galactic extinction and theK correc-
tion from the differences in the observedR band and
restframe B-band filters@6#. Within current observational er
ror constraints, the non-minimally coupled model cannot
distinguished from theLCDM model. Recently propose
observational projects~see for example@30#! may offer fu-
ture hope to discriminate between the effect of quintesse
models on the background evolution.

In the remainder of the paper, we consider an alterna
approach to distinguishing between quintessence mod
through their effect not on the background but on the per
bations about it.

III. IMPLICATIONS FOR STRUCTURE FORMATION

The addition of the scalar field has implications for stru
ture formation both due to the addition to the homogene
background energy density, and secondly by the genera
and evolution of scalar field perturbations. The additio
background energy density shifts the equality redshift a
alters the angular distance to the last scattering surface.
scalar field also introduces extra terms in the perturbed E
stein equations and opens up the possibility of isocurva
perturbations evolving.

We study the impact of these effects by calculating
linear perturbation equations and specifying the initial co
ditions. These are then evolved from early on in the radiat
epoch when the coupling is unimportant through to now
days. The matter and CMB power spectra are then calcul
and compared with those obtained with minimally coup
models and observations.

A. Linear perturbation evolution

We follow the approach and notation of Ma and Bertsc
inger @31# extended by Ferreira and Joyce@12# for minimally
coupled scalar fields. A simplified model containing no ba
ons is used for the discussion, although a full theory conta
ing baryons and relativistic neutrinos is used to obtain
CMB and matter power spectrum predictions presented.
essential results are presented here, while a full derivatio
the equations can be found in Appendix B.

Consider perturbations to a flat FRW metric in the sy
chronous gauge, with line element

ds25a~t!2$2dt21~d i j 1hi j !dxidxj%. ~13!

We will only be concerned with the scalar modes of t
perturbation, for which we can parametrize the metric p
turbation as

hi j 5E d3keik•xF k̂i k̂ jh~k,t!1S k̂i k̂ j2
1

3
d i j 6h~k,t! D G

~14!
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whereh is the trace of the metric perturbation. To obtain t
linear perturbation evolution equations we consider the p
turbed Einstein equations

k2h2
1

2
Hḣ54pGa2dT0

0 ~15!

k2ḣ54pGa2ik idTi
0 ~16!

ḧ12Hḣ22k2h528pGa2dTi
i ~17!

ḧ16ḧ12H~ ḣ16ḣ !22k2h524pGa2S k̂i k̂ j2
1

3
d i j DS j

i

~18!

whereS j
i is the traceless shear. Writing the perturbations

energy densities,r, pressures,p, and the scalar field, in term
of a homogeneous background plus a perturbation, we h

r~x,t!5r~t!@11d~x,t!# ~19!

p~x,t!5p~t!1dp~x,t! ~20!

F~x,t!5f~t!1w~x,t!. ~21!

The only perturbation inTn
m to be affected by the coupling i

dT0
0 , the other perturbations are the same as for a minim

coupled model,

dT0
052rgdg2~w f 81 f dc!rc2S 1

a2
ẇḟ1wV8D ~22!

ik idTi
05

4

3
rgug1

1

a2
ḟ¹2w ~23!

dTi
i53S 1

3
rgdg1

1

a2
ẇḟ2wV8D ~24!

whereu is the velocity divergence. The evolution equatio
of the density perturbations for radiation and the dark ma
component are the final requirement. One finds, as is sh
in Appendix B, that the coupling does not effect the fir
order equation for the matter perturbation so that

dg52
4

3
ug2

2

3
ḣ ~25!

dc52uc2
1

2
ḣ. ~26!

The spare degree of freedom in the synchronous gauge
lows us to choose the background, synchronous coordina
As is conventional, we do this by constraining the dark m
ter field such thatuc50, which fixesḋc52 1

2 ḣ. We are now
able to write down the perturbation equations for the no
minimally coupled system
6-4
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d̈c1H ḋc1
3H2Vcf

2
dc523H2Vgdg22ẇḟ

1S a2V82
3H2Vcf 8

2 Dw

~27!

