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Brane cosmology with a bulk scalar field
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Institut d’Astrophysique de Paris, Centre National de la Recherche Scientifique, 98bis Boulevard Arago, 75014 Paris, Franc
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We consider ‘‘cosmologically symmetric’’~i.e., solutions with homogeneity and isotropy along three spatial
dimensions! five-dimensional spacetimes with a scalar field and a three-brane representing our universe. We
write Einstein’s equations in a conformal gauge, using light-cone coordinates. We obtain explicit solutions:~a!
assuming proportionality between the scalar field and the logarithm of the~bulk! scale factor;~b! assuming
separable solutions. We then discuss the cosmology in the brane induced by these solutions.
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I. INTRODUCTION

The idea that our world might be a brane embedded
higher dimensional spacetime has generated lately an in
sive research, notably in cosmology. In general, the confi
ment of matter on the brane leads to a cosmological ev
tion in the brane which is different from the usual evoluti
governed by Friedmann’s law@1#.

Such a deviation is problematic for the ‘‘recent’’ histo
of the universe, since the usual nucleosynthesis scen
would not work anymore. The simplest way to cure th
problem@2# is to introduce a negative cosmological consta
in the bulk, in the manner of Randall and Sundrum@3#, and
usual cosmological evolution is recovered at late times w
the energy density of cosmological matterr is much smaller
than the brane tensions ~fine-tuned so as to compensate t
bulk cosmological constant! @4,5#.

This solution, however, requires a fine-tuning between
brane tension and the bulk cosmological constant an
would be desirable to obtain models where this requirem
can be evaded. This suggests the study of more complic
models containing dynamical fields in the bulk.

As a first step, it is natural to consider the presence o
scalar field in the bulk. This possibility has already be
investigated in several works, for various motivations. O
of the first motivations to introduce a bulk scalar field was
stabilize@6# the distance between the two branes in the c
text of the first model introduced by Randall and Sundr
@7#. A second, more recent, motivation for studying sca
fields in the bulk was the possibility that such a setup co
provide some clue to solve the famous cosmological cons
problem@8#.

In this perspective, some effort has been devoted to
construction of cosmological solutions, i.e., with time evo
tion in the brane, with a scalar field in the bulk@9–12# ~see
also the earlier solutions of@13#!. Several works have studie
in particular the impact of the presence of a scalar field in
bulk on the cosmological evolution in the brane, witho
trying to solve the full system of equations in the bulk@14–
17#. However, if one wishes to evaluate quantitatively, a
not only qualitatively, the impact of the bulk scalar field o
the brane evolution, one needs in general a solution of
bulk equations. It is the purpose of the present work to p
vide some solutions of the full system of equations and
study the corresponding brane evolution. The general p
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lem being rather difficult, it will be seen that the requireme
of obtaining exact analytical solutions is not easy to rec
cile with the wish to obtain realistic cosmological solution
But we hope our solutions might be helpful to give som
insights for the more general situation.

In the present work, we have tried to obtain explicit so
tions, by using the conformal gauge and light-like coor
nates, a technique which has been employed for instanc
the case of an empty bulk~but with a cosmological constant!
@18# or in the case of a bulk with a scalar field, like here, b
with a vanishing potential@9#. We have managed to obtai
explicit solutions by imposing two types ofAnsätze. A first
Ansatz, very powerful to integrate the full system of Ein
stein’s equations, will be to assume a special relation
tween the scalar field and the bulk scale factor. As we w
show, it turns out that the bulk solution is then necessa
static and one recovers some of the solutions obtained
@13#. A secondAnsatzwill be to assume that the solutions a
separable. In both cases, one must consider an expone
potential for the scalar field.

The plan of the paper is the following. In the seco
section, we introduce the general setup and write down
full system of equations. In the third section, we study t
solutions obtained with the additional constraint between
scalar field and the metric mentioned above. We then c
sider, in the fourth section, the case of separable solutio
The fifth section is devoted to the cosmological evolution
the brane induced by the various bulk solutions we ha
found. We finally conclude in the last section.

