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Fluctuations in the cosmic microwave background. II.C, at large and smalll
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General asymptotic formulas are given for the coeffici€ntof the term of multipole number in the
temperature correlation function of the cosmic microwave background, in terms of scalar and dipole form
factors introduced in a companion paper. The formulas apply in two overlapping limit$=fbrand for
Id/da<1 (whered, is the angular diameter distance of the surface of last scattering] &snal length, of the
order of the acoustic horizon at the time of last scattering, that characterizes acoustic oscillations before this
time). The frequently used approximation that receives its main contribution from wave numbers of order
I/d, is found to be less accurate for the contribution of the Doppler effect than for the Sachs-Wolfe effect and
intrinsic temperature fluctuations. Fat/dy<1 andl =2, the growth ofC, with | is shown to be affected by
acoustic oscillation wave numbers of all scales. The asymptotic formulas are applied to a model of acoustic
oscillations before the time of last scattering, with results in reasonable agreement with more elaborate com-
puter calculations.
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[. INTRODUCTION to k;d, . For instance, we will see in Sec. V that the peak in
|[F(k)| at k=m/d, produces a peak in(l+1)C, at |
A companion papefl] has shown how to express the =2.6d,/dy rather than atrd,/dy . But Eq.(27) also shows
temperature fluctuation in the cosmic microwave backgroundhat this interpretation o€, is much less useful for the con-
in any direction as an integral involving scalar and dipoletribution of the vector form factoG(k), which arises from
form factorsF (k) andG(k), which characterize acoustic os- the Doppler effect,C, also receives no contribution from
cillations before the time of last scattering. In the presenG(k) with k<<I/d,, but instead of the contribution frotk
paper we derive asymptotic formulas for the strengthof ~ =1/da being enhanced by a factop{—1)"*? it is sup-
fluctuations at multipole numbéfor form factors of arbitary ~ Pressedy a factor (82— 1)!2. Indeed, we will see in Sec. V
functional form. After outlining our assumptions and review- that for sufficiently small baryon number the pealG(k) at
ing some generalities in Sec. I, our general result in the limik= 7/2dy found in the simple model of Ref1] does show
of I>1 [Eq. (26)] is derived in Sec. Ill. In this limiti(I ~ UP @s apeak in(l+1)C,, but atl=0.4%d,/dy , much less

; ; than (w/2)ds/dy . Furthermore, the behavior ¢fl+1)C
+1)C, depends oh and the angular diameter distarde at ATEH '
the time of last scattering only through the raltid, . (This for 1d/d, near zero depends on the values=¢k) andG(k)

is why the heights of the Doppler peaks do not depend orﬁor all k. This points to the value of observations that can
) . measure the correlation function of temperature fluctuations

parameters like the cosmological constant that affiecbut directly, as a supplement to measurement€af

not the form factors.Our result in the limitid/d <1 [Eq. ’

is derived i qi I h ch The results obtained in Secs. Il and IV are used in Sec. V
(43)]is derived in Sec. IV(Hered is some length character- to calculateC, for the approximate form factors calculated in

izing acoustic oscillations, such as the acoustic horizon disgqt. [1]. In agreement with what is found in more accurate

tancedy at the time of last scatteringThese ranges of  compuyter calculations, the positidg of the first Doppler

overlap becausd,>d. , peak is not a sensitive function of the baryon density param-
Even without a detailed calculation of the form factors,eterQth_ On the other hand. we find that the ratio of the

these results have a mpral for the physical interpretation of5),e of[(1+1)C, at the first Doppler peak to its value at
measurements df,. It is common to interpret these mea- l<d,/d, is a sensitive indicator of the value 6fgh?.

surements by supposing th@t arises mostly from fluctua-

tions of wave numbek=I/d,. Equation(27) shows that

this is a fair approximation for the contribution of the scalar IIl. GENERALITIES

form factor F(k), which represents the Sachs-Wolfe effect The companion papefl] shows that, in very general
and intrinsic temperature fluctuatior; receives no contri- - models (but assuming only compressional normal modes,
bution from F (k) with k<I/d,, and the contribution from ith no gravitational radiation the fractional variation from
k>1/d, is suppressed by a fact@™%(8°—1)" "% where  the mean of the cosmic microwave background temperature

