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Fluctuations in the cosmic microwave background. I. Form factors and their calculation
in the synchronous gauge

Steven Weinberg*
Theory Group, Department of Physics, University of Texas, Austin, Texas 78712

~Received 31 May 2001; published 27 November 2001!

It is shown that the fluctuation in the temperature of the cosmic microwave background in any direction may
be evaluated as an integral involving scalar and dipole form factors, which incorporate all relevant information
about acoustic oscillations before the time of last scattering. A companion paper gives asymptotic expressions
for the multipole coefficientCl in terms of these form factors. Explicit expressions are given here for the form
factors in a simplified hydrodynamic model for the evolution of perturbations.
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I. INTRODUCTION

The purpose of this paper is, first, to exhibit a gene
formalism, expressing the observed fluctuations in the c
mic microwave background temperature in terms of a pai
form factors, and then to carry out an illustrative appro
mate analytic calculation of these form factors. A compan
paper@1# gives general asymptotic formulas for the coef
cient Cl of the l th multipole term in the temperature corr
lation function for arbitrary form factors, and also uses the
formulas to calculateCl for the form factors found in the
present paper.

In Sec. II we show that under very general assumpti
the fractional variation from the mean of the cosmic mic
wave background temperature observed in a directionn̂
takes the form

DT~ n̂!

T
5E d3k eke

idAn̂•k@F~k!1 i n̂• k̂ G~k!#. ~1!

HeredA is the angular diameter distance of the surface of
scattering,1 and k2ek is proportional~with a k-independent
proportionality coefficient! to the Fourier transform of the
fractional perturbation in the total energy density at ea
times. @There are additional terms inDT/T that arise from
times near the present, and chiefly effect the multipole co
ficientsCl for small l, especiallyl 50 and l 51. These will
be discussed in Sec. IV and in the Appendix. Effects from
changing gravitational field soon after the time of last sc
tering are included in Eq.~1!.#

One advantage of this formalism is that it provides a n
separation between the three different kinds of effect t
influence the observed temperature fluctuation, that aris

*Electronic address: weinberg@physics.utexas.edu
1Note that in speaking of a surface of last scattering, we are

necessarily assuming that the transition from opacity to trans
ency takes place instantaneously. The physical wave number v
k varies with time as 1/a(t) @wherea(t) is the Robertson-Walke
scale factor#, while for large redshiftsdA varies asa(t), so the
productdAk is nearly independent of what we choose as a nom
time of last scattering.
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three different eras:~i! at very early times,~ii ! during the era
of acoustic oscillations, and~iii ! from the time of last scat-
tering to the present.

~i! The k-dependence of the unprocessed fluctuation a
plitudeek reflects the space-dependence of fluctuations in
energy density at very early times. The average of the pr
uct of two e ’s is assumed to satisfy the conditions of stat
tical homogeneity and isotropy:

^ekek8&5d3~k1k8!P~k! ~2!

with k[uku. Since the reality of the fluctuations in the ener
density requires thatek* 5e2k , the power spectral function
P(k) is real and positive. It is common to assume
‘‘straight’’ spectrum

P~k!}kn24. ~3!

For instance, the ‘‘scale-invariant’’n51 form @2# suggested
by theories of new inflation@3# is

P~k!5B k23, ~4!

with B a constant that must be taken from observations of
cosmic microwave background or condensed object m
distributions, or from detailed theories of inflation.

~ii ! The form factorsF(k) andG(k) characterize acoustic
oscillations, withF(k) arising from the Sachs-Wolfe effec
and intrinsic temperature fluctuations, andG(k) arising from
the Doppler effect.

~iii ! Taking account of a constant vacuum energy den
as well as cold matter in the time after last scattering, it
easy to calculate the angular diameter distance of the sur
of last scattering:

dA5
1

VC
1/2H0~11zL!

3sinhFVC
1/2E

1/(11zL)

1 dx

AVLx41VCx21VMx
G , ~5!
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STEVEN WEINBERG PHYSICAL REVIEW D 64 123511
where zL.1100 is the redshift of last scattering,VC[1
2VL2VM , andVL andVM are as usual the present rati
of the energy densities of the vacuum and matter to the c
cal density 3H0

2/8pG.
We note in particular thatF(k) and G(k) depend on

VMh2 and on the baryon density parameterVBh2 ~whereh
is the Hubble constant in units of 100 km/sec/Mpc!, but since
the curvature and vacuum energy were negligible at and
fore last scattering,F(k) andG(k) are essentially indepen
dent of the present curvature and ofVL . The exponentn in
P(k) is expected to be independent of all these parame
On the other hand,dA is affected by whatever governed th
paths of light rays since the time of last scattering, so
depends onVM , VL , and the curvature parameterVC , but
it is essentially independent of quantities like the baryon d
sity parameterVB that effect acoustic oscillations before th
time of last scattering. In quintessence theoriesdA would be
given by a different formula, butP(k) and the form factors
would be essentially unchanged as long as the quintess
energy density is a small part of the total energy density
and before the time of last scattering.

Another advantage of this formalism is that, althoughCl
must be calculated by a numerical integration, it is poss
to give approximate analytic expressions for the form fact
in terms of elementary functions. The detailed confrontat
of observation and theory must necessarily be done u
computer codes that take into account all relevant astroph
cal and observational effects@4#. Nevertheless, there is som
value in also having an analytic treatment that, though no
accurate as possible, is as simple as possible while still
turing the main features of what is going on. The point is n
to compete with the computer codes, but rather to gain so
feeling for what is going on, in order to help us judge ho
predictions for the cosmic microwave background fluctu
tions may change with alterations in the underlying assum
tions.

Analytic treatments of fluctuations in the cosmic micr
wave background already exist in the literature@5#. Our main
purpose in going over the same ground here is not to giv
more accurate or comprehensive treatment of acoustic o
lations, but to obtain simple expressions for the form fact
as examples to which to apply the asymptotic formulas
Cl derived in@1#. To derive analytic expressions for the tem
perature fluctuation it is necessary to neglect the contribu
of radiation and neutrinos to the gravitational field, whi
should be a fair approximation near the first Doppler pe
but not much beyond that. We employ a purely hydrod
namic treatment, relying on the Boltzmann equation o
implicitly in the values used for the shear viscosity and h
conduction coefficients; the effects of viscosity and heat c
duction are included from the beginning, not just by insert
damping factors; and ‘‘Landau’’ damping due to the fin
duration of the era of last scattering is included along w
‘‘Silk’’ damping due to shear viscosity and heat conductio
As far as I know, this is the first work to obtainexplicit
analytic expressions for the temperature fluctuations that
correct within these approximations.

Section III presents an analytic calculation of the evo
tion of perturbations in the synchronous gauge up to the t
12351
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of last scattering, which is then used in Sec. IV to calcul
the form factors. For very small wave numbers the fo
factors are found to be

F~k!→123k2tL
2/223@2j211j22ln~11j!#k4tL

4/41 . . . ,
~6!

G~k!→3ktL23k3tL
3/2~11j!1 . . . , ~7!

while for wave numbers large enough to allow the use of
WKB approximation, i.e.,ktL>j, the form factors are@6#

F~k!5~112j/k2tL
2!21@23j12j/k2tL

2

1~11j!21/4e2k2dD
2
cos~kdH!#, ~8!

and

G~k!5A3~11j!23/4~112j/k2tL
2!21e2k2dD

2
sin~kdH!.

~9!

HeretL is the time of last scattering;j is 3/4 the ratio of the
baryon to photon energy densities at this time:

j5S 3rB

4rg
D

t5tL

.27VBh2; ~10!

dH is the acoustic horizon size at this time, given by E
~75!, anddD is a damping length, given by Eq.~89!.