II. THE MODEL

Let us first define our setup. We consider a scalar fieldf
living in a five-dimensional spacetime endowed with t
metricgAB . We also assume the existence of a three-bran
this spacetime in which unspecified matter is confined. T
action will be taken to be of the form

S5E d5xA2gF 1

2k2
(5)R2

1

2
~¹Af!¹Af2V~f!G

1E d4xL4 , ~1!
©2001 The American Physical Society07-1
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where (5)R is the scalar curvature of the five-dimension
metric gAB and where the second term is the action for
brane, which we leave unspecified at this stage, but whic
assumed to depend on the bulk scalar field in general.

Since we consider only cosmological solutions, we w
assume that the metric is isotropic and homogeneous a
the three ordinary spatial dimensions. Choosing the so-ca
conformal gauge, the metric then reads

ds25gABdxAdxB5e2B(t,y)~2dt21dy2!1e2A(t,y)d i j dxidxj ,
~2!

where we have supposed flat three-dimensional subsp
for simplicity. Introducing the light-cone coordinates,u[t
2y andv[t1y, the metric can be rewritten in the form

ds252e2B(u,v)du dv1e2A(u,v)d i j dxidxj . ~3!

The matter content of the five-dimensional spacetime is
scribed by the energy-momentum tensor, which can be
rived from the action~1!. The total energy-momentum tens
is then found to be of the form

TAB5]Af]Bf2gABF1

2
~¹Cf!~¹Cf!1V~f!G1TAB

brane,

~4!

the first part coming from the bulk scalar field, the seco
part being confined in the brane, which will be assumed
lie at y50.

In the light-cone coordinates, the five-dimensional E
stein’s equations, which follow from the variation of th
above action~1! with respect to the five-dimensional metri
reduce,in the bulk, to the following set of equations:

A,uv13A,vA,u5
k2

6
e2BV~f! ~5!

23A,uu16A,uB,u23A,u
2 5k2f ,u

2 ~6!

23A,vv16A,vB,v23A,v
25k2f ,v

2 ~7!

B,uv12A,uv13A,vA,u52
1

2
k2f ,vf ,u1

k2

4
e2BV~f!.

~8!

Here, Eq.~5! is the uv component of Eintein’s equations
Eqs.~6! and~7! are theuu andvv components respectively
Eq. ~8! comes from the ordinary spatial components. Fina
the Klein-Gordon equation in the bulk reads

f ,vA,u1A,vf ,u1
2

3
f ,uv52

1

6
e2BV8~f!. ~9!

Of course, there is some redundancy in the system of e
tions~5!–~9! because of Bianchi’s identities. If one conside
a free scalar field in the bulk, i.e., without potential, then o
system of equations reduces exactly to that written
Horowitz, Low and Zee@9#. When the potential is nonvan
ishing, by contrast, solutions such thatA5A(u) or A
5A(v), respectively purely outgoing and ingoing waves, a
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no longer possible, simply because ingoing-outgoing wa
will be scattered by the potential.

The above system of equations applies only for the b
and must now be completed by boundary conditions at
location of the brane. An alternative, equivalent, proced
would be to write down the complete Einstein and Klei
Gordon equations, with distributional source terms repres
ing the brane. Let us start with the boundary conditions
the metric components,A and B. They follow from the
Darmois-Israel junction conditions, which, for bran
universes, take the form@1#

@Kmn#52k2S Smn2
1

3
SgmnD , ~10!

whereKmn is the extrinsic curvature tensor associated to
brane, and whereSmn is the four-dimensional energy
momentum tensor of the matter confined in the brane, wh
is obtained from the variation of the brane action with r
spect to the induced metricgmn . Since we investigate only
cosmological solutions, i.e., homogeneous and isotropic w
respect to the three ordinary spatial dimensions,Smn is nec-
essarily of the perfect fluid form

Smn5~r1P!umun1Pgmn , ~11!

wherer is the energy density,P the pressure, andum the unit
time-like vector normal to the homogeneous and isotro
3-surfaces.

Expressing the extrinsic curvature tensor components
terms of the metric components, and assuming the usual
ror symmetry with respect to the brane, the junction con
tions ~10! yield the two following equations,

]A~y,t !

]y U
y50

52
k2

6
eBr~ t ! ~12!

]B~y,t !

