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Fluctuations in the cosmic microwave background. I. Form factors and their calculation
in the synchronous gauge
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It is shown that the fluctuation in the temperature of the cosmic microwave background in any direction may
be evaluated as an integral involving scalar and dipole form factors, which incorporate all relevant information
about acoustic oscillations before the time of last scattering. A companion paper gives asymptotic expressions
for the multipole coefficien€, in terms of these form factors. Explicit expressions are given here for the form
factors in a simplified hydrodynamic model for the evolution of perturbations.
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[. INTRODUCTION three different eradi) at very early times(ii) during the era
of acoustic oscillations, andii) from the time of last scat-
The purpose of this paper is, first, to exhibit a generaltering to the present.
formalism, expressing the observed fluctuations in the cos- (i) The k-dependence of the unprocessed fluctuation am-
mic microwave background temperature in terms of a pair oplitude ¢, reflects the space-dependence of fluctuations in the
form factors, and then to carry out an illustrative approxi-energy density at very early times. The average of the prod-
mate analytic calculation of these form factors. A companioruct of two €’s is assumed to satisfy the conditions of statis-
paper[1] gives general asymptotic formulas for the coeffi- tical homogeneity and isotropy:
cient C, of the Ith multipole term in the temperature corre-
lation function for arbitrary form factors, and also uses these (exel)= S3(k+k')P(K) )
formulas to calculateC,; for the form factors found in the
present paper. ) ) ) ) )
In Sec. Il we show that under very general assumptiond'ith k=|k|. Since the reality of the fluctuations in the energy
the fractional variation from the mean of the cosmic micro-density requires thag =€, the power spectral function

wave background temperature observed in a direction Zj(k)_ IS "real and positive. It is common to assume a
takes the form straight” spectrum

AT(n) P(k)ockn 4. 3)

T

:J a3k e €K E(K) +in-kG(K)]. (1)
For instance, the “scale-invarianti=1 form [2] suggested

. . : theori f inflati i
Hered, is the angular diameter distance of the surface of Ias%)y eories of new inflatiof3] is

scattering, and k?e, is proportional(with a k-independent 3
proportionality coefficientto the Fourier transform of the P(k)=Bk™*, (4)
fractional perturbation in the total energy density at early
times.[There are additional terms iAT/T that arise from  with B a constant that must be taken from observations of the
times near the present, and chiefly effect the multipole coefeosmic microwave background or condensed object mass
ficients C, for smalll, especiallyl=0 andl=1. These will  distributions, or from detailed theories of inflation.
be discussed in Sec. IV and in the Appendix. Effects from a (ii) The form factors=(k) andG(k) characterize acoustic
changing gravitational field soon after the time of last scat-oscillations, withF (k) arising from the Sachs-Wolfe effect
tering are included in Eq.l).] and intrinsic temperature fluctuations, &&¢k) arising from
One advantage of this formalism is that it provides a nicethe Doppler effect.
separation between the three different kinds of effect that (iii) Taking account of a constant vacuum energy density
influence the observed temperature fluctuation, that arise ias well as cold matter in the time after last scattering, it is
easy to calculate the angular diameter distance of the surface
of last scattering:
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INote that in speaking of a surface of last scattering, we are not 1
necessarily assuming that the transition from opacity to transpar- A ——————
ency takes place instantaneously. The physical wave number vector Qé’zH o(1l+z)
k varies with time as H(t) [wherea(t) is the Robertson-Walker
scale factof, while for large redshiftsd, varies asa(t), so the Xsin}‘{ﬂllzfl dx
E,fg%??;skt fcgtetz:ilz]/;\dependent of what we choose as a nominal c U1+2) \/QAX4+QCX2+QMX

®

0556-2821/2001/64.2)/12351116)/$20.00 64 123511-1 ©2001 The American Physical Society



STEVEN WEINBERG PHYSICAL REVIEW D 64 123511

where z, =1100 is the redshift of last scatterin§,c=1  of last scattering, which is then used in Sec. IV to calculate
-Q,—Qy, andQ, andQ,, are as usual the present ratios the form factors. For very small wave numbers the form
of the energy densities of the vacuum and matter to the critifactors are found to be
cal density H3/87G. - o d

We note in particular thaF(k) and G(k) depend on ~ F(K)—=1=3KH/2=3[ =& "+ & In(1+ ]k /4+ ...,
Quh? and on the baryon density paramefggh? (whereh ®)
is the Hubble constant in units of 100 km/sec/Mpaut since
the curvature and vacuum energy were negligilgtleJ at and beg(k)_’?’ktL_B'kgtE/Z(lJr§)+ T @)

Ijoerﬁt Igﬂﬁ:?}?;:‘gféﬁ\g?ﬂgg;) d?@rg e?ﬁznéfgzniggg?ﬁn' while for wave numbers large enough to allow the use of the
; : ) WKB imation, i.e.kt =&, the f fact
P(k) is expected to be independent of all these parameters. approximation, i.e.kt,=¢, the form factors ar¢s]

On the other handj, is affected by whatever governed the F(K)=(1+2&/K22) [ — 3£+ 2£/K22
paths of light rays since the time of last scattering, so it
depends o)y, {2, , and the curvature paramet@t, but +(1+ g)*lme*kzdﬁcos(de)], (8)

it is essentially independent of quantities like the baryon den-

sity parametefl g that effect acoustic oscillations before the and

time of last scattering. In quintessence theodgsvould be g

given by a different formula, buP(k) and the form factors G(k)=3(1+¢&) ¥ (1+2¢/K?t2) " Le K dbsin(kdy).

would be essentially unchanged as long as the quintessence 9

energy density is a small part of the total energy density at ] ) o ]

and before the time of last scattering. Heret, is the time of last scattering; is 3/4 the ratio of the
Another advantage of this formalism is that, although Paryon to photon energy densities at this time:

must be calculated by a numerical integration, it is possible 3

to give approximate anaIytic_expressions for the form factors &= (ﬂ) =2703h?; (10)

