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Adiabatic and isocurvature perturbations from inflation: Power spectra and consistency relations
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We study adiabatic and isocurvature perturbations produced during a period of cosmological inflation. We
compute the power spectra and cross spectra of the curvature and isocurvature modes, as well as the tensor
perturbation spectrum in terms of the slow-roll parameters. We provide two consistency relations for the
amplitudes and spectral indices of the corresponding power spectra. These relations represent a definite pre-
diction and a test of inflationary models which should be adopted when studying cosmological perturbations
through the cosmic microwave background in forthcoming satellite experiments.
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I. INTRODUCTION

Inflation is the standard scenario for the generation
cosmological perturbations in the universe which are
seeds for the large scale structure formation and the cos
microwave background~CMB! anisotropies. Many inflation-
ary models have been proposed so far since the original
posal by Guth@1#. The simplest possibility is to assume th
presence of a single scalar fieldf with a potentialV(f),
undergoing a slow-rolling phase@2#. The dynamics of the
inflationary stage can then be studied introducing a se
slow-roll parameters@3,4# which are obtained fromV(f)
and its derivativesV8, V9, . . . ,V(n) with respect to the in-
flaton fieldf. The physical observables can be expresse
terms of these parameters. The scalar perturbations are
erally expected to be adiabatic, nearly Gaussian distribu
and ~almost! scale-free~i.e., with power-spectra}kn). Fur-
thermore, the tensor modes~gravitational waves! are Gauss-
ian and scale-free. The scalar and tensor spectra can b
rametrized as

AS
2~k!5AS

2~k0!S k

k0
D nS21

, AT
2~k!5AT

2~k0!S k

k0
D nT

, ~1!

wherek0
21 is a typical length scale probed by CMB expe

ments. The main observables are four: the two amplitu
and the spectral indicesnT andnS . They can be expressed i
terms of the slow-roll parameters

e5
mPl

2

16p S V8

V D 2

h5
mPl

2

8p

V9

V
~2!

~with e,h!1 during slow-roll! via the relationsnS5126e
12h, nT522e andAT

2/AS
25e. For single-field models,

nT522e,
AT

2

AS
2

5e ⇒ nT522
AT

2

AS
2

. ~3!
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The so calledconsistencyrelationnT522AT
2/AS

2 reduces the
number of independent observables tonS , the relative am-
plitude of the two spectra and the scalar perturbation am
tude @which might be determined by normalizing to Cosm
Background Explorer~COBE! data#.

Analyses of the observed CMB anisotropies have so
assumed this kind of power-spectra as far as the primor
perturbations are concerned~see, for example,@5#!. One
should emphasize, however, that the theoretical predict
for the initial cosmological perturbations should be at t
same level of accuracy as the observations in order to c
strain the cosmological parameters (V tot ,Vb ,h, etc.!. The
forthcoming set of data on the CMB anisotropies provid
by the Microwave Anisotropy Probe~MAP! @6# and Planck
@7# satellites are expected to reduce the errors on the de
mination of the cosmological parameters to a few perc
@8#. This implies that the assumption that inflation has be
driven by a single scalar field may turn out to be an overs
plification and that it would be useful to consider alternati
possibilities to the simplest single-field models of inflatio
For instance, adiabaticity and/or Gaussianity may not h
@9–11#. Isocurvature perturbations can be produced durin
period of inflation if more than one scalar field is present
could be the case of inflation driven by several scalar fie
~the so called ‘‘multiple inflation’’!, or one where inflation is
driven by a single scalar field~the inflaton!, with other scalar
fields whose energy densities are subdominant, but wh
fluctuations must be taken into account too@12#. We will use
f andx I (I 51, . . . ,K) to indicate all the scalar fields, keep
ing in mind that, if the case,f plays the role of the inflaton
andx I of the extra degrees of freedom. It is likely that in th
early universe there were several scalar fields; moreo
from the particle physics point of view, the presence of d
ferent scalar fields is quite natural. An example is given
the supergravity and~super!string models where there are
large number of the so-called moduli fields. Another exam
is the theories of extra-dimensions where an infinite towe
spin-0 graviscalar Kaluza-Klein excitations appear@13#.

On the other hand, isocurvature perturbations, once g
eratedduring inflation, could not surviveafter inflation ends
©2001 The American Physical Society04-1
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@9,14–16#. If during reheating all the scalar fields decay in
the same species, the only remaining perturbations will b
adiabatic type.

