PHYSICAL REVIEW D, VOLUME 64, 123514

Inflationary perturbations from a potential with a step

Jennifer Adams and Bevan Cresswell
University of Canterbury, Private Bag 4800, Christchurch, New Zealand

Richard Easther
Institute for Strings, Cosmology and Astroparticle Physics, Columbia University, New York, New York 10027
(Received 13 April 2001; published 27 November 2001

We use a numerical code to compute the density perturbations generated during an inflationary epoch which
includes a spontaneous symmetry breaking phase transition. A sharp step in the inflaton potential denerates
dependent oscillations in the spectrum of primordial density perturbations. The amplitude and extent in wave
number of these oscillations depends on both the magnitude and gradient of the step in the inflaton potential.
We show that observations of the cosmic microwave background anisotropy place strong constraints on the
step parameters.
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I. INTRODUCTION scale structuréLSS) and the cosmic microwave background
(CMB).

A period of inflation in the primordial universe provides a  Motivated by the existence of models which naturally and
causal explanation for the existence of the large scale strugenerically lead to scale dependent spectra, this paper care-
ture observed during the present epdcbviewed in Ref. fully examines the consequences of introducing a step in the
[1]). The simplest and most natural form of the scalar densitynflaton potential. We focus on spectral features which may
perturbation spectrum is the scale invariant case,Pgr be observable in the large-scale structure or cosmic micro-
«k""1 with n=1, whereR is the curvature perturbation. ~ wave background anisotropy, and therefore had their origin

In principle, inflationary models driven by a continuously around 50e folds before the end of inflation.
evolving scalar field have a scale dependent spectral index, We model the step by assuming the potential
which can be calculated using the “slow roll” approximation
[2]. This expressea as a function of the inflaton potential
and its derivatives at the instant a mode leaves the horizon V()= £m2¢2
during inflation. The inflaton evolves slowly, so only a small 2
piece of the potential is “sampled” by the large scale struc-

ture in the present universe, ensuring that, if the underlyin . . . .
potential is smoothn is not strongly scale dependent. %r the inflaton field ¢. This potential has a step ap

Potentials with a “feature” at the value of the inflaton, — %stepWith @ size and gradient governed byandd respec-

when perturbations corresponding to astrophysical scales #ively: For physically realistic models, inflation is not inter-
the present universe left the horizon, can produce a primofUPtéd, but the effect on the density perturbations is still
dial perturbation spectrum with significant scale dependencélgmﬂcam. If inflation is actually interrupted the effect on the
However, the inflaton moves slowly, and fine tuning is perturbation spectrum is severe enough to rule out models
needed to put the feature in exactly the right part of thewhere this occurs during the interval of inflation correspond-
potential. Thus, while it is possible to construct inflationarying to observable scales. In order to evaluate the spectrum
models with a scale dependent spectrum, these models aggcurately, we find that we must evolve the evolution equa-
often somewhat contrived. tions numerically, rather than relying on the slow roll ap-
However, arguing that using a feature in the inflaton po-proximation.
tential to generate a complicated spectrum requires fine tun- Inflationary models with scale dependent spectral indices
ing assumes that the potential has just one feature, but isere examined in several previous investigatiphs9]. In
otherwise smooth. Adding a large number of features to thearticular, two recent papers, the first by Leach and Liddle
potential makes it far more likely that a randomly chosen[8] and the second by Lead al. [9], relied, as we do, on
piece of the perturbation spectrum will exhibit a considerablenumerical evaluations of the mode equation to compute the
scale dependence. In particular, Adaetsl. [3] showed that density perturbation spectrum. Our analysis focuses on small
a class of models derived from supergravity theories natufeatures in the potential. Conversely, Ré8. and[9] exam-
rally gives rise to inflaton potentials having a large numberined potentials which produce very abrupt changes in the
of sudden(downward steps. Each step corresponds to ainflationary dynamics, including the temporary cessation of
symmetry breaking phase transition in a field coupled to thénflationary expansion, so the spectra discussed in R&fs.
inflaton, since the mass changes suddenly when each transind [9] are changed for all values df larger than some
tion occurs. In the scenario studied by Adaetsl, a spec- critical value. In contrast, the spectra we consider here are
tral feature is expected every 10—&%olds, so if this model essentially unchanged from their form at smialbnce the
drove inflation it is likely that one of these features would beoscillations have died away. Moreover, most of the models
visible in the spectrum extracted from observations of largediscussed in Refd.8] and[9] would need to be carefully
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tuned in order to produce observable effects in the spectrum, 2.2
whereas the mechanism described by Adanal. can alter (Ry, ;):—SPRﬁ?’(kl—kz), (7)
the observable spectrum without fine tuning. Z kK

and is given by

Il. FORMALISM

In this section we reproduce important equations govern- 12 k3 uy
ing the evolution of scalar curvature perturbations and gravi- Prik)= ﬁ 2 ®)
tational waves during inflation. We use the formalism devel-
oped by Stewart and Lythi10] where the quantities of The mode equation for gravitational waves is
interest are the curvature perturbati@and tensor pertur-
bation . "