in terms of elementary functions. The detailed confrontation 4p, t=t,

of observation and theory must necessarily be done using
computer codes that take into account all relevant astrophysd,, is the acoustic horizon size at this time, given by Eq.
cal and observational effedid]. Nevertheless, there is some (75), andd, is a damping length, given by E¢89).
value in also having an analytic treatment that, though not as
accurate as possible, is as simple as possible while still cap- Il. FEORM FACTORS
turing the main features of what is going on. The point is not
to compete with the computer codes, but rather to gain some We first justify Eq.(1) under very general assumptions,
feeling for what is going on, in order to help us judge how not limited to those of Sec. Ill. At and before the time of last
predictions for the cosmic microwave background fluctua-Scattering the spatial curvature was negligible, so small per-
tions may change with alterations in the underlying assumpturbations in the cosmic metric and in all particle distribu-
tions. tions at these times may conveniently be expressed as Fou-
Analytic treatments of fluctuations in the cosmic micro- rier transforms of functions of a co-moving wave number
wave background already exist in the literat[B& Our main  vector q and the timet. Effects like pressure forces that
purpose in going over the same ground here is not to give Hvolve spatial gradients are important for a givgnonly
more accurate or comprehensive treatment of acoustic oscivhen the physical wave numbefa(t) is at least as large as
lations, but to obtain simple expressions for the form factorghe cosmic expansion rate, which is of order. Bincea(t)
as examples to which to apply the asymptotic formulas fovanishes fot— 0 no more rapidly thant, the ratiogt/a(t)
C, derived in[1]. To derive analytic expressions for the tem- vanishes as—0, so whatever the value df, there will
perature fluctuation it is necessary to neglect the contributioalways be some time early enough so that pressure forces
of radiation and neutrinos to the gravitational field, whichand other effects of spatial gradients are negligble. At such
should be a fair approximation near the first Doppler peakearly times, perturbations grow or decay with powers of
but not much beyond that. We employ a purely hydrody-time. Generically there is one most rapidly growing mode,
namic treatment, relying on the Boltzmann equation onlyand this is the one that eventually grows into the perturba-
implicitly in the values used for the shear viscosity and heations seen at the time of last scattering. Since the equations
conduction coefficients; the effects of viscosity and heat confor the time dependence of the perturbations are linear, the
duction are included from the beginning, not just by insertingFourier transforms of all perturbations to the metric and par-
damping factors; and “Landau” damping due to the finite ticle distributions during the era of last scattering will then
duration of the era of last scattering is included along withbe proportional to the Fourier transforey of any one of
“Silk” damping due to shear viscosity and heat conduction.these perturbations at any sufficiently early time. For defi-
As far as | know, this is the first work to obtaiexplicit  niteness, we can take, to beq 2 times the Fourier trans-
analytic expressions for the temperature fluctuations that aferm of the fractional perturbation to the total energy density
correct within these approximations. at some very early time, a choice that will prove to be con-
Section Ill presents an analytic calculation of the evolu-venient in Sec. IV.
tion of perturbations in the synchronous gauge up to the time Since the fractional change in the observed microwave
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background temperature seen in a directiois linear in the ~ Equation(13) may then be written
perturbations to the metric and photon and matter distribu-

tions at various times during the era of last scattering, it can AT(n) :J 3 ik-nd J Lo
be written as T d*k e™ e | dtkk-n,p), (15)
AT(n) where J(k,k-n,t)=a(t;)®J(q,q-n,t), e=eq, and dp

T :f dtf d*q 9™ Vegd(q,q-nt), (1D =r(t,)a(t,) is the angular diameter distance of the surface
of last scattering.

wherer (t) is the co-moving radial coordinate of a source Part of the observed temperature fluctuations arise from

scattering light at timet that would be received at the perturbations in scalar quantities, like the gravitational po-

present. Note that the quantity can depend org only  tential and the intrinsic temperature, and therefore make a

through the scalarg andq- n, because the differential equa- contribution to 7 that is independent oh. Another part
tions governing the growth of perturbations are rotationallyarises from fluctuations in a vector, the velocity of the
invariant, even though the initial fluctuation amplituelgis ~ baryon-electron plasma, and therefore makes a contribution

not. that is linear inn. Leaving aside other effects like gravita-

We can make a great simplification in Ed1) by taking  tional radiation, the functior therefore takes the form
advantage of the fact that the Robertson-Walker radial coor-

dinater (t) is nearly constant during the era of last scattering. Jk,k-nt)=Fk,t)+ik-nGg(k,t), (16)
Using equilibrium statistical mechanics to calculate the hy-

drogen ionization, and simple Thomson scattering to calcuwith F(k,t) arising from the Sachs-Wolfe effect and intrinsic
late scattering probabilities, one finds that fog/Q,,=0.2, temperature fluctuations, arg(k,t) arising from the Dop-
the probability that a photon will never again be scatteredpler effect. Using this in Eq(15) then gives

rises from 2% at 3360 K to 98% at 2780 Krhis depends .
on the assumed value 6iz/Q,,, but very weakly; for in- AT(n)
stance, fo)g/Q),=0.12, the probability of no future scat- T
tering rises from 2% to 98% as the temperature drops from

3400 K to 2810 K). For definiteness, we will round off these Which is the same as E{f), with the form factors identified
temperatures, taking the era of last scattering to extend fror@s time integrals

a temperature of 3400 K down to 2800 K, corresponding to a

drop in redshiftz from 1220 to 1010. The radial coordinate F(k)EJ dt F(k,t), G(k)EJ dtG(k,t). (18)
can be expressed in terms oby the well-known formula

=Jd3keik~ﬁdA[|:(k)+i|2-ﬁG(k)]ek, 17

1 This time integration introduces a damping of the oscillatory
r(t)=—p——— part of the form factors, bu_t this W|II_ be I(_ess_ important _than
QcHoa(to) the effects of heat conduction and viscosity in the time inter-
. q val between recombination and last scattering.
X sinr{ 02 J X ,
1(1+2) VO XA+ QX+ Qpyx Ill. EVOLUTION OF PERTURBATIONS IN THE

SYNCHRONOUS GAUGE
(12

. We now turn to the approximate analytic calculation of
where Qc=1-0,—-Qy, a(t) is the Robertson-Walker ina form factors.

scale factort, is the time corresponding to redshiftandt
is the present. This approaches a constant limitziero,

- . . A. General approximations
and therefore varies very little in the range fras 1010 to PP

z=1220 (or, for that matter, even in the range from We make two assumptions that will allow great simplifi-
=1010 toz— ). For instance, if we take the popular values cations in this calculation: _
Q=0.3 andQ,=0.7, then the fractional changeiift,) as (i) The contents of the universe up to the time of last

z drops from 1220 to 1010 is 0.0034. We can therefore také&cattering are taken to consist of collisionless cold dark mat-

the exponential in Eq(11) outside the time integral, so that ter, collisionless neutrinos, a baryon-electron plasma treated
as a perfect fluid, and a photon gas coupled to the plasma by

AT(n) s Jahr) A Thomson sgattering, \_Nif[h a sho_rt but non-negligible photon
T :f d°q € L eqf dtJ(g,9-n,t), (13  mean free time. The finite duration of the era of last scatter-
ing, when the mean free time becomes too large to allow a
wheret, is any conveniently chosen time during the era ofhydrodynamic treatment, will be taken into account by the
last scattering, say at a redshift=1100. time integrals in Eq(18).
It is convenient to replace the co-moving wave number (i) It is assumed that only the cold dark matter contrib-

Vectorq with the physica| wave number at last Scattering: utes to the eXpanSion rate of the universe before the time of
last scattering and to perturbations in the metric. This is not

k=g/a(t,). (14 a very good approximation, but it is the price that has to be
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paid to get analytic expressions for the observed temperatusgith quantities carrying a subscrigtdenoting small pertur-
fluctuation. To minimize errors introduced by the incorrectbations. Under our second assumption, the gravitational field
treatment of acoustic oscillations before the cross-over timequation in the synchronous gauge repds

tc when the photon energy density equaled the dark matter

energy density, it is necessary to restrict the wave number to E 20V _ 2
be less than an upper bound given in Sec. V. dt(a Vo) 4mGappg. (26)
B. Gravitational field C. Dark matter perturbations