In the case of adiabatic plus isocurvature fluctuations,
interesting issue is the possiblecorrelation between the two
modes of perturbation. In fact, until recently, only indepe
dent mixtures of adiabatic and isocurvature modes were c
sidered@17#. In Ref. @18# the effects of the correlation on th
CMB anisotropies and on the mass power spectrum has
considered. It has been found that several peculiar impr
on the CMB spectrum arise. In that case the correlation
been putby handas an additional parameter for structu
formation at the beginnig of the radiation dominated era.
Ref. @19#, instead, a specific realization of a double inflatio
ary model with two noninteracting scalar fields was stud
as an example for the origin of the correlation during infl
tion. A clear formalism was introduced in Ref.@20# to study
the adiabatic and the isocurvature modes and their cross
relation in the case of several scalar fields interacting thro
a generic potentialV(f,x I). In a previous paper@21# we
have shown that, in the presence of several scalar fields,
natural to expect a mixing and an oscillation mechanism
tween the fluctuations of the scalar fieldsf and x I , in a
manner similar to neutrino oscillations. This can happ
even if the energy density of the scalar fieldsx I is much
smaller than the energy density of the fieldf. The correla-
tion between the adiabatic and the isocurvature perturbat
can be read as a result of this oscillation mechanism.

The aim of this paper is to express the spectra for
adiabatic and isocurvature modes and their cross spectru
terms of the slow-roll parameters. We will show that, as
the standard single-field case, the physical observables
not independent, but there exist specific consistency relat
which are predicted theoretically. Analyses of the pres
CMB anisotropies data coming from the BOOMERang a
MAXIMA-1 experiments have been recently made@22# and
used to constrain adiabatic and isocurvature perturbation
study of the impact of isocurvature perturbation modes in
ability to accurately constrain cosmological parameters w
the forthcoming MAP and Planck measurements has b
made in Ref.@23#. However, in all these studies the physic
observables~i.e., the different amplitudes and spectral ind
ces! have been considered as independent parameters.
findings, instead, indicate that the interplay between the c
mological perturbations generated during the inflationary
och imposes some consistency relations among the phy
obervables which could be tested in the future. The plan
the paper is as follows. In Sec. II we briefly recall the ba
definitions of isocurvature and adiabatic perturbations,
define the correlation spectrum. In Sec. III we discuss
generation of the correlation during an inflationary peri
where two scalar fields are present, making an expansio
the solutions in slow-roll parameters. In Sec. IV, we der
the expressions of the spectra soon after inflation and f
these we calculate the amplitude ratios and the spectral
ces to give the consistency relations between them. Fin
Sec. V contains some concluding remarks.
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II. BASIC DEFINITIONS

Let us consider a system composed byN components.
These could be theN scalar fields during inflation or the
different species which are present deep in the radiation
after inflation. Adiabatic perturbations are perturbations
the total energy density of the system, while isocurvature~or
entropic! perturbations leave the total energy density unp
turbed by a relative fluctuation between the different com
nents of the system. Thus adiabatic perturbations are cha
terized by a perturbation in the intrinsic spatial curvatu
while the isocurvature perturbations do not perturb the c
vature. In order to have isocurvature perturbations it is n
essary to have more than one component and at least
nonzero entropic perturbationSab @24#:

Sab[
da

11wa
2

db

11wb
Þ0, ~4!

whereda5dra /ra , wa5pa /ra ~the ratio of the pressure to
the energy density!, anda andb stand for any two compo-
nents of the system.Sab is a gauge-invariant quantity an
measures the relative fluctuations between the different c
ponents. Adiabatic perturbations are characterized by ha
Sab50 for all of the components. Thus in general there w
be one adiabatic perturbation mode andN21 independent
isocurvature modes and one must consider adiabatic
isocurvature perturbations.

For a generic cosmological perturbationD(x), it is stan-
dard to define its dimensionless power spectrumPD as

^DkDk8&52p2k23PD~k!d~k1k8!, ~5!

where the angular brackets denote ensemble averages anDk
is the Fourier transform ofD(x):

Dk5
1

~2p!3/2E d3x e2 ik•xD~x!. ~6!

Thus for two quantitiesD1(x) andD2(x) it can be defined a
cross spectrum as

^D1kD2k8&52p2k23CD1D2
~k!d~k1k8!. ~7!

III. ADIABATIC AND ISOCURVATURE PERTURBATIONS
FROM INFLATION: A SLOW-ROLL FORMALISM

As already mentioned in Sec. I, adiabatic and isocurvat
perturbations can be produced during a period of inflation
which more than one scalar field is present. One of the
ficulties in studying mixtures of isocurvature and adiaba
perturbations produced during inflation is that, in gene
one cannot trace back the adiabatic mode to the perturba
of some of these scalar fields only, and the entropic mode
the perturbations of the remaining scalar fields. Rather
fluctuations of all of the scalar fields contribute to the ad
batic and isocurvature modes. On the other hand, this is
reason why one must expect a correlation between them
this respect the authors of Ref.@20# have provided a genera
4-2
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formalism to better disentangling the adiabatic and isocur
ture perturbation modes.

Let us now enter into the details. For simplicity we w
restrict here to the case of two fields,f andx with a generic
potential V(f,x). In order to study the field perturbation
df anddx, we can write the line element for scalar pertu
bations of the metric as

ds252~112A!dt212aB,idxidt1a2@~122c!d i j

12E,i j #dxidxj . ~8!