II. FORM FACTORS

We first justify Eq. ~1! under very general assumption
not limited to those of Sec. III. At and before the time of la
scattering the spatial curvature was negligible, so small p
turbations in the cosmic metric and in all particle distrib
tions at these times may conveniently be expressed as
rier transforms of functions of a co-moving wave numb
vector q and the timet. Effects like pressure forces tha
involve spatial gradients are important for a givenq only
when the physical wave numberq/a(t) is at least as large a
the cosmic expansion rate, which is of order 1/t. Sincea(t)
vanishes fort→0 no more rapidly thanAt, the ratioqt/a(t)
vanishes ast→0, so whatever the value ofq, there will
always be some time early enough so that pressure fo
and other effects of spatial gradients are negligble. At s
early times, perturbations grow or decay with powers
time. Generically there is one most rapidly growing mod
and this is the one that eventually grows into the pertur
tions seen at the time of last scattering. Since the equat
for the time dependence of the perturbations are linear,
Fourier transforms of all perturbations to the metric and p
ticle distributions during the era of last scattering will the
be proportional to the Fourier transformeq of any one of
these perturbations at any sufficiently early time. For de
niteness, we can takeeq to be q22 times the Fourier trans
form of the fractional perturbation to the total energy dens
at some very early time, a choice that will prove to be co
venient in Sec. IV.

Since the fractional change in the observed microwa
1-2



bu
ca

ce
e

-
ll

o
ng
hy
lcu

re

t-
o
e
ro
o
te

r

es

ak
t

o

e
:

ce

om
o-
e a

e
tion
-

ic

ry
an
er-

of

fi-

st
at-
ted

a by
ton
ter-
w a
he

ib-
e of
not
be

FLUCTUATIONS IN THE COSMIC . . . . I. . . . PHYSICAL REVIEW D64 123511
background temperature seen in a directionn̂ is linear in the
perturbations to the metric and photon and matter distri
tions at various times during the era of last scattering, it
be written as

DT~ n̂!

T
5E dtE d3q eiq•n̂r (t)eqJ~q,q̂•n̂,t !, ~11!

where r (t) is the co-moving radial coordinate of a sour
scattering light at timet that would be received at th
present. Note that the quantityJ can depend onq only
through the scalarsq andq̂•n̂, because the differential equa
tions governing the growth of perturbations are rotationa
invariant, even though the initial fluctuation amplitudeeq is
not.

We can make a great simplification in Eq.~11! by taking
advantage of the fact that the Robertson-Walker radial co
dinater (t) is nearly constant during the era of last scatteri
Using equilibrium statistical mechanics to calculate the
drogen ionization, and simple Thomson scattering to ca
late scattering probabilities, one finds that forVB /VM50.2,
the probability that a photon will never again be scatte
rises from 2% at 3360 K to 98% at 2780 K.~This depends
on the assumed value ofVB /VM , but very weakly; for in-
stance, forVB /VM50.12, the probability of no future sca
tering rises from 2% to 98% as the temperature drops fr
3400 K to 2810 K.! For definiteness, we will round off thes
temperatures, taking the era of last scattering to extend f
a temperature of 3400 K down to 2800 K, corresponding t
drop in redshiftz from 1220 to 1010. The radial coordina
can be expressed in terms ofz by the well-known formula

r ~ tz!5
1

VC
1/2H0a~ t0!

3sinhFVC
1/2E

1/(11z)

1 dx

AVLx41VCx21VMx
G ,

~12!

where VC[12VL2VM , a(t) is the Robertson-Walke
scale factor,tz is the time corresponding to redshiftz, andt0
is the present. This approaches a constant limit forz→`,
and therefore varies very little in the range fromz51010 to
z51220 ~or, for that matter, even in the range fromz
51010 toz→`). For instance, if we take the popular valu
VM50.3 andVV50.7, then the fractional change inr (tz) as
z drops from 1220 to 1010 is 0.0034. We can therefore t
the exponential in Eq.~11! outside the time integral, so tha

DT~ n̂!

T
5E d3q eiq•n̂ r (tL)eqE dt J~q,q̂•n̂,t !, ~13!

wheretL is any conveniently chosen time during the era
last scattering, say at a redshiftzL51100.

It is convenient to replace the co-moving wave numb
vectorq with the physical wave number at last scattering

k[q/a~ tL!. ~14!
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Equation~13! may then be written

DT~ n̂!

T
5E d3k eik•n̂dAekE dt J~k,k̂•n̂,t !, ~15!

where J(k,k̂•n̂,t)[a(tL)3J(q,q̂•n̂,t), ek[eq , and dA
[r (tL)a(tL) is the angular diameter distance of the surfa
of last scattering.

Part of the observed temperature fluctuations arise fr
perturbations in scalar quantities, like the gravitational p
tential and the intrinsic temperature, and therefore mak
contribution to J that is independent ofn̂. Another part
arises from fluctuations in a vector, the velocity of th
baryon-electron plasma, and therefore makes a contribu
that is linear inn̂. Leaving aside other effects like gravita
tional radiation, the functionJ therefore takes the form

J~k,k̂•n̂,t !5F~k,t !1 i k̂•n̂ G~k,t !, ~16!

with F(k,t) arising from the Sachs-Wolfe effect and intrins
temperature fluctuations, andG(k,t) arising from the Dop-
pler effect. Using this in Eq.~15! then gives

DT~ n̂!

T
5E d3k eik•n̂dA@F~k!1 i k̂•n̂ G~k!#ek , ~17!

which is the same as Eq.~1!, with the form factors identified
as time integrals

F~k![E dt F~k,t !, G~k![E dt G~k,t !. ~18!

This time integration introduces a damping of the oscillato
part of the form factors, but this will be less important th
the effects of heat conduction and viscosity in the time int
val between recombination and last scattering.

III. EVOLUTION OF PERTURBATIONS IN THE
SYNCHRONOUS GAUGE

We now turn to the approximate analytic calculation
the form factors.

A. General approximations

We make two assumptions that will allow great simpli
cations in this calculation:

~i! The contents of the universe up to the time of la
scattering are taken to consist of collisionless cold dark m
ter, collisionless neutrinos, a baryon-electron plasma trea
as a perfect fluid, and a photon gas coupled to the plasm
Thomson scattering, with a short but non-negligible pho
mean free time. The finite duration of the era of last scat
ing, when the mean free time becomes too large to allo
hydrodynamic treatment, will be taken into account by t
time integrals in Eq.~18!.

~ii ! It is assumed that only the cold dark matter contr
utes to the expansion rate of the universe before the tim
last scattering and to perturbations in the metric. This is
a very good approximation, but it is the price that has to
1-3
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STEVEN WEINBERG PHYSICAL REVIEW D 64 123511
paid to get analytic expressions for the observed tempera
fluctuation. To minimize errors introduced by the incorre
treatment of acoustic oscillations before the cross-over t
tC when the photon energy density equaled the dark ma
energy density, it is necessary to restrict the wave numbe
be less than an upper bound given in Sec. V.

B. Gravitational field

We begin by reminding the reader of the equations t
govern perturbations in the metric and fluid properties bef
the time of last scattering. The perturbed metric is taken

gmn total~x,t !5gmn~ t !1hmn~x,t !, ~19!

wheregmn is the Robertson-Walker metric in co-moving c
ordinatesx with spatial curvature neglected:

g00521, g0i50, gi j 5a2~ t !d i j , ~20!

and hmn(x,t) is a small perturbation. We work in the syn
chronous gauge, defined by the conditions

h0i5h0050, ~21!

and by the requirement that the cold dark matter partic
have time-independent spatial coordinates. These condit
leave an unbroken residual gauge invariance, under the tr
formation

hi j →hi j 1a2S ]ei

]xj
1

]ej

]xi
D , ~22!

with ei an arbitrary function ofx but independent oft. As we
will see, in the synchronous gauge the evolution of the co
pressional modes that concern us here depends on the g
tational field only through a quantity that is invariant und
these transformations,

c[
]

]t S hkk

2a2D . ~23!