]y U
y50

5
k2

6
eB@3P~ t !12r~ t !#. ~13!

Let us now turn to the boundary condition for the sca
field. It is related to the variation of the brane Lagrangi
with respect to the scalar field. An explicit boundary con
tion for f thus requires the specification of the depende
of L4 with respect tof. Several possibilities have been co
sidered in the literature~see@17# for a detailed discussion!. A
first possibility ~see, e.g.,@14#! is to assume that the bran
matter is minimally coupled to a metricg̃mn , which is con-
formally related to the metric defined in the bulk action, i.

g̃mn5e2k(f)gmn . ~14!

In this case, one can define an energy-momentum tensor
ferent fromSmn by taking the variation of the brane actio
with respect tog̃mn instead ofgmn , namely

S̃mn5
2

A2g̃

dSm

dg̃mn

. ~15!
7-2
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The corresponding energy densityr̃ and pressureP̃ are re-
lated to the former ones by the relations

r5e4k(f)r̃, P5e4k(f)P̃. ~16!

Variation of the global action with respect tof leads to a
Klein-Gordon equation of the form

¹A¹Af5
dV

df
2e2Bk8~f!Sd~y!, ~17!

where S[2r13P is the trace of the energy-momentu
tensor. This means that the scalar field must satisfy Eq.~9!
given above in the bulk as well as the boundary condition
the brane locationy50:

]f~y,t !

]y U
y50

52
1

2
eBk8~f!S. ~18!

For simplicity, we will assume in the following thatk(f)
5xf̃, where we have introduced the dimensionless resc
scalar field,

f̃5
k

A3
f, ~19!

which it will often be convenient to use.
Another possibility ~see e.g. @15#!, named volume-

element coupling in@17#, is to consider an overall function o
f that multiplies the Lagrangian so that

L45e4xf̃L~gmn ,c i !, ~20!

where thec i are all matter fields that are confined in th
brane. In practice, in order to study the cosmological evo
tion in the brane, one wishes an effective description of
matter in the brane and a perfect fluid is quite appropriate
this purpose. However, a perfect fluid is aneffectivematter
for which there is no natural fundamental description
terms of a Lagrangian density. There is nevertheless a
stantial literature on a Lagrangian description of relativis
perfect fluids and various formulations exist. If all these f
mulations yield the same equations of motion, they are
equivalent at the Lagrangian level. This means, starting fr
Eq. ~20!, different formulations will yield different couplings
between the perfect fluid matter and the bulk scalar field.
instance,@15# have used a Clebsh-Jordan formulation wh
the Lagrangian density is given by the pressure, whereas@9#
have used a Taub type approach where the Lagrangian
sity is proportional to the energy density. These formulatio
are equivalent only when the equation of state isP52r,
i.e., if the matter behaves like a cosmological constant,
they give different couplings in all other cases.

In practice, we will use a boundary condition of the for

e2B
]f̃~y,t !

]y
U

y50

5
k2

6
gr~ t !, ~21!
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which involves all cases where the equation of state for m
ter is of the formP5wr, with w constant. In the case o
conformal coupling, the expression forg is given by

g52~3w21!x. ~22!

In the case of volume-element coupling, one would get

g54x, ~23!

if the Lagrangian density for the perfect fluid is proportion
to the energy density as in@9#, or

g524wx, ~24!

if the Lagrangian density is proportional to the pressure
was chosen in@15# or @17#. If the matter content of the bran
behaves like a cosmological constant, i.e.,w521, the three
above expressions yield, as expected, the same result,
there is no ambiguity.

III. ‘‘PROPORTIONAL’’ SOLUTIONS

In this section, we will solve the Einstein and Klein
Gordon equations with the assumption that

f̃~u,v !5lA~u,v !. ~25!

Substituting this ansatz in theuv component of Einstein’s
equations~5! as well as in the Klein-Gordon equation~9!,
one finds that the bulk potential for the scalar field is nec
sarily of the exponential form with

V~f!5V0e22lf̃. ~26!

A. Bulk equations

The (uu) and (vv) components of Einstein’s equation
i.e., Eqs.~6! and~7!, after substitution of Eq.~25!, yield the
following relations:

2B,u5~11l2!A,u1
A,uu

A,u
~27!