We begin by reminding the reader of the equations that The dark matter particles are assumed to ride on the ex-
govern perturbations in the metric and fluid properties beforgyanding coordinate mesh, with negligible peculiar velocities.
the time of last scattering. The perturbed metric is taken as(This is not affected by perturbations to the gravitational

B field, because in the synchronous gauge these perturbations
Gur totaf X 1) = G (1) TR, (X, 1), 19 eave 'y zero) Hence their energy-momentum tensor has
only a 00-componentTX=op (- FOr the metric(19)—

where is the Robertson-Walker metric in co-moving co- . .
v 9 (21), the energy conservation equatlﬁiﬁ'*;Mzo then reads

ordinatesx with spatial curvature neglected:

o= —1, 9oi=0, gj=a*()d;, (20 dZ?q * 37:

Ppqt ‘r//qPD: 0

andh,,(x,t) is a small perturbation. We work in the syn-

chronous gauge, defined by the conditions or in other words

ddoq
hoi=hoo=0, (21 gt Uy, (27

and by the requirement that the cold dark matter particlegynere s, is the fractional dark matter density perturbation:
have time-independent spatial coordinates. These conditions

leave an unbroken residual gauge invariance, under the trans- dpq=Ppg/PD - (28
formation
Combining Egs(26) and(27) gives
e 0g;
Che+a?d — 4 L d ds
hij—hij+a x; axi)’ (22 a(azwm) =47Ga’ppdpg. (29

with e; an arbitrary function ok but independent df As we During the dark matter dominated e t2® and 4rGp
will see, in the synchronous gauge the evolution of the com—_ 2/32, so Eq.(29) can be written ’ P

pressional modes that concern us here depends on the gravi-

tational field only through a quantity that is invariant under d [ 0004 2 .

these transformations, &( T) =§t dpq- (30
B As is well known, the two solutions go as* andt?3. If
T at| 0g2)" (23 these two modes have comparable strengths for very small

then the relevant solution is the one that is most rapidly

The spatial curvature is negligible at and before the time ofoVIng: which we shall write as

last scattering, so it will be convenient to exprggs,t) as a 2
Fourier transform: Spq=Ngt?3, q=— §th*1’3. (32)
x.t)= | d3q e ¥y (t). 24 (The normalization constam, will play a role in this sec-
Yo f g Yal®) 24 tion similar to that of the constam, in Sec. I1)

Likewise, the total proper energy density of each of the con- D. Plasma and photon perturbations
stituents of the univers@abeledf=D,B,y for dark matter,

the baryon-electron plasma, and photons, respeciivisly Next, let us consider the imperfect fluid formed by the

baryon-electron plasma and the photons. It has a total veloc-

written )
ity four-vector of the form
O+ total X, 1) = @¢(1) + Spr(X,1), ‘
Ut‘éta|(xyt)=U"+f d®q Ug(t)e'd (32
— 3 iq-X
pr(X.t) j d*q erq(t)e™ ™, 29 whereU* is the unperturbed velocity four-vector
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u°=1, U'=0, (33) df 4 ] xT| 10 . 923,
— —= =—|-== +y)]—-——|.
| _ | P T e G
andU{(t) is a small perturbation. The normalization condi- (40)
tion g,,, waVfotaVota= — 1 tells us that the first-order per-
turbations are purely spatial, ) .
Also, using EQq.(37) lets us write Eq(39) as
ug(t)=0. (34)
d 5 4 e
We will be considering only compressional modes, so we a+167TG7/ PB+§P7_XT (OBqt )
will assume that the spatial part b, is the gradient of a )
velocity potentialu: q°6,q d :
yP —xTa®| =20+ 8% Beq+ )]
UL (1) =i q'ug(t). (35) a® _
=——[p,8,qt 4735zl (42
We will write the conservation laws for this fluid in terms of 3 7o %
fractional perturbations to the baryon-electron plasma mass
density and the photon energy density: Now, 7/p, and xT/p, are of the order of the photon
mean free time, which as long as hydrodynamics is appli-
O8q=Peq/PB: Oyq=PyqlPy- (36) cable must be short compared with the cosmic age. Therefore

_ _ _ we can neglect; and y everywhere, except where they are
The particle conservation equatici8] for the baryon- accompanied with a maximum number of space and/or time

electron plasma mass density is then derivatives ofdg, or 8,4, in which case powers of a high
wave number can compensate for the smallnesg of 7.
ddg Then Eqgs(40) and (41) simplify further to
dtq:qzuq_’//q- (37)
d 4 T . 25
The energy conservation equatid®] for the baryon- —[ 80— =g _X — Ogq— 9 % , (42
i dt| ¢va~ 39a q 2
electron-photon fluid is 4a
d 3a 4 d 4 ,
a(p353q+9757q)+3 PedBqt §p757q at a°| pg+ §Py)(55q+ hq)
4 2" 3
_ _ —a2u.) — va?2 o dss
pB+3py)(¢q q uq) x4 —XTa3 q4y+a2—38q)
dt
. T d(a’uy) Td,, 2.3 2. .3
— g-a 4q9-na°.
X| Tug+ — T + a2 |’ (38 ==y Tng_ 43)

whereT is the unperturbed photon temperature gni the | lect t ¢ d ord o/
coefficient of heat conduction caused by photon energ)yve also neglect terms of second ordendrand/orz, so we

transport. Finally, the momentum conservation equatid}  can setdgq equal to 3,¢/4 in the dissipative terms in Egs.
is (42) and (43). Then usmg Eq(42) to eliminate &gq in Eq.

(43) gives our differential equation fof,,

d 4 .
a .5 R
gi F167Gn || —a% pet3py XT)uq df 4 3ddyq
at| @\ Pe3Py)\7 g Y
+xTa® %Jrg(azuq) 36 5
4 " dt | 3a XTPB(30‘ v, 9 d%)
1 3 47733 2 4p3’ 4 de? 4a? dt
-3 Py‘syq_T[_q Ug+ gl (39 2.3 d
q°a 389y
=3 = P,0,q— 19%a dt . (44)

where is the coefficient of viscosity due to photon momen-

tum transport. By using Eq(37) and recalling thatpg

xa 3 poca ? andTea !, we can simplify Eq.(38) to It will be Convement to multiply witht*%a%p.,. Recalling
read thatp,=a %, pg=a 3 andax=t?3 this gives flnally
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o 239054 k2t k2t ds,q —3k2t?/£. But this will not be useful in calculating th@, in
t 3 £ 1+ R)t#° dt 2+ 3 vt P at our companion paperl]. To get a more useful result, we
Y must use the WKB approximation.
Under the assumption that
RxT 3t4/3d 5vq+k2 4399y ) P
4p,, dt® dt kt, = ¢ (50)
213
_ 23, 1_ 2N we can find a pair of approximate solutions of the homoge-
3 dt[(1+R)t Yal= 27 27 (LT3R, (45 neous equation
where (as beforg¢ t; is some typical time of last scattering, Syq=exp i) (51
k=g/a(t,)=qt¥¥t?3a(t), and _
with
R=3pg/4p,>a. (46)
We next turn to two different ranges of wave number in p= \/§|<th \/=2 (52
which it is possible to find an analytic solution of this equa- 0V1+&L

tion. provided we neglect dissipative terms. Note tha§ és well

as » and y were zero, then these homogeneous solutions
would be exact. More generally, inspection of E48) shows

