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Adiabatic and isocurvature perturbations from inflation: Power spectra and consistency relations
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We study adiabatic and isocurvature perturbations produced during a period of cosmological inflation. We
compute the power spectra and cross spectra of the curvature and isocurvature modes, as well as the tensor
perturbation spectrum in terms of the slow-roll parameters. We provide two consistency relations for the
amplitudes and spectral indices of the corresponding power spectra. These relations represent a definite pre-
diction and a test of inflationary models which should be adopted when studying cosmological perturbations
through the cosmic microwave background in forthcoming satellite experiments.
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I. INTRODUCTION

PACS nunier98.80.Cq, 95.35:d

The so callectonsistencyelationny= — 2A2/ A% reduces the
number of independent observablesntg, the relative am-

Inflation is the standard scenario for the generation oplitude of the two spectra and the scalar perturbation ampli-

cosmological perturbations in the universe which are theude[which might be determined by normalizing to Cosmic
seeds for the large scale structure formation and the cosmBackground ExploreCOBE) datd.

microwave backgrountCMB) anisotropies. Many inflation-

Analyses of the observed CMB anisotropies have so far

ary models have been proposed so far since the original prersssumed this kind of power-spectra as far as the primordial
posal by Guth{1]. The simplest possibility is to assume the perturbations are concerndadee, for example[5]). One

presence of a single scalar fiefdl with a potentialV(¢),
undergoing a slow-rolling phage®]. The dynamics of the

should emphasize, however, that the theoretical predictions
for the initial cosmological perturbations should be at the

inflationary stage can then be studied introducing a set ofame level of accuracy as the observations in order to con-

slow-roll parameterg3,4] which are obtained fromV(¢)
and its derivatives/’, V", ... V(" with respect to the in-

strain the cosmological parameter@,(;,(,h, etc). The
forthcoming set of data on the CMB anisotropies provided

flaton field ¢. The physical observables can be e.xpressed iy the Microwave Anisotropy Prob@IAP) [6] and Planck
terms of these parameters. The scalar perturbations are ggi7] satellites are expected to reduce the errors on the deter-
erally expected to be adiabatic, nearly Gaussian distributeghination of the cosmological parameters to a few percent

and (almos} scale-free(i.e., with power-spectrack"). Fur-
thermore, the tensor modégravitational wavesare Gauss-

[8]. This implies that the assumption that inflation has been
driven by a single scalar field may turn out to be an oversim-

ian and scale-free. The scalar and tensor spectra can be pslification and that it would be useful to consider alternative

rametrized as

nr

k ng—1
A§<k>=A§<ko)(k—o) : A$<k>:A$<ko>(k—o) , (1)

Wherekg1 is a typical length scale probed by CMB experi-

possibilities to the simplest single-field models of inflation.
For instance, adiabaticity and/or Gaussianity may not hold
[9-11]. Isocurvature perturbations can be produced during a
period of inflation if more than one scalar field is present. It
could be the case of inflation driven by several scalar fields
(the so called “multiple inflation], or one where inflation is
driven by a single scalar fieldhe inflaton, with other scalar

ments. The main observables are four: the two amplitudefields whose energy densities are subdominant, but whose

and the spectral indices; andng. They can be expressed in
terms of the slow-roll parameters

VI
v

T=8x V

_ M
167

(with €, »<<1 during slow-rol) via the relationsg=1—6¢
+27, ny=—2e andA3/A%=e. For single-field models,

fluctuations must be taken into account {4@]. We will use

¢ andy, (I=1,... K) to indicate all the scalar fields, keep-
ing in mind that, if the casep plays the role of the inflaton,
and y, of the extra degrees of freedom. It is likely that in the
early universe there were several scalar fields; moreover,
from the particle physics point of view, the presence of dif-
ferent scalar fields is quite natural. An example is given by
the supergravity an@supeistring models where there are a
large number of the so-called moduli fields. Another example
is the theories of extra-dimensions where an infinite tower of