ẅ12Hẇ1@k21a2~V91 f 9rc!#w52
1

2
ḣḟ2a2f 8rcdc

~28!

d̈g2
k2

3
dg5

4

3
d̈c . ~29!

The nonminimal coupling introduces extra terms into t
equations for matter and scalar field perturbations, alte
the mass terms and source terms, the latter shown on
right-hand side of the equality for clarity. The coupling w
only affect the radiation perturbations indirectly through t
background bulk~via H! and throughd̈c .

Deep in the radiation epoch, the coupling to dark matte
unimportant. The adiabatic perturbation evolution clos
follows the power-law solutions for the minimally couple
model with an exponential potential as discussed by Ferr
and Joyce@12#. The growing modes ofdg ,dc andw evolve
}t2

dg52
2

3
C~kt!2, dc52

1

2
h5

3

4
dg ,

w52
2

5l
h, ẇ52

2

5l
ḣ ~30!

whereC is an arbitrary normalization constant.
It is only at very late times,z<;2, that the coupled

matter establishes itself as the dominant effect on grow
This is when we would expect the coupling’s signature
start to be seen.

So far only pure curvature~adiabatic! perturbations have
been considered, however isocurvature perturbations m
also exist in quintessence models@32#. For this nonminimal
model we believe that their impact is negligibly sma
Isocurvature perturbations are known to be negligible
minimally coupled tracking quintessence models. This w
also be so for the nonminimally coupled case early on in
radiation epoch, where the couplings effect is unimporta
When the field is driven off tracking, close to the transiti
from matter to radiation, we cannot assume this, howe
During the period when tracking is broken, the scalar field
suppressed andVf;0 ~see Fig. 1!. In general, the nonadia
batic pressure perturbationdpnon-ad is given by

dpnon-ad

r1p
5O~Vf!~dg1df!. ~31!

Therefore, since the quintessence contribution to the t
energy density is highly suppressed, the isocurvature co
butions will continue to be small away from tracking beha
12351
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ior, around the transition time. It is only at very late time
after last scattering, whenVf is no longer small, that the
isocurvature perturbations may start to grow. For the follo
ing discussion, therefore, we only consider adiabatic per
bations.

B. Implications for matter perturbations

An important consequence of nonminimal coupling
that, when considering the coupled matter, it is thecoupled
energy density, f rc , that should be interpreted as the mat
density measured in observations, notrc ; an analogous cas
is nonminimally coupled gravity,f (f)R, in which we con-
sider the varying gravitational field strength as the obse
able and not constant Newtonian gravity,GN . So we are
interested in the effective dark matter densityd̃c

d̃c5
d~ f rc!

f rc
5dc1

f 8

f
w. ~32!

An insightful way to look at the coupling’s effect on pertu
bation growth is by looking at its effect on the dimensionle
growth rate

ne f f5t
d̃c
˙

d̃c

. ~33!

In Fig. 5 the growth rate for one scale,k50.1 Mpc21, is
shown for various models, in each case h50.65, Vb
50.053. A nonminimally coupled model withVf50.6 and
l58 (b58,f0532.5), is compared with aLCDM model,

FIG. 5. Time evolution of the effective growth rate for 4 sc
narios ~all h50.65, Vb50.053), 3 of which produce acceleratio
today: ~1! LCDM VL50.6 ~full line!, ~2! NMC model Vf

50.6, l58, b58, f0532.5 ~long dash!, ~3! MC model Vf

50.6,l58, A50.01,B52, f0532.5~short dash!, and, one which
does not,~4! SCDM modelVc50.947~dot-dash!.
6-5
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RACHEL BEAN PHYSICAL REVIEW D 64 123516
VL50.6, a SCDM modelVc50.947, and an analogou
minimally coupled quintessence model using the poten
developed by Albrecht and Skordis@14# V5V0e2lf@A
1(f2f0)B# with l58 (A50.01, B52, f0532.5). Forz
.2 the growth rates for the scalar field models do not dif
greatly from that in theLCDM model.