Thus the equation for the evolution of the perturbationdf I
(I 51,2 and df15df, df25dx) with comoving wave
numberk52pa/l for a mode with physical wavelengthl is

d̈f I13H ḋf I1
k2

a2
df I1(

J
Vf IfJ

dfJ

522Vf I
A1ḟ IF Ȧ13ċ1

k2

a2
~a2Ė2aB!G , ~9!

where the dots stand for time derivatives.
In the following we will recall the basic equations an

results of Ref.@20#. It is possible to define the adiabatic an
entropy fields (dA andds respectively! in terms of the origi-
nal onesdf, dx as

dA5~cosb!df1~sinb!dx ~10!

and

ds5~cosb!dx2~sinb!df, ~11!

where

cosb5
ḟ

Aḟ21ẋ2
, sinb5

ẋ

Aḟ21ẋ2
. ~12!

Introducing the gauge-invariant Sasaki-Mukhanov variab
@26#

QI[df I1
ḟ I

H
c, ~13!

it can be checked thatdA andds can be rewritten as

QA5~cosb!Qf1~sinb!Qx , ~14!

ds5~cosb!Qx2~sinb!Qf. ~15!

Note that the entropy fieldds is gauge-invariant.
The curvature perturbation@25#

R5H(
I S ẇ I

(
J51

N

ẇJ
2D QI ~16!
12350
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can be written in terms of the adiabatic fieldQA in the same
way as in the single scalar field case:

R5
H

Ȧ
QA . ~17!

The master equations are the evolution equations for
quantities defined in Eqs.~14! and ~15!. They read

d̈s13H ḋs1S k2

a2
1Vss13ḃ2D ds5

ḃ

Ȧ

k2

2pGa2 C ~18!

and

Q̈A13HQ̇A1F k2

a2
1VAA2ḃ22

8pG

a3 S a3Ȧ2

H
D •GQA

52~ ḃds!•22S VA

Ȧ
1

Ḣ

H D ḃds, ~19!

where Vss5(sin2b)Vff2(sin 2b)Vfx1(cos2b)Vxx , Ȧ

5(cosb)ḟ1(sinb)ẋ, VAA5(sin2b)Vxx1(sin 2b)Vfx

1(cos2b)Vff , VA5(cosb)Vf1(sinb)Vx ; c5C in the lon-
gitudinal gauge, and we use the notationVf I

5]V/]f I .
Following Ref.@20#, let us take at horizon crossing durin

inflation:

QI uk5aH'
Hk

A2k3
eI~k!, ~20!

whereI 5f,x, Hk is the Hubble parameter when the mo
crosses the horizon~i.e., akHk5k) andef andex are inde-
pendent random variables satisfying

^eI~k!&50, ^eI~k!eJ* ~k8!&5d IJd~k2k8!. ~21!

These initial conditions are strictly valid only for modes we
within the horizon. Indeed, as emphasized in Ref.@21#, cur-
vature and isocurvature perturbations become cro
correlated as soon as they leave the horizon when the o
lations between these two modes is resonantly amplified

For super-horizon scales,k!aH, we can neglect all terms
proportional tok2/a2 in Eqs. ~18! and ~19!, and consider
only the non-decreasing modes which amounts to neglec
the second time derivatives. Thus it follows

QA.A f~ t !1P~ t !, ~22!

ds.Bg~ t !, ~23!

where f (t) is the general solution for the homogeneous p
of Eq. ~19!, P(t) is a particular integral of the full Eq.~19!,
andg(t) is the general solution of Eq.~18!. The amplitudes
A(k) andB(k) are given by

A~k!'
Hk

A2k3
eA~k!, B~k!'

Hk

A2k3
es~k!, ~24!
4-3



e

-
ng

i

em

e

-

he
he
o
a

va
th
t

n

he

tio
su
tu

e
r

en

y

f

e

e
f the

alu-

f
ely.
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where eA(k) and es(k) are random variables satisfing th
same relations of Eq.~21!. P(t) can be written asP(t)
5BP̃(t). From Eqs.~22!, ~23! and~24! one gets the expres
sion forQA andds spectra and their cross-correlation duri
inflation:

PQA
.S Hk

2p D 2

@ u f 2u1uP̃2u#, ~25!

Pds.S Hk

2p D 2

ug2u, ~26!

CQAds.S Hk

2p D 2

gP̃. ~27!