A2 A2 spin-0 graviscalar Kaluza-Klein excitations appgb3].
Nt=—2¢ — =€ ny=—2—. 3 On the other hand, isocurvature perturbations, once gen-
As As eratedduring inflation, could not survivafter inflation ends
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[9,14-186. If during reheating all the scalar fields decay into Il. BASIC DEFINITIONS
the same species, the only remaining perturbations will be of

adiabatic type. . . . . These could be th&\ scalar fields during inflation or the
_Inthe case of adiabatic plus isocurvature fluctuations, aljitferent species which are present deep in the radiation era
interesting issue is the possitgerrelation between the tWo  fier inflation. Adiabatic perturbations are perturbations in
modeslof perturbat_lon. I.n fact,. until recently, only indepen-ine total energy density of the system, while isocurvatare
dent mixtures of adiabatic and isocurvature modes were COMsntropio perturbations leave the total energy density unper-
sidered 17]. In Ref.[18] the effects of the correlation on the tyrped by a relative fluctuation between the different compo-
CMB anisotropies and on the mass power spectrum has beggnts of the system. Thus adiabatic perturbations are charac-
considered. It has been found that several peculiar imprintgerized by a perturbation in the intrinsic spatial curvature,
on the CMB spectrum arise. In that case the correlation haghile the isocurvature perturbations do not perturb the cur-
been putby handas an additional parameter for structure vature. In order to have isocurvature perturbations it is nec-
formation at the beginnig of the radiation dominated era. Inessary to have more than one component and at least one
Ref.[19], instead, a specific realization of a double inflation-nonzero entropic perturbatids, ; [24]:
ary model with two noninteracting scalar fields was studied

as an example for the origin of the correlation during infla- S - O _ Op
tion. A clear formalism was introduced in R¢20] to study B 1+w, 1+wg
the adiabatic and the isocurvature modes and their cross cor-

relation in the case of several scalar fields interacting througiheresd, = p,/p., Wo=p./p, (the ratio of the pressure to
a generic potentiaV(#,x,). In a previous papef21] we the energy densilyanda and g stand for any two compo-

have shown that, in the presence of several scalar fields, it 8€nts of the systen®,; is a gauge-invariant quantity and
natural to expect a mixing and an oscillation mechanism beMeasures the relative fluctuations between the different com-

tween the fluctuations of the scalar fieldsand y,, in a ponents. Adiabatic perturbations are characterized by having

manner similar to neutrino oscillations. This can happerﬁaﬁzo fo(rj_allljotf_the c;)mé)ot_nents. '(rjhu;iiggie_r]edral thedre \f[Vi"
even if the energy density of the scalar fielgsis much € oné adiabatic perturbation mode independen

smaller than the energy density of the figid The correla- isocurvature modes gnd one must consider adiabatic plus
. ) . . . _isocurvature perturbations.
tion between the adiabatic and the isocurvature perturbations ; . . -

For a generic cosmological perturbatidrfx), it is stan-

can be rgad as a result of.this oscillation mechanism. dard to define its dimensionless power spectfmas

The aim of this paper is to express the spectra for the
adiabatic and isocurvature modes and th.eir Cross spectrum in (A Ay ) =272k 3Py (K) S(k+K'), (5)
terms of the slow-roll parameters. We will show that, as for
the standard single-field case, the physical observables ayghere the angular brackets denote ensemble averages,and
not independent, but there exist specific consistency relatioris the Fourier transform af (x):
which are predicted theoretically. Analyses of the present
CMB anisotropies data coming from the BOOMERang and 1 ,
MAXIMA-1 experiments have been recently mad®] and Ak:—3/2f d®x e R XA(x). (6)
used to constrain adiabatic and isocurvature perturbations; a (2m)
stgc_jy of the impact of isocuryature pertu_rbation modes in OUrhys for two quantitied\ 1 (x) andA,(x) it can be defined a
ability to accn_Jrater constrain cosmological parameters W'ﬂ}:ross spectrum as
the forthcoming MAP and Planck measurements has been
made in Ref'[23]. Howgver, in all these studies the phy§icgl <A1kA2k,>:27T2k—SCA1A2(k) S(k+k'). 7)
observabledi.e., the different amplitudes and spectral indi-
ces have been considered as independent parameters. Our
findings, instead, indicate that the interplay between the codll- ADIABATIC AND ISOCURVATURE PERTURBATIONS
mological perturbations generated during the inflationary ep- ~ FROM INFLATION: A SLOW-ROLL FORMALISM