2B,v5~11l2!A,v1
A,vv

A,v
. ~28!

These equations imply thatA(u,v) is necessarily of the form

A~u,v !5 f „Ũ~u!1Ṽ~v !…, ~29!

where f , Ũ and Ṽ are arbitrary functions of a single var
able. The integration of the two above differential equatio
~27! and ~28! then gives

B~u,v !5
1

2
~11l2!A~u,v !1

1

2
lnu f 8„Ũ~u!1Ṽ~v !…u

1
1

2
lnuŨ8~u!u1

1

2
lnuṼ8~v !u1z, ~30!
7-3
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where z is a constant of integration, which can be chos
arbitrarily by appropriate rescaling~we will take e2z54 for
convenience!. The functionf is determined by reinserting Eq
~30! into the (uv) component of Einstein’s equations, E
~5!, and one gets

Ũ8~u!Ṽ8~v !~ f 913 f 8224V0f 8e(12l2) f !50, ~31!

with

V05
k2

6
V0 . ~32!

Taking Ũ8(u) and Ṽ8(v) nonzero~this is necessary ifV0
Þ0), this gives a second-order differential equation forf,
which after a first integration yields

V0

12~l2/4!
e(42l2) f1n5 f 8e3 f , ~33!

wheren is an integration constant.
Once we knowf, we can derive the metric everywhere

ds2524uŨ8Ṽ8 f 8uef (11l2)du dv1e2 fd i j dxidxj . ~34!

This spacetime metric can in fact be written in a much s
pler form, which turns out to be explicitly static. This
similar to the derivation, in@18#, of the cosmological solu-
tions with only a ~negative! cosmological constant in th
bulk, which are in fact Schwarzschild-AdS metrics. In ord
to see that, let us introduce new coordinates defined by

R5ef , ~35!

T5Ũ2Ṽ. ~36!

A straightforward substitution in the metric~34! yields the
manifestly static metric

ds252h~R!dT21
dR2

g~R!
1R2d i j dxidxj , ~37!

with

h~R!52
V0

12~l2/4!
R22nRl222 ~38!

and

g~R!52
V0

12~l2/4!
R222l2

2nR222l2
. ~39!

These solutions correspond to the type II solutions of@13#,
which were obtained by looking for moving branes in sta
background metrics. Here we did not assume beforehand
ticity of the background like in@13#, but we have shown tha
theAnsatz~25! necessarily leads to static solutions~by static
here, we mean a Killing symmetry in the non-trivial tw
dimensions, including the case of a spacelike Killing vec
12350
n

-

r

ta-

r

if T is a space coordinate!. This result is not so surprising
since, with ourAnsatz~25!, we have somehow ‘‘frozen’’ the
configuration of the scalar field with respect to the metr
Note that, forl50, one recovers the standard result of bra
cosmology without scalar field,h(R)5g(R)52V 0R2

2nR22, corresponding to a AdS-Schwarzschild metric ifV0
is negative. The reason for this is that the scalar field is se
zero and its potential then acts as a cosmological consta

B. Brane motion and junction conditions

TheAnsatz~25! confronted to the junction conditions~12!
and ~21! implies the following constraint on the matter co
pling:

g52l. ~40!

It is now instructive to consider the junction conditions in t
static coordinate system~37!. The inconvenience of this co
ordinate system is that the brane cannot be considered
fixed position. One must therefore study the motion of t
brane, in order to express properly the junction conditio
which in turn will give us the cosmological evolution insid
the brane. We just give the results here since this calcula
can be found in the literature~see e.g.@13#!. The motion of
the brane can be effectively described in the two-dimensio
spacetime spanned by the coordinates (T,R), where the
brane behaves like a point with a trajectory given
@T(t),R(t)#, wheret is the proper time of an observer co
moving with the brane, i.e.,

dt25h~R!dT22
dR2

g~R!
. ~41!

The components of the outward normal vector read

na5S Ṙ

Ahg
,Ag1Ṙ2,0,0,0D , ~42!

where, in this subsection~and only here!, a dot stands for a
derivative with respect to the proper timet. Applying the
junction conditions, one ends up with

Ṙ2

R2
5

k4

36
r22

g~R!