B=kd,/l. In particular, a peak in the magnitude of the sca- : PRI
lar form factorF (k) at some wave numbd (like the peak observed in a direction takes the general form

found in the simple model studied in Réfl] at k= =/dy)

will show up inl(1+1)C, at a value of less than but close AT_IE”) :f dskekeidAﬁ~k[F(k)+iﬁ KG(K)1, 1)
*Electronic address: weinberg@physics.utexas.edu aside from effects arising from late times, which chiefly af-
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fect the coefficient<, for relatively smalll. Hered, is the kt, >¢ (7)
angular diameter distance of the surface of last scattering,
the form factors are

1
dp=—n——
AT OPHy(1+2,) F(K)=(1—2¢&/K2t?) "} — 3£+ 2&/K22
| dx +(1+ &)~ Me~Kdocogkdy) ], ®)
X sin Qé’zf ) ;
1U(1+2) VO NP+ QX2+ QX

and
whereQc.=1-0,—-Qy, andQ, andQ, are the present
ratios of the energy densities of the vacuum and matter to the G(k)=/3(1— 2¢/K%2) "L (1+ &) e kzdosin( kdy).
critical density 3—|§/87TG. [If the vacuum energy were to (9)
change with time, as in theories of quintessence, then the
formula ford, would need modification, but there would be yeret s the time of last scattering: is 3/4 the ratio of the
essentially no change in the other ingredients in @g. as baryon to photon energy densities at this time:
long as the quintessence energy density makes a negligible
contribution to the total energy density at and before the time 3
of last scattering. Also, ke, is proportional (with a gz(ﬂ) =2705h?: (10)
k-independent proportionality coefficignto the Fourier t=t, ’
transform of the fractional perturbation in the energy density
early in the radiation-dominated era. The avefagk the
product of twoe’s is assumed to satisfy the conditions of
statistical homogeneity and isotropy:

Y

dy is the acoustic horizon size at this time, add is a
damping length, given by Ed48). These formulas for the
form factors are mentioned at this point only for illustration;
N = SB(k+ k' VP(k 3 we will be working here with general form factoFgk) and
(eceid) ( yP(k) @ G(k), and will not make use of the specific formulé®—
with k=|k|. The power spectral functiof(k) is real and (10 until Sec. V. But we will assume throughout that any

positive. Where a specific expression k) is needed, we 'engthsd that[like d; anddp in Egs.(8) and(9)] character-
will use the “scale-invariantl{or n=1) Harrison-Zel'dovich ~ 12€ thek-dependence of the form factors are much smaller

form suggested by theories of new inflation: than the angular diameter distardg of last scattering. This
is a good approximation: for instance, if the ratios of matter
P(k)=Bk3, (4  and vacuum energy densities to the critical density have the

present value§),,;=0.3 and() , =0.7, thend, /dy runs from
with B a constant that must be taken from observations of th@1.7 to 79.7 for values of2gh? running from zero to 0.03,
cosmic microwave background or condensed object massnddp is smaller thardy,, independent of the value ¢f,.
distributions, or from detailed theories of inflation. It is usual to employ the well-known expansion of a plane

The form factorsF(k) and G(k) characterize acoustic wave in Legendre polynomials, and write E@) as

oscillations, withF(k) arising from the Sachs-Wolfe effect
and intrinsic temperature fluctuations, a&a@k) arising from Th) &
the Doppler effect. For instance, they are calculated in Ref. —:2 (2l +1)i|f d3kekP|(ﬁ-R)[j|(de)F(k)
[1] in the approximation that perturbations in the gravita- =0
tional field at and before the time of last scattering arise
entirely from perturbations in the density of cold dark matter.
For very small wave numbers the form factors are