och imposes some consistency relations among the physical ag ajready mentioned in Sec. I, adiabatic and isocurvature
obervables which could be tested in the future. The plan operturbations can be produced during a period of inflation in
the paper is as follows. In Sec. Il we briefly recall the basicyhich more than one scalar field is present. One of the dif-
definitions of isocurvature and adiabatic perturbations, angiculties in studying mixtures of isocurvature and adiabatic
define the correlation spectrum. In Sec. Ill we discuss thgerturbations produced during inflation is that, in general,
generation of the correlation during an inflationary periodone cannot trace back the adiabatic mode to the perturbations
where two scalar fields are present, making an expansion @ff some of these scalar fields only, and the entropic modes to
the solutions in slow-roll parameters. In Sec. IV, we derivethe perturbations of the remaining scalar fields. Rather the
the expressions of the spectra soon after inflation and frorfluctuations of all of the scalar fields contribute to the adia-
these we calculate the amplitude ratios and the spectral indbatic and isocurvature modes. On the other hand, this is the
ces to give the consistency relations between them. Finallyeason why one must expect a correlation between them. In
Sec. V contains some concluding remarks. this respect the authors of R¢20] have provided a general

Let us consider a system composed KWycomponents.

#0, (4)
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formalism to better disentangling the adiabatic and isocurvaean be written in terms of the adiabatic fi&l in the same
ture perturbation modes. way as in the single scalar field case:

Let us now enter into the details. For simplicity we will
restrict here to the case of two fields,and y with a generic
potential V(¢, x). In order to study the field perturbations

H
R= XQA .
8¢ and Sy, we can write the line element for scalar pertur-

(17)

bations of the metric as
ds?=—(1+2A)dt?+2aB;dx dt+a?[(1-2¢) 5
+2E ;i ]dx'dx. (8)

Thus the equation for the evolution of the perturbatii,

(I=1,2 and 6¢,=6¢, S¢p,=35x) with comoving wave

numberk=27ra/\ for a mode with physical wavelengthis

. K
5¢,+3H 5¢|+;5¢,+§ V4,00

2
=—2V¢|A+¢, A+3¢+¥(azE—aB) . (9

where the dots stand for time derivatives.

In the following we will recall the basic equations and
results of Ref[20]. It is possible to define the adiabatic and

entropy fields §A and &s respectively in terms of the origi-
nal onesé¢, oy as

SA=(cosB) 8¢+ (sinB) Sy (10)
and
8s=(cosB)Sx—(sinB)d¢, (11
where
cospB= sinB= (12

¢ X

Introducing the gauge-invariant Sasaki-Mukhanov variablegatyre  and

[26]

Q=s0+ 2y, 13

it can be checked thafA and §s can be rewritten as

Qa=(cosB)Qy+(sinB)Q,, (14
ds=(cosB)Q,—(sinB)Qy. (15
Note that the entropy fields is gauge-invariant.
The curvature perturbatigr25]
¢
R= HZ N Q (16)

2 ¢
J=1

The master equations are the evolution equations for the
guantities defined in Eq$14) and (15). They read

55+ 3H 5s+

k? LB K
;+Vss+3ﬁ 5822\ mqf (18

and

Op+3HQA+

K2 - 8we<a3'A2)‘

;"'VAA_IB_ 2\ H Qa

: Va HY.
=2(B6s) —2 BFs,

XA o (19)

where  Ves=(SIPAVy—(Sin 28)Vy, +(COSAV,,, A
= (cosp)p+(sinB)x, Vaa= (SIPB)V,,+(sin 28)V,y,
+(COSP\V gy, Va=(COSB)V,4+(siNB)V,; ="V in the lon-
gitudinal gauge, and we use the notatkby,ll:aV/&¢, .