We consider first wave numbers that are large enough tthat these are apprOX|mate solutions if the fractional rate of
allow the use of the WKB approximation. For this purpose,change of & ¢2 is small compared with the rate of change

E. Solution for large k

we introduce a new variable of the phasep:
{=(t/t)"3, (47 260 ki3
s 1
(This is the usual conformal timey, but with a different 1+£2 J1+€2
normalization) Multiplying Eq. (45) with 9t2* then give
ization: Multiplying Eq. (45) wi gves which is true at all times if and only if it is satisfied &t
37]k2t ds =1, ie,,
7q 2 L ¥q
(1+§§) az +3Kk%t? 8yq 2T ,
’ k=t
OT(1% ., d(syq) V3(1+§)
L
497 tL d§3 d¢ For plausible values of this condition is actually somewhat
8N.123 weaker than Eq50), but we will need the greater strength of
=— T (1+3¢82) (48)  Eq.(50) later, when we calculate the plasma velocity poten-
3 ' tial.

We can do better than E¢61), and include the effects of
cosity and heat conduction, by seeking solutions of the
form 6,,=Aexp(*ig), with A a slowly varying real ampli-
tude. By calculating the rate of change of the Wronskian of
these two solutions[and replacing d*s,,/dZ® with
-3k (1+ &%) 1dd,4/d¢ in the dlSSlpatlve terfy we
easily find the WKB solutions of the homogenous equation:

Here we have again assumed that dissipative terms are negs
ligible except where a maximum number of derivatives.,
factors ofk and/or{-derivative$ acts ond,,. We have also
used the fact thaRxa to setR=¢¢2, whereé is the ratio
(46) at timet, .

In the absence of dissipation, E@8) would have the
exact solution

8. (1+ £2%)Yexd +ip—k?D?], 53
YA g(kztEJrzg) : where
This i tually i t of hoicetof, ¢ T2
e o e apa ot ot ot w23t (| X ear 6o
L L 9 P 0| 2p(1+£5%)  8p(1+E7

justified in this solution, because the rate of change of this
expression does not yield a factor of the large wave numbeThe viscosity and heat conduction coefficients are given by

k that could compensate for the smallnessyadnd 7. [11]
To this particular solution, we must add a suitable solution
of the corresponding homogeneous equation. In the absence 16 4
of damping we can find exact solutions of the form 1= 25Py Ty XT= 3Py (59
P,(i&?), whereP (z) is the usual Legendre function, and
v is either of the roots of the quadratic equatiefv+1)= Here 7, is the photon mean free time
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1 F. Solution for small k

T o1NeC Here we can neglect viscosity and heat conduction. For
k=0, Eqg.(48) has an obvious solution

B tL(6,n_Gmp)l/2(QM/QB)1/2§9/2
o1e(2mmekg To/h?) 341+ 2, )34 1—Y/2)Y?

22A To this we can add any linear combination of the two solu-
Xexp( ) (56) tions of the corresponding homogeneous solution, for which
2kgT, d,q is respectively time-independent or proportional to

8,q=4NgtZPL%13= 45p,/3. (61)

whereo is the Thomson scattering cross sectibris (only ¢ odg
here the original Planck constant],=2.738 K is the J .
present microwave background temperatdres 3100 K is 01+ L2

the temperature at last scatterikg,is Boltzmann’s constant, ) L ,
Y=.23 is the primordial helium abundance, anl which near the beginning of the dark-matter dominated era

=13.6 eV is the hydrogen ionization energy. goes a<{. As { increases these homogeneous solutions be-

The relevant solution is again the one that increases mo§CMe negligible compared with the inhomogeneous solution
rapidly at early times, which we can find by requiring that (61, S0 at later times the solution fée=0 is given by Eg.
d,q—0 as{—0. In the limit {—0 the phasep vanishes as ). ) ) -,

O(¢), while D2 vanishes more rapidly because the mean 10 g€t the term ing, of first order ink®, we can use the
free time of photons is very small at early times. Hence the°lution(61) in the terms in Eq(48) proportional tok?, so
linear combination of the particular inhomogeneous solutiorfhat
(49 and the homogeneous solutio(&3) that grows most

rapidly at early times is d 1+ 82 ds3 8,0~ Opg| | = —3K3t2§, 62
dg( gé )dg 4“7 Dqg| | L¢Dq- ( )
213
- at 2_ 2\~ 14g—Kk?*D? Discarding a homogeneous term for the same reason as be-
S.q= [1+3E°—(1+&29) % cosg]. 9 g
" 9(KA2+2¢) fore, we have

(57) )
_ d(3 k?tf¢ Spq

[We would be able to neglect the tern§ th the denominator a7 257‘*_ dogq| =~ 5 (63

only under the conditiotkt, = J2¢&, which for plausible val- 4 1+é¢

ues of ¢ is stronger than our assumpti¢s0). ]

To calculate the velocity potential of the plasma-photon
fluid for large wave numbers, we will also need the rate of 2/3 242

. ) o ANgt? Kti (1 1

change ofdg,. At times of ordert, , the time derivatives of o 2 I W'n(1+ £0%)
&%, ¢, andD? are of the orders of/t, , k, andr_, respec- o€
tively, where 7, is the photon mean free time~#/p, (64)
~xTlp, at timet, . We are assuming th&t, =¢, so the . .
time derivative ofe is larger than the time derivative . Aéighggsfé?l?;(g 721:5(63) and(31) give the plasma velocity
Equation (56) shows that damping becomes important if P
k?t, 7. =1, but even for such large values lofwe can still 5/3
;! 1d Ngt™¢
limit ourselves to the case

which gives

1 3 +... .

ung &(5Bq_5Dq)_> (65)

3a%(t)(1+£4%)
kr <1, (59
As we will see, this provides a small correction to the Dop-
in which case the time derivative ¢f is also larger than the pler shift, which for smalk will turn out to be mostly due to
time derivative ofk?D?. Hence for wave numbelsin the perturbations in the gravitational field.

range defined by Eq$50) and(58), we have
IV. OBSERVED TEMPERATURE FLUCTUATIONS

dd,q 8N t2%e P sing -
T 230412, 2 5" There are three separate sources of the observed tempera-
g\/§(1+§§ )KL +26)¢ ture fluctuation in the cosmic microwave background: the

The dissipative terms in Eq42) are smaller than this by a Sachs-Wolfe effect due to perturbations in the gravitational

PO potential, the Doppler effect due to plasma peculiar veloci-
factor kr, so here we can takéBq_—Séqu,_ and Eqs(37), ties, and the intrinsic temperature fluctuations themselves.
(31 and(59) then give the velocity potential