+j(kda)G(K)]. (11

Using Eq.(3) and the orthogonality property of Legendre
F(K)—1—3K%t2/2—3[— & 1+ & 2An(1+&)]k* 4+ .., polynomials
5
G(k)—3kt, —3K3t3/2(1+ &)+ -, (6) f dQ;H(ﬁ-R)Pw(ﬁ’-R):(

4

21+1

Si/P(n-n’),
while for wave numbers large enough to allow the use of the (12)

WKB approximation, i.e., )
one finds that

C/P/(n-n"), (13

The average here is over an ensemble of possible fluctuations. AT(n) AT(n)\ & (21+1
Using Eg.(3) to analyze the particular element of this sample ob- T T = 20 (?
served in our universe relies on ergodic arguments, which are not a

exact except in the limit—o. However, corrections are manage-

able[2] even for small. with the conventional coefficier@, taking the value
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a typical length characteristic of the form-factdt¢k) and
G(k). These two cases overlap because, as remarked above,

C|=16772f P(K)K*dK]ji(kda)F (k) + ][ (kda) G(K)]?.
0 .
da is much larger thaml.

14

This familiar formula is adequate for numerical calculation
of C,, but it hides the essential qualitative aspects of the
dependence df, onl: thatC, for I>1 depends on the ratio The usual way of obtaining the contribution of the scalar
I/d,, and thatl(l+1)C, approaches a constant for suffi- form factor toC, for largel is to note that the integrdll4)
ciently small values of this ratio, whetheitself is large or  receives its largest contribution when the argument of the
small. To obtain these results, we must now distinguish bespherical Bessel function is of ordgrin which case we can

Ill. LARGE |

tween the two casds>1 andl<d,/d (butl=2), whered is

01

(2)— 7 U222 2)- 1"‘005{

wherez/v is held fixed at a valuet 1, with v=1+1/2. The
procedure is straight forward for the? terms in Eq.(14),
but for theF G andG? terms involving the Doppler effect we
run into a difficulty: differentiating the factorz{— »?) ~*#in
Eq. (15) yields larger negative powers af— »? that intro-
duce divergences from the part of the integral in Etf)
near the lower bounét=v/d,. These infrared divergences
are spurious, because the asymptotic form{d8) breaks
down if we letz and v go to infinity in such a way that
z/lv—1. This problem can be dealt with by switching to a
different asymptotic limi{3] for k nearv/d, . Here we will
use a different methodt] which avoids the delicate problem
of the asymptotic behavior dgf(z) andj,(z) for z nearv.
We return to Eq(1), and use Eq(3) to put the correlation
function of observed temperature fluctuations in the form
AT(n) AT(n")
T T

> :j d3kP(k)exp(id Ak - (n—n"))

X[F2(k)+ik-(n—n")F(k)G(k)

+(k-n)(k-n")G2(K)]. (16)

The integral over the direction &€ is easy, and gives the
correlation function

|

AT(n) AT(n")
T T

>=47rfwk2dk7>(k) F2(k)+F(k)G(k)
0

4

+1sz 1+0
PR iy

|

XA

|

sin(dak8)
dako

(92
d(dpk)?

1 1 3¢

¢ 2 4

|

7

JZZ=12—v arccosv/z)— T ,

use the approximation that, fbr o,

z<v,

>, (15
4

where #=|n—n’|. (This formula may prove useful in ana-
lyzing observations that give the correlation function di-
rectly, rather than in terms d,.) The amplitudeC, is de-
fined as the integral

+1 AT(n) AT(n’
c|=2wf1P.<m< () A7)

T T

>dﬂ, (18

whereu=n-n’=1- 6%2. For largel the Legendre polyno-
mial P,(x) oscillates rapidly for6>1/, so the integral is
dominated by values of of order 1I, in which case we can
use the well-known limiting expressid?y (1) — Jo(l 6), and
write

c,_>8w2f:k2dk7>(k) J:Jo(l 0)0d0{ F2(k)+F(k)G(k)

! 2l f 11 36
TSR L PR A
g || sin(dake)
X 19
a(dAk)z} daké 19

The integral ovek is dominated by values for whidkd, 6 is
of order unity, so the derivative/d(d,k) is effectively of
order ~1/1. Thus to leading order in L/ Eqg. (19) may be
simplified to