The addition of a scalar field or cosmological consta
with V051 fixed, will act to reduceVc and therefore the
size of the mass term in Eq.~27!. This is the main factor
responsible for the suppression of growth at later tim
rather than the nonclumping behavior of the scalar field co
monly cited as the cause. Subhorizon scalar field pertu
tions have oscillatory time evolution with decaying amp
tudes, their contribution to the evolution of matt
perturbations therefore is small for the observationally int
esting scales. For NMC models, the coupling suppressesVf
aroundzeq , making the scalar field contribution todc growth
negligible. Subsequently, the growth rate for NMC models
closer to that created by a cosmological constant than for
MC models.

At late times however, forz,2, the coupling and scala
field become important, and act to suppress the growth indc
to a far greater extent thanL and MC models, offering a
potential way to distinguish nonminimal from minimal th
NMC model.

The dampening effect can be also seen in the ma
power spectrum P~k!,

P~k!5^ud̃c~k!u2&5~100C!8p3h3kS k

k0
D n21

~34!

whereC is the normalization factor fromCMBFAST @33# aris-
ing form the Bunn and White normalization@34# at l510
multipole,k is in units ofh/Mpc andk050.05 Mpc21 andn
is the tilt, chosen heren51 for a scale invariant spectrum

In Fig. 6 the matter power spectra for the both the NM
and MC models mimic aLCDM model for scalesk,
;0.1 i.e. those modes having entered the horizon before
around equality. There is a slight suppression but a bias
tor could in theory resolve the discrepancy. Certainly
three models give reasonable predictions for matter fluc
tions over a sphere of size 8h21 Mpc with s8
50.89,0.91,1.13 for NMC, MC andLCDM models, respec-
tively, in comparison to the observed values850.56Vm

20.47

;0.9 @35#.
For larger scales, however, the coupling does make a

ference. In scales that have only entered the horizon in re
times, whilst the coupling is important, we see a distinct
reduction of power in comparison to the MC andLCDM
models which tend to similar behavior. Although the su
pression clearly distinguishes the coupled model, its pro
is still consistent with current observational results@36#.
There may be an opportunity with the future SLOAN gala
survey results to constrain the power spectrum at these la
scales~to k;0.01).

Another potential impact of the late time importance
the coupling is that it will affect small scale features atz
12351
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;2, observable potentially through future weak lensing~see
e.g.@37# and references therein! and damped Lymana cloud
measurements~see e.g.@38#!.

C. Impact on CMB anisotropies

Introducing a scalar field can potentially have several
fects on the CMB power spectrum. Firstly, as we have
ready mentioned in Sec. III A, the scalar field gives rise
extra mass and source terms in the linear evolution equat
for w anddc . These then indirectly affect the radiation pe
turbations, altering the acoustic peak positions and heigh
the time of last scattering (t lss). However, the scalar pertur
bations are effectively negligible aroundzeq , especially in
the NMC scenario, so this effect will be minimal.

Secondly, the time varying Newtonian potential after d
coupling will be affected by the coupling, altering th
anisotropies produced at large angular scales~the integrated
Sachs-Wolfe effect!. This can be seen in Fig. 7 where th
NMC model has a different profile at smalll from the MC
andLCDM models. However the effect is not large enou
to be disentangled from the effect of cosmic variance.

Thirdly, the inclusion of the scalar field alters the comp
sition of the energy density, altering the angular diame
distance of the acoustic horizon size at recombination. T
can be parametrized by the value ofB

B5Vc
1/2hE

zrec

z0
dz$SV j z

3(11wj )%21/2. ~35!