The spatial curvature is negligible at and before the time
last scattering, so it will be convenient to expressc(x,t) as a
Fourier transform:

c~x,t !5E d3q eiq•xcq~ t !. ~24!

Likewise, the total proper energy density of each of the c
stituents of the universe~labeledf 5D,B,g for dark matter,
the baryon-electron plasma, and photons, respectively! is
written

% f total~x,t !5% f~ t !1dr f~x,t !,

dr f~x,t !5E d3q % f q~ t !eiq•x, ~25!
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with quantities carrying a subscriptq denoting small pertur-
bations. Under our second assumption, the gravitational fi
equation in the synchronous gauge reads@7#

d

dt
~a2cq!524pGa2rDq . ~26!

C. Dark matter perturbations

The dark matter particles are assumed to ride on the
panding coordinate mesh, with negligible peculiar velociti
~This is not affected by perturbations to the gravitation
field, because in the synchronous gauge these perturba
leave G00

i zero.! Hence their energy-momentum tensor h
only a 00-component,TD

005%D total. For the metric~19!–
~21!, the energy conservation equationTD

0m
;m50 then reads

drDq

dt
1

3ȧ

a
rDq1cqrD50

or in other words

ddDq

dt
52cq , ~27!

wheredDq is the fractional dark matter density perturbatio

dDq[rDq /rD . ~28!

Combining Eqs.~26! and ~27! gives

d

dt S a2
ddDq

dt D54pGa2rDdDq . ~29!

During the dark matter dominated era,a}t2/3 and 4pGrD
52/3t2, so Eq.~29! can be written

d

dt S t4/3
ddDq

dt D5
2

3
t22/3dDq . ~30!

As is well known, the two solutions go ast21 and t2/3. If
these two modes have comparable strengths for very smt,
then the relevant solution is the one that is most rapi
growing, which we shall write as

dDq5Nqt
2/3, cq52

2

3
Nqt

21/3. ~31!

~The normalization constantNq will play a role in this sec-
tion similar to that of the constanteq in Sec. II.!

D. Plasma and photon perturbations

Next, let us consider the imperfect fluid formed by th
baryon-electron plasma and the photons. It has a total ve
ity four-vector of the form

U total
m ~x,t !5Um1E d3q Uq

m~ t !eiq•x ~32!

whereUm is the unperturbed velocity four-vector
1-4
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U051, Ui50, ~33!

andUq
m(t) is a small perturbation. The normalization cond

tion gmn totalU total
m U total

n 521 tells us that the first-order per
turbations are purely spatial,

Uq
0~ t !50. ~34!

We will be considering only compressional modes, so
will assume that the spatial part ofU total

m is the gradient of a
velocity potentialu:

Uq
i ~ t !5 i qiuq~ t !. ~35!

We will write the conservation laws for this fluid in terms o
fractional perturbations to the baryon-electron plasma m
density and the photon energy density:

dBq[rBq /rB , dgq[rgq /rg . ~36!

The particle conservation equation@8# for the baryon-
electron plasma mass density is then

ddBq

dt
5q2uq2cq . ~37!

The energy conservation equation@9# for the baryon-
electron-photon fluid is

d

dt
~rBdBq1rgdgq!1

3ȧ

a S rBdBq1
4

3
rgdgqD

52S rB1
4

3
rgD ~cq2q2uq!2xq2

3S Ṫuq1
T

a2

d~a2uq!

dt
1

Tdgq

4a2 D , ~38!

whereT is the unperturbed photon temperature andx is the
coefficient of heat conduction caused by photon ene
transport. Finally, the momentum conservation equation@10#
is

F d

dt
116pGhGF2a5S rB1

4

3
rg2xṪDuq

1xTa3S dgq

4
1

d

dt
~a2uq! D G

5
1

3
a3rgdgq2

4ha3

3
@2q2uq1cq#, ~39!

whereh is the coefficient of viscosity due to photon mome
tum transport. By using Eq.~37! and recalling thatrB
}a23, rg}a24, and T}a21, we can simplify Eq.~38! to
read
12351
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ss
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d

dt Fdgq2
4

3
dBqG5

xT

rg
F2

1

a

]

]t
@a~ ḋBq1c!#2

q2dgq

4a2 G .

~40!

Also, using Eq.~37! lets us write Eq.~39! as

F d

dt
116pGhGFa5S rB1

4

3
rg2xṪD ~ ḋBq1cq!

2xTa3S q2dgq

4
1

d

dt
@a2~ ḋBq1cq!# D G

52
q2a3

3
@rgdgq14hḋBq#. ~41!

Now, h/rg and xT/rg are of the order of the photon
mean free time, which as long as hydrodynamics is ap
cable must be short compared with the cosmic age. There
we can neglecth andx everywhere, except where they a
accompanied with a maximum number of space and/or t
derivatives ofdBq or dgq , in which case powers of a high
wave number can compensate for the smallness ofx or h.
Then Eqs.~40! and ~41! simplify further to

d

dt Fdgq2
4

3
dBqG5

xT

rg
F2 d̈Bq2

q2dgq

4a2 G , ~42!

d

dt Fa5S rB1
4

3
rgD ~ ḋBq1cq!G

2xTa3S q2ḋg

4
1a2

d3dBq

dt3
D

52
q2a3

3
rgdgq2

4q2ha3

3
ḋBq . ~43!

We also neglect terms of second order inx and/orh, so we
can setḋBq equal to 3ḋgq/4 in the dissipative terms in Eqs
~42! and ~43!. Then using Eq.~42! to eliminatedBq in Eq.
~43! gives our differential equation fordgq :

d

dt Fa5S rB1
4

3
rgD S 3

4

ddgq

dt
1cqD G

1
3a5xTrB

4rg
S 3

4

d3dgq

dt3
1

q2

4a2

ddgq

dt D
52

q2a3

3
rgdgq2hq2a3

ddgq

dt
. ~44!

It will be convenient to multiply witht4/3/a5rg . Recalling
that rg}a24, rB}a23 anda}t2/3, this gives finally
1-5
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STEVEN WEINBERG PHYSICAL REVIEW D 64 123511
t2/3
d

dt F ~11R!t2/3
ddgq

dt G1
k2tL

4/3

3
dgq1

hk2tL
4/3

rg

ddgq

dt

1
RxT

4rg
S 3t4/3

d3dgq

dt3
1k2t4/3

ddgq

dt D
52

4t2/3

3

d

dt
@~11R!t2/3cq#5

8Nq

27
~113R!, ~45!

where~as before! tL is some typical time of last scattering
k[q/a(tL)5qt2/3/tL

2/3a(t), and

R[3rB/4rg}a. ~46!

We next turn to two different ranges of wave number
which it is possible to find an analytic solution of this equ
tion.

E. Solution for large k

We consider first wave numbers that are large enoug
allow the use of the WKB approximation. For this purpos
we introduce a new variable

z[~ t/tL!1/3. ~47!

~This is the usual conformal timeh, but with a different
normalization.! Multiplying Eq. ~45! with 9tL

2/3 then gives

d

dz F ~11jz2!
ddgq

dz G13k2tL
2dgq1

3hk2tL

rgz2

ddgq

dz

1
jxT

4rg
S 1

tL

d3dgq

dz3
13k2tL

ddgq

dz D
5

8NqtL
2/3

3
~113jz2!. ~48!

Here we have again assumed that dissipative terms are
ligible except where a maximum number of derivatives~i.e.,
factors ofk and/orz-derivatives! acts ondgq . We have also
used the fact thatR}a to setR5jz2, wherej is the ratio
~46! at time tL .