R2 5
k4

36
r21

V0

12~l2/4!
R22l2

1nR242l2
.

~43!

Note that here, although the background metric turns ou
be the same as that found in@13#, we consider more genera
cosmological situations because we do not restrict the eq
tion of state of the matter on the brane to be that of a c
mological constant. In this picture, a different equation
state corresponds to a different trajectory in the static ba
ground spacetime.

IV. SEPARABLE SOLUTIONS

In this section we look for exact solutions of Einstein
equations, which are separable when expressed in the
7-4
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coordinate system, i.e., such that

A~u,v !5A1~u!1A2~v !, ~44!

B~u,v !5B1~u!1B2~v !, ~45!

f~u,v !5f1~u!1f2~v !. ~46!

To take advantage of thisAnsatz, one must consider an ex
ponential potential

V~f!5V0eaf5V0eãf̃, ã[A3

k
a, ~47!

so that the potential is the product of a function off1 with a
function of f2.

A. Bulk equations

With the aboveAnsätze~44!–~47!, all the second crosse
derivatives in the bulk equations of motion disappear, a
the system of differential equations~5!–~9! reduces to

A18A285
k2V0

18
e2B112B21af11af2, ~48!

2A18B182A18
22A192

k2

3
f18

2

50, ~49!

2A28B282A28
22A292

k2

3
f28

2

50, ~50!

6A18A281k2f18f285
k2V0

2
e2B112B21af11af2, ~51!

A28f181A18f2852
aV0

6
e2B112B21af11af2, ~52!

where the primes stand for ordinary derivatives, with resp
to u for quantities labeled by 1 and with respect tov for
quantities labeled with 2. It will be assumed from now
that V0 is nonzero. Comparison of Eq.~48! with Eq. ~51!
implies

A18A285
k2

3
f18f28 , ~53!

hence the decomposition

f̃18~u!5C21A18~u!, ~54!

f̃28~v !5CA28~v !, ~55!

where C is a ~nonzero! separation constant~note that the
cases wheref̃1850 or f̃2850 are possible only ifV050).
It turns out that this constant cannot be chosen arbitra
12350
d

ct

y.

Indeed, substitution of Eqs.~54!–~55! into Eq.~52! and com-
parison with Eq.~48! imposes the following relation~if V0 is
nonzero!:

ã52
11C2

C
, ~56!

which implies thatuãu>2. The first equation of the system
Eq. ~48!, can also be separated, giving the two followin
relations,

e2B15De2ãf̃1f̃18 , ~57!

e2B25
18

k2V0D
e2ãf̃2f̃28 , ~58!

whereD is a ~nonzero! separation constant, and where theAi

have been replaced by thef̃ i using Eqs.~54! and ~55!. It is
then easy to check that the remaining equations~49! and~50!
are automatically satisfied, since after use of Eqs.~54! and
~55!, they are simply the derivatives of the expressions~57!
and ~58!.

We have thus solved completely the Einstein equation
the bulk. Our solutions are parametrized by two arbitra
functionsA1 andA2, from which all the components of th
metric are obtained. Let us now turn to the boundary con
tions at the brane location.

B. Junction conditions

We must now make the link between the metric in t
bulk and the matter in the brane. This comes from the ju
tion conditions~12!, ~13! and~21!. Comparison between th
junction conditions~12! and ~21! leads to the following re-
lation

A28~ t !5bA18~ t !, ~59!

with

b[
Cg11

C~C1g!
, ~60!

which can be integrated immediately if one assumes thatg is
constant, i.e. thatw is constant~note thatC1gÞ0 otherwise
A1850 which is forbidden forV0Þ0).

Comparison of the junction condition~13! for B with the
junction condition~12! for A, in which one replacesB1 and
B2 with their respective expression in terms ofA1 and A2
according to Eqs.~57!,~58! and Eqs.~54!,~55!, leads to a
more complicated expression involving the second deri
tives of A1 andA2, which reads

F2
ã

C
12~3w12!GA182@2ãC12~3w12!#A28

52
A19

A18
1

A29

A28
, ~61!
7-5
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where theAi are here only functions of timet because we are
on the brane, i.e. aty50. This expression can be rewritten
the form

F S 2
ã

C
12~3w12! D 2„2ãC12~3w12!…bGA185

b8

b
.