Altering the value ofB shifts the positions of the peaks. Th
critical problem one confronts when trying to use CMB spe

FIG. 6. Matter power spectrum for the 3 scenarios in Fig
which produce acceleration today:LCDM ~full !, NMC ~long dash!
and MC~short dash!, together with the de-correlated data points
Hamilton et al. Parameters in the 3 models are the same as
Fig. 5.
6-6
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tra to differentiate between models is the degeneracy
exists between models with identicalVc , Vb andB @39#. It
has been shown that this degeneracy can be broken for s
field models in which a large fraction of the energy density
t lss is from the scalar@28#; the scalar field acting as an e
fective increase in the number of relativistic degrees of fr
dom. However for models in whichl>8 the degeneracy
still exists in minimally coupled models. In Figs. 7 and
CMB spectra are plotted for the scenarios discussed in
previous section against Cosmic Background Explo
~COBE! @40#, MAXIMA @41#, Boomerang@42# and DASI
@43# data. All the models discussed haveB51.77 and yet one
can see that the degeneracy of the first peak is slightly
ken, with the NMC model havingl peak5215 in comparison
to 224 for both the MC andLCDM models. It is also inter-
esting to note that the CMB spectra for coupled models w
different l values are effectively degenerate in themselv
as shown in the figure. This implies that, although coupl
itself may be distinctive, CMB spectra will not be able
isolate the parameter in the potential.

The fourth possible effect is on the separation of
peaks. This has been proposed as a possible mechanism
which to distinguish minimally coupled models@44#. They
are not distinguishable fromLCDM if Vf(t lss) is small
however, as mentioned above. But in the case of n
minimally coupled models the degeneracy in the second
third peaksis broken because of the effect the coupling h
on t0 the conformal time nowadays. This is of particul
interest given the expected improvements in peak defini
~e.g. @42,41,43,45#!. The separation of the peaksdl is given
by

FIG. 7. CMB power spectra showing lowl ~plateau! behavior
for the 3 scenarios in Fig. 5:LCDM ~full !, NMC ~long dash! and
MC ~short dash! with COBE datapoints. Model parameters are t
same as in Fig. 5. The 3 models evolve differently at late tim
producing slightly different ISW anisotropies shown in the plate
at low l. However, observations at this scale are dominated by
mic variance, so that the differences would not be observable.
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~36!

wherer s is the sound horizon andcs , the baryon speed o
sound, both of which can be assumed effectively cons
across the models. The NMC model hast0512 530 in com-
parison tot0513 077 for theLCDM model. This reduces
the separation slightly breaking the degeneracy, as sho
the separation of the first and second peaks in the N
model isdl5309 in comparison to 327LCDM scenario.

Although distinguishable from the cosmological consta
spectrum, the difference is still too small to be resolved w
current observational data, including the most recent B
merang@42# and DASI @43# data, showing highly improved
definition in the second and third peaks. However with
number of observational projects continuing to focus att
tion on resolving the higher peaks, the breaking of deg
eracy may offer a way to constrain non-minimally coupl
models. In Fig. 9 we plot the residual differences betwe
the LCDM and NMC Cl spectra in Fig. 8 when compare
with estimated Microwave Anisotropy Probe~MAP! errors.
The parameters used to estimate the MAP errors are sh
in Appendix C. The estimated errors are considerably sma
than these residual levels forl ,900 implying that we may
be able to distinguish between these various models wi
the near future.

IV. CONCLUSION

We have examined the impact a scalar field, no
minimally coupled to cold dark matter will have on the ev
lution of matter and radiation perturbations. We conside