In the absence of dissipation, Eq.~48! would have the
exact solution

dgq5
8NqtL

2/3~113jz2!

9~k2tL
212j!

. ~49!

~This is actually independent of our choice oftL , becausej
and k2tL

2 both scale astL
2/3.! The neglect of dissipation is

justified in this solution, because the rate of change of
expression does not yield a factor of the large wave num
k that could compensate for the smallness ofx andh.

To this particular solution, we must add a suitable solut
of the corresponding homogeneous equation. In the abs
of damping we can find exact solutions of the for
Pn( iAjz), wherePn(z) is the usual Legendre function, an
n is either of the roots of the quadratic equationn(n11)5
12351
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23k2tL
2/j. But this will not be useful in calculating theCl in

our companion paper@1#. To get a more useful result, w
must use the WKB approximation.

Under the assumption that

ktL>j ~50!

we can find a pair of approximate solutions of the homo
neous equation

dgq}exp~6 iw! ~51!

with

w5A3ktLE
0

z dz

A11jz2
~52!

provided we neglect dissipative terms. Note that ifj as well
as h and x were zero, then these homogeneous soluti
would be exact. More generally, inspection of Eq.~48! shows
that these are approximate solutions if the fractional rate
change of 11jz2 is small compared with the rate of chang
of the phasew:

2jz

11jz2
<

ktLA3

A11jz2
,

which is true at all times if and only if it is satisfied atz
51, i.e.,

ktL>
2j

A3~11j!
.

For plausible values ofj this condition is actually somewha
weaker than Eq.~50!, but we will need the greater strength o
Eq. ~50! later, when we calculate the plasma velocity pote
tial.

We can do better than Eq.~51!, and include the effects o
viscosity and heat conduction, by seeking solutions of
form dgq5A exp(6iw), with A a slowly varying real ampli-
tude. By calculating the rate of change of the Wronskian
these two solutions @and replacing d3dgq /dz3 with
23k3tL

2(11jz2)21ddgq /dz in the dissipative term#, we
easily find the WKB solutions of the homogenous equati

dgq}~11jz2!21/4exp@6 iw2k2D 2#, ~53!

where

D 253tLE
0

zF h

2rg~11jz2!
1

xTj2z4

8rg~11jz2!2Gz2dz. ~54!

The viscosity and heat conduction coefficients are given
@11#

h5
16

45
rgtg , xT5

4

3
rgtg . ~55!

Heretg is the photon mean free time
1-6
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tg5
1

sTnec

5
tL~6pGmp!1/2~VM /VB!1/2z9/2

sTc~2pmekBT0 /h2!3/4~11zL!3/4~12Y/2!1/2

3expS z2D

2kBTL
D , ~56!

wheresT is the Thomson scattering cross section,h is ~only
here! the original Planck constant,T052.738 K is the
present microwave background temperature,TL53100 K is
the temperature at last scattering,kB is Boltzmann’s constant
Y..23 is the primordial helium abundance, andD
513.6 eV is the hydrogen ionization energy.

The relevant solution is again the one that increases m
rapidly at early times, which we can find by requiring th
dgq→0 asz→0. In the limit z→0 the phasew vanishes as
O(z), while D 2 vanishes more rapidly because the me
free time of photons is very small at early times. Hence
linear combination of the particular inhomogeneous solut
~49! and the homogeneous solutions~53! that grows most
rapidly at early times is

dgq5
8NqtL

2/3

9~k2tL
212j!

@113jz22~11jz2!21/4e2k2D 2
cosw#.

~57!

@We would be able to neglect the term 2j in the denominator
only under the conditionktL>A2j, which for plausible val-
ues ofj is stronger than our assumption~50!.#

To calculate the velocity potential of the plasma-phot
fluid for large wave numbers, we will also need the rate
change ofdBq . At times of ordertL , the time derivatives of
jz2, w, andD 2 are of the orders ofj/tL , k, andtL , respec-
tively, where tL is the photon mean free timet'h/rg
'xT/rg at time tL . We are assuming thatktL>j, so the
time derivative ofw is larger than the time derivative ofjz2.
Equation ~56! shows that damping becomes important
k2tLtL>1, but even for such large values ofk we can still
limit ourselves to the case

ktL<1, ~58!

in which case the time derivative ofw is also larger than the
time derivative ofk2D 2. Hence for wave numbersk in the
range defined by Eqs.~50! and ~58!, we have

ddgq

dt
.

8NqtL
2/3ke2k2D 2

sinw

9A3~11jz2!3/4~k2tL
212j!z2

. ~59!

The dissipative terms in Eq.~42! are smaller than this by a
factor kt, so here we can takeḋBq.3ḋgq/4, and Eqs.~37!,
~31! and ~59! then give the velocity potential

uq5
2Nq

3k2a2~ tL!tL
1/3z

F211
ktLe2k2D 2

sinw

A3~11jz2!3/4~k2tL
212j!z

G .

~60!
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F. Solution for small k

Here we can neglect viscosity and heat conduction.
k50, Eq. ~48! has an obvious solution

dgq54NqtL
2/3z2/354dDq/3. ~61!

To this we can add any linear combination of the two so
tions of the corresponding homogeneous solution, for wh
dgq is respectively time-independent or proportional to

E
0

z dz

11jz2
,

which near the beginning of the dark-matter dominated
goes asz. As z increases these homogeneous solutions
come negligible compared with the inhomogeneous solu
~61!, so at later times the solution fork50 is given by Eq.
~61!.

To get the term indgq of first order ink2, we can use the
solution ~61! in the terms in Eq.~48! proportional tok2, so
that

d

dz F ~11jz2!
d

dz S 3

4
dgq2dDqD G523k2tL

2dDq . ~62!

Discarding a homogeneous term for the same reason as
fore, we have

d

dz S 3

4
dgq2dDqD52

k2tL
2z dDq

11jz2
~63!

which gives

dgq5
4NqtL

2/3

3
z2F12

k2tL
2

2 S 1

j
2

1

z2j2
ln~11jz2!D 1•••G .

~64!

Also, Eqs.~37!, ~27!, ~63! and~31! give the plasma velocity
potential fork→0 as

uq5
1

q2

d

dt
~dBq2dDq!→2

NqtL
5/3z

3a2~ tL!~11jz2!
. ~65!

As we will see, this provides a small correction to the Do
pler shift, which for smallk will turn out to be mostly due to
perturbations in the gravitational field.

IV. OBSERVED TEMPERATURE FLUCTUATIONS

There are three separate sources of the observed tem
ture fluctuation in the cosmic microwave background: t
Sachs-Wolfe effect due to perturbations in the gravitatio
potential, the Doppler effect due to plasma peculiar velo
ties, and the intrinsic temperature fluctuations themselv
We will consider each of these in turn, and then put t
results together. In calculating the Sachs-Wolfe and Dopp
contributions, we will use a non-relativistic approach, taki
the effect of the gravitational field perturbations on the o
served photon temperature to consist entirely of the ti
1-7
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STEVEN WEINBERG PHYSICAL REVIEW D 64 123511
dilation caused by a Newtonian gravitational potential p
the Doppler shift caused by the gravitational acceleration
the source and receiver. This approach has the virtue of
ting useful results quickly, but the results obtained in t
need to be justified by a thoroughly relativistic treatment
the Sachs-Wolfe and Doppler effects, which will be given
the Appendix.

A. Sachs-Wolfe effect

We can define a Newtonian gravitational potentialf as
the solution of the Poisson equation

a22~ t !¹2f~x,t !54pGdrD~x,t ! ~66!

with the factora22 inserted to take account of the differen
between the Robertson-Walker co-moving coordinate ve
x used here and the coordinate vectora(t)x that measures
proper distances at timet. Using Eqs.~31! and ~25!, this
gives

f~x,t !524pGrD~ t !t2/3a2~ t !E d3q q22eiq•xNq

52
2a2~ t !