We will consider each of these in turn, and then put the
ON Kt e—*P%sin results together. In calculating the Sachs-Wolfe and Doppler
U=——9% |14+ L ¢ ) contributions, we will use a non-relativistic approach, taking
1 3Kk2a?(t )t VB(L+E22) K2 +28) ¢ the effect of the gravitational field perturbations on the ob-
(60) served photon temperature to consist entirely of the time
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dilation caused by a Newtonian gravitational potential plus It will be convenient to rewrite Eq(67) in terms of the
the Doppler shift caused by the gravitational acceleration ophysical wave number at the time of last scatterikg,
the source and receiver. This approach has the virtue of get=g/a(t,), so that Eq(68) gives

ting useful results quickly, but the results obtained in this

need to be justified by a thoroughly relativistic treatment of AT(n) _ [ aegeiioa1] 69)
the Sachs-Wolfe and Doppler effects, which will be given in T B € €k
. Sachs-Wolfe
the Appendix.
where g, is an amplitude for fluctuations not processed by
A. Sachs-Wolfe effect acoustic oscillations, defined by
We can define a Newtonian gravitational potentfalas IN_a2(t,)
the solution of the Poisson equation €,d%k=— quLdslq' (70)
t
a () V2(x,1) =47G dpp(x.t) (66) )

andd,=r a(t,) is the angular diameter distance of the sur-
with the factora™2 inserted to take account of the difference face of last scattering.
between the Robertson-Walker co-moving coordinate vector
x used here and the coordinate vecagt)x that measures B. Doppler shifts
proper distances at time Using Eqgs.(31) and (25), this

gives The plasma velocity potential, calculated in Sec. llI

yields a pressure-induced plasma velocity perturbation
- _ 23,52 3 —24iQ-X .
¢(X,t) 47TGPD(t)t a (t)f d q q e Nq Vpressuréxat):a(t)vf d3q e|q~Xuq(t). (71)

3 iqx [The factora(t) enters because it is the velocity in co-
= 3,[4/3 d*q g %e'I*N, (67)  moving coordinates that is given by the co-moving gradient
of the velocity potential. This yields a Doppler shift of the
It is important to note that this is time-independent duringtemperature of the cosmic microwave background seen in a

the dark matter era, whea(t) =22, directionn:

This potential makes two separate contributions to the -
Sachs-Wolfe effect. There is a gravitational redshift, yielding | AT(n) — iagt )f A% P qu(t, ) e e
a fractional fluctuation in the observed temperature in a di- T t an-auqlt

~ N pressure Doppler
rection n equal to ¢(r.n)—¢(0), where r_ is the
Robertson-Walker radial coordinate of the surface of last L 3~ o K. hd
scattering. There is also a time-delay; if the unperturbed cos- = f d°k n-k e g(k)e™ "4,

mic temperature reaches the vallie=3000 K of last scat- (72
tering at a timeg , then the gravitational potential causes the
cosmic temperature in a directionto reach the valug, at

atime[1+ ¢(rLﬁ)—¢(0)]tL, so that the redshifted tem- 3k3tf
perature seen now is changed by a fractional amplait g(k)= 20+9

with the form factorg(k) given by Eq.(65) for smallk as
(73

~[tat)/at) b~ ¢(0)]=— éwmﬁ)—qﬁ(on. and for largek by Eq. (60) as

— _ e 242y ~1,-K2d3 o
(This argument is valid only becaugeis time-independent; 9lk) =3k, Y31+ 81+ 261K e sm(k((j;i)
otherwise we would have to consider the complete gravita-
tionally delayed time-history of the cosmic temperature, asvhere ¢ as before is 3/4 the ratio of baryon and photon
done in the Appendix.Combining the two effects, the net energy densities at the time of last scatterify, is the
fractional change in observed temperature is damping lengthD given in Eq.(56), evaluated at=1 (ac-
tually, as discussed in the next section/at little less than

AT(n) 1 - unity), anddy is the acoustic horizon at the time of last
= ) =36 N-¢O]. 68  canering
Sachs-Wolfe
As we shall see in the Appendix, this formula can be derived \/— f d¢ 1+8). (75
using the formalism of general relativity, which in the syn- V1+ &L N g

chronous gauge gives the famous factor of 1/3 directly, with-
out having to consider separately the gravitational redshift In the non-relativistic approach used here, there is also an
and expansion time delay. additional velocity perturbation induced by the gravitational
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potential ¢(x). The proper peculiar velocityy,, produced whe(eto is the_ present timgA general reIat_ivisFic dgrivation
in this way is given by the equation of moti¢m3] of this result in the synchronous gauge is given in the Ap-
. pendix)
gl X0+ )=~ -V (X). (76
—Vgral X —Vgral X, 1) = — —— X).
gran s grav

at a(t) a(t) C. Intrinsic temperature fluctuations
Because the gravitational potential is time-independent, The fractional change in the photon temperature is one-
this has the simple solution fourth the fractional change in the photon energy density.

The contribution of intrinsic density fluctuations at the time

2ia(t) t, of last scattering to the fractional change of temperature
3t1/3

seen coming from a directiom is, thereforé,

Vgad X, t)=—a {(t V ¢(x) = f dq g %qe'tN,.

(77) . .
_ . _ _ _ ~ [AT(n) op(nryty) 1 4 g hr
This contributes a fractional temperature shift seen in a di- =Tty 4 dq €9MLE,4(t).
. . intrinsic P\t
rectionn: (79)
AT(n) - .
= —N-[Vgrad Nr 1) = Vgrad Oto) ] Equations(57), (64) and(70) then give
gravity Doppler
—ai | d3k(k.n AT(n den
3.] d3k(k-n)kt, ey ( ( )) =f A%k e f (K)elk A, (80)
13 intrinsic
o tra(t
x | e'k-nda— Il',3 (o) , (79
toa(ty) with the partial form factoff given by
|
—3K2%t2+3[¢ - £ An(1+ ) KAt A+ - -, k—0
f(k)= 81
) (1+2§/k2tﬁ)—1[—1—3§+(1+g)—1/4e—kszcos(de)], k large. G

D. Total temperature fluctuations

We now put together the fractional temperature fluctuations given by (Efs.(72), (78), and(80), and obtain the total
fractional temperature fluctuation

. L ta(to)
)=Jd3kek [F(k)+ik-nG(k)]e'k Ma—1—3ik-n——-", (82
télsa(tl_)

(AT(ﬁ)
T

whereF (k) is the total scalar form factor, given by Ed§9), (80), and(81) as

F(k)=1+f(k)

[ 1-3K2t22—3[ — & 1+ &7 2An(1+ &) KA+ .., k—0,
- (83

(1+28/K22) " — 3¢+ 2£/K22+ (1+ &)~ Ve ¥*Plcogkd,)], klarge

and G(k) is the total dipole form factor, given by Eq&’2), (73), (74), and(78) as

2There is a subtlety here. To the extent that the opacity drops sharply from 100% to zero, last scattering occurs at a fixed value of the
perturbedtemperaturd + ST, near 3000 K, rather than at a fixed value of the unperturbed temperature or the time. The effect of the intrinsic
temperature fluctuationsT(t) is thus to change the time of last scattering, in such a way as to produce a change
— 8T in the value of theunperturbedtemperaturel (t) at this time. Sincel (t)«1/a(t), we then haveda/a= + §T/T at the time of last
scattering, so that the observed temperature is shifted by the change in the cosmological redshift by a fractional Bffieudd/a=
+6TIT.
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3kt —3K332(1+ &)+ .. ., k—0

G(k)=3kt_—g(k)=
(07300071 Bi1t o341+ 26nc?) e “Plsinkdyy), K large.