s
u
s-

FIG. 8. CMB power spectra showing acoustic peaks for th
scenarios in Fig. 5:LCDM ~full !, NMC ~dash! and MC ~short
dash!, together with the data from Boomerang~solid circles!,
Maxima ~crosses! and DASI ~open diamonds!. Model parameters
are the same as in Fig. 5.
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RACHEL BEAN PHYSICAL REVIEW D 64 123516
first its impact on the linear evolution equations and fou
that even though it did introduce new terms these were
fectively negligible for all but very late times. The impact
this late time behavior was then considered for matter p
turbations where it was seen to create a suppressio
growth at large scales. The coupling was also found to br
the degeneracy usually seen in the CMB spectrum, slig
shifting the position of the first peak and reducing the se
ration between adjacent peaks. These two distinctive ‘‘sig
tures’’ of the coupled dark energy model are not resolva
with current observations. However projects currently und
way look to mapping both the matter power spectrum a
CMB peaks with much improved accuracy. These may o
an opportunity to eventually distinguish betweenLCDM,
minimally coupled and nonminimally coupled quintessen
models in the near future.
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APPENDIX A: BIANCHI’S IDENTITY

In this section we derive the equations of motion for t
coupled dark matter and scalar fields explicitly from the
tion

S5E A2gd4xS 2
R
2

1
1

2
f ,mf ,m2V~f!1LV1 f ~f!LcD .

~A1!

FIG. 9. Residual deviation of the NMC model’s temperatu
fluctuations from those of theLCDM model, both shown in Fig. 8
with estimated MAP error bars.
12351
d
f-

r-
of
k

ly
-

a-
e
r-
d
r

e

.

-

Bianchi’s identity reflects the symmetry of the Riemann te
sor, the Einstein tensor being convariantly conserved,

S R mn2
1

2
gmnRD

;n

5@Tmn(f)1Tmn(V)1 f ~f!Tmn(c)# ;n50.

~A2!

Since visible matter is minimally coupled in the model w
can immediately separate it out,

T;n
mn(V)50. ~A3!

Using the explicit definition of the energy momentum tens
in terms of their Lagrangian,

T;n
mn5F 2

A2g
S ]~A2gL!

]gmn
D G

;n

~A4!

so the scalar field component of the Bianchi identity in ter
of f and its derivatives is

T;n
mn(f)5f ,m

„f ,n
,n1Gan

n f ,a1V8~f!…. ~A5!

The Euler-Langrange equation, which is just the Klein G
don equation, allows us to simplify this further

f ,a
,a1Gab

b f ,a1V8~f!5 f 8~f!Lc . ~A6!

Combining these two expressions we obtain

T;n
mn(f)5 f 8~f!L cg

mnf ,n . ~A7!

For the coupled matter then,

„f ~f!Tmn(c)
…;n5 f 8f ;nTmn(c)1 f T;n

mn(c) . ~A8!

Combining the results in Eqs.~A3! and~A7!, Bianchi’s iden-
tity in Eq. ~A2! is given by

T;n
mn(c)5

f 8

f
f ;n~L cg

mn2Tmn(c)!. ~A9!

We can obtain an expression for the Lagrangian for p
fect fluid by considering it to be a gas of particles wi
massesma and pathsxa

i @46#

La~x!52mad„x2xa~ t !…~2gmnẋmẋn!1/2. ~A10!

By noting that the length of the 4-velocity@2gmn(dxm/
dl)(dxn/dl)#1/25ds/dl equals 1 for dust, this expressio
simplifies greatly. Averaging over particles in the gas r
frame we findLc52n^m/u0& wheren is the particle num-
ber density andum5dxm/dl is the 4-velocity. For pressure
less particlesum5$1,0,0,0%; thereforeLc52rc .

We can also obtain an expression for the stress-ene
tensor from the Lagrangian in an analogous way. Using
relationship betweenTmn andL in Eq. ~A4! the stress-energy
for a particle is given by
6-8
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Ta
mn5ma

d„x2xa~ t !…

A2g
ẋmẋnu0. ~A11!

On averaging over the particles the energy density isr
5^T00&5n^mu0& and the pressure in thex-direction is given
by p5^T11&5n^mu0(v1)2& where v i5dxi /dt5ui /u0, for
dust thereforepc50. In addition, in the rest frame there
zero streaming velocity so that^T0i&5n^mu0v i&50.

