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Inflationary perturbations from a potential with a step
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We use a numerical code to compute the density perturbations generated during an inflationary epoch which
includes a spontaneous symmetry breaking phase transition. A sharp step in the inflaton potential generatesk
dependent oscillations in the spectrum of primordial density perturbations. The amplitude and extent in wave
number of these oscillations depends on both the magnitude and gradient of the step in the inflaton potential.
We show that observations of the cosmic microwave background anisotropy place strong constraints on the
step parameters.
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I. INTRODUCTION

A period of inflation in the primordial universe provides
causal explanation for the existence of the large scale st
ture observed during the present epoch~reviewed in Ref.
@1#!. The simplest and most natural form of the scalar den
perturbation spectrum is the scale invariant case, orPR
}kn21 with n51, whereR is the curvature perturbation.

In principle, inflationary models driven by a continuous
evolving scalar field have a scale dependent spectral in
which can be calculated using the ‘‘slow roll’’ approximatio
@2#. This expressesn as a function of the inflaton potentia
and its derivatives at the instant a mode leaves the hor
during inflation. The inflaton evolves slowly, so only a sm
piece of the potential is ‘‘sampled’’ by the large scale stru
ture in the present universe, ensuring that, if the underly
potential is smooth,n is not strongly scale dependent.

Potentials with a ‘‘feature’’ at the value of the inflaton
when perturbations corresponding to astrophysical scale
the present universe left the horizon, can produce a prim
dial perturbation spectrum with significant scale dependen
However, the inflaton moves slowly, and fine tuning
needed to put the feature in exactly the right part of
potential. Thus, while it is possible to construct inflationa
models with a scale dependent spectrum, these models
often somewhat contrived.

However, arguing that using a feature in the inflaton p
tential to generate a complicated spectrum requires fine
ing assumes that the potential has just one feature, bu
otherwise smooth. Adding a large number of features to
potential makes it far more likely that a randomly chos
piece of the perturbation spectrum will exhibit a considera
scale dependence. In particular, Adamset al. @3# showed that
a class of models derived from supergravity theories na
rally gives rise to inflaton potentials having a large numb
of sudden~downward! steps. Each step corresponds to
symmetry breaking phase transition in a field coupled to
inflaton, since the mass changes suddenly when each tr
tion occurs. In the scenario studied by Adamset al., a spec-
tral feature is expected every 10–15e folds, so if this model
drove inflation it is likely that one of these features would
visible in the spectrum extracted from observations of la
0556-2821/2001/64~12!/123514~6!/$20.00 64 1235
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scale structure~LSS! and the cosmic microwave backgroun
~CMB!.

Motivated by the existence of models which naturally a
generically lead to scale dependent spectra, this paper c
fully examines the consequences of introducing a step in
inflaton potential. We focus on spectral features which m
be observable in the large-scale structure or cosmic mi
wave background anisotropy, and therefore had their or
around 50e folds before the end of inflation.

We model the step by assuming the potential

V~f!5
1

2
m2f2F11c tanhS f2fstep

d D G ~1!

for the inflaton field f. This potential has a step atf
5fstepwith a size and gradient governed byc andd respec-
tively. For physically realistic models, inflation is not inte
rupted, but the effect on the density perturbations is s
significant. If inflation is actually interrupted the effect on th
perturbation spectrum is severe enough to rule out mo
where this occurs during the interval of inflation correspon
ing to observable scales. In order to evaluate the spect
accurately, we find that we must evolve the evolution eq
tions numerically, rather than relying on the slow roll a
proximation.

Inflationary models with scale dependent spectral indi
were examined in several previous investigations@4–9#. In
particular, two recent papers, the first by Leach and Lid
@8# and the second by Leachet al. @9#, relied, as we do, on
numerical evaluations of the mode equation to compute
density perturbation spectrum. Our analysis focuses on s
features in the potential. Conversely, Refs.@8# and@9# exam-
ined potentials which produce very abrupt changes in
inflationary dynamics, including the temporary cessation
inflationary expansion, so the spectra discussed in Refs@8#
and @9# are changed for all values ofk larger than some
critical value. In contrast, the spectra we consider here
essentially unchanged from their form at smallk once the
oscillations have died away. Moreover, most of the mod
discussed in Refs.@8# and @9# would need to be carefully
©2001 The American Physical Society14-1
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tuned in order to produce observable effects in the spectru1

whereas the mechanism described by Adamset al. can alter
the observable spectrum without fine tuning.