© 2 1
C|—>8772f kzdkp(k)f Jo(16)6de Fz(k)+§GZ(k)
0 0
5 sin(dak6)
— 2
X<1+ 6? a(dAk)2> dakd (20
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Introducing a new variable=|6 and changing the upper
limit on the s-integral from 2 to infinity, we may write this
as

872 (= % 1
-0 2 2 ey
Ci— % fo k dkP(k)Jo Jo(s)sds{F (k)+2G (k)

sin(d k1)
(dAks/T)

(21)

(92
X | 1+
A(dpks/l)?
The integral oves is easy for thé=2 term; we need only use
the formula[5]:

pB<1

po1, 22

o _ 0,
fo Jo(s)sm(,Bs)ds—[(B2

where hereB=d,k/I. The integral of theG? term takes a
little more work. We use the formula (1d?/dx?)sinx/x=

_ 1) —1/2’

—(2/x)d/dx(sinx/x) and do the remaining integral by parts,

so that

o % | sin(Bs)
fo \]O(S)S{l'i‘ 0(,35)21 Bs ds
2 [~ d sm(,Bs)
=- E Jo(s )— S

B__ —f [J2(s) +Jo(s)]sin( Bs)ds

(23
Here we also need the formul&]
waz(s)sin(,Bs)ds
0
2B, B<1,
:[—wz—l)”z(ﬁw/az—l)l, B>1,
(24)
so that
o 9 | sin(Bs)
fo Jo(s)s{lJr (9(’85)21 Bs ds
0, B<1,
_[23—3\/;32—1, B>1. @9

Using Egs.(22) and (25) in Eq. (21) then gives our final
general formula foiC, at largel:

BF2(1BId,)
JB—1

Ci )

. \/Bz—le(I,B/dA)
3 .

(26)
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Note thatl>C, depends on andd, only through its depen-
dence on the ratit/d, .

For instance, if we take the power spectral function to
have the scale-invariant forf(k) =Bk 3, then forl>1

2(|/3/0|A)
BB

. VBZ—1G¥(1B/d,)
B '

|(|+1)c|_>87725f df| ———n=
1

(27)

[We have taken advantage of the fact that here we are con-
sideringl>1 to change a factol® to I(I+1), in order to
facilitate comparison with the results of the next secfion.
The rapid fall-off of the coefficient oF? for 8>1 suggests
that the contribution of the scalar form factérto C, is
dominated by wave numbers close dg /I, as is usually
assumed. On the other hand, the contribution of the dipole
form factorG(k) for wave numbers immediately aboudg/|

is actually suppressed by the factgB?—1 in the second
term of EQ.(27).

IV. SMALL Id/da

Here we will adopt the h=1" scale-invariant spectrum
P(k)=Bk 2 from the beginning, so that the general formula
Eq. (14) becomes

2ds
C|=167725f J|(s)F< )+j|(S)G( A” < (29

To generate a series fofl+1)C, in powers ofl/d, we
expand the form factors in power series:
F(k): F0+ F2k2+ cety

G(k):G1k+ G3k3+

29

[The power series fdF andG must be respectively even and
odd ink, in order that the integrand in the temperature fluc-
tuation (1) should be analytic in the three-vectorat k=0.]
The leading term irC, is well known; using a standard for-
mula[6]:

m
B 2" 3 (2—m)I| 1+ =
2 m-—1da—
Ln(s)s ds NESLINION (30
2 2
we find the term in Eq(28) of zeroth order in My :
8m’BF}
(0) _ 0
L+ S

There is no difficulty in also calculating the term in E&8)
of first order in 1d,:
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3272BF,G ® 1l 1 1
C.(”—(A)f ji(8)j{(s)ds fj.@(s)smldsa——[—@——c
0 2| m— =1 r
16m°BFoGy)| ,
=7, Jlii®9l=0. (32 +In2-D+1/, (36)

where C is the Euler constan€=-1"'(1)=0.57722, and
D=-T"(1/2)[T'(1/2)=1.96351. The important point here is
that the parts of the integra(85) and(36) that are divergent