In the scalar case it is advantageous to define a gauge v[ﬁ+(k2— = /vx=0 9

invariant potential

wherev,=ay, . In slow roll inflationa”/a=2a?H? and the
behavior ofv is again characterized by whether the mode is
inside or outside the horizon:

u=—zR, )

wherez=ag/H. We use the standard notation, wherde-

notes the scale factdd the Hubble paramete¢; the inflaton 1 _
field, and a dot the derivative with respect to tite Uk_>\/_—e7|k7 as aH/k—0, (10
The equation of motion for the Fourier componentg, 2k
is
vxa  for aH/ks1. (12
up+| k2— —)UKZO, (3  The power spectrum of gravitational wavég(k), analo-
z gous to Eq.(8), is
where the prime denotes differentiation with respect to con- K3 o
formal time andk is the modulus of the wave numbgtO— péfz(k): A bt (12
12]. The form of the solution depends on the relative sizes of 2m? a
k? andz"/z. In the limit k?>2"/z, u, tends to the free field
solution IIl. NUMERICAL SOLUTION
1 _ Normally, the perturbation spectra of inflationary models
U— —e k7, (4) driven by a continuously evolving, minimally coupled scalar

V2k field can be calculated using the slow roll approximation.
However, when the potential has a sharp feature, its deriva-
where the normalization is determined by the quantum originjves with respect tap and the time derivatives of the field
of the perturbationgsee Ref[13] for a more detailed dis- need not be small. Consequently, we evolve the full mode
cussion. Conversely, in the limik?<z"/z the growing mode equation numerically, without any approximations other than

is those already implicit in the use of perturbation theory.
In Eqg. (3), the mode function is expressed in terms of
Ug<z, (5) conformal time. The intrinsic time scale of the dynamics is
not constant in conformal time, so we shift the independent
which means that the curvature perturbation variable toa=loga, facilitating the numerical integration.
With this replacement, the system of equations we are to
IRy =|uy /2| (6) solveis
is constant in this regime. Th&'/z term can be written as H,=—47GHg?’, (13

2a2H? plus terms that are small during slow roll inflation, so

that the first regime applies to a mode well inside the horizon H, 1 dVv
with k>aH, and the second to superhorizon scales wken baat| g T3] bat e %=0, (14
<aH.
The spectrunPx(k) is defined in the usual way as
a 2 H(lf d)aa H(lf 2
Upet | +1]u,+ 20112 _4W b -2 W
An exception is the enhancement of the perturbations produced “
just before the end of inflation, which might lead to the formation of H 1 d2v
primordial black hole§8]. These have observable consequences -5 % - - =0, (15)
which are distinct from observations of large scale structure. H H?2 d¢? }
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where the subscriptr denotes differentiation. To compute 1x10®
the spectrum, we repeat the integration for many valuds of

In generalu has two distinct solutions since it is a second
order linear differential equation, and we must choose the

combination which guarantees that the mode equation hagx10™ |

the limiting form of Eq.(4). We impose the initial conditions
when the mode is far inside the horizon assuming that the
conformal timer is zero, which amounts to an irrelevant
choice of phase. Consequently,

1x107 |
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Pg(k) —

1
Ul:=0= 7= (16)
| 0 \/ﬂ
-12
1xi0 0.001 04211 011 1 10

du k1 k
-— =—i\/= . (17)
da =0 2 e*H =0 FIG. 1. The scalar and tensor power spectrumcfei0.002 and

d=0.01. Thez"/z term for these parameters is shown in Fig. 2.