3t4/3 E d3q q22eiq•xNq . ~67!

It is important to note that this is time-independent duri
the dark matter era, whena(t)}t2/3.

This potential makes two separate contributions to
Sachs-Wolfe effect. There is a gravitational redshift, yield
a fractional fluctuation in the observed temperature in a
rection n̂ equal to f(r Ln̂)2f(0), where r L is the
Robertson-Walker radial coordinate of the surface of l
scattering. There is also a time-delay; if the unperturbed c
mic temperature reaches the valueTL.3000 K of last scat-
tering at a timetL , then the gravitational potential causes t
cosmic temperature in a directionn̂ to reach the valueTL at
a time @11f(r Ln̂)2f(0)#tL , so that the redshifted tem
perature seen now is changed by a fractional amount@12#:

2@ tLȧ~ tL!/a~ tL!#@f~r Ln̂!2f~0!#52
2

3
@f~r Ln̂!2f~0!#.

~This argument is valid only becausef is time-independent
otherwise we would have to consider the complete grav
tionally delayed time-history of the cosmic temperature,
done in the Appendix.! Combining the two effects, the ne
fractional change in observed temperature is

S DT~n!

T D
Sachs-Wolfe

5
1

3
@f~r Ln̂!2f~0!#. ~68!

As we shall see in the Appendix, this formula can be deriv
using the formalism of general relativity, which in the sy
chronous gauge gives the famous factor of 1/3 directly, w
out having to consider separately the gravitational reds
and expansion time delay.
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It will be convenient to rewrite Eq.~67! in terms of the
physical wave number at the time of last scattering,k
[q/a(tL), so that Eq.~68! gives

S DT~n!

T D
Sachs-Wolfe

5E d3k@eik•n̂dA21#ek , ~69!

whereek is an amplitude for fluctuations not processed
acoustic oscillations, defined by

ekd
3k[2

2Nqa
2~ tL!

9q2tL
4/3

d3q, ~70!

anddA5r La(tL) is the angular diameter distance of the su
face of last scattering.

B. Doppler shifts

The plasma velocity potentialuq calculated in Sec. III
yields a pressure-induced plasma velocity perturbation

vpressure~x,t !5a~ t !“E d3q eiq•xuq~ t !. ~71!

@The factor a(t) enters because it is the velocity in co
moving coordinates that is given by the co-moving gradi
of the velocity potential.# This yields a Doppler shift of the
temperature of the cosmic microwave background seen
direction n̂:

S DT~ n̂!

T
D

pressure Doppler

52 ia~ tL!E d3q n̂•q uq~ tL!eiq•n̂r L

52 i E d3k n̂• k̂ ekg~k!eik•n̂dA,

~72!

with the form factorg(k) given by Eq.~65! for small k as

g~k!5
3k3tL

3

2~11j!
~73!

and for largek by Eq. ~60! as

g~k!53ktL2A3~11j!23/4~112j/k2tL
2!21e2k2dD

2
sin~kdH!

~74!

where j as before is 3/4 the ratio of baryon and phot
energy densities at the time of last scattering,DL is the
damping lengthD given in Eq.~56!, evaluated atz51 ~ac-
tually, as discussed in the next section, atz a little less than
unity!, and dH is the acoustic horizon at the time of la
scattering:

dH5A3tLE
0

1 dz

A11jz2
5

A3tL

Aj
ln~Aj1A11j!. ~75!

In the non-relativistic approach used here, there is also
additional velocity perturbation induced by the gravitation
1-8
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potentialf(x). The proper peculiar velocityvgrav produced
in this way is given by the equation of motion@13#

]

]t
vgrav~x,t !1

ȧ~ t !

a~ t !
vgrav~x,t !52

1

a~ t !
“f~x!. ~76!

Because the gravitational potentialf is time-independent
this has the simple solution

vgrav~x,t !52a21~ t !t “ f~x!5
2ia~ t !

3 t1/3 E d3q q22q eiq•xNq .

~77!

This contributes a fractional temperature shift seen in a
rection n̂:

S DT~ n̂!

T
D

gravity Doppler

52n̂•@vgrav~ n̂r L ,tL!2vgrav~0,t0!#

53i E d3k~ k̂•n̂!ktLek

3Feik•n̂dA2
tL
1/3a~ t0!

t0
1/3a~ tL!

G , ~78!
12351
i-

wheret0 is the present time.~A general relativistic derivation
of this result in the synchronous gauge is given in the A
pendix.!

C. Intrinsic temperature fluctuations

The fractional change in the photon temperature is o
fourth the fractional change in the photon energy dens
The contribution of intrinsic density fluctuations at the tim
tL of last scattering to the fractional change of temperat
seen coming from a directionn̂ is, therefore,2

S DT~ n̂!

T
D

intrinsic

5
drg~ n̂r L ,tL!

4rg~ tL!
5

1

4E d3q eiq•n̂r Ldgq~ tL!.

~79!

Equations~57!, ~64! and ~70! then give

S DT~ n̂!

T
D

intrinsic

5E d3k ek f ~k!eik•n̂dA, ~80!

with the partial form factorf given by
lue of the
ntrinsic
hange
f ~k!5H 23k2tL
2/213@j212j22ln~11j!#k4tL

4/41•••, k→0

~112j/k2tL
2!21@2123j1~11j!21/4e2k2D L

2
cos~kdH!#, k large.

~81!

D. Total temperature fluctuations

We now put together the fractional temperature fluctuations given by Eqs.~69!, ~72!, ~78!, and ~80!, and obtain the total
fractional temperature fluctuation

S DT~ n̂!

T
D 5E d3k ekH @F~k!1 i k̂•n̂G~k!#eik•n̂dA2123ik•n̂

tL
4/3a~ t0!

t0
1/3a~ tL!

J , ~82!

whereF(k) is the total scalar form factor, given by Eqs.~69!, ~80!, and~81! as

F~k!511 f ~k!

5H 123k2tL
2/223@2j211j22ln~11j!#k4tL

4/41 . . . , k→0,

~112j/k2tL
2!21@23j12j/k2tL

21~11j!21/4e2k2D L
2
cos~kdH!#, k large

~83!

andG(k) is the total dipole form factor, given by Eqs.~72!, ~73!, ~74!, and~78! as

2There is a subtlety here. To the extent that the opacity drops sharply from 100% to zero, last scattering occurs at a fixed va
perturbedtemperatureT1dT, near 3000 K, rather than at a fixed value of the unperturbed temperature or the time. The effect of the i
temperature fluctuationdT(t) is thus to change the time of last scattering, in such a way as to produce a c
2dT in the value of theunperturbedtemperatureT(t) at this time. SinceT(t)}1/a(t), we then haveda/a51dT/T at the time of last
scattering, so that the observed temperature is shifted by the change in the cosmological redshift by a fractional amountDT/T5da/a5
1dT/T.
1-9
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G~k!53ktL2g~k!5H 3ktL23k3tL
3/2~11j!1 . . . , k→0

A3~11j!23/4~112j/k2tL
2!21e2k2D L

2
sin~kdH!, k large.

~84!
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The last two terms in the curly brackets in Eq.~82! contrib-
ute only to the multipole coefficientsCl for l 50 and l 51
@15#, and may therefore be dropped@as they are in Eq.~1!# in
considering the higher multipoles.

We see that the WKB solution for largek gives a poor
picture of what happens fork→0, except in the casej!1,
wheredH5A3tL , in which case the above pairs of expre
sions forF(k) andG(k) agree for smallk.