~62!

For simplicity, we will restrict ourselves to the cases whe
the equation of state is such thatw is constant, which implies
in turn thatg is constant. In this case, the right hand side
Eq. ~62! must vanish because of Eq.~60!, and one finds the
following relation between the constantsC, g anda:

~C221!„ãg12~213w!…50, ~63!

where one must recall thatã is a function ofC, given in Eq.
~56!. This condition can be satisfied ifC561 or if

g52
2~213w!

ã
. ~64!

As it will be clear below@see Eq.~69!#, the casesC561
@corresponding toã572 by Eq.~56!# are not very interest-
ing since they lead to a zero energy density in the bra
which means that the brane is only virtual and does not re
exist physically. For the other, more interesting, cases,
condition we obtain tells us that for a given potential, i.e.
a given choice of the coefficientã ~with uãu>2), the cou-
pling between the bulk scalar field and the brane matte
entirely determined by the equation of state if one wishes
find separable solutions.

After having established all conditions required by t
compatibility between the three junction conditions, one c
now compute the various quantities on the brane in term
A(t) only. Indeed, starting from@see Eq.~59!#

A~ t !5~11b!A1~ t !, ~65!

where the integration constant can be ignored, up to a c
dinate rescaling, one finds for the scalar field, using E
~54!,~55! ~and ignoring once more the integration consta
which can be reabsorbed in a rescaling ofV0),

f̃~ t !5C21A1~ t !1CA2~ t !5
22gã

2g2ã
A~ t !. ~66!

The other metric component follows from Eqs.~57!,~58! and
is given by

eB~ t !5A 18b

k2V0
expF2

ã

2
~C211bC!A1G uA18u. ~67!

Finally, the energy density can be evaluated from Eq.~12!.
Inserting the product of Eqs.~57! and ~58!, one finds

k2

6
r5e2B~12b!A1856Ak2V0

18b
~12b!eãf̃/2, ~68!
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which eventually gives

r56A 2V0~ ã224!

k2~12ãg1g2!
eãf̃/2. ~69!

We will explore in more details the corresponding brane c
mology in the next section.

V. COSMOLOGICAL EVOLUTION IN THE BRANE

The purpose of this section is to analyze the cosmolog
behavior inside the brane, given the global solutions obtai
in the previous sections. The brane being assumed to sta
y50, the induced metric in the brane is simply

ds252e2B(t,0)dt21e2A(t,0)d i j dxidxj . ~70!

The cosmological scale factor thus corresponds to

a~ t !5eA(t,0), ~71!

and the cosmic timet can be derived from the timet by

t5E eB(t,0)dt. ~72!

A. Generalized Friedmann equations

As a first step, we will combine some of the Einste
equations evaluated on the brane with the junction con
tions, and thus establish a generalized Friedmann’s equa
as well as a generalized conservation equation. In order t
so, we will closely follow the derivation of@4# @and use the
notationa(t,y)[eA(t,y)# with the additional ingredient tha
we allow here for an energy flux from the fifth dimensio
i.e., the component (0,5) of the bulk energy-momentum t
sor is non zero because of the presence of the scalar field
do not rewrite here the components of the Einstein tenso
the (t,y) coordinate system but we refer the reader to@4#
where they are explicitly written.

Substitution of the junction conditions in the (0,5) com
ponent of the Einstein’s equations evaluated at the bra
immediately yields the generalized conservation equation

ṙ13
ȧ

a
~r1P!5F, ~73!

with

F52e2BT05uy50 . ~74!

Here T055ḟf8, and using the junction condition for th
scalar field, one ends up with the equation

ṙ13
ȧ

a
~r1P!5gf8 r. ~75!

This generalizes the usual conservation law for cosmolog
matter, for which the right hand side is zero. The integrat
7-6
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of this equation yields, for an equation of stateP5wr with
w constant, the following evolution for the energy density

r}a23(11w)egf̃, ~76!

and one recovers the familiar evolution of standard cosm
ogy only if the scalar field is constant in time.