Slow-roll expansion

The most important comment on the previous formulas
that the correlation is nonzero whenP̃ is nonzero~we are
considering that, in general, in a multicomponent syst
dsÞ0). On the other hand,P̃ is nonzero only when the
source term on the right-hand side of Eq.~19! is nonzero.
This happens when the time derivative of the angleb, de-
fined in Eq.~12!, is not vanishing. Note that this is also th
condition for the evolution ofQA andds not to be indepen-
dent, since in this caseds feedsthe adiabatic part of pertur
bations on large scales, as observed in Ref.@20#. In the lan-
guage of Ref.@21# this can be rephrased saying that t
probability of oscillation between the perturbations of t
scalar fields is resonantly amplified when perturbations cr
the horizon and the perturbations in the inflaton field m
disappear at horizon crossing giving rise to perturbations
scalar fields other than the inflaton. Adiabatic and isocur
ture perturbations are therefore inevitably correlated at
end of inflation. Provided thatdsÞ0, we can conclude tha
the correlation will be present under the conditionḃÞ0. It is
remarkable that only in some special cases this conditio
not satisfied. As can be checked from Eq.~12!, b is exactly
constant in time if there are attractor-like solutions for t
evolution of the two fieldsf and x of the kind ẋ}ḟ. For
example, this is the case of the models of assisted infla
@27#. Therefore, if the entropic modes are not strongly
pressed during inflation, the correlation between isocurva
and adiabatic perturbations is quite natural to arise.

Now let us introduce the following generalization of th
slow-roll parameters@see Eq.~2!# in the case of two scala
fields:

e I5
mPl

2

16p
S Vf I

V
D 2

and h IJ5
mPl

2

8p

Vf IfJ

V
, ~28!

whereVf I
5]V/]f I , andf I5f or x.

We have expanded the master equations~18! and ~19! to
lowest order in these parameters, since during inflatione I
and h IJ are !1. In the following we will quote only the
main results. More technical details can be found in App
dix A.
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For nondecreasing modes andk!aH Eq. ~18! can be
written as

ḋs52
1

3H
~Vss13ḃ2!ds. ~29!

Note thatms
2[Vss13ḃ2 is the effective mass for the entrop

field. To lowest order it is given by

2
ms

2

3H2
52

ex

e tot
hff12

~6Aef!~6Aex!

e tot
hfx2

ef

e tot
hxx .

~30!

The sign6 stands for the casesḟ (ẋ).0 and ,0, respec-
tively, ande tot stands for (ef1ex).

Starting from Eq.~23! the resulting solution fords will be

ds.B~k!g~ t !

5B~k!expF S 2
ex

e tot
hff12

~6Aef!~6Aex!

e tot

3hfx2
ef

e tot
hxxD @Nk2N~ t !#G , ~31!

where Nk2N(t)5* tk
t Hdt. N(t)5* t

t fHdt, with t f the time

inflation ends, is the number ofe-folds between the end o
inflation and a generic instantt, Nk5* tk

t f Hdt5 ln(af /ak) is the

number ofe-folds between the timetk the mode crosses th
horizon and the end of inflation. Typically,Nk.60 as far as
large scale CMB anisotropies are concerned.

In order to write Eq.~31!, we have neglected the tim
dependence of the term that appears as a combination o
slow-roll parameters, since its time derivative isO(e2,h2),1

and so we have extracted this term out of the integralNk
2N(t). Since it can be treated as a constant, it can be ev
ated at horizon crossing,k5aH. At the end of inflationds
will be

dsu t f
5B~k!expF S 2

ex

e tot
hff12

~6Aef!~6Aex!

e tot

3hfx2
ef

e tot
hxxDNkG . ~32!

As for the adiabatic mode, Eq.~19! can be written as

Q̇A52
1

3H
FVAA2ḃ22

8pG

a3 S a3Ȧ2

H
D •GQA1

2

3H F ~ ḃds!•

2S VA

Ȧ
1

Ḣ

H D ḃdsG . ~33!

1With O(e,h) andO(e2,h2) we indicate general combinations o
the slow-roll parameters of lowest order or next order, respectiv
4-4
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Putting the entropic solution~31! into Eq. ~33!, and follow-
ing the same procedure of expansion in the slow-roll para
eters, we find the adiabatic solution~22!:

f ~ t !u t f
5expF S 2

ex

e tot
hxx2

ef

e tot
hff22

~6Aef!~6Aex!

e tot
hfx

12e totDNkG ~34!

and

P̃~ t !u t f
52F ḃ

H
G

l .o.

g~ t !u t f

1

C
~eCNk21!, ~35!

where@ḃ/H# l .o. is the expression ofḃ/H to lowest order:

F ḃ

H
G

l .o.

5
ef2ex

e tot
hfx1

~6Aef!~6Aex!

e tot
~hff2hxx!

~36!

andC is given by

C5
ef2ex

e tot
hxx1

ex2ef

e tot
hff24

~6Aef!~6Aex!

e tot
hfx

12e tot . ~37!

Again @ḃ/H# l .o. andC, which areO(e,h), have been treated
as constant and can be taken at horizon crossing whek
5aH.

Now we are able to give the expressions for the spe
~25!, ~26! and ~27!:

PQA
5S Hk

2p D 2

u f 2~ t !u t fF114F ḃ

H
G

l .o.

2
1

C2
~12e2CNk!2G ,

~38!

Pds5S Hk

2p D 2

expF S 22
ex

e tot
hff14

~6Aef!~6Aex!

e tot
hfx

22
ef

e tot
hxxDNkG ~39!

and

CQAds5S Hk

2p D 2

2F ḃ

H
G

l .o.

g2~ t !u t f

1

C
~eCNk21!. ~40!

