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Brane cosmology with a bulk scalar field
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We consider “cosmologically symmetridi.e., solutions with homogeneity and isotropy along three spatial
dimensions five-dimensional spacetimes with a scalar field and a three-brane representing our universe. We
write Einstein’s equations in a conformal gauge, using light-cone coordinates. We obtain explicit solajions:
assuming proportionality between the scalar field and the logarithm ofbiilk) scale factoryb) assuming
separable solutions. We then discuss the cosmology in the brane induced by these solutions.
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[. INTRODUCTION lem being rather difficult, it will be seen that the requirement
of obtaining exact analytical solutions is not easy to recon-
The idea that our world might be a brane embedded in &ile with the wish to obtain realistic cosmological solutions.
higher dimensional spacetime has generated lately an inteut we hope our solutions might be helpful to give some
sive research, notably in cosmology. In general, the confindhsights for the more general situation.
ment of matter on the brane leads to a cosmological evolu- In the present work, we have tried to obtain explicit solu-
tion in the brane which is different from the usual evolution tions, by using the conformal gauge and light-like coordi-
governed by Friedmann’s lafid]. nates, a technique which has been employed for instance in
Such a deviation is problematic for the “recent” history the case of an empty bulbut with a cosmological constant
of the universe, since the usual nucleosynthesis scenarld8] or in the case of a bulk with a scalar field, like here, but
would not work anymore. The simplest way to cure thiswith a vanishing potential9]. We have managed to obtain
problem[2] is to introduce a negative cosmological constant€Xplicit solutions by imposing two types @énsdze A first
in the bulk, in the manner of Randall and Sundr[8h and  Ansatz very powerful to integrate the full system of Ein-
usual cosmological evolution is recovered at late times whe#gtein’s equations, will be to assume a special relation be-
the energy density of cosmological matteis much smaller tween the scalar field and the bulk scale factor. As we will

than the brane tensionm (ﬁne_tuned so as to Compensate theShOW, it turns out that the bulk solution is then necessar“y
bulk cosmological constanf4,5]. static and one recovers some of the solutions obtained by

This solution, however, requires a fine-tuning between thé13]. A secondAnsatawill be to assume that the solutions are

brane tension and the bulk cosmological constant and eparable. In both cases, one must consider an exponential
would be desirable to obtain models where this requiremerieotential for the scalar field. _

can be evaded. This suggests the study of more complicated The plan of the paper is the following. In the second
models containing dynamical fields in the bulk. section, we introduce the general setup and write down the

As a first step, it is natural to consider the presence of dull system of equations. In the third section, we study the
scalar field in the bulk. This possibility has already beenSO'UtionS obtained with the additional constraint between the
investigated in several works, for various motivations. Onescalar field and the metric mentioned above. We then con-
of the first motivations to introduce a bulk scalar field was tosider, in the fourth section, the case of separable solutions.
stabilize[6] the distance between the two branes in the conThe fifth section is devoted to the cosmological evolution in
text of the first model introduced by Randall and Sundrumthe brane induced by the various bulk solutions we have
[7]. A second, more recent, motivation for studying scalarfound. We finally conclude in the last section.
fields in the bulk was the possibility that such a setup could
provide some clue to solve the famous cosmological constant
problem[8]. Il. THE MODEL

In this perspective, some effort has been devoted to the
construction of cosmological solutions, i.e., with time evolu-
tion in the brane, with a scalar field in the by®—12] (see
also the earlier solutions ¢13]). Several works have studied
in particular the impact of the presence of a scalar field in th
bulk on the cosmological evolution in the brane, without
trying to solve the full system of equations in the b{dld —
17]. However, if one wishes to evaluate quantitatively, and
not only qualitatively, the impact of the bulk scalar field on S:J d5x\/—_g{i(5)R— E(V )VAS—V(p)
the brane evolution, one needs in general a solution of the 242 20 A
bulk equations. It is the purpose of the present work to pro-
vide some solutions of the full system of equations and to +J N )
study the corresponding brane evolution. The general prob- 4