II. FORMALISM

In this section we reproduce important equations gove
ing the evolution of scalar curvature perturbations and gra
tational waves during inflation. We use the formalism dev
oped by Stewart and Lyth@10# where the quantities o
interest are the curvature perturbationR and tensor pertur-
bationc.

In the scalar case it is advantageous to define a ga
invariant potential

u52zR, ~2!

wherez[aḟ/H. We use the standard notation, wherea de-
notes the scale factor,H the Hubble parameter,f the inflaton
field, and a dot the derivative with respect to timet.

The equation of motion for the Fourier components,uk ,
is

uk91S k22
z9

z Duk50, ~3!

where the prime denotes differentiation with respect to c
formal time andk is the modulus of the wave number@10–
12#. The form of the solution depends on the relative sizes
k2 andz9/z. In the limit k2@z9/z, uk tends to the free field
solution

uk→
1

A2k
e2 ikt, ~4!

where the normalization is determined by the quantum or
of the perturbations~see Ref.@13# for a more detailed dis-
cussion!. Conversely, in the limitk2!z9/z the growing mode
is

uk}z, ~5!

which means that the curvature perturbation

uRku5uuk /zu ~6!

is constant in this regime. Thez9/z term can be written as
2a2H2 plus terms that are small during slow roll inflation, s
that the first regime applies to a mode well inside the horiz
with k@aH, and the second to superhorizon scales whek
!aH.

The spectrumPR(k) is defined in the usual way as

1An exception is the enhancement of the perturbations produ
just before the end of inflation, which might lead to the formation
primordial black holes@8#. These have observable consequen
which are distinct from observations of large scale structure.
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PRd3~k12k2!, ~7!

and is given by

PR
1/2~k!5A k3

2p2Uuk

z U. ~8!

The mode equation for gravitational waves is

vk91S k22
a9

a D vk50, ~9!

wherevk5ack . In slow roll inflationa9/a.2a2H2 and the
behavior ofvk is again characterized by whether the mode
inside or outside the horizon:

vk→
1

A2k
e2 ikt as aH/k→0, ~10!

vk}a for aH/k@1. ~11!

The power spectrum of gravitational wavesPg(k), analo-
gous to Eq.~8!, is

P g
1/2~k!5A k3

2p2Uvk

a U. ~12!

III. NUMERICAL SOLUTION

Normally, the perturbation spectra of inflationary mode
driven by a continuously evolving, minimally coupled scal
field can be calculated using the slow roll approximatio
However, when the potential has a sharp feature, its der
tives with respect tof and the time derivatives of the fiel
need not be small. Consequently, we evolve the full mo
equation numerically, without any approximations other th
those already implicit in the use of perturbation theory.

In Eq. ~3!, the mode function is expressed in terms
conformal time. The intrinsic time scale of the dynamics
not constant in conformal time, so we shift the independ
variable toa5 loga, facilitating the numerical integration
With this replacement, the system of equations we are
solve is

Ha524pGHfa
2 , ~13!

faa1S Ha

H
13Dfa1

1

H2

dV

df
50, ~14!

uaa1S Ha

H
11Dua1H k2

e2aH2
2F224

Ha

H

faa

fa
22S Ha

H D 2

25
Ha

H
2

1

H2

d2V

df2G J 50, ~15!
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INFLATIONARY PERTURBATIONS FROM A POTENTIAL . . . PHYSICAL REVIEW D 64 123514
where the subscripta denotes differentiation. To comput
the spectrum, we repeat the integration for many values ok.

In general,u has two distinct solutions since it is a seco
order linear differential equation, and we must choose
combination which guarantees that the mode equation
the limiting form of Eq.~4!. We impose the initial conditions
when the mode is far inside the horizon assuming that
conformal timet is zero, which amounts to an irreleva
choice of phase. Consequently,

uut505
1

A2k
, ~16!

du

da U
t50

52 iAk

2

1

eaH
U

t50

. ~17!

Rather than work with complex coefficents in the numeri
code, we define two orthogonal solutionsuk

1 and uk
2 , such

that

uk
1ut5051, ~18!

duk
1

da
U

t50

50, ~19!

uk
2ut5050, ~20!

duk
2

da
U

t50

51. ~21!

At any subsequent time,uk is thus

uk5
1

A2k
uk

12 iAk

2

1

eaH
U

t50

uk
2 . ~22!