Let us now consider the (5,5) component of the Einst
equations. Using the (0,5) component, it can be rewritten
the form

Ḟ5
2

3
ȧa3k2T5

52
2

3
a8a3k2T0

5 , ~77!

with

F[e22B@~aa8!22~aȧ!2#. ~78!

This corresponds to a slight generalization of the expres
given in @4#, allowing here for a nonvanishing flux from th
extra dimension. Taking the value of Eq.~77! at the brane,
and using the junction condition, one finds after integrat
in time, the following generalized Friedmann’s equation

H25
k4

36
r22

2

3a4E dtS da

dt Da3k2T5
5

2
k4g

18a4E dta4S df̃0

dt
D r2, ~79!

where the Hubble parameter is defined by

H[
da/dt

a
5e2B

ȧ

a
. ~80!

This equation can be found, with a slightly different prese
tation, in@16#. It is characterized by the quadratic appearan
of the energy density of the brane, which is a generic fea
of brane cosmology@1#. We also have an integral term re
lated to thepressurealong the fifth dimension and an integr
term related to the energy flux coming from the fifth dime
sion, which here is essentially related to the time variationon
the braneof the bulk scalar field.

Finally, the expression for the energy-momentum ten
of the scalar field gives us

T5
55

1

2
e22B~f821ḟ2!2V~f!, ~81!

which yields

2

3
k2T5

5U
y50

5
k4

36
g2r21S df̃0

dt2 D 2

2
2

3
k2V~f0! ~82!

where we have used the junction condition~21! to replace
the gradient contribution by the term quadratic in the ene
density.
12350
l-

n
in

n

n

-
e
re

-

r

y

B. Static bulk solutions

The generalized Friedmann equation has the form

H25
k2

36
r21

V0

12~l2/4!
a22l2

1na242l2
. ~83!

Combining this Friedmann equation with the conservat
equation, one can obtain explicitly the evolution of the sc
factor as a function of the cosmic time for any given equ
tion of state.

It is easy to check that the general form~79! for the Fried-
mann equation is compatible with the above Friedma
equation. The five-dimensional pressure can be expresse
the form

2

3
k2T5

5U
y50

5
k4

18
l2r22l2

g~a!

a2 2
2

3
k2V0a22l2

, ~84!

where we have used the Friedmann’s equation in the fo
~83! to replace the kinetic term. Substituting in the integ
terms, one finds that the twor2 terms just cancel, and afte
integration of the remaining terms, one obtains directly w
one expects, i.e.

2

3a4E dtȧa3k2T5
51

k4

18a4E dta4gf8 r25
g~a!

a2 . ~85!

C. Separable solutions

According to Eqs.~72! and~67!, the cosmic time is given
by

t5A 18b

k2V0

m21emA1[t0emA1, m5
ã~ ãg22!

2~g1C!
,

~86!

where we have assumedA18.0 for definiteness. The scal
factor is given by

a~t!5S t

t0
D p

, p[
11b

m
5

2~ ã22g!

ã~22gã!
. ~87!

Substituting the condition~64! for the couplingg, in the
interesting case where the brane is not empty, the power
be written

p5
1

3~11w! F11
4~213w!

ã2 G . ~88!

The minimum value ofã2 being 4, the range of possiblep is
betweenp51 andp51/„3(11w)…, the latter being the un-
conventional evolution in the case of an empty bulk@1#. Note
that this range includes the conventional valuep52/„3(1
1w)….

The Hubble parameter is therefore

H5
p

t
. ~89!
7-7
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The energy density in the brane can be related to this Hu
parameter, the easiest way being to use Eq.~68! and one
finds that the two are proportional,

k2

6
r5

12b

11b
H. ~90!

The unconventional cosmological evolution that was o
tained in the case of an empty bulk@1# is thus generalized
here for a bulk with a scalar field for our specific separa
solutions. There is a difference however is the proportion
ity coefficient. Finally, the evolution of the scalar field
given by

f̃05
22gã

2g2ã
ln a. ~91!