Let us first define our setup. We consider a scalar field
living in a five-dimensional spacetime endowed with the
metricg,g. We also assume the existence of a three-brane in
éhis spacetime in which unspecified matter is confined. The
action will be taken to be of the form
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where ®R is the scalar curvature of the five-dimensional no longer possible, simply because ingoing-outgoing waves

metric gag and where the second term is the action for thewill be scattered by the potential.

brane, which we leave unspecified at this stage, but which is The above system of equations applies only for the bulk

assumed to depend on the bulk scalar field in general. and must now be completed by boundary conditions at the
Since we consider only cosmological solutions, we will location of the brane. An alternative, equivalent, procedure

assume that the metric is isotropic and homogeneous alongould be to write down the complete Einstein and Klein-

the three ordinary spatial dimensions. Choosing the so-calle@ordon equations, with distributional source terms represent-

conformal gauge, the metric then reads ing the brane. Let us start with the boundary conditions for
o the metric componentsiA and B. They follow from the
ds’=gapdx dx®=e**V(—dt*+dy?) +e*A ¥ 5;dxXdX,  parmois-Israel junction conditions, which, for brane-

universes, take the forfr]

where we have supposed flat three-dimensional subspaces 1
for simplicity. Introducing the light-cone coordinatas=t (K, 1= —KZ(SW— —sgw), (10)
—y andv=t+y, the metric can be rewritten in the form 3

d<2= — e2Buv)qy dy +82A(u,v)5ijdxidxj_ 3) whereK ,, is the extrinsic curvature tensor associated to the
brane, and whereS,, is the four-dimensional energy-
The matter content of the five-dimensional spacetime is demomentum tensor of the matter confined in the brane, which
scribed by the energy-momentum tensor, which can be dds obtained from the variation of the brane action with re-
rived from the actior(1). The total energy-momentum tensor spect to the induced metrig,, . Since we investigate only
is then found to be of the form cosmological solutions, i.e., homogeneous and isotropic with
. respect to the three ordinary spatial dimensid)g, is nec-
T as= Indbdab— Oag E(Vc¢)(VC¢)+V(¢) +T2rBa"e, essarily of the perfect fluid form

(4) S.,=(p+P)u,u,+Pg,,, (12

the first part coming from the bulk scalar field, the secondwherep is the energy density the pressure, anal the unit
part being confined in the brane, which will be assumed tdime-like vector normal to the homogeneous and isotropic
lie aty=0. 3-surfaces.

In the light-cone coordinates, the five-dimensional Ein- Expressing the extrinsic curvature tensor components in
stein’s equations, which follow from the variation of the terms of the metric components, and assuming the usual mir-
above actior(1) with respect to the five-dimensional metric, ror symmetry with respect to the brane, the junction condi-

reduce,in the bulk to the following set of equations: tions (10) yield the two following equations,
2 2
K JA(Y,t K
At 3A A =—=ePV(¢) 5 S0 —€®p(t) (12)
: v N l,_, 6
—3A ,+6A B, —3A% =29 > (6) IB(y,t) 2
5 =€65[3P(t)+2p(t)]. (13
_SA,vv+6A,UB,v_3A,v2: K2¢,v2 (7) y y=0
1 2 Let us now turn to the boundary condition for the scalar
B u+2A ,+3A A =— §K2¢’v¢yu+zeZBV( b). field. It is related to the variation of the brane Lagrangian
®) with respect to the scalar field. An explicit boundary condi-

tion for ¢ thus requires the specification of the dependence
Here, Eq.(5) is the uv component of Eintein’s equations, Of £4 with respect top. Several possibilities have been con-
Eqs(6) and (7) are theuu andovv Components respective'y; sidered in the |itel’aturésee[17] for a detailed diSCUSSi()nA

Eq. (8) comes from the ordinary spatial components. Finally,first possibility (see, e.g.[14]) is to assume that the brane
the Klein-Gordon equation in the bulk reads matter is minimally coupled to a metrE;:W, which is con-
formally related to the metric defined in the bulk action, i.e.,