Since the isocurvature perturbationds is a source for the
adiabatic one, the curvature perturbation spectrum, wh
characterizes the adiabatic mode, does not remain con
during inflation in general, unlike the single field case~see,
for example, Ref.@28#!. This is the reason why we hav
evaluated all the previous expressions at the end of inflat
In the next section we will specify the initial conditions
the post inflationary epoch.
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A few comments are in order here. As can be seen in
~40! the cross correlation is proportional toḃ, as already
mentioned at the beginning of this section. Moreover, it d
pends on the factoreCNk, which is the ratio betweenf andg.
In other words,C is (ms

22mA
2)/3H2 to lowest order, where

ms
2 and mA

2 are the effective masses for the entropic a
adiabatic perturbations@the terms proportional tods andQA
in Eqs.~29!, ~33!#. This means that, in order to have a stro
correlation, what is important is just therelative magnitude
of the adiabatic and the entropic masses, even if they
both O(e). This result is in agreement with our previou
findings @21#, where we have demonstrated that the corre
tion emerges as soon as there is a mixing between the o
nal fieldsf andx and that this mixing can be large even
the masses of the scalar fields are allO(e I ,h IJ).

IV. INITIAL CONDITIONS IN THE POST INFLATIONARY
EPOCH

In the following we will assume that the mixing betwee
the scalar fields is negligible after inflation and that, for e
ample, the fieldf decays into ‘‘ordinary’’ matter~present-
day photons, neutrinos and baryons!, and the scalar fieldx
decays only into cold dark matter. The fieldx could also not
decay, as it happens in axion models. In fact, if during
heating all the scalar fields decay into the same species
perturbations will be only of adiabatic type deep in the
diation era: no relative fluctuationSab is generated. In the
present case a CDM-isocurvature mode will survive af
inflation. Using the notation of Sec. II and Ref.@19#, we can
write

dCDM5SCDM2rest1dA , dA5
3

4
dg5

3

4
dn5db ~41!

wheredA specifies the amplitude of the adiabatic mode
perturbations, and ‘‘rest’’ stands for ordinary matter.

In order to set the initial conditions for the evolution o
cosmological perturbations, and which can be used in so
numerical codes calculating the CMB anisotropies, we m
link the two relevant quantitiesSCDM2rest andR deep in the
radiation era to the inflationary quantitiesds andQA .

For the adiabatic perturbations this is immediate from E
~17!,

Rrad5
H

Ȧ
QA ~42!

where the right-hand side of this equation is evaluated at
end of inflation. As far asSCDM2rest is concerned, it is usefu
to introduce the following quantity:

dxf[
dx

ẋ
2

df

ḟ
. ~43!

For the scalar fieldsf and x the isocurvature perturbatio
Sxf , Eq. ~4!, resultsSxf5a3d(dxf /a3)/dt @29#.

On the other hand,
4-5
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ds5
ẋḟ

Aẋ21ḟ2
dxf . ~44!

Then, to lowest order in the slow-roll parameters, one fin

Sxf523
A4p

mPl

Ae tot

~6Aef!~6Aex!
ds. ~45!

To match to the radiation epoch we takeSCDM2rest5Sxf at
the end of inflation.

A. Observables: Amplitudes and spectral indices

In this subsection we will give the explicit expressions f
the power spectra of the adiabatic and isocurvature mo
and their cross correlation. To lowest order, they can be w
ten as power laws}kn, in a way analogous to the singl
scalar field models@cf. Eq.~1!#. This means that there will be
three amplitudes and three spectral indices. Moreover,
have taken into account also the tensor perturba
~gravitational-wave! spectrum, yielding a total of four ampli
tudes and four spectral indices. Indeed, we must conside
normalization that fixes one amplitude and will bring
sevenobservables.

On the other hand, the reader should call that we h
introducedfive slow-roll parameters. In the single field ca
there are three observables~the tensor to scalar amplitud
ratio AT

2/AS
2 , nS andnT), and one finds one consistency r

lation betweenAT
2/AS

2 and nT @see Eq.~3!#. Thus in the
present case we expect to findtwo consistency relations be
tween the observables. To fit the CMB anisotropies one m
consider the initial fluctuation spectra with their amplitud
and spectral indices. The existence of such consistency
tions means that not all the amplitudes and spectral ind
must be considered as independent.

For the curvature perturbationR, it results from Eqs.~25!
and ~42!:

PR5
4p

mPl
2 S Hk

2p D 2 1

e tot
@ u f 2u1uP̃2u#U

t f

, ~46!

where we have used the fact that (Ȧ/H)25mPl
2 /4p e tot .

If not written otherwise, we intend this and all the subs
quent expressions evaluated at the end of inflation for
reasons explained at the end of Sec. III A. For the isocur
ture perturbationS, we can write from Eqs.~26! and ~45!:

PS59
4p

mPl
2 S Hk

2p D 2 e tot

efex
ug2uU

t f

. ~47!