But we run into trouble in calculating the term of second
order in 18, . The second derivative df; with respect to

1da is atm=2 are independent df and thus so also is the part of
C, that is non-analytic in ", at 1d,=0. Using Egs{(29),
d2c, (35) and(36) in Eq. (33) thus gives the part of, that is of
_— ZBJ S)F?"(sldp) +j'?(s)G?'(sld second order in tl, as
d(l/dA)z {iE()F?"(s/dp) +]'F(s)G?"(s/dp) A |
H H n (2) 2 1
+2j1(8)][ (s)[F(s/da)G(s/da)]"}sds (33 Ci“’=-8m BdA 2F0F2+G 2 T
+1-independent terms. (37)

Thej,j| term does not contribute to the part®f of second

order in 1f,, becausé(k)G(k) cont§|nzs only odd powers  \ye can check the consistency of these results and calcu-
of k. To calculate the contribution of théj" term, we need to  |ate thel-independent terms here by using our previous result
supplement Eq(30) with the additional formufa (27) in the case wherkis largeand Id/d, is small, whered

is whatever length characterizes tkelependence of the
form factors. The term in Eq27) of zeroth order ind/d, is

f jI/Z(S)Sm—ldS
0

(I +1)C|—>87-rZBFO —SWZBFS, (38

zm—3wr(2—m)r(|+g

= in agreement with Eq(31). Also, Eqg.(27) has no terms of

r2 3—-m rl1+o— m first order in 145, in agreement with Eq(32). To calculate
2 2 the terms in Eq(27) of second order in #l,, we express
F2(k) andG2(k) in terms of cosine transforms
1 (M=3)(M—=2)[(m—=2)(m—3)—2I(1+1)] Fz(k)=F§+f daf(a)[1—codka)],
' 23-m? 1+ 21| [1-Dy o 0

201\ — ” _
(34) G=(k) fo dag(a)[1—cogka)]. (39

o o Then forl>1 and ld/d,<1, Eq.(27) gives
The second derivatived3d) is divergent at d,=0, as shown

by the factord™(2—m) in Egs.(30) and(34), which become ) 2g ) ld 3 )
infinite for m=2. Of course, there is no infinity i€, ; it is C®—— (2FgF,+GY)|In >d. +C- > +G1f(,
simply not analytic in 1d, at 1d,=0. A A

We can deal with this problem by a method similar to the (40)

dimensional regularization technique used in quantum field
theory[7]. We treatm as a complex variable that approaches
m=2. In this limit, Egs.(30) and (34) give

whered is a typical value of the variabla in the cosine
transforms(39):

| fm[f(a)+g(a)]azlnada
— Jo

f jf(s)s™” 1ds—>—— %2+2 }—C+In2 D} Ind=—-— : (41)
(35 fo [f(a)+g(a)]a’da

Equation(40) agrees with the limit of Eq(37) for largel,

2This formula was obtained by using the Bessel differential equabecause in this limit2} 1/ —In1+C, and now fixes the
tion to show thaf?(z)=[1—1(1+1)/zj?(2) +[zj?(2)]"/2z, and ~ |-independent terms in Eq37) so that, for anyl with
then using Eq(30) with two integrations by parts. ld/dp<1,

123512-5
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2 87°B ) d
C| = — di (2F0F2+Gl) In 2_dA
|
1 3
+Z———+G§]. (42
=1 r 2

Putting together Eq¥31), (32), and(42) gives our final
formula for C, in the casdd/d,<1 andl=2:

[(1+1) d
I(I+1)C|=87728F§(1— 7 [dz 'n(Z_dA)
1
+21F —d,z]‘{‘"’ ) (43

where now we introduce a pair of characteristic lengths:

L 2FoF,+ G , SFoFat 56
2= e . (44)
F
0 0

The logarithm in Eq.(43) is large and negative, si(l
+1)C, will increase or decrease withfor sufficiently small
| accordingly asd®>>0 or d?<0. [Taken literally, Eq.(43)