(84)

The last two terms in the curly brackets in E§2) contrib-  (with n=1,2,...),with higher peaks for odd [where the
ute only to the multipole coefficient§, for I=0 andl=1  two terms inF(k) have the same signthan for evem. The
[15], and may therefore be droppkas they are in Eq1)]in minima are at the zeros &f(k). For £>.311 the only peaks

considering the higher multipoles. are those fom odd, and the minima are at even. This
We see that the WKB solution for lardegives a poor suggests that there should be peaksCp near |,,=(2n
picture of what happens fde— 0, except in the casé<1, —1)wdp/dy and either lower peaks or dips near
wheredy,= /3t , in which case the above pairs of expres-2nwd,/d,, depending on the value & These peaks are
sions forF (k) andG(k) agree for smalk. known as the Doppler peakshough Eq.(84) shows that the

As discussed in Sec. I, it still remains to average over thecontribution of the Doppler shift is very small at all the wave
time of last scattering. The effect of this averaging on thenumbersk,]. These results depend critically on the negative
damping factor expk?D? is small[14]. Otherwise, the av- sign of the term—3¢ in the second line of Eq83); if this
eraging ovet chiefly affects the sikdy and cokd, factors  term had turned out to be positive then #r.311 the po-
in Egs.(83) and(84), which oscillate rapidly with the time of sitions of the peaks and dips would be interchanged. Despite
last scattering whekis large. We will approximate the prob- what is sometimes sad 6], there is no way without detailed
ability distribution of the actual time of last scatterings a  calculations to see that the first Doppler peak should be at

Gaussian of the form (& At)exp(— (t—t,)?/At?), wheret, |=mds/dy, rather than at a multipole number twice as
is a nominal time of last scattering. Replacingn the sines large.
and cosines in Eq¥83) and (84) with t, multiplying with We can now check whether the WKB approximation used

this probability distribution, and integrating ovethen gives in Sec. Il E is valid at the first Doppler peak. According to
the same result for the form factors for large but with an  Eqgs.(86) and(75), we have
additional term now added tB?2:

Ve

T
A 2 kltL: y
ADEzda(z—tU . (85) V3In(VE+1+e)

(87)

so the ratio of the wave number at the first Doppler peak to
This is a sort of “Landau damping,” except that the dampingthe mininum wave numbek;, allowed by the inequality
arises from a spread in the time at which the temperature df0) is
the medium is observed rather than from a spread in wave
numbers. As we will see in the next section, this term makes kg ™
a smaller but not insignificant contribution to the total damp- Kmin JBEIN(VE+ 1+ &)

ing.
The WKB approximation is valid at wave numbers down to
V. DISCUSSION the first Doppler peak if this ratio is sufficiently larger than
) unity. For instance, fof)gh?=0.03 we haveg=0.81, so Eq.

In a companion papgf ] we show how to use the formula (gg) gives k, /k,;;=2.5, making the WKB approximation
(82) for the total temperature fluctuation to derive expres-airly good at the first Doppler peak. The WKB approxima-
sions for the coefficient, of the term of multipole numbdr  tion is somewhat better &, for smaller values of2zh?,
in the temperature fluctuation correlation function for genera{hough it still breaks down at smaller wave numbers unless
form factorsF (k) andG(k). As we will see there, the con- Qgh?=0. For all plausible values af the WKB approxima-
tribution of the scalar form factdf (k) to C, arises mostly  tjon is excellent at the higher Doppler peaks.
from wave numbers of ordevd, (whered, is the angular Next, let us consider the importance of damping. It might
diameter distance of the surface of last scatterindile this  seem that we should calculate the damping lerBthby
approximation is much worse for the contribution of the di-integrating in Eq(54) up to the time of last scattering, cor-
pole form factorG(k). _ . responding ta’=1. But at the nominal time of last scattering
_ Forthe present, we will content ourselves with noting that(defined so that the probability of any future scattering is
!f we tentatively use the WKB approxmatlon, n_eglect damp-50%)’ the photon collision rate 4/ given by Eq.(56) is
ing effects, and dgozp the terms in the second line of B8 ¢ 2,/0,70,,/t, , which is already considerably smaller than
proportional to/k°t, , then for¢ less than 0.31Ithatis, for  the expansion rate 2/3, so that we cannot trust the hydro-
3¢<(1+¢) "] the squared scalar form facté*(k) has  dynamic calculations used to obtain E§4). We will instead

(88)

peaks at the wave numbers integrate in Eq(54) only up to a valug’ ., of ¢ at which the
photon collision rate becomes equal to the expansion rate,
ky=nm/dy (86)  and set
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912
{

— exp(—iw2 —z2>) = lIn(JE+TTB
{m 2kg T, omax ' ——;[n( E+V1+ 8"

2,2
I(ZI.J[L

3t
T.=

2

The exponential factofwith A/2kgT =25.5) is Sozshargly This is 0.20 forQgh?=0.03, for which¢=0.81, and less for
peaked at{={ma that we can approximatei.,—{"  smaller values of2gh?. This approximation is thus fair at
=2%mamax—¢) In the exponent and sétequal to{ma €V-  the first Doppler peak, and becomes excellent at the higher

erywhere else in the integral, giving Doppler peaks.
Finally, we must ask what values kfare small enough so
) 3t? ( 8 E Lo (kBTL) that we can ignore acoustic oscillations during the era when
L= + the photon energy density exceeded the dark matter plus
2000\ 151+ £05) 201+ £00,07) | A " ring whe s

baryon density, during which our analysis does not apply.
During this era the Robertson-Walker scale fa@r) went
ast? and the speed of sound was/3/ so the phase change
of acoustic oscillations up to the tinte of the crossover
from radiation dominance to matter dominance was

Furthermore {ax iS very close to unity(For instance, for
Qu/Qg=7.5, we havel,,=0.96. That is, we carry the
damping integral down to a temperatuT@/g“ﬁan:3360 K
instead of 3100 K. Hence in this result we may as well
replace max With unity, so that

A J’tC dt thc 2kt|_ tca(tL)
¢=q = = :
g 8 2 ke, o V3a(t) 3a(te) 3 \tla(te)
DL:_ + 2 A . . . .

2 \151+¢8) 2(1+9 The redshift zz at the crossover is given by Hzc

=Qy/Q,=4x10°Qyh?% During the period from this
This approximation leads to the additional simplification thatcrossover to the present the scale faet(t) went ast?’?, so
the damping length is independent of most of the parameterthe ratio in parentheses is
appearing in Eq(56), including the ratioQg/Q,, .