As discussed in Sec. II, it still remains to average over
time of last scattering. The effect of this averaging on
damping factor exp2k2D 2 is small @14#. Otherwise, the av-
eraging overt chiefly affects the sinkdH and coskdH factors
in Eqs.~83! and~84!, which oscillate rapidly with the time o
last scattering whenk is large. We will approximate the prob
ability distribution of the actual time of last scatteringt as a
Gaussian of the form (1/p Dt)exp„2(t2tL)2/Dt2

…, wheretL
is a nominal time of last scattering. ReplacingtL in the sines
and cosines in Eqs.~83! and ~84! with t, multiplying with
this probability distribution, and integrating overt then gives
the same result for the form factors for largek , but with an
additional term now added toD L

2 :

DD L
25dH

2 S Dt

2tL
D 2

. ~85!

This is a sort of ‘‘Landau damping,’’ except that the dampi
arises from a spread in the time at which the temperatur
the medium is observed rather than from a spread in w
numbers. As we will see in the next section, this term ma
a smaller but not insignificant contribution to the total dam
ing.

V. DISCUSSION

In a companion paper@1# we show how to use the formul
~82! for the total temperature fluctuation to derive expre
sions for the coefficientCl of the term of multipole numberl
in the temperature fluctuation correlation function for gene
form factorsF(k) andG(k). As we will see there, the con
tribution of the scalar form factorF(k) to Cl arises mostly
from wave numbers of orderl /dA ~wheredA is the angular
diameter distance of the surface of last scattering!, while this
approximation is much worse for the contribution of the
pole form factorG(k).

For the present, we will content ourselves with noting th
if we tentatively use the WKB approximation, neglect dam
ing effects, and drop the terms in the second line of Eq.~83!
proportional toj/k2tL

2 , then forj less than 0.311@that is, for
3j,(11j)21/4# the squared scalar form factorF2(k) has
peaks at the wave numbers

kn5np/dH ~86!
12351
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~with n51,2, . . . ),with higher peaks for oddn @where the
two terms inF(k) have the same sign# than for evenn. The
minima are at the zeros ofF(k). For j..311 the only peaks
are those forn odd, and the minima are atn even. This
suggests that there should be peaks inCl near l n5(2n
21)pdA /dH and either lower peaks or dips ne
2npdA /dH , depending on the value ofj. These peaks are
known as the Doppler peaks@though Eq.~84! shows that the
contribution of the Doppler shift is very small at all the wav
numberskn#. These results depend critically on the negat
sign of the term23j in the second line of Eq.~83!; if this
term had turned out to be positive then forj..311 the po-
sitions of the peaks and dips would be interchanged. Des
what is sometimes said@16#, there is no way without detailed
calculations to see that the first Doppler peak should be
l .pdA /dH , rather than at a multipole number twice a
large.

We can now check whether the WKB approximation us
in Sec. III E is valid at the first Doppler peak. According
Eqs.~86! and ~75!, we have

k1tL5
pAj

A3 ln~Aj1A11j!
, ~87!

so the ratio of the wave number at the first Doppler peak
the mininum wave numberkmin allowed by the inequality
~50! is

k1

kmin
5

p

A3j ln~Aj1A11j!
. ~88!

The WKB approximation is valid at wave numbers down
the first Doppler peak if this ratio is sufficiently larger tha
unity. For instance, forVBh250.03 we havej50.81, so Eq.
~88! gives k1 /kmin52.5, making the WKB approximation
fairly good at the first Doppler peak. The WKB approxim
tion is somewhat better atk1 for smaller values ofVBh2,
though it still breaks down at smaller wave numbers unl
VBh250. For all plausible values ofj the WKB approxima-
tion is excellent at the higher Doppler peaks.

Next, let us consider the importance of damping. It mig
seem that we should calculate the damping lengthDL by
integrating in Eq.~54! up to the time of last scattering, cor
responding toz51. But at the nominal time of last scatterin
~defined so that the probability of any future scattering
50%), the photon collision rate 1/tg given by Eq.~56! is
0.2AVB /VM/tL , which is already considerably smaller tha
the expansion rate 2/3tL , so that we cannot trust the hydro
dynamic calculations used to obtain Eq.~54!. We will instead
integrate in Eq.~54! only up to a valuezmax of z at which the
photon collision rate becomes equal to the expansion r
and set
1-10
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tg.
3tL

2 S z

zmax
D 9/2

expS 2
D

2kBTL
~zmax

2 2z2! D .

The exponential factor~with D/2kBTL525.5) is so sharply
peaked at z5zmax that we can approximatezmax

2 2z2

.2zmax(zmax2z) in the exponent and setz equal tozmax ev-
erywhere else in the integral, giving

D L
2.

3tL
2

2zmax
3 S 8

15~11jzmax
2 !

1
j2zmax

4

2~11jzmax
2 !2D S kBTL

D D .

Furthermore,zmax is very close to unity.~For instance, for
VM /VB57.5, we havezmax50.96. That is, we carry the
damping integral down to a temperatureTL /zmax

2 .3360 K
instead of 3100 K.! Hence in this result we may as we
replacezmax with unity, so that

D L
2.

3tL
2

2 S 8

15~11j!
1

j2

2~11j!2D S kBTL

D D .

This approximation leads to the additional simplification th
the damping length is independent of most of the parame
appearing in Eq.~56!, including the ratioVB /VM .

There is a smaller additional contribution from the av
aging over oscillatory terms, given by Eq.~85!. To evaluate
this Landau damping term, we will need the ratioDt/tL . We
noted in Sec. II that the probability that a photon will not
scattered again rises from 2% at about 3400 K to 98%
about 2800 K, with very little dependence on any cosmolo
cal parameters. Matching this to the probabilities calcula
from the approximation that the probability of scattering in
time interval fromt to t1Dt is a Gaussian (dt/p Dt)exp„
2(t2tL)2/Dt2

…, and using the relationT}t22/3, we find
Dt/tL50.10, so the contribution toD L

2 in Eq. ~85! has a
value 0.0025dH

2 . Adding this to the quantity we have calcu
lated from the integral~54! gives the total squared dampin
length

dD
2 [D L

21DD L
2.0.029tL

2S 8

15~11j!
1

j2

2~11j!2D
10.0025dH

2 . ~89!

For instance, forVBh250.02 ~so thatj50.54) Eq.~75!
gives dH51.61tL , so dD

2 50.0071dH
2 . Hence at the first

Doppler peak the argument of the damping exponentia
dD

2 k1
2.0.07. ~This depends very little onj.! We see that

damping is not important at the first Dopper peak, in agr
ment with more accurate computer calculations@17#, but is
quite significant at the second Doppler peak. One effec
damping is to shift the second and higher Doppler peak
lower values ofk and l.

In deriving the wave numbers~86! of the Doppler peaks
we also neglected the terms proportional toj/k2tL

2 in the
second line of Eq.~83!. At the first Doppler peak this quan
tity is given by Eq.~75! as
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k1
2tL

2
5

3

p2
@ ln~Aj1A11j!#2.

This is 0.20 forVBh250.03, for whichj50.81, and less for
smaller values ofVBh2. This approximation is thus fair a
the first Doppler peak, and becomes excellent at the hig
Doppler peaks.

Finally, we must ask what values ofk are small enough so
that we can ignore acoustic oscillations during the era w
the photon energy density exceeded the dark matter
baryon density, during which our analysis does not app
During this era the Robertson-Walker scale factora(t) went
ast1/2, and the speed of sound was 1/A3, so the phase chang
of acoustic oscillations up to the timetC of the crossover
from radiation dominance to matter dominance was

Dw5qE
0

tC dt

A3a~ t !
5

2qtC

A3a~ tC!
5

2ktL

A3
S tCa~ tL!

tLa~ tC! D .