We start the evolution by evolving the two backgrou
equations until any initial transient solution has died aw
but the mode is still well inside the horizon. We then ident
the two orthogonal solutions that contribute touk , and ex-
tract the coefficients in Eq.~22!. This ensures that an initia
transient contribution to the background dynamics can
contaminate the initial values ofu andua . Finally, to com-
pute the spectrum, we need the asymptotic value ofuu/zu,
and we find this by continuing the integration until the mo
is far outside the horizon and this value is effectively co
stant. The numerical integrations are carried out using
Bulirsch-Stoer algorithm@14#, and we check our calculation
by ensuring that the results are independent of the dista
inside the horizon where we apply the normalization, and
distance beyond the horizon where we evaluate
asymptotic value ofuu/zu.

IV. INFLATIONARY POTENTIAL WITH A STEP

Figure 1 shows the power spectrum for the potential
Eq. ~1! with c50.002, or a 0.4% change in the amplitude
the potential. The most striking aspect of the scalar spect
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is the scale dependent oscillations. Even with this sm
change in the amplitude of the inflaton potential the osci
tions last for two decades ofk and, at their peak, change th
amplitude of the spectrum by a factor of 3. We have set
position of the step so that the scale where the oscillati
begin,klow , is probed by observations of the galaxy corre
tion function and the anisotropy in the cosmic microwa
background. Before we look at the origin of the oscillatio
in the scalar spectrum it will be helpful to have a picture
how inflation proceeds when there is a step in the poten
A general, qualitative analysis of the spectrum produced b
‘‘feature’’ in the potential is given by Starobinsky@15#. For
the specific model we are considering here, we can un
stand the numerical results as follows. Energy conserva
requires that the change in the inflaton kinetic energy te
cannot exceed the change in the potential energy so, if we
originally well inside the vacuum-dominated regime, a sm
change in the amplitude of the inflaton potential cannot s
pend inflation. The evolution ofä in Fig. 2 clearly shows that
the expansion is always accelerating. However thez9/z term,
also shown in Fig. 2, determines the growth of the sca
perturbations and is very different from 2a2H2. It first grows

FIG. 1. The scalar and tensor power spectrum forc50.002 and
d50.01. Thez9/z term for these parameters is shown in Fig. 2.

FIG. 2. Evolution ofz9/z and ä for c50.002 andd50.01 with
the number ofe folds of inflation,N. We have setN50 at the step
in the potential.
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in magnitude as the inflaton field accelerates and then d
to a large negative amplitude as the field slows. However,
tensor power spectrum is unaffected sincea9/a remains con-
stant throughout the step.

To understand the scalar power spectrum we begin
considering the evolution of a particular scalar mode. T
evolution is governed by the competition between thek2 and
z9/z terms. A step in the potential of the magnitude we a
interested in only has a lasting effect onk modes within the
horizon, and not on modes which are already well outside
horizon. That is, the lowest wave number affected is appro
mately given byklow;aHustep. Moreover, from the form of
the k22z9/z term in the mode equation, we can see that
range ofk affected by the step will scale roughly with th
square root of the maximum value ofz9/z in the region of
the step.

In Fig. 3 we show the evolution ofuk
1 , uk

2 , anduk for an
intermediate wave number in the range ofk affected. The rise
in z9/z introduces a brief interlude of growing mode beha
ior into the oscillatory regime. The subsequent inter
wherez9/z is negative causes the amplitude ofuk to briefly
resume its oscillatory behavior. Finally, when the inflat
field resumes slow rolling, the oscillations leave the horiz
with an altered phase and increased amplitude. Both of
two initially independent solutions are affected similarly,
they now have the same phase, and the amplitude of t
linear combination oscillates. In other words, the presenc
the step introduces a boundary condition which selects a
lution with an oscillating envelope in contrast to the unco
strained plane wave solution with constant envelope see
small k.

As in the case of a featureless inflaton potential,uk ob-
tains a growing mode solution once it is outside the horiz
However the asymptotic limit reached by the curvature p
turbationuRku depends on the oscillation phase of the mo
at horizon exit, so thatuRku oscillates, with maxima corre
sponding to the modes which exit at an extremum. T
proper time interval between the step and when the m
with wave numberk exits is approximatelyDt;1/aHustep
21/aHuexit51/klow21/k and in this time the amplitude o

FIG. 3. Evolution of the independent modesuk
1 and uk

2 @with
initial conditions foruk

1 and uk
2 given in Eqs.~18!–~21!# and the

linear combination of their amplitude@Eq. ~22!# for k50.3.
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the mode will have undergone 1/p(k/klow21) oscillations.
Thus the period of the variation inuRku is approximately
pklow .