PHYSICAL REVIEW D 64 123512

©+1)C,
6C>

ddg

5 10 15 20

FIG. 1. Plots of the ratio of the multipole strength parameter
I(I+1)C, to its value at small, versusld,, /ds, whered, is the
horizon size at the time of last scattering adg is the angular
diameter distance of the surface of last scattering. The curves are
for Qgh? ranging(from top to bottom over the values 0.03, 0.02,
0.01, and 0, corresponding totaking the values 0.81, 0.54, 0.27,
and 0. The solid curves are calculated using the WKB approxima-
tion; dashed lines indicate an extrapolation to the known value at
smallld,, /d, . These results are independent of the parameétgrs

Q,, andQy, .
| d
" 2d,.

I(1+1)C;=87°B{ 1- ————
da

would suggest that this behavior is reversed when the sum
overr becomes large enough to cancel the logarithm, but this

is atl=2e"Cd,/d, which is large enough to invalidate the +-- ]
approximations that led to E¢43).] Note that, whiled and

d’ depend only on the behavior of the form factors near zero

wave number, the Iengtd_hgiven by Eq.(41) depends on the Aside from i_ts weak dependence dnthe behqvio_r ofc, for
behavior of the form factors at all wave numbers. Conseld/da<1 is independent of the baryon density, in agreement

quently, although thealue of C, at low | depends only on with more accurate computer calculatigB$. We cannot cal-
the form factors ak=0, somewhat surprisingly thgrowth  culate the lengtld without a model that would give the form
of C, for small | depends on the form factors at all wave factors at all wave numbers, bdtis expected to be roughly
numbers. of orderd,, and sinced,/d, is large the logarithm is not
sensitive to the precise value df If for instance we take

d=/3t, =d,/58.5 (the acoustic horizon at last scattering for
To illustrate the use of the asymptotic formulas obtainedm=0-4, ZQV.:O'G’ and 15=0) then the quantityl(l

here, we will now apply them to the simplified model de- +1)Cy/8"B rises from unity when ext'rapplated ke-0 to

scribed in Ref[1]: the universe before last scattering con- 1:044 atl=5, and to 1.118 at=10, which is probably the

sisting of pressureless cold dark matter and a photonfighest value of for which the approximations leading to

nucleon-electron plasma; no gravitational radiation; andd- (47) are reliable. -

negligible contributions of the plasma and neutrinos to the FOr ! of the order ofd,/d, the coefficientsC, can be

gravitational field. In this case, the comparison of EG. calcul_ated under the S|mpllfy|ng assumptions of tr_ns section

and(6) for the long wavelength limit of the form factors with BY_using the form factors given by Eqe) and (9) in Eq.

Eq. (29) gives (27). The damping length is given in Rdfl] as

+2 (47)

r=1

[ 6l(1+1)t2
1
F

V. APPLICATION

Fozl, F2:_3t5/2, G1:3t|_, (45) 2 2 2 2 8 52
d5=D;+AD[=0.02%t +
eooE Tt HIX1+8)  2(1+4)2
so the lengthg44) are here
+0.0025d2,. (48)
d’=6t?, d'?=0. (46)

Our results foIC, at and below the first Doppler peak are not
sensitive todp . We will simplify our calculations here by

Hence Eq.(43) then gives the behavior af, for Id/d <1
dropping the terms in Eq$8) and(9) that are proportional to

andl=2 as
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TABLE I. Location |,da/dy of the first Doppler peak and show the fall-off ofl(I+1)C, at largel associated with the
height of the peak ii(l +1)C, relative to its value &"B=6C, for  tq_off of the familiar transfer functior (k) at largek.

| extrapolated to zero for various values of the baryon density pa- The values of the positioh,dy, /d, of the first peak and
rameter. These results, and the curves in Fig. 1, are independent fﬁe ratio of its heightl(I,+ 13'(: A to the value 82B
the values oH,, O, , and(within our approximationsQ,,. The "1 1

last two columns give the values dfy/dy andl, for QO =0.3,
0,=0.7, withdy calculated taking into account the contribution of
photons and neutrinos to the expansion rate, and uSigd?