Rather than work with complex coefficents in the numerical
code, we define two orthogonal solutions and uZ, such
that

is the scale dependent oscillations. Even with this small

Uyl ,—0=1, (18)
du}
—| =0, 19
da o
Ul -0=0, (20
du?
da| =1. (21
=0
At any subsequent timey, is thus
1 \/E 1 ) 22
Ue=—==U—i\/5 Uy -
k \/ﬂ k zeaH k

7=

change in the amplitude of the inflaton potential the oscilla-
tions last for two decades &fand, at their peak, change the
amplitude of the spectrum by a factor of 3. We have set the
position of the step so that the scale where the oscillations
begin,k,, is probed by observations of the galaxy correla-
tion function and the anisotropy in the cosmic microwave
background. Before we look at the origin of the oscillations
in the scalar spectrum it will be helpful to have a picture of
how inflation proceeds when there is a step in the potential.
A general, qualitative analysis of the spectrum produced by a
“feature” in the potential is given by StarobinsKyL5]. For

the specific model we are considering here, we can under-
stand the numerical results as follows. Energy conservation
requires that the change in the inflaton kinetic energy term
cannot exceed the change in the potential energy so, if we are
originally well inside the vacuum-dominated regime, a small
change in the amplitude of the inflaton potential cannot sus-

pend inflation. The evolution af in Fig. 2 clearly shows that

We start the evolution by evolving the two backgroundthe expansion is always accelerating. Howeverzttie term,

equations until any initial transient solution has died awayalso shown in Fig. 2, determines the growth of the scalar

but the mode is still well inside the horizon. We then identify perturbations and is very different froma2H2. It first grows

the two orthogonal solutions that contributeup, and ex-

tract the coefficients in Eq22). This ensures that an initial
transient contribution to the background dynamics cannot =
contaminate the initial values efandu, . Finally, to com-
pute the spectrum, we need the asymptotic valu¢udd]|,

and we find this by continuing the integration until the mode
is far outside the horizon and this value is effectively con- &
stant. The numerical integrations are carried out using the§ of
Bulirsch-Stoer algorithnj14], and we check our calculations &

by ensuring that the results are independent of the distanc:
inside the horizon where we apply the normalization, and the
distance beyond the horizon where we evaluate the
asymptotic value ofu/z|. 2f
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IV. INFLATIONARY POTENTIAL WITH A STEP

Figure 1 shows the power spectrum for the potential of

0.5

FIG. 2. Evolution ofz’/z anda for c=0.002 andd=0.01 with

Eq. (1) with c=0.002, or a 0.4% change in the amplitude of the number ot folds of inflation,N. We have seN=0 at the step
the potential. The most striking aspect of the scalar spectrurim the potential.
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FIG. 3. Evolution of the independent modas and uZ [with spectrum.
initial conditions forui and uZ given in Egs.(18)—(21)] and the
linear combination of their amplitudéeq. (22)] for k=0.3.

the mode will have undergone 7(k/k,,— 1) oscillations.

in magnitude as the inflaton field accelerates and then dropEhus the period of the variation ifiR,| is approximately
to a large negative amplitude as the field slows. However, th@Kiow -
tensor power spectrum is unaffected siaééa remains con- For higher wave numbers the effect of th&'z term is
stant throughout the step. smaller, the amplitude of their oscillation is not increased
To understand the scalar power spectrum we begin bjnd the two modes are not set exactly in phase with each
considering the evolution of a particular scalar mode. Thedther. However their phases are still altered so that the linear
evolution is governed by the competition betweenkhand  combinationu, oscillates, but with a diminished amplitude
Z'/z terms. A step in the potential of the magnitude we arecompared to the lowek modes.
interested in only has a lasting effect krmodes within the The magnitude of"/z depends on both parameterand
horizon, and not on modes which are already well outside thé in the potential, and in a well motivated model these will
horizon. That is, the lowest wave number affected is approxibe determined by particle physics. Alternatively, given accu-
mately given bykio,~aH|ge, Moreover, from the form of rate observations of the CMB and LSS, there may be pos-
the k?—2"/z term in the mode equation, we can see that thesible cosmological constraints on the values of these param-
range ofk affected by the step will scale roughly with the €ters. In Sec. V we examine the observable consequences of
square root of the maximum value of/z in the region of @ scale dependent primordial spectrum.
the step.
In Fig. 3 we show the evolution afy , uZ, anduy for an V. OBSERVABLE SPECTRA

intermediate wave number in the rangekatffected. The rise . .
in 2'/z introduces a brief interlude of growing mode behav- Adamset al.[3] attempted to recover the primordial per-

ior into the oscillatory regime. The subsequent intervalturbation spectrum from the APM survey power spectrum
wherez"/z is negative causes the amplitudetgfto briefly ~ YSiNg the relationship between the spectrum of mass fluctua-

resume its oscillatory behavior. Finally, when the infiaton!ions today and the primordial spectrum

field resumes slow rolling, the oscillations leave the horizon 3+n

with an altered phase and increased amplitude. Both of the szPRTz(k)(H—> : (23

two initially independent solutions are affected similarly, as 0

they now have the same phase, and the amplitude of thewhere T(k) is the matter transfer function that tracks the