2 1
¢,vA,u+A,u ¢,u+ §¢,UU: - geZBV,(d’)- 9

9,.,=¢"g,,. (14
Of course, there is some redundancy in the system of equaa this case, one can define an energy-momentum tensor dif-
tions (5)—(9) because of Bianchi’s identities. If one considersferent from S, by taking the variation of the brane action
a free scalar field in the bulk, i.e., without potential, then ouryith respect tg,,, instead ofg,,,, namely
. . v Mmoo
system of equations reduces exactly to that written by

Horowitz, Low and Zed9]. When the potential is nonvan- 2 5S,
ishing, by contrast, solutions such that=A(u) or A S VE—— ——. (15)
=A(v), respectively purely outgoing and ingoing waves, are \N—g 99,
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The Corresponding energy densﬁyand pressur@) are re- which involves all cases where the equation of state for mat-
lated to the former ones by the relations ter is of the fOme:Wp, with w constant. In the case of
conformal coupling, the expression feris given by
_ AAk(9)T — p4k(9)P
=€ , P=e P. (16)
P P y=—(3w—1)y. (22)
Variation of the global action with respect b leads to a

Klein-Gordon equation of the form In the case of volume-element coupling, one would get

y=4x, (23
VAVAG= d—v—e‘Bk’(¢)85(y) 17
do¢ ' if the Lagrangian density for the perfect fluid is proportional

to the energy density as 9], or
where S=—p+3P is the trace of the energy-momentum

tensor. This means that the scalar field must satisfy(g)q. y=—4wy, (29
given above in the bulk as well as the boundary condition at ) o )
the brane locatioly=0: if the Lagrangian density is proportional to the pressure as

was chosen if15] or [17]. If the matter content of the brane

ap(y,t) 1 behaves like a cosmological constant, ives —1, the three

Yy _ By . .

2y =~ € k'(¢)S. (18)  above expressions vyield, as expected, the same result, and
y=0 there is no ambiguity.

For simplicity, we will assume in the following th&(¢)

=X?ﬁ, where we have introduced the dimensionless rescaled
scalar field, In this section, we will solve the Einstein and Klein-
Gordon equations with the assumption that

Ill. “PROPORTIONAL” SOLUTIONS

?b=%</>, (19) $(u,v)=NA(U,D). (25

Substituting this ansatz in thev component of Einstein’'s
equations(5) as well as in the Klein-Gordon equatidg),
one finds that the bulk potential for the scalar field is neces-
sarily of the exponential form with

which it will often be convenient to use.

Another possibility (see e.g.[15]), named volume-
element coupling if17], is to consider an overall function of
¢ that multiplies the Lagrangian so that

- —\. e 2\d
La=e"PL(g,, ), 20 V(#)=Voe 7. 26

where they; are all matter fields that are confined in the A. Bulk equations

brane. In practice, in order to study the cosmological evolu- The (uu) and @v) components of Einstein's equations,

tion in the brane, one wishes an effective description of thg g Egs.(6) and(7), after substitution of Eq(25), yield the
matter in the brane and a perfect fluid is quite appropriate fofg|lowing relations:

this purpose. However, a perfect fluid is affectivematter
for which there is no natural fundamental description in ) uu
terms of a Lagrangian density. There is nevertheless a sub- 2B, =(1+A)A+ 3
stantial literature on a Lagrangian description of relativistic
perfect fluids and various formulations exist. If all these for- A
mulations yield the same equations of motion, they are not ZBYU=(1+)\2)A,U+ A’”". (29
equivalent at the Lagrangian level. This means, starting from v
Eq. (20), different formulations will yield different couplings
between the perfect fluid matter and the bulk scalar field. Fo
instance[15] have used a Clebsh-Jordan formulation where
the Lagrangian density is given by the pressure, whei@as
have used a Taub type approach where the Lagrangian den- ~ ~ , ) , ,
sity is proportional to the energy density. These formulationdVheref, U andV are arbitrary functions of a single vari-
are equivalent only when the equation of statePis — p, able. The integration of the two above differential equations
i.e., if the matter behaves like a cosmological constant, but??) and(28) then gives
they give different couplings in all other cases. 1 1