The redshift zC at the crossover is given by 11zC
5VM /Vg543104VMh2. During the period from this
crossover to the present the scale factora(t) went ast2/3, so
the ratio in parentheses is

tCa~ tL!

tLa~ tC!
5A11zL

11zC
5

1

6.0AVMh2
.

Using this and Eq.~75! gives

Dw.
0.35

AVMh2 S k

k1
D Aj

ln~Aj1A11j!
. ~90!

For instance, if we takeVMh250.15 andVBh250.03, then
Dw.1 at the first Doppler peak, indicating that oscillatio
in the radiation-dominated era are becoming important at
first Doppler peak. This is not to say that we are making
error of order unity in the argumentw of the sines and co-
sines in Eqs.~83! and ~84!, but rather that the evolution o
the perturbations during this much of their oscillations h
not been reliably calculated. This source of error is mitiga
in Ref. @1# by including the effects of photon and neutrin
energies ona(t) in calculating the horizon distance.

Our formula~84! for the dipole form factorG(k) raises
the possibility of a maximum inG(k) at kdH5p/2, yielding
a ‘‘zeroth Doppler peak,’’ produced~as the first Doppler peak
is not! by the Doppler effect. ForVBh250.03 the wave
number at this supposed peak is too small for us to trust
WKB approximation used to derive Eq.~84! at this peak, but
the peak inG(k) at kdH5p/2 would definitely be there for
much smaller values ofVBh2. In particular, the calculations
of Ref. @1# show such a zeroth Doppler peak inCl at l
.0.45dA /dH for VB50.

Note added in proof.There was a numerical error in th
calculation of the equilibrium hydrogen ionization at vario
temperatures used in Secs. II and V. However, the quo
results for the range of redshifts in which last scattering
curs happen to agree well with the range of redshifts for
1-11
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scattering calculated in more exact non-equilibrium stud
of recombination, so this error has little effect on the resu
of this paper.
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APPENDIX: RELATIVISTIC CALCULATION OF THE
SACHS-WOLFE AND DOPPLER EFFECTS

In Sec. IV we gave a derivation of the Sachs-Wolfe a
Doppler effects, using heuristic arguments to supplem
relativistic results. For completeness, this appendix w
present a thoroughly relativistic derivation in the synch
nous gauge, taking into account the possible presence
vacuum energy, which may or may not be constant. T
goes over familiar ground, first considered by Sachs
Wolfe @18#, but as far as I know there is no published tre
ment of the ‘‘integrated Sachs-Wolfe effect’’ in the synchr
nous gauge that goes explicitly and analytically into the
tails presented here, including the possibility of a varyi
vacuum energy.

A light ray travelling toward the center of the Robertso
Walker coordinate system from the directionn̂ will have a
co-moving radial coordinater related tot by

05gmn totaldxmdxn52dt21@a2~ t !1hrr ~rn̂,t !#dr2,
~A1!

or in other words

dr

dt
52~a21hrr !

21/2.2
1

a
1

hrr

2a3
. ~A2!

The first-order solution is

r ~ t !5s~ t !1
1

2EtL

t dt8

a3~ t8!
hrr „s~ t8!n̂,t8…, ~A3!

wheres(t) is the zeroth order solution for the radial coord
nate which has the valuer L at t5tL :

s~ t !5r L2E
tL

t dt8

a~ t8!
. ~A4!

In particular, if the ray reachesr 50 at a timet0, then

05s~ t0!1
1

2EtL

t0 dt

a3~ t !
hrr „s~ t !n̂,t…. ~A5!

A time intervaldtL between successive light wave cres
at the timetL of last scattering produces a time intervaldt0 at
t0 given by the variation of Eq.~A5!:
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05dtLF 1

a~ tL!
2

1

2

hrr ~r Ln̂,tL!

a3~ tL!

1
1

2 a~ tL!
E

tL

t0 dt

a3~ t !
S ]hrr ~rn̂,t !

]r
D

r 5s(t)
G

1dtLS ]u~rn̂,tL!

]r
D

r 5r L

1dt0F2
1

a~ t0!
1

1

2

hrr ~0,t0!

a3~ t0!
G .

~A6!

@The velocity potential term on the right-hand side aris
from the pressure-induced change with time of the rad
coordinater L of the light source in Eq.~A5!.# The total rate
of change of the quantityhrr „s(t)n̂,t…/a2(t) in Eq. ~A6! is

d

dt

hrr „s~ t !n̂,t…

a2~ t !
5S ]

]t

hrr ~rn̂,t !

a2~ t !
D

r 5s(t)

2
1

a3~ t !
S ]hrr ~rn̂,t !

]r
D

r 5s(t)

,

so Eq.~A6! may be written

05dtLF 1

a~ tL!
2

1

2

hrr ~0,t0!

a2~ t0!a~ tL!

1
1

2 a~ tL!
E

tL

t0
dtH ]

]t S hrr ~rn̂,t !

a2~ t !
D J

r 5s(t)
G

1dtLS ]u~rn̂,t !

]r
D

r 5r L

1dt0F2
1

a~ t0!
1

1

2

hrr ~0,t0!

a3~ t0!
G .

~A7!

Hence to first order the ratio of the received and emit
frequencies is

n0

nL
5

dtL

dt0
5

a~ tL!

a~ t0! F12
1

2Et0

tLH ]

]t S hrr ~rn̂,t !

a2~ t !
D J

r 5s(t)

2a~ tL!

3S ]u~rn̂,t !

]r
D

r 5r L

G . ~A8!

This gives a fractional shift in the radiation temperature o
served at timet0 coming from directionn̂, from its unper-
turbed value:T05TLa(tL)/a(t0):
1-12
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S DT~ n̂!

T
D

SW, Dop

5
n0

a~ tL!nL /a~ t0!
21

52E
tL

t0
dtH ]

]t S hrr ~rn̂,t !

2 a2~ t !
D J

r 5s(t)

2a~ tL!S ]u~r Ln̂,tL!

]r
D

r 5r L

. ~A9!

Now we have to think about how to relate therr compo-
nent of the metric perturbation to the fieldc appearing in
Sec. III. In general, the metric perturbation may be written

hi j 5Ad i j 1
]2B

]xi]xj
. ~A10!

The quantity entering into the integrand in Eq.~A9! is then

]

]t S hrr ~rn̂,t !

a2~ t !
D 5a~rn̂,t !1

]2b~rn̂,t !

]r 2
, ~A11!

where

a[
]

]t S A

2a2D , b[
]

]t S B

2a2D . ~A12!

The fieldc defined by Eq.~23! is given by

c53 a1¹2b. ~A13!

We also need a relation betweena and b, which can be
taken from the field equation for the full metric perturbati
@19#:

¹2hi j 2
]2hik

]xj]xk
2

]2hjk

]xi]xk
1

]2hkk

]xi]xj
2a2ḧi j 1aȧ~ ḣi j 2d i j ḣkk!

12ȧ2d i j hkk12aähi j 528pG~d %2dp!a4d i j .

~A14!

~For simplicity we are here taking the universe to be spatia
flat, which is certainly a good approximation at high re
shifts, and seems to be a good approximation even
present.! The ]2/]xi]xj terms in Eq.~A14! give

A5a2B̈2aȧḂ22aäB5a
]

]t S a3
]

]t
~a22B! D . ~A15!

In terms of the quantities defined by Eq.~A12!, this is

a5
]

]t S 1

a

]

]t
~a3b! D . ~A16!

Hence for a given gravitational potentialc, we can calculate
b by solving Eq.~A13!:
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]

]t S 1

a

]

]t
~a3b! D1¹2b5c ~A17!

and then use Eq.~A16! to find a.
Now we return to the fractional temperature shift~A9!.