There is a smaller additional contribution from the aver- tea(t)) [1+2, 1

aging over oscillatory terms, given by E@5). To evaluate = = —
this Landau damping term, we will need the ratit/t, . We tate) 1*zc 6.0/Quh
noted in Sec. Il that the probability that a photon will not beU
scattered again rises from 2% at about 3400 K to 98% at

sing this and Eq(75) gives

about 2800 K, with very little dependence on any cosmologi- 035 [k JE
cal parameters. Matching this to the probabilities calculated o= — (_) _ (90)
from the approximation that the probability of scattering in a \/QMhz ky In(\/EJr V1+§)

time interval fromt to t+ At is a Gaussiandt/ 7 At)exp(

—(t—t,)%At?), and using the relatiom=t~23 we find For instance, if we takéyh?=0.15 andgh*=0.03, then
At/t,=0.10, so the contribution t@?2 in Eq. (85) has a Ae=1 at the first Doppler peak, indicating that oscillations
value 0.00262 . Adding this to the quantity we have calcu- I the radiation-dominated era are becoming important at the

lated from the integral54) gives the total squared damping ISt Doppler peak. This is not to say that we are making an
length error of order unity in the argument of the sines and co-

sines in Egs(83) and (84), but rather that the evolution of
the perturbations during this much of their oscillations has

2
dZDEDEJFADEZO-OzgtE + 3 not been relial_)Iy cal_culated. This source of error is mitiggted
151+¢)  2(1+¢)? in Ref. [1] by including the effects of photon and neutrino
) energies ora(t) in calculating the horizon distance.
+0.0025d, . (89) Our formula(84) for the dipole form factoiG(k) raises

the possibility of a maximum G (k) atkdy= /2, yielding

For instance, for2gh?=0.02 (so that¢=0.54) Eq.(75)  a “zeroth Doppler peak,” produce@s the first Doppler peak
gives dy=1.61t, , so d3=0.0071d. Hence at the first s nop by the Doppler effect. Foxlgh?=0.03 the wave
Doppler peak the argument of the damping exponential isumber at this supposed peak is too small for us to trust the
d3k?=0.07. (This depends very litle orF.) We see that WKB approximation used to derive E(4) at this peak, but
damping is not important at the first Dopper peak, in agreethe peak inG(k) at kd,= /2 would definitely be there for
ment with more accurate computer calculatiohg], but is  much smaller values dgh?. In particular, the calculations
quite significant at the second Doppler peak. One effect 0bf Ref. [1] show such a zeroth Doppler peak @) at |
damping is to shift the second and higher Doppler peaks te=0.45d, /d for Qz=0.
lower values ofk and|. Note added in proofThere was a numerical error in the

In deriving the wave number@6) of the Doppler peaks calculation of the equilibrium hydrogen ionization at various
we also neglected the terms proportional gﬂkztf in the  temperatures used in Secs. Il and V. However, the quoted
second line of Eq(83). At the first Doppler peak this quan- results for the range of redshifts in which last scattering oc-
tity is given by Eq.(75) as curs happen to agree well with the range of redshifts for last
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scattering calculated in more exact non-equilibrium studies
of recombination, so this error has little effect on the results 0= 6t
of this paper.

Clhg(rnt)
a(ty) 2 ad(ty)

1 [t dt (ah”(rﬁ,t)> ]
r=s(t)
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APPENDIX: RELATIVISTIC CALCULATION OF THE
SACHS-WOLFE AND DOPPLER EFFECTS [The velocity potential term on the right-hand side arises
from the pressure-induced change with time of the radial

In Sec. IV we gave a der|.va't|on of the Sachs-Wolfe andcoordinaterL of the light source in Eq(A5).] The total rate
Doppler effects, using heuristic arguments to supplement . - 2/an .
relativistic results. For completeness, this appendix WiIIOf change of the quantitiy,, (s(t)n,t)/a’(t) in Eq. (A6) is
present a thoroughly relativistic derivation in the synchro-
nous gauge, taking into account the possible presence of a

vacuum energy, which may or may not be constant. This d he(s(t)n,t) [ 9 he(rn,t)

goes over familiar ground, first considered by Sachs and dt  a?(t) ot a3(t)

Wolfe [18], but as far as | know there is no published treat- r=s(t)

ment of the “integrated Sachs-Wolfe effect” in the synchro- 1 (ahrr(rﬁ,t))

nous gauge that goes explicitly and analytically into the de- - 3 ,
tails presented here, including the possibility of a varying a*(t) r r=s(t)

vacuum energy.

A light ray travelling toward the center of the Robertson-
Walker coordinate system from the directianwill have a
co-moving radial coordinate related tot by

so Eq.(A6) may be written

0=,., afd¥dx'= — P+ [a2(1) + hy (1A, ) ]dr?, 0= ot —— L Nur(Oto)
L
(A1) a(ty) 2 a%(tga(t))
or in other words 1 (o [a[h.(mn,t
+ f dty — o
dr 2 12 1 hy 2at)Jy AN S r=s(t)
a:_(a +hyp) :_5 2_33 (A2)

1 11 (0fo)
a(to) 2 ad(ty)

&L(ﬁu(rﬁ,t)

The first-order solution is

- 1ft dt’ o A A3 (A7)
F(t)—S(t)+§ th re(S(t')n,t’), (A3)

_ _ ) ~ Hence to first order the ratio of the received and emitted
wheres(t) is the zeroth order solution for the radial coordi- frequencies is

nate which has the valug att=t, :

s(t)=r_— t—dt, . (A4) E:ﬁ:a(tl‘) 1_£ftl' i —hrr(l’ﬁ,t) —a(t)
tLa-(t) v 5t0 a(to) 2 to at az(t) =) L
In particular, if the ray reachas=0 at a timet,, then au(ri )
X| ——— (A8)
0=s(t >+1ft0 N e sonD (A5) "
=s = | —=—h(s(t)n,t).
0 2 o© a3(t) rr

A time interval 8t, between successive light wave crests This gives a fractional shift in the radiation temperature ob-
at the timet, of last scattering produces a time interdg) at ~ served at timd, coming from directionn, from its unper-
to given by the variation of EqA5): turbed valueT,=T a(t.)/a(ty):
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AT(ﬁ)) = At
T SwW, Dop_ a(t) v /a(to)
- to i M
= ftLdt{at< 2 a%(t) )]rs(t)
gu(run,t)
_a(tL)(+)r—r . o

L

Now we have to think about how to relate thre compo-
nent of the metric perturbation to the field appearing in

Sec. Ill. In general, the metric perturbation may be written as

9°B
X' ax!

The quantity entering into the integrand in E4.9) is then

%(—h’:;(r:)’t)) =a(rn,t)+ —azﬁ;:zn’t) . (ALY
where
Jal A J| B
a=— 222’ ’BEE E) (A12)
The field ¢ defined by Eq(23) is given by
y=3a+V?B. (A13)

We also need a relation betweenand B8, which can be
taken from the field equation for the full metric perturbation
[19]:

Phy IPhy

axiaxk  axigxk

Phge e . .
axiaxj —a hij+aa(hij_5ijhkk)

+ 2a25” hkk+ 2aah” =—-87G(S 0— 5p)a45ij .
(A14)
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1

d

g (AL7)

1%
~ (@) |+ Vi=y

and then use EqA16) to find «.
Now we return to the fractional temperature siit9).
Using Eqgs.(A1l) and (A16) let us write this as

. A
(AT(H)) ——ftodt<—ﬁ B(rzn’t)) —a(ty)
T Jswoop  Ju I s
au(r n,t,)

or

.
115

at

..