In practice, we will use a boundary condition of the form B(u,v)= E(l+)\2)A(u,v)+§ln|f’(U(u)+V(v))|

(27)

u

F’hese equations imply that(u,v) is necessarily of the form

A(u,v)=fO)+V(v)), (29)

e,Ba?zs(y,t) i

_< 1 1
y |, 87" @1 + S0 (W) + 5 N[V )] +¢, (30
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where ¢ is a constant of integration, which can be chosenf T is a space coordingteThis result is not so surprising

arbitrarily by appropriate rescalingve will take e*¢=4 for
conveniencg The functionf is determined by reinserting Eq.
(30) into the (Uv) component of Einstein’s equations, Eq.
(5), and one gets

O/ (V' (0)(F"+3f2—aV,f et ) =0, (31)
with
K2

Taking U’(u) and V' (v) nonzero(this is necessary it/
#0), this gives a second-order differential equation fior
which after a first integration yields

Vo

e(4—}\2)f_|_yzfre3f,
1—(N%/4)

(33

wherev is an integration constant.
Once we knowf, we can derive the metric everywhere

ds?=— 4|0’V /1@ )du dv + e 5;dxidx. (34)

since, with ourAnsatz(25), we have somehow “frozen” the
configuration of the scalar field with respect to the metric.
Note that, for =0, one recovers the standard result of brane
cosmology without scalar field,h(R)=g(R)=—V,R?

—vR ™2, corresponding to a AdS-Schwarzschild metrid/jf

is negative. The reason for this is that the scalar field is set to
zero and its potential then acts as a cosmological constant.

B. Brane motion and junction conditions

The Ansatz(25) confronted to the junction conditiori$2)
and(21) implies the following constraint on the matter cou-

pling:

y=—N\. (40)

It is now instructive to consider the junction conditions in the
static coordinate systeif37). The inconvenience of this co-
ordinate system is that the brane cannot be considered at a
fixed position. One must therefore study the motion of the
brane, in order to express properly the junction conditions,
which in turn will give us the cosmological evolution inside
the brane. We just give the results here since this calculation
can be found in the literaturesee e.g[13]). The motion of

the brane can be effectively described in the two-dimensional

This spacetime metric can in fact be written in a much Sim'spacetime spanned by the coordinatdsR), where the

pler form, which turns out to be explicitly static. This is
similar to the derivation, if18], of the cosmological solu-

brane behaves like a point with a trajectory given by
[T(7),R(7)], wherer is the proper time of an observer co-

tions with only a(negative cosmological constant in the moving with the brane, i.e.

bulk, which are in fact Schwarzschild-AdS metrics. In order

to see that, let us introduce new coordinates defined by
R=e', (35)

T=0-V. (36)

A straightforward substitution in the metri@4) yields the
manifestly static metric

dR? o
ds’=—h(R)dT?+ g(R)-I—RZéijdx'dx‘, (37
with
v
h(R):_T)\OZ/@RZ_ R}\272 (38)
and
Vo 2-2)\? —2-)2
g(R)=— 1_()\2/4)R -vR . (39

These solutions correspond to the type Il solution$1d,

2
9(R)’

The components of the outward normal vector read

”a:(wg

where, in this subsectiofand only herg a dot stands for a
derivative with respect to the proper time Applying the
junction conditions, one ends up with

dr?=h(R)dT?— (41)

g+ R{o,o,o) , (42)

R &', 9B«
Rz 36"  RZ  36°

Vo
1—(\%/4)

_ 2 A2
AL RN,

(43

Note that here, although the background metric turns out to
be the same as that found|ib3], we consider more general
cosmological situations because we do not restrict the equa-
tion of state of the matter on the brane to be that of a cos-
mological constant. In this picture, a different equation of
state corresponds to a different trajectory in the static back-

which were obtained by looking for moving branes in staticground spacetime.
background metrics. Here we did not assume beforehand sta-

ticity of the background like if13], but we have shown that
the Ansatz(25) necessarily leads to static solutiofiy static
here, we mean a Killing symmetry in the non-trivial two