=6C, for smalll are given for various baryon densities in
Table I. These results are independent of other parameters. In
the last two columns of Table | we also give valuesigfd,

—0.15. for O, =0.3 andQ}, =0.7, and the corresponding results for
the multipole numbet, of the first Doppler peak. In calcu-

Qgh? ¢ lydg/ds 14(1,+1)C/6C, daidy 1y lating the horizon at last scatterinfy; we have nowsome-

! what inconsistentlytaken into account the effect of photons
0 0 2.83 0.863 91.7 260 and three flavors of neutrinos and antineutrinos on the ex-
0.01 0.27 2.65 2.34 87.1 231 pansion rate, which gives
0.02 0.54 2.60 5.09 83.6 217
003 081 258 9.115 797 206 g _ a(ty) (n_ dt

V3 Jo a(t)V1+R(t)

the ratiog/k?tZ, on the grounds that these terms are not very _ 2 n VI+E+VE(L+N)

. (49

different from corrections to the WKB approximation that Ho(1+2)%%/3¢0, 1+ JEn

are not included either(At the first Doppler peaké/kt? ) ) )
increases withé and hence withQgh?, and for Qgh? where A =0.047£)yh? is the ratio of photon and neutrino
=0.03 it has the value 0.20. But to be honest, the real reasdf'€rgy density to dark matter energy density at the time of
for dropping these terms is that they spoil the agreement d@st scattering, and, is given by Eq.(2). In calculating the
our results for the height of the first Doppler peak with morevalues ofd,/dy in the table we have takefl,h“=0.15.
accurate numerical calculationdhe results obtained now  We see from Table | that the position of the first Doppler

~270gh?, and are shown in Fig. 1 for values 6fgh?  Sensitive function of2gh?. For Qgh? between 0.02 and 0.03

ranging from zero to 0.03. the height and position are in fair agreement with what is
For Q=0 [in which case the WKB approximation is not observed, tho_ugh of' course the serious comparison of theory
needed, so that Eq27) should giveC, down to values of Wlth observatlo_n r_elles on more accurate computer cal_cula-
of order 2 the behavior ofC, is nothing like what is ob- tions. The qualltatlve_results obtained here suggest that if one
served: (I +1)C,/872B rises from unity to 1.1 at a “zeroth Were to rely on a smgzle feature of the plot ifi +1)C,
Doppler peak” atd,,/d,=0.45[due to the maximum in the versgsl to measure)gh, then the ratio of the the helght of
Doppler form factorG(k) at kdy,= /2], then dips to 0.7 at the first Doppler peak to the value for Iovxfevalue_s studied
Id, /ds=1.6, and then rises again to a first Doppler peak afy the Cosmic Background explore€OBE) satellite would
d,,/d,~2.83. be more useful than the ratio of the heights of the first and
For Qgh?=0.01 the behavior of, within the range of second Doppler_peaks, Whlc_h relies on less precise data,_ _de-
validity of the WKB approximation is much more like what pends on complicated dampmgzeffects, and is more sensitive
is observedl (1 +1)C, rises monotonically to a first Doppler 10 Other parameters, such &g;h” and the rate of change, if
peak atld, /d, very roughly of orderm (though actually " of the vacuum energy. Of course, for high precision one
around 2.6. There is another clear peak B&8.7d,/d,, must use the whole plot ¢fl + 1)C, versusl to measure all

presumably arising from the peakf{k) atk=3=/dy. The these parameters together.
weaker peaks im(l +1)C; arising from peaks iF(k) near
even values okdy /7 are absent here, presumably because
of our neglect of the contribution of radiation and neutrinos | am grateful for helpful correspondence with E. Bertsch-
to the gravitational field. Another difference between theinger, J. R. Bond, L. P. Grishchuk, and M. White. This re-
curves of Fig. 1 and more accurate computer calculations isearch was supported in part by the Robert A. Welch Foun-
that, again because we neglect the contribution of radiatiodation and NSF Grants No. PHY-0071512 and No. PHY-
and neutrinos to the gravitational field, our results do not9511632.
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