linear combination oscillates. In other words, the presence afcale dependent rate of growth of linear perturbations and

the step introduces a boundary condition which selects a salepends on the dark matter content of the Universe. Assum-

lution with an oscillating envelope in contrast to the uncon-ing a cold dark matter dominated universe the primordial

strained plane wave solution with constant envelope seen at(k) could be extracted from the three dimensioRaby(K)

small k. inferred from the angular correlation function of galaxies in
As in the case of a featureless inflaton potentigl,ob-  the APM survey[16]. A departure from scale invariance was

tains a growing mode solution once it is outside the horizonfound in the rangé&~ (0.05-0.6p Mpc 1. This feature was

However the asymptotic limit reached by the curvature pernoted in Ref.[16] and in the power spectrum of Infrared

turbation| R, | depends on the oscillation phase of the modeAstronomy Satellit€|RAS) galaxies[17]. Adamset al. used

at horizon exit, so thafR,| oscillates, with maxima corre- the n(k) they had extracted to predict the photon power

sponding to the modes which exit at an extremum. Thespectrum and found that the height of the secondary acoustic

proper time interval between the step and when the modpeaks was suppressed by a factor-dl.

with wave numberk exits is approximatelyA 7~ 1/aH|gep Recently, a number of groups have revisited this analysis

—1/aH|eyii= 1Ko — 1/ and in this time the amplitude of motivated by the recent Maxima and BOOMERanG obser-
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FIG. 5. The CMB angular power spectrum for the primordial  FIG. 6. Matter power spectrum for the primordial spectra shown
spectra shown in Fig. 4. The normalization in each case is to COBEp Fig. 4. The data points are from the PSCz catalog.
The data are from COBHEcircle, BOOMERanG(squares and

MAXIMA (triangles. V1. CONCLUSIONS

vations which show an anomalously low second peak. Bar- We use a numerical routine to accurately calculate the
riga et al. performed ay? analysis of the Cosmic Back- primordial density spectrum predicted byphysically moti-
ground Explorer(COBE) and BOOMERanG CMB data vated inflaton potential with steps in it due to symmetry
considering a simple step in the primordial perturbationpreaking during inflation. The step in the potential induces
spectrum(no oscillations. Griffiths et al. added a Gaussian oscillations in the density perturbation spectrum whose mag-
bump to the primordial spectrum and performed a similamitude and extent is dependent on the amplitude and gradient
exercise. Both groups found support for a spectral featurgf the step.
[18]. ) . ) We have restricted our attention to a generic step, demon-
We leave ax” analysis for a forthcoming paper and in- strating that even a small feature in the potential can cause
clude here for orientation the cosmic microwave backgrounc},igniﬁcam changes to the spectrum of large scale perturba-
power spectrum and matter power spectrum predicted for thgons. Moreover, we have presented a detailed account of
range of primordial spectra shown in Fig. 4. We use thenow a feature in the potential modifies the observable spec-
Boltzmann codemBFAST[19] to calculate the CMB angular trym. In light of our calculations, we believe that tight cos-
power spectrum. We use the less fashionable sSCDM as oyfological constraints can be placed on the size of any feature
background cosmology {{cpy=0.95,{25=0.05, and h  n the potential, and thus on the particle physics model which
=0.5) as our motivation is to show the effect of the primor-produced it, and intend to return to this problem in future
dial denSity pel’turbation oscillations rather than find the beSWOrk_ Converse|y, if the density perturbation Spectrum ex-
fit. The CMB angular power spectrum is shown in Fig. 5tracted from future measurements of large scale structure and
along with observations from COBEthe uncorrelated the cosmic microwave background turns out to be incompat-
COBE Differential Microwave Radiomete{DMR) points  iple with a smooth initial spectrum, the mechanism proposed
from [20]], BOOMERanG[21], and MAXIMA [22]. It is  py Adamset al. provides a natural mechanism for injecting

clear that a good fit to the data can be found, but that theijgnificant scale dependence within the context of inflation
amplitude of the step and its gradient are constrained to bgs].

small by the observations.

The matter power spectrum is shown in Fig. 6 along with
the linear power spectrum generated from the PSCz catalog
[23]. The theoretical spectra suffer from the sCDM problem
of too much power on small scales; however, these spectra R.E. was supported by the Columbia University Aca-
are given for indicative purposes and are by no means bestiemic Quality Fund, and thanks the University of Canterbury
fit spectra. for its hospitality while this work was begun.
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