IV. SEPARABLE SOLUTIONS

In this section we look for exact solutions of Einstein’s

dimensions, including the case of a spacelike Killing vectorequations, which are separable when expressed in the light
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coordinate system, i.e., such that

A(u,v)=A(u)+Ay(v), (44)
B(u,v)=B3(u)+By(v), (45)
d(U,v)=1(U)+ ¢y(v). (46)

To take advantage of thidnsatz one must consider an ex-

ponential potential

V($)=Voe®=Vee®, a= \/ga, (47)

so that the potential is the product of a functiondaf with a
function of ¢,.

A. Bulk equations

PHYSICAL REVIEW D64 123507

Indeed, substitution of Eq$54)—(55) into Eq.(52) and com-
parison with Eq(48) imposes the following relatiofif V, is
nonzero:

1+C2
C 1

(56)

a=—

which implies thaja|=2. The first equation of the system,
Eqg. (48), can also be separated, giving the two following
relations,

e?B1—pe a%1g! (57)

2B, _ —ad,hr
eP2= e 0“/52¢2'

K2VO D (58)

whereD is a(nonzerg separation constant, and where e

With the aboveAnsize (44)—(47), all the second crossed Nave been replaced by thye using Eqs(54) and (55). It is
derivatives in the bulk equations of motion disappear, andhen easy to check that the remaining equati@$s and(50)

the system of differential equatioriS)—(9) reduces to

KZVO

Al’AZI — 1_86281+ 2Byt apy+ a(ﬁz, (48)
K2
2Al,Bl, _Al,Z_Alﬂ_? 12
=0, (49

2
’ ' 12 " K 12
2058y~ A=A~ )

=0, (50
KZVO

6A1/A2/ + sz)i(ﬁé: 5 eZBl+ZBZ+a¢1+azf)2, (51)
aV

A2’¢5_+A1,¢é: _ OeZBl+2B2+aq§l+a¢2’ (52)

where the primes stand for ordinary derivatives, with respect

to u for quantities labeled by 1 and with respectuofor

are automatically satisfied, since after use of E§4) and
(55), they are simply the derivatives of the expressi(ig
and(58).

We have thus solved completely the Einstein equations in
the bulk. Our solutions are parametrized by two arbitrary
functionsA; andA,, from which all the components of the
metric are obtained. Let us now turn to the boundary condi-
tions at the brane location.

B. Junction conditions

We must now make the link between the metric in the
bulk and the matter in the brane. This comes from the junc-
tion conditions(12), (13) and(21). Comparison between the
junction conditions(12) and (21) leads to the following re-
lation

Ay ()= BAL(D), (59)
with
_ Cy+1
P=ccr %0

guantities labeled with 2. It will be assumed from now onwhich can be integrated immediately if one assumesyhat

that V is nonzero. Comparison of E@g48) with Eq. (51)
implies
K2
ALA; = §¢1¢év (53

hence the decomposition

$1'()=C A’ (), (59

#2' (v)=CA) (v), (59

where C is a (nonzer9 separation constar(note that the

cases where;' =0 or ¢,’ =0 are possible only i¥/,=0).

It turns out that this constant cannot be chosen arbitrarily.

constant, i.e. thaw is constantnote thatC+ y+ 0 otherwise
A1=0 which is forbidden fol/y#0).

Comparison of the junction conditiofd3) for B with the
junction condition(12) for A, in which one replaceB; and
B, with their respective expression in terms Af and A,
according to Eqs(57),(58) and Egs.(54),(55), leads to a
more complicated expression involving the second deriva-
tives of A; andA,, which reads

. g+2(3w+ 2) |A|— [~ aC+2(3w+2)]A,

A// AII
A A
AL A

(61)
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where theA; are here only functions of timebecause we are which eventually gives
on the brane, i.e. at=0. This expression can be rewritten in

the form [ oVo(a?—4) -~
p== %e““”z. (69
~ kK (1—ay+y9)

a B’
( — 6+2(3W+2)

—(—aC+2(3w+ 2)),8}Ai=—. . _ , ,
B We will explore in more details the corresponding brane cos-
(62) mology in the next section.