L

190 3 ~
gﬁ[a (HB(rn,1)]

.

(A18)

To do the first integral here we note that

.

d

dt

#B(rn,t)
ar?

ap(rn,t)
at

a’(t)

+a(t)a(t)B(rn,t)

+a(t)(9'8(m’t)) 1
r=s(t)

ar

a2B(rn,t)

+ [
at?

a%(t)

+3a(t)é(t)—aﬁ(m’t)

o Hlamac

+é\2(t)],8(rﬁ,t)> (A19)

r=s(t)

(For simplicity we are here taking the universe to be spatially

flat, which is certainly a good approximation at high red-

shifts, and seems to be a good approximation even afne fractional temperature fluctuatidd18) may therefore

present. The 9%/9x'ox) terms in Eq.(A14) give

N .. . d
A=azB—aaB—2aaB=aE

J
3 -2
a at(a B)). (A15)
In terms of the quantities defined by E@12), this is

Hence for a given gravitational potenti@| we can calculate
B by solving Eq.(A13):

Jd(1 d
——(a*p)

aZE a ot (A16)

be written

|

AT(n) AT(n) AT(n)

|
.

) late

(A20)

!

AT(n)
T

1
) integrated

where
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AT()| dB(r.n,t)
( T >early_ _az(tL)( &t )t—t

—a(t)a(t) B(ront)—a(t,)

><(aﬁ(rn,tL)
ar

) —a(ty)

'L

au(r n,t,)
X(—ar ) . (A21)

'L

(AT(Fo) _ Z(to)(fw(on)
T late at t=ty+altgalty) B0to) +alty)

dB(rn,ty)
X(—ar )ro. (A22)
. by s
integrated to at
+4a(t)é(t)w+2[a(t)é(t)
+é2(t)],8(rﬁ,t)) (A23)

r=s(t)

In evaluating these three contributions to the temperaturéAzs) and g
fluctuation, it is helpful to note a relation betwegrand the
conventionally defined Newtonian potentigl that applies
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d
ot

19

——a3¢)=0.

2ot (A27)

Comparing Eq(A16) with Eq. (A20), we now see that Eq.
(A17) has the solution

V2B=1. (A28)
More specifically, if we define a Newtonian gravitational po-
tential ¢ by Poisson’s equation

a 2V2¢p=47Gdep, (A29)
then Eqs(26) and (A28) show that the Newtonian potential
is

J
¢=— 1 @p). (A30)

This result is not applicable if the gravitational field re-
ceives significant contributions from a varying vacuum en-
ergy, but even in quintessence theories it is reasonable to
assume that a vacuum energy density of any sort is negligible
at and near the time of last scatterirify. certainly must be
much less than the radiation energy density at the time of
cosmological nucleosynthesis, in order to avoid the produc-
tion of too much helium.We have also been relying here on
the approximation that the radiation energy density is much
less than the dark matter density at around the time of last
scattering. Therefore the early-time contributi@®1) to the
temperature fluctuation can be calculated using the relation
t~ 13 which give Bt~ 3. Since hereaxt??,

Eq. (A30) then givesB= —t¢/a?, with ¢ time-independent.
The early-time contributiofA21) to the temperature fluctua-

not only for a gravitational field dominated by cold dark tion may therefore be expressed as

matter, but also in the presence of a constant vacuum energy.

Combining Egs(26) and(27) gives

1%

- (A24)

1 4 le) ’
——— a%y| =4
4wGalpp It

Taking into account the relatigpy<a ™3, an elementary ma-

nipulation then gives

J

ot

19
— _aslp

2
~ acy. (A25)

d

:

The equations of the Friedmann model give

d

at (A26)

a
a)=—47Tc3(p+p).

AT(h) 1 .t [ag(rn)
( T )early:§¢(rn)+m((9—r)rrL_a(tL)

(A31)

X(au(rLﬁytL)) .
or
r=r

L

This yields the Sachs-Wolfe temperature sl@8) and the
gravitationally induced Doppler shift77) (aside from the
terms arising fromr=0, about which we will say more
laten, as well as the pressure-induced Doppler ). The
famous factor 1/3 in the first term on the right-hand side
arises in the “Newtonian gauge” as the sum of a gravita-
tional redshift equal tap, and a term in the intrinsic tem-
perature fluctuation equal te 24/3, while in the synchro-
nous gauge used here this term is due entirely to the metric
perturbation. It is a curious feature of the synchronous gauge
that what we have called the gravitationally induced Doppler

A constant vacuum energy densipy, is associated with a shift also arises from the metric perturbation.

pressurepy= — py, While cold dark matter by definition has

It is not appropriate to neglect the vacuum energyt at

zero pressure, so as long as the gravitational field is domi=tg, so it cannot be ignored in the early-time contribution
nated by cold dark matter and a constant vacuum energy, tHé&22) to the temperature fluctuation. Therefore in general

right-hand side of Eq(A26) is —47Gp,, and Eq.(A25)
then gives

this contribution isnot the same as the=0 terms in Egs.
(68) and(77). Nevertheless, the terms in the early-time con-
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tribution to the temperature fluctuation are only of zeroth and

first order inn [like ther =0 terms in Eqs(68) and(77)] so
these terms can only affect the multipole coefficientsIfor
=0 andl=1.

This leaves the integrated terfA23) as the only correc-
tion to the results of Sec. IV fde=2. The integrand vanishes

if we ignore the vacuum energy and radiation energy, in

which caseaxt?® and Bt~ '3 so the integral receives a
contribution only fort neart, and is therefore expected to be
a small correctioh20]. Furthermore, although this integral is
fairly complicated, it has a simple dependencerorin the
presence of a vacuum energh(x,t) can have a fairly com-

plicated dependence on time, but, without pressure forces

acting on the dark matter, issdependence is the same as we
found in the absence of vacuum energy, given by Eg#).
and(70) as

lp(x,t):f(t)f d3k €K *k2e, (A32)
with f(t) not proportional tat = where the vacuum energy
is appreciable. For a constant vacuum eneggig then given
by Eq.(A28) as
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B(x,t)=— f(t)f d3k ek e, . (A33)

The “integrated” contribution(A23) to the temperature fluc-
tuation then takes the form

) oo

integrated

AT(n)

t . ~ .
t “dt gk W ¢, fa2(t)f(t)
0

+4a(t)at)f(t) +2[a(t)a(t)

+a?(t)]f(t)}. (A34)

It can be shown that this makes an additive contribution to
I(I+1)C, that for largel goes as 1/ with no interference
between this contribution to the temperature fluctuation and
the other contributiong21]. For a time-varyingbut spatially
constantvacuum energy the functigB(x,t) does not satisfy
the relationg/A28) and (A33), but Eq.(A17) shows that its
spatial Fourier transform is nevertheless just proportional to
€y for largek, so the integrated term still makes a contribu-
tion to I(1 +1)C, that is proportional to 1/for largel.
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