In this paper we assume that the coupled matter is c
prised of cold pressureless dust particles. Putting the exp
sion forLc into Eq.~A9!, the background evolution equatio
for non-minimally coupled matter is identical to that in th
minimally coupled case:

T;n
mn(c)5 ṙc13Hrc50. ~A12!

APPENDIX B: LINEAR PERTURBATION EQUATIONS

We here derive the linear perturbation equations for
coupled cdm and scalar fields in detail. We assume the n
tion of Ma and Bertschinger@31# and results of Ferreira an
Joyce@12#. Consider perturbations to a flat FRW metric
the synchronous gauge, with line element

ds25a~t!2$2dt21~d i j 1hi j !dxidxj%.

By considering the perturbed Euler-Lagrange equation
the scalar field we can obtain the linear evolution equat
for w:

w ,a
,a1dGab

b f ,a1Gab
b w ,a1V9w5 f 9wLc1 f 8dLc .

~B1!

Perturbing the particle Lagrangian in Eq.~A10!

dLa52dmad„x2xa~ t !…~2gmnẋmẋn!1/2 ~B2!

and averaging over all dust particles, we havedL5
2n^dm/u0&52drc . The nonminimally coupled scalar pe
turbation equation becomes

ẅ

a2
1

1

2
ḣḟ12

ȧ

a
ẇ1V9w2w ,i

,i52rc~ f 9w1 f 8dc!.

~B3!

The perturbed Einstein equations can be used to obtain
expression forḋr

~r1P!u13H~dr1dP!1
1

2
~r1P!ḣ1 ḋr50. ~B4!

TABLE I. MAP CMB experimental specifications.

n ~GhZ! un,FWHM 106s Nch

40 288 8.2 4
60 218 11.0 4
90 138 18.3 8
12351
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We are interested in the interacting dark matter and sc
field, which are not separable in Eq.~B4!

f rcuc13Hd~ f rc!1
1

2
~ f rc!ḣ1

d

dt
„d~ f rc!…

1ḟ
¹2w

a2
13HS 2ḟẇ

a2 D 1
1

2

ḟ2

a2
a2ḣ

1S f̈ẇ

a2
1

ḟẅ

a2
12

ȧ

a

ḟẇ

a2
V8ẇ1V9wḟ D 50. ~B5!

Using the equations of motion for the background and p
turbed scalar field we find that Eq.~B5! simplifies substan-
tially. Interestingly, we find that the coupling does not affe
the first order dark matter perturbation equation

ḋc52uc2
1

2
ḣ. ~B6!

With the residual degree of freedom in the synchrono
gauge we are free to fix one additional parameter; by c
vention we setuc50 so thatḋc5 1

2 ḣ. Ignoring baryons, for
simplicity, the second order perturbation equation becom

d̈c1H ḋc1
3H2f Vc

2
dc523H2Vgdg22ḟẇ

1S a2V82
3H2Vcf 8

2 Dw. ~B7!

APPENDIX C: MAP ERROR BAR ESTIMATION

The standard error on the estimate ofCl , DCl for an
experiment withN frequency channels~denoted subscriptn!,
each respectively with angular resolutionun,FWHM(arcmin)
5un(rad)/603p/180 and sensitivitysn per resolution ele-
ment, scanning a fractionf sky of the sky in bins ofl sizeD l
is given by@47#

DCl'S 2

~2l 11! f skyD l D
0.5

@Cl1v̄21B̄l
22#

v̄[(
n

vn , B̄l
2[v̄21(

n
B nl

2 vn ,

vn[~snun!22, B nl
2 'e2 l ( l 11)/l s

2
~C1!

where we have assumed that the experimental beam is
proximately Gaussian filtering scalel s[A8 ln 2un

21 . We
have assumed a useful sky fractionf sky50.65 andD l 550,
Table I shows the remaining parameters used, taken f
@48#.

The combined errors in Fig. 9 are therefo
D@Cl(LCDM)2Cl(NMC)#5DCl(LCDM)1DCl(NMC).
6-9
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