For simplicity, we will restrict ourselves to the cases where
the equation of state is such thais constant, which implies V. COSMOLOGICAL EVOLUTION IN THE BRANE
in turn thaty is constant. In this case, the right hand side of

Eqg. (62) must vanish because of E@O0), and one finds the be
following relation between the constar@s y anda:

The purpose of this section is to analyze the cosmological
havior inside the brane, given the global solutions obtained
in the previous sections. The brane being assumed to stay at
y=0, the induced metric in the brane is simply

(C?—1)(ay+2(2+3w))=0, (63
- ds?=—e?Bt0dt2+ eZA“'O)&iJ- dxidx. (70
where one must recall that is a function ofC, given in Eq.
(56). This condition can be satisfied@= *1 or if The cosmological scale factor thus corresponds to
2(2+3w) a(t)=ert0), (71)

(64)

@ and the cosmic time can be derived from the timeby

As it will be clear below[see Eq.(69)], the case<C==*1

[corresponding tar= T2 by Eq.(56)] are not very interest- 7'=j 80t (72

ing since they lead to a zero energy density in the brane,

which means that the brane is only virtual and does not really ) ) )

exist physically. For the other, more interesting, cases, the A. Generalized Friedmann equations

condition we obtain tells us that for a given potential, i.e. for As a first step, we will combine some of the Einstein

a given choice of the coefficient (with |Zy|>2), the cou- equations evaluated on the brane with the junction condi-

pling between the bulk scalar field and the brane matter igions, and thus establish a generalized Friedmann’s equation

entirely determined by the equation of state if one wishes t@s well as a generalized conservation equation. In order to do

find separable solutions. so, we will closely follow the derivation df4] [and use the
After having established all conditions required by thenotationa(t,y)=e*"¥)] with the additional ingredient that

compatibility between the three junction conditions, one carwe allow here for an energy flux from the fifth dimension,

now compute the various quantities on the brane in terms dfe., the component (0,5) of the bulk energy-momentum ten-

A(t) only. Indeed, starting frorfisee Eq.(59)] sor is non zero because of the presence of the scalar field. We
do not rewrite here the components of the Einstein tensor in
A(t)=(1+B)A(L), (65  the (t,y) coordinate system but we refer the readeif4p

) ) ) where they are explicitly written.
where the integration constant can be ignored, up to a coor- gypstitution of the junction conditions in the (0,5) com-
dinate rescaling, one finds for the scalar field, using Edsponent of the Einstein's equations evaluated at the brane,

(54),(55) (and ignoring once more the integration constant§mmediately yields the generalized conservation equation
which can be reabsorbed in a rescalingvgj,

~ 2—vya
(1)=C 1A (1) +CAy(t) = —A(t).  (66)
2y—«

,‘;+3§<p+p>=ﬁ (73

with
The other metric component follows from E{57),(58) and
is given by F=2e PTogly—o. (74)
[183 a , Here Tos=¢¢', and using the junction condition for the
e"ll= szoex;{ —5(C "+ BCALIALl. (61 scalar field, one ends up with the equation

Finally, the energy density can be evaluated from @&¢). . a -
Inserting the product of Eq$57) and (58), one finds p+3(p+P)=ydp. (79
K? K>V ~~ i i ; ;
O(l—ﬂ)e“¢’2, (69) This generalizes the usual conservation law for cosmological

gpzefB(l—,B)Ai: *

18p matter, for which the right hand side is zero. The integration
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of this equation yields, for an equation of st&e wp with B. Static bulk solutions
w constant, the following evolution for the energy density: ¢ generalized Friedmann equation has the form

pora 2 Wer?, (76) K Vo

2. 24 —2\2
36" " 1-(\u4)