Finally, for the cross-spectrumPC we find, from Eqs.~27!
and ~40!,
12350
s

s,
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e
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e
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-
e
-

PC526
4p

mPl
2 F ḃ

H
G

l .o.
S Hk

2p D 21

C
~eCNk21!

3
1

~6Aef!~6Aex!
g2U

t f

. ~48!

Now we can calculate the spectral indices to lowest ord
They are defined as2

n21[
d ln P
d ln k

. ~49!

The dependence of the above expressions on the como
wave numberk comes fromHk , Nk , and those slow-roll
parameters which are evaluated at horizon crossing,
which are contained inf, g, @ḃ/H# l .o. and C. Therefore, in
order to calculaten to lowest order, we have made use of t
following formula:

d ln P
d ln k

5
d ln P

d ln~aH!
U

aH5k

5~11e tot!
d ln P
d ln aaH5k . ~50!

The spectral indices read3

nR21[
d ln PR
d ln k

526 e tot12
ex

e tot
hxx

14
~6Aef!~6Aex!

e tot
hfx12

ef

e tot
hff

28
1

11
uP̃2u

u f 2u

F ḃ

H
G

l .o.

2
e2CNk

C
~12e2CNk!, ~51!

nS21[
d ln PS

d ln k
522e tot12

ex

e tot
hff

24
~6Aef!~6Aex!

e tot
hfx12

ef

e tot
hxx , ~52!

nC21[
d lnuPCu
d ln k

5nS212
C

eCNk21
eCNk, ~53!

where all the slow-roll parameters are evaluated atk5aH.
As far as the tensor power spectrum is concerned, i

immediate to generalize the standard result for a single-fi
model ~see, for example,@3#!. To lowest order it is

2Note that the correlation can be positive or negative. In this c
the spectral index can be defined asn21[d lnuPu/d ln k. In the
expressions below we have already taken it into account.

3Our definition of the isocurvature spectral index differs fromniso

as given, for instance, in Refs.@11#; one hasniso5nS24.
4-6
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PT5S 4

Ap

H

mPl
D 2U

k5aH

, ~54!

and thus the spectral indexnT reads

nT5
d ln PT

d ln k
522e tot . ~55!

As can be seen from Eq.~51!, in the case of a single field~for
examplef) we recover the standard result:

nR21526ef12hff . ~56!

It can be checked that, to lowest order in the slow-roll p
rameters, these spectral indices can be treated as indepe
of k, and so the spectra can be approximated, to the des
accuracy, as power laws.

B. Consistency relations

In order to get the consistency relations we have inver
the equations defining the observational quantitiesPR /PS ,
PR /PC , PR /PT , nR , nS , nC and nT in terms of the slow-
roll parameters.

Let us multiply the power spectra by suitable coefficie
which are conventional in literature~see Ref. @3#!: AR

2

5 4
25PR , AC

25 2
5 PC andAT

25 1
100PT .

Defining

r T[
AT

2

AR
2

~57!

~not to be confused with the more traditional tensor-to-sca
quadrupole ratio! and

r C[
AC

2

ASAR
, ~58!

we have found the following consistency relations~the inter-
ested reader can find the details in Appendix B!

r T52
1

2
nT~12r C

2!, ~59!

~nC2nS!r T52
nT

4
~2nC2nS2nR!. ~60!

A few comments are in order at this point. From formu
~59!, one can easily recover the single-field model pred
tion, since in this caseAC

2 vanishes andnT522AT
2/AR

2 . We
also learn from Eq.~59! that the tensor to adiabatic scal
amplitude ratio is smaller than2nT/2 as soon as the adia
batic and entropy modes are cross-correlated. Equation~59!
is a proof of the generic statement thatr T<2nT/2 in the
multi-component case~see, for example, Refs.@30,31#!.

Equation~60! applies only whenr CÞ0; if the adiabatic
and isocurvature modes are not correlated~as, for instance,
12350
-
ent

ed

d

s

r

-

in the case of assisted inflation@27#! there is only one con-
sistency relation, which corresponds to the standard form
r T52nT/2.

The consistency relation~60! can be further simplified if
the slow-roll parameters are smaller than 1/Nk . In such a
case, to lowest order we get

r T52
1

2
nT , ~61!

nS5nR . ~62!

The consistency relations~59! and~60! @or ~61! and~62!# are
the main results of this paper.