Following Ref.[20], let us take at horizon crossing during
inflation:

Hy

Q||k:aH~ﬁ

wherel = ¢, x, Hy is the Hubble parameter when the mode
crosses the horizofi.e., a,H,=k) ande, ande, are inde-
pendent random variables satisfying

(e(k))=0,

These initial conditions are strictly valid only for modes well
within the horizon. Indeed, as emphasized in R21], cur-
isocurvature perturbations become cross-
correlated as soon as they leave the horizon when the oscil-
lations between these two modes is resonantly amplified.

For super-horizon scalelss<aH, we can neglect all terms
proportional tok?/a? in Egs. (18) and (19), and consider
only the non-decreasing modes which amounts to neglecting
the second time derivatives. Thus it follows

e (k), (20)

(e(k)ej(k"))y=60(k=k'). (21

Qa=Af(t)+P(1), (22

ss=Bg(t), (23)
wheref(t) is the general solution for the homogeneous part
of Eq. (19), P(t) is a particular integral of the full Eq19),
andg(t) is the general solution of E418). The amplitudes
A(k) andB(k) are given by

H H
A(k)~¢7k(?,eA<k), B(k)m?;gegkx (24)
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where ex(k) and eg(k) are random variables satisfing the  For nondecreasing modes akekaH Eg. (18) can be
same relations of Eq(21). P(t) can be written asP(t) written as

=BP(t). From Eqgs(22), (23) and(24) one gets the expres-

. . . . . 1 .
sion forQ, and &s spectra and their cross-correlation during 5s= — —(V..+382) 5 29
inflation: 3H (VssT 357 5. (29
i Hi)? 112+ [P (25 Note thatu?=V.+ 38? is the effective mass for the entropy
%= 27 | ], field. To lowest order it is given by
P ~(ﬂ)2|92| (26) _ Mg :_i +2M _&
s\ 27 ’ 3H?2 €tot ¢ €tot ox €tot xx
(30
Hk 2 T . .
CQAﬁsz 2 gP. (27) The sign= stands for the cases (y) >0 and <0, respec-

tively, and e, stands for €,+¢€,).
_ Starting from Eq(23) the resulting solution foés will be
Slow-roll expansion

The most important comment on the previous formulas isds=B(k)g(t)

that the correlation is nonzero whéh is nonzero(we are

considering that, in general, in a multicomponent system —B(k)ex;{( €y n (= \/6—¢)(i \/E—X)

5s#0). On the other handP is nonzero only when the

source term on the right-hand side of Ed9) is nonzero.

This happens when the time derivative of the anglede- > _ % ) N.— N(t } 31

fined in Eq.(12), is not vanishing. Note that this is also the ToX ™ g TXx [N=N(©1], 3D
condition for the evolution 0@, and §s not to be indepen- :

dent, since in this casés feedshe adiabatic part of pertur- where Nk—N(t)zf{kHdt. N(t)=/f,"Hdt, with t; the time

bations on large scales, as observed in R&d]. In the lan-  jnflation ends, is the number @folds between the end of

guage of Ref[21] this can be rephrased saying that the'nflat'on and a generic instahtN. = ("Hdt=In(a: /a) is the
probability of oscillation between the perturbations of theI I g e BNk ftk (@/a)

scalar fields is resonantly amplified when perturbations crosBUmber ofe-folds between the timg, the mode crosses the
the horizon and the perturbations in the inflaton field mayorizon and the end of inflation. Typicalli{,=60 as far as
disappear at horizon crossing giving rise to perturbations in@rge scale CMB anisotropies are concerned. ,
scalar fields other than the inflaton. Adiabatic and isocurva- [N