2
+va 4N, (83
and one recovers the familiar evolution of standard cosmol-

ogy only if the Sca"’?“ field is constant in time. . . Combining this Friedmann equation with the conservation
Let. us now consider the (5,5) compqnent of the E!nSte'.nequation, one can obtain explicitly the evolution of the scale
equations. Using the (0,5) component, it can be rewritten i .1 a5 4 function of the cosmic time for any given equa-
the form tion of state.
5 5 It is easy to check that the general fo(#®) for the Fried-
E= —éa3K2T§— ~a’'alk?Ts, 77 mann equation is compatible with the above Friedmann
3 equation. The five-dimensional pressure can be expressed in
the form
with . &) 2
2 o5 _K . 5,5, . ,9@ 2/ A—2\2
F=e 25[(aa’)*— (a2)?]. 78) AL T S R
This corresponds to a slight generalization of the expressiowhere we have used the Friedmann’s equation in the form
given in[4], allowing here for a nonvanishing flux from the (83) to replace the kinetic term. Substituting in the integral
extra dimension. Taking the value of EF7) at the brane, terms, one finds that the twe? terms just cancel, and after
and using the junction condition, one finds after integrationintegration of the remaining terms, one obtains directly what
in time, the following generalized Friedmann’s equation  one expects, i.e.

* 2 - K =, 9(a)
, K, 2 da) . , 5 _f 3, 215 f 4.5 2_
H =36" " 3% dr ar a’kT: 332 draa’x“Tg+ 18a° dra®y¢p a2 (89
K4 d¢ i
_ _7; d7a4( %) 2 (79 C. Separable solutions
18a T According to Egs(72) and(67), the cosmic time is given
b
where the Hubble parameter is defined by Y
. 188 a(ay—2)
T= ——u teti= roeth ==,

HEda/dT:e_BE. (80) szolu’ 0 M 2('}/+C)

This equation can be found, with a slightly different presen-where we have assume >0 for definiteness. The scale
tation, in[16]. It is characterized by the quadratic appearancéactor is given by

of the energy density of the brane, which is a generic feature

of brane cosmologyl]. We also have an integral term re- T\P
lated to thepressurealong the fifth dimension and an integral a(r)= (T_o) v P
term related to the energy flux coming from the fifth dimen-

sion, which here is essentially related to the time variation g pstituting the conditior(64) for the couplingy, in the

the braneof the bulk scalar field. interesting case where the brane is not empty, the power can
Finally, the expression for the energy-momentum tensope \yritten

of the scalar field gives us

1+8  2(a—2y)
L w(2—ya)

(87)

1 4(2+3w)
s_ 1 o 2 42 p= = . (89
Te=5e (¢ 2+ ¢?) - V(¢), (81) 3(1+w) o2
which vields The minimum value of? being 4, the range of possibeis
y betweenp=1 andp=1/(3(1+w)), the latter being the un-
5 4 4302 2 conventional evolution in the case of an empty Hulk Note
K . . .
2,278 =022 200 2,2y 82 that this range includes the conventional value 2/(3(1
3K 5 y=o 367 P dTZ 3K (¢O) ( ) +W))

The Hubble parameter is therefore
where we have used the junction conditi(?1) to replace
the gradient contribution by the term quadratic in the energy H
density.

_P 89)
.
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The energy density in the brane can be related to this Hubble p (54 6W) a2+ 4(2+ 3w)?
parameter, the easiest way being to use ®&) and one H2— 3—6p2= =55 2 97
finds that the two are proportional, (8+12w+a”)

Let us also mention the particular cage =2, correspond-
ing to the equation of state=—1. One can easily see that
the energy density is constant, given by
The unconventional cosmological evolution that was ob- _

tained in the case of an empty bylk] is thus generalized 202V,
here for a bulk with a scalar field for our specific separable P= N~ 2
solutions. There is a difference however is the proportional-

ity coefficient. Finally, the evolution of the scalar field is which implies in particular that the scalar field potential must