For higher wave numbers the effect of thez9/z term is
smaller, the amplitude of their oscillation is not increas
and the two modes are not set exactly in phase with e
other. However their phases are still altered so that the lin
combinationuk oscillates, but with a diminished amplitud
compared to the lowerk modes.

The magnitude ofz9/z depends on both parametersc and
d in the potential, and in a well motivated model these w
be determined by particle physics. Alternatively, given ac
rate observations of the CMB and LSS, there may be p
sible cosmological constraints on the values of these par
eters. In Sec. V we examine the observable consequenc
a scale dependent primordial spectrum.

V. OBSERVABLE SPECTRA

Adamset al. @3# attempted to recover the primordial pe
turbation spectrum from the APM survey power spectru
using the relationship between the spectrum of mass fluc
tions today and the primordial spectrum

Pd[PRT2~k!S k

H0
D 31n

, ~23!

where T(k) is the matter transfer function that tracks th
scale dependent rate of growth of linear perturbations
depends on the dark matter content of the Universe. Ass
ing a cold dark matter dominated universe the primord
n(k) could be extracted from the three dimensionalPAPM(k)
inferred from the angular correlation function of galaxies
the APM survey@16#. A departure from scale invariance wa
found in the rangek;(0.05–0.6)h Mpc21. This feature was
noted in Ref.@16# and in the power spectrum of Infrare
Astronomy Satellite~IRAS! galaxies@17#. Adamset al. used
the n(k) they had extracted to predict the photon pow
spectrum and found that the height of the secondary acou
peaks was suppressed by a factor of;2.

Recently, a number of groups have revisited this analy
motivated by the recent Maxima and BOOMERanG obs

FIG. 4. The effect of changingc andd on the scalar perturbation
spectrum.
4-4
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INFLATIONARY PERTURBATIONS FROM A POTENTIAL . . . PHYSICAL REVIEW D 64 123514
vations which show an anomalously low second peak. B
riga et al. performed ax2 analysis of the Cosmic Back
ground Explorer ~COBE! and BOOMERanG CMB data
considering a simple step in the primordial perturbat
spectrum~no oscillations!. Griffiths et al. added a Gaussia
bump to the primordial spectrum and performed a sim
exercise. Both groups found support for a spectral fea
@18#.

We leave ax2 analysis for a forthcoming paper and in
clude here for orientation the cosmic microwave backgrou
power spectrum and matter power spectrum predicted for
range of primordial spectra shown in Fig. 4. We use
Boltzmann codeCMBFAST @19# to calculate the CMB angula
power spectrum. We use the less fashionable sCDM as
background cosmology (VCDM50.95,VB50.05, and h
50.5) as our motivation is to show the effect of the primo
dial density perturbation oscillations rather than find the b
fit. The CMB angular power spectrum is shown in Fig.
along with observations from COBE@the uncorrelated
COBE Differential Microwave Radiometer~DMR! points
from @20# #, BOOMERanG@21#, and MAXIMA @22#. It is
clear that a good fit to the data can be found, but that
amplitude of the step and its gradient are constrained to
small by the observations.

The matter power spectrum is shown in Fig. 6 along w
the linear power spectrum generated from the PSCz cat
@23#. The theoretical spectra suffer from the sCDM proble
of too much power on small scales; however, these spe
are given for indicative purposes and are by no means b
fit spectra.

FIG. 5. The CMB angular power spectrum for the primord
spectra shown in Fig. 4. The normalization in each case is to CO
The data are from COBE~circles!, BOOMERanG~squares!, and
MAXIMA ~triangles!.
-
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VI. CONCLUSIONS

We use a numerical routine to accurately calculate
primordial density spectrum predicted by aphysically moti-
vated inflaton potential with steps in it due to symmet
breaking during inflation. The step in the potential induc
oscillations in the density perturbation spectrum whose m
nitude and extent is dependent on the amplitude and grad
of the step.

We have restricted our attention to a generic step, dem
strating that even a small feature in the potential can ca
significant changes to the spectrum of large scale pertu
tions. Moreover, we have presented a detailed accoun
how a feature in the potential modifies the observable sp
trum. In light of our calculations, we believe that tight co
mological constraints can be placed on the size of any fea
in the potential, and thus on the particle physics model wh
produced it, and intend to return to this problem in futu
work. Conversely, if the density perturbation spectrum e
tracted from future measurements of large scale structure
the cosmic microwave background turns out to be incomp
ible with a smooth initial spectrum, the mechanism propos
by Adamset al. provides a natural mechanism for injectin
significant scale dependence within the context of inflat
@3#.
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