V. CONCLUSIONS

In this paper we have considered the possibility tha
cold dark matter~CDM! isocurvature perturbation mode ca
survive after an inflationary period in which two scalar fiel
are present. Linking the post inflationary epoch to the d
namics of inflation, under the slow-roll conditions, it is po
sible to get the expression for the spectra of the adiabatic
isocurvature modes and their cross-correlation spectrum
terms of the slow-roll parameters defined for the two sca
fields. From these expressions two consistency relations
low, Eqs.~59! and ~60!, in analogy to what one finds in th
single-field case. Thus these relations consitute a strong
nature of inflation models with more than one scalar fie
For an analysis of the CMB anisotropy measurements, th
relations between observables must be taken into accoun
a prediction of inflation. The main trend is actually to co
sider all the possible isocurvature modes~CDM, baryon,
neutrino and neutrino velocity isocurvature modes! in a phe-
nomenological way, considering all the amplitudes and
spectral indices as independent observables@22,23#. Even if
the present treatment does not consider the possible orig
isocurvature modes different from the CDM one, it could
easily extended to the case of more than two scalar fie
giving rise to many isocurvature modes. Our analysis clea
indicates that, in an inflationary scenario for the product
of primordial perturbations, not all the observables have
be treated as independent. This has strong implications
our ability to accurately constrain cosmological paramet
from CMB measurements in models where both adiab
and isocurvature modes are present.

APPENDIX A: SLOW-ROLL EXPANSION

Here we report in more detail the calculations leading
Eqs.~29! and~33! to lowest order in the slow-roll paramete
e I andh IJ .

Using the definiton of the adiabatic and entropic field
Eqs.~14! and~15!, and Eq.~20!, we obtain the initial condi-
tions at the timetk of horizon crossing:

QA'
Hk

A2k3
eA~k!, ds'

Hk

A2k3
es~k!. ~A1!
4-7
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The solution of Eq.~29! will be

ds5B~k!expF E
tk

t

2
ms

2

3H2
HdtG , ~A2!

wherems
25Vss13ḃ2. Let us recall the explicit expression o

Vss:

Vss5~sin2b!Vff2~sin 2b!Vfx1~cos2b!Vxx . ~A3!

Using Eq.~12!, we get

sin2b5
ẋ2

ḟ21ẋ2
5

ex

e tot
, ~A4!

wheree tot5ef1ex and we have used the following relation
holding to lowest order:

H25
8p

3mPl
2

V~f,x! and ḟ I52
1

3H

]V

]f I
. ~A5!

SinceVff /H253 hff , we obtain

sin2b
Vff

H2
53

ex

e tot
hff . ~A6!

In the same way one calculates the other two terms on
right-hand side of Eq.~A3!, leading to Eq.~30!.

The quantity ḃ2/3H2 may be neglected since it i
O(e2,h2):

ḃ

H
5cos2b

1

H

d~ tanb!

dt
5

ef

e tot

1

H

d~ tanb!

dt
, ~A7!

with

1

H

d~ tanb!

dt
5

1

H

ẍḟ2ẋf̈

ḟ2

5
1

ef
@2hxx~6Aex!2hfx~6Aef!

1e tot~6Aex!#~6Aef!

1
1

ef
@hff~6Aef!1hfx

3~6Aex!2e tot~6Aef!#~6Aex!,

~A8!

and thus

F ḃ

H
G

l .o.

5
1

e tot
@~ex2ef!hfx1~hff2hxx!

3~6Aex!~6Aef!#. ~A9!

The functiong(t) is
12350
e

g~ t !5expF S 2
ex

e tot
hff12

~6Aef!~6Aex!

e tot
hfx2

ef

e tot
hxxD

3@Nk2N~ t !#G . ~A10!

Recall now Eq.~33! for the adiabatic perturbationQA :

Q̇A5a~ t !QA1b~ t !, ~A11!

where

a~ t !52
1

3H
FVAA2ḃ22

8pG

a3 S a3Ȧ2

H
D •G , ~A12!

and

b~ t !5
2

3H F ~ ḃds!•2S VA

Ȧ
1

Ḣ

H D ḃdsG . ~A13!

The homogenous solutionf (t) is given by exp@*tk
t a(s)ds#. We

expanda(s) to lowest order. The same procedure forVss/H2

holds forVAA /H2, and ḃ2/H2 is again neglected. As far a
the last term ina(t) is concerned, one has

1

H2

8pG

a3 S a3Ȧ2

H
D •

53
8p

mPl
2

Ȧ2

H2
1

8p

mPl
2

1

H2 S Ȧ2

H
D •

.

~A14!

SinceȦ5(cosb)ḟ1(sinb)ẋ, it follows that

3
8p

mPl
2

Ȧ2

H2
53

8p

mPl
2

ḟ21ẋ2

H2
56e tot , ~A15!

and

1

H2 S Ȧ2

H
D •

52
mPl

2

4p F S Ḣ

H2D 2

1
1

H

d

dt S Ḣ

H2D G , ~A16!

where we have used the formula Ȧ2/H25

(24p)21mPl
2 Ḣ/H2. Since2Ḣ/H25e tot to lowest order, the

term in Eq.~A16! is negligible@it is easy to verify that the
time derivative ofe tot is O(e2,h2)#.

Thusa(t) reads

a~ t !52
ex

e tot
hxx2

ef

e tot
hff22

~6Aef!~6Aex!

e tot
hfx12e tot

~A17!

and Eq.~31! follows.
Finally, we calculate the particular solutionP̃(t) of the

full Eq. ~33!. This is given by
4-8
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expF E
tk

t

a~s!dsG E
tk

t

expF2E
tk

t

a~s!dsGb~t!dt.