(90

(98)

given by

~ 2—ya
bo= 7~ Ina.
2y—«a

91)

be negative for consistency. The scale factor, is given, in-
stead of a power-law, by an exponential, namely

a(r)zexp{ \/ - "1\;(’(;2—4)7

. (99

It is now instructive to check the generalized Friedmann

equation(79), by evaluating the contribution of each term for

our explicit solutions. One finds

2 da\ ., o _ a’y*+day-8y*~4 p?
—y dTEaKTS—— = ~5 =~ ;
(a—2y)(ay+2a—8y)
92
and
4 ~
- “ )/f d7'<’:'t4 % p2
183% dr
a?—4)(ay—2 2
L @a@y-2) p 03

7(&—27)2(32y+ 2a—8y) 7
and the sum of these two terms indeed coincides with
P 1—Zry+ ¥? 5

H? 2 2y (94)

~ 3"

These expressions can be rewritten, using (B4}, in terms
of the parametew of the equation of state. One finds

Zfd
“3a7) 97

. (OW2+6W—1)a®—8(9w+12w+4) p?

da
3 2+5
dTaKTS

= — — . (95
(8+ 12w+ a?)[(Bw+1)a?—8(3w+2)] 7 (%9
K47 d?f’o
e o F)PZ
15 (1+w)(2+3w)(a?~4) p’
T Bt 1awt e (3wt 1) a2 —8(3w+2)] 72
(96)
and

D. Cosmology with conformal coupling

In the case of conformal coupling, one must be aware that
the cosmological evolution given above corresponds to the
so-called Einstein frame, i.e., the frame associated with the
metric for which the action is the usual Einstein-Hilbert ac-
tion (here we extend this definition to the five-dimensional
gravitational action However, the physical metric corre-
sponds to the metric which is minimally coupled to the ordi-
nary matter and in our case, this means that the physical
frame, usually called the Jordan frame in the context of
scalar-tensor theories of gravitation, is the frame associated

with the metricg,,,,.

It is therefore useful to rewrite the previous equations in
the physical frame. The correspondence between the two
scale factors is

a=et%a. (100
The proper times are also different and related by

d7=ex’dr. (101)
Using the relation91), one finds that

— 2l
~ T
e¢=(_> '
7o

(102

and therefore, the expression of the new proper fimie
terms of the “Einstein frame” proper time is

s 1-2yla N 7o
y To= ZX (103)
P

The cosmological evolution of the scale factor is thus given
by

(104

~\ (p—2x/a)/(1—2xa)
~ T

70
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Note that one cannot find a separable solution with conforthey might be useful to give some insights in the future in-
mal coupling in the case of radiation. Conformal coupling,vestigations of bulk-brane dynamics.

according to Eq(22), implies y=0 for radiation, which is Although these solutions might represent acceptable mod-
clearly incompatible with the conditiof64) for separable €ls for the very early universe, one of the main open prob-
solutions. lems is to obtain generic solutions of the bulk-brane system.

One could then investigate whether there exist, or not, some
attractor solutions so that the primordial brane cosmology
would be somewhat insensitive to the initial conditions.

In the present work, we have obtained explicit exact so- Another open question is how, in a cosmological context,
lutions for a five-dimensional spacetime with a scalar fieldthe presence of the scalar field and of its perturbations might
and a 3-brane. Although several explicit solutions exist al-2ffect the results obtained so far for cosmological perturba-
ready in the literature, most of them correspond to statidions in a brane-universe, where the bulk was assumed to be
solutions for which the bulk geometry and scalar field are®MPty apart from the presence of a negative cosmological
frozen and the cosmological evolution is only due to theconstantsee[19] and references thergin
motion gf our brane-universe in this bulk. As we have shown' ACKNOWLEDGMENTS
here, this is the case when one assumes some proportionality
relation between the scalar field and the logarithm of the We would like to thank S. Carroll for interesting discus-
bulk scale factor. More interestingly, we have also foundsions, as well as C. Charmousis for his useful comments on
solutions where the bulk itself has some dynamics. Even ithe present work and for informing us about his work in
our solutions are rather artificial, and cannot be considered gsrogress, where he has obtained, independently, and using a
realistic models for the recent cosmology of our universesimilar technique, some of the results presented here.
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