Using Eqs.~A11! and ~A16! let us write this as

S DT~ n̂!

T
D

SW, Dop

52E
tL

t0
dtS ]2b~rn̂,t !

]r 2 D
r 5s(t)

2a~ tL!

3S ]u~r Ln̂,tL!

]r
D

r 5r L

2E
tL

t0F ]

]t S 1

a

]

]t
@a3~ t !b~rn̂,t !# D G

r 5s(t)

.

~A18!

To do the first integral here we note that

S ]2b~rn̂,t !

]r 2 D
r 5s(t)

52
d

dt F S a2~ t !
]b~rn̂,t !

]t

1a~ t !ȧ~ t !b~rn̂,t !

1a~ t !
]b~rn̂,t !

]r
D

r 5s(t)
G

1S a2~ t !
]2b~rn̂,t !

]t2

13a~ t !ȧ~ t !
]b~rn̂,t !

]t
1@a~ t !ä~ t !

1ȧ2~ t !#b~rn̂,t !D
r 5s(t)

. ~A19!

The fractional temperature fluctuation~A18! may therefore
be written

S DT~ n̂!

T
D

SW, Dop

5S DT~ n̂!

T
D

early

1S DT~ n̂!

T
D

late

1S DT~ n̂!

T
D

integrated

, ~A20!

where
1-13
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S DT~ n̂!

T
D

early

52a2~ tL!S ]b~r Ln̂,t !

]t
D

t5tL

2a~ tL!ȧ~ tL!b~r Ln̂,tL!2a~ tL!

3S ]b~rn̂,tL!

]r
D

r 5r L

2a~ tL!

3S ]u~r Ln̂,tL!

]r
D

r 5r L

~A21!

S DT~ n̂!

T
D

late

5a2~ t0!S ]b~0,t !

]t D
t5t01a~ t0!ȧ~ t0!b~0,t0!1a~ t0!

3S ]b~rn̂,t0!

]r D
r 50

. ~A22!

DT~ n̂!

T
D

integrated

522E
t0

tL
dtS a2~ t !

]2b~rn̂,t !

]t2

14a~ t !ȧ~ t !
]b~rn̂,t !

]t
12@a~ t !ä~ t !

1ȧ2~ t !#b~rn̂,t !D
r 5s(t)

. ~A23!

In evaluating these three contributions to the tempera
fluctuation, it is helpful to note a relation betweenb and the
conventionally defined Newtonian potentialf that applies
not only for a gravitational field dominated by cold da
matter, but also in the presence of a constant vacuum en
Combining Eqs.~26! and ~27! gives

]

]t S 1

4pGa2rD

]

]t
a2c D 5c. ~A24!

Taking into account the relationrD}a23, an elementary ma
nipulation then gives

]

]t S 1

a

]

]t
a3c D5F4pGrD1

d

dt
S ȧ

a
D Ga2c. ~A25!

The equations of the Friedmann model give

d

dt
S ȧ

a
D 524pG~r1p!. ~A26!

A constant vacuum energy densityrV is associated with a
pressurepV52rV , while cold dark matter by definition ha
zero pressure, so as long as the gravitational field is do
nated by cold dark matter and a constant vacuum energy
right-hand side of Eq.~A26! is 24pGrV , and Eq.~A25!
then gives
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]

]t S 1

a

]

]t
a3c D50. ~A27!

Comparing Eq.~A16! with Eq. ~A20!, we now see that Eq
~A17! has the solution

¹2b5c. ~A28!

More specifically, if we define a Newtonian gravitational p
tential f by Poisson’s equation

a22¹2f54pGd%D , ~A29!

then Eqs.~26! and~A28! show that the Newtonian potentia
is

f52
]

]t
~a2b!. ~A30!

This result is not applicable if the gravitational field r
ceives significant contributions from a varying vacuum e
ergy, but even in quintessence theories it is reasonabl
assume that a vacuum energy density of any sort is neglig
at and near the time of last scattering.~It certainly must be
much less than the radiation energy density at the time
cosmological nucleosynthesis, in order to avoid the prod
tion of too much helium.! We have also been relying here o
the approximation that the radiation energy density is mu
less than the dark matter density at around the time of
scattering. Therefore the early-time contribution~A21! to the
temperature fluctuation can be calculated using the rela
~A28! andc}t21/3, which giveb}t21/3. Since herea}t2/3,
Eq. ~A30! then givesb52tf/a2, with f time-independent.
The early-time contribution~A21! to the temperature fluctua
tion may therefore be expressed as

S DT~ n̂!

T
D

early

5
1

3
f~rn̂ !1

tL

a~ tL!
S ]f~rn̂ !

]r
D

r 5r L

2a~ tL!

3S ]u~r Ln̂,tL!

]r
D

r 5r L

. ~A31!

This yields the Sachs-Wolfe temperature shift~68! and the
gravitationally induced Doppler shift~77! ~aside from the
terms arising fromr 50, about which we will say more
later!, as well as the pressure-induced Doppler shift~72!. The
famous factor 1/3 in the first term on the right-hand si
arises in the ‘‘Newtonian gauge’’ as the sum of a gravi
tional redshift equal tof, and a term in the intrinsic tem
perature fluctuation equal to22f/3, while in the synchro-
nous gauge used here this term is due entirely to the me
perturbation. It is a curious feature of the synchronous ga
that what we have called the gravitationally induced Dopp
shift also arises from the metric perturbation.

It is not appropriate to neglect the vacuum energy at
5t0, so it cannot be ignored in the early-time contributio
~A22! to the temperature fluctuation. Therefore in gene
this contribution isnot the same as ther 50 terms in Eqs.
~68! and~77!. Nevertheless, the terms in the early-time co
1-14
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tribution to the temperature fluctuation are only of zeroth a
first order inn̂ @like the r 50 terms in Eqs.~68! and~77!# so
these terms can only affect the multipole coefficients fol
50 andl 51.

This leaves the integrated term~A23! as the only correc-
tion to the results of Sec. IV forl>2. The integrand vanishe
if we ignore the vacuum energy and radiation energy,
which casea}t2/3 and b}t21/3, so the integral receives
contribution only fort neart0, and is therefore expected to b
a small correction@20#. Furthermore, although this integral
fairly complicated, it has a simple dependence onn̂. In the
presence of a vacuum energy,c(x,t) can have a fairly com-
plicated dependence on time, but, without pressure fo
acting on the dark matter, itsx dependence is the same as w
found in the absence of vacuum energy, given by Eqs.~31!
and ~70! as

c~x,t !5 f ~ t !E d3k eik•xk2ek ~A32!

with f (t) not proportional tot21/3 where the vacuum energ
is appreciable. For a constant vacuum energy,b is then given
by Eq. ~A28! as
d

t.
S.

D
ly-

J.

-

I.

a

ra
s

em

-
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b~x,t !52 f ~ t !E d3k eik•xek . ~A33!

The ‘‘integrated’’ contribution~A23! to the temperature fluc
tuation then takes the form

S DT~ n̂!

T
D

integrated

52E d3kE
t0

tL
dt eik•n̂s(t)ek$a

2~ t ! f̈ ~ t !

14a~ t !ȧ~ t ! ḟ ~ t !12@a~ t !ä~ t !

1ȧ2~ t !# f ~ t !%. ~A34!

It can be shown that this makes an additive contribution
l ( l 11)Cl that for largel goes as 1/l , with no interference
between this contribution to the temperature fluctuation a
the other contributions@21#. For a time-varying~but spatially
constant! vacuum energy the functionb(x,t) does not satisfy
the relations~A28! and ~A33!, but Eq.~A17! shows that its
spatial Fourier transform is nevertheless just proportiona
ek for largek, so the integrated term still makes a contrib
tion to l ( l 11)Cl that is proportional to 1/l for large l.
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