Insertingḋs, Eq. ~29! into b(t), we find

2

3 F b̈

H
2

ḃ

H

1

3H
~Vss13ḃ2!2S VA

Ȧ
1

Ḣ

H D ḃ

HGd s,

~A18!

where VA5(cosb)Vf1(sinb)Vx . To lowest order the only
term which survives is (VA /Ȧ)(ḃ/H), which to lowest order
is given by23H@ḃ/H# l .o. .

Thusb(t) reads

b~ t !52HF ḃ

H
G

l .o.

g~ t !, ~A19!

and P̃(t) at the end of inflation becomes

P̃~ t !u t f
52F ḃ

H
G

l .o.

e*
tk

t fa(s)dsE
tk

t f
e2* tk

t a(t)dtHg~t!dt

52F ḃ

H
G

l .o.

g~ t !u t f
E

tk

t f
eCN(t)H dt ~A20!

whereC is given in Eq.~37! and we have extracted from th
integral@ḃ/H# l .o. andg(t)u t f

, since, to lowest order, they ca
be considered as being constant. The integral can be reso
by the change of variablesHdt52dN and it yields
C21(eCNk21). Thus Eq.~35! follows.

APPENDIX B: CONSISTENCY RELATIONS

To calculate the formulas~59! and~60!, we must take into
account that there aresevenobservables expressed throu
five slow-roll parameters at horizon crossing. To invert t
equations definingPR /PS , PR /PC , PR /PT , nR , nS , nC and
nT , we have made a change of variables using five com
nations of the slow-roll parameters at horizon crossing wh
are always found in the expressions for the observab
They are

F ḃ

H
G

l .o.

[x ~B1!

u f u2u t f
[u.0 ~B2!

g2u t f
[r .0 ~B3!

e totuk5aH ~B4!

and
12350
ed

i-
h
s.

S 2
ex

e tot
hff24

~6Aef!~6Aex!

e tot
hfx12

ef

e tot
hxxD .

~B5!

Note that in our results for the spectra, Eqs.~46!, ~47! and
~48!, there appear also two expressions in the slow-roll
rameters evaluated at the end of inflation,t5t f , and not only
slow-roll parameters atk5aH. They are e totu t f

and

(6Aef)(6Aex)u t f
. However, we have takene tot equal to

one at the end of inflation. So one can verify thatu f u2u t f

;1/e totuk5aH , and therefore there arefivevariables again:x,
u, r, the one defined in Eq.~B6!, plus (6Aef)(6Aex)u t f

[s.0.
In these new variables we have considered the follow

equations:

nS2nC5
1

2Nk

Ap

Ap21
ln p ~B6!

nR2nS52
1

Nk
ln p2F16x2

Nk

ln p

Ap21

p G 1

F~x,p!
~B7!

4

9
PR /PS5

4

81
s2p F~x,p! ~B8!

9

4
PC /PR5F2

1

9

s

x

1

2Nk
ln p

p

Ap21
F~x,p!G21

~B9!

9

4
PT /PR536

1

rp

1

F~x,p!
~B10!

nT522
1

rp
~B11!

where

F~x,p!511163Nk
2x2

1

~ ln p!2

~Ap21!2

p
, ~B12!

with p[u/r .0, and we have used the fact that the quan
C given in Eq.~37! can be written asC'(1/Nk)lnAp.

Using Eqs.~B8!, ~B9!, ~B10! and~B11! one gets the first
consistency relation Eq.~59! eliminating the variablesx and
r.

Equations~B7! and~B10!, eliminatingx, give the follow-
ing equation:

9

4
PT /PR52

nT

2 F36Ap136NknS

~12Ap!

ln p

236NknR
~12Ap!

ln p G . ~B13!
4-9
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Using Eqs.~B6! and~B13!, one gets the second consisten
relation ~60!. The procedure is as follows. We have defin
w[ ln p and 12Ap[z. Thus the consistency relation
found from the equationew[(12z)2, once the explicit ex-
pressions forw and z are obtained. This is straightforwar
leading to

12z5
2~nC2nS!

4 nT

PR

PT

~B14!

w522Nk ~nC2nS!

236Nk~nC2nS!nT

4

9

PR

PT
236Nk~nC2nR!nT

4

9

PR

2PT
.

~B15!
ep

r-

.
ce

00
28

-
.

.

12350
From these equations we get Eq.~59! and

lnF 4~nC2nS!r T

nT~nS1nR22nC!
G5NkF ~nS2nC!1

nT~nS1nR22nC!
4r T

G .
~B16!

In order to make the solution time-independent, cons
tently with our first-order slow-roll expansion, both sides
Eq. ~B16! have to vanish. Equation~60! then follows. The
relation ~62! in the limit uCuNk!1 can be easily derived by
noting thatnC2nS521/Nk and 2nC2nS2nR522/Nk .
h

ys.
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