It is now instructive to check the generalized Friedma
equation~79!, by evaluating the contribution of each term f
our explicit solutions. One finds

2
2

3a4E dtS da

dt Da3k2T5
5522

ã2g214ãg28g224

~ ã22g!~ã2g12ã28g!

p2

t2

~92!

and

2
k4g

18a4E dta4S df̃0

dt
D r2

522g
~ã224!~ ãg22!

~ ã22g!2~ ã2g12ã28g!

p2

t2
~93!

and the sum of these two terms indeed coincides with

H22
k4

36
r254

12ãg1g2

~ ã22g!2
H2. ~94!

These expressions can be rewritten, using Eq.~64!, in terms
of the parameterw of the equation of state. One finds

2
2

3a4E dtS da

dt Da3k2T5
5

54
~9w216w21!ã228~9w2112w14!

~8112w1ã2!@~3w11!ã228~3w12!#

p2

t2
, ~95!

2
k4g

18a4E dta4S df̃0

dt
D r2

512ã2
~11w!~213w!~ ã224!

~8112w1ã2!2@~3w11!ã228~3w12!#

p2

t2
,

~96!

and
12350
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H22
k4

36
r254

~516w!ã214~213w!2

~8112w1ã2!2
H2. ~97!

Let us also mention the particular casegã52, correspond-
ing to the equation of statew521. One can easily see tha
the energy density is constant, given by

r5A2
2ã2V0

k2 , ~98!

which implies in particular that the scalar field potential mu
be negative for consistency. The scale factor, is given,
stead of a power-law, by an exponential, namely

a~t!5expFA2
k2V0

18
~ ã224!tG . ~99!

D. Cosmology with conformal coupling

In the case of conformal coupling, one must be aware t
the cosmological evolution given above corresponds to
so-called Einstein frame, i.e., the frame associated with
metric for which the action is the usual Einstein-Hilbert a
tion ~here we extend this definition to the five-dimension
gravitational action!. However, the physical metric corre
sponds to the metric which is minimally coupled to the or
nary matter and in our case, this means that the phys
frame, usually called the Jordan frame in the context
scalar-tensor theories of gravitation, is the frame associa
with the metricg̃mn .

It is therefore useful to rewrite the previous equations
the physical frame. The correspondence between the
scale factors is

ã5exf̃a. ~100!

The proper times are also different and related by

dt̃5exf̃dt. ~101!

Using the relation~91!, one finds that

ef̃5S t

t0
D 22/ã

, ~102!

and therefore, the expression of the new proper timet̃ in
terms of the ‘‘Einstein frame’’ proper time is

t̃5 t̃0S t

t0
D 122x/ã

, t̃0[
t0

12
2x

ã

. ~103!

The cosmological evolution of the scale factor is thus giv
by

ã5S t̃

t̃0
D (p22x/ã)/(122x/ã)

. ~104!
7-8
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Note that one cannot find a separable solution with con
mal coupling in the case of radiation. Conformal couplin
according to Eq.~22!, implies g50 for radiation, which is
clearly incompatible with the condition~64! for separable
solutions.

VI. CONCLUSIONS

In the present work, we have obtained explicit exact
lutions for a five-dimensional spacetime with a scalar fi
and a 3-brane. Although several explicit solutions exist
ready in the literature, most of them correspond to sta
solutions for which the bulk geometry and scalar field a
frozen and the cosmological evolution is only due to t
motion of our brane-universe in this bulk. As we have sho
here, this is the case when one assumes some proportion
relation between the scalar field and the logarithm of
bulk scale factor. More interestingly, we have also fou
solutions where the bulk itself has some dynamics. Eve
our solutions are rather artificial, and cannot be considere
realistic models for the recent cosmology of our univer
. B
s

s.
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they might be useful to give some insights in the future
vestigations of bulk-brane dynamics.

Although these solutions might represent acceptable m
els for the very early universe, one of the main open pr
lems is to obtain generic solutions of the bulk-brane syste
One could then investigate whether there exist, or not, so
attractor solutions so that the primordial brane cosmolo
would be somewhat insensitive to the initial conditions.

Another open question is how, in a cosmological conte
the presence of the scalar field and of its perturbations m
affect the results obtained so far for cosmological pertur
tions in a brane-universe, where the bulk was assumed t
empty apart from the presence of a negative cosmolog
constant~see@19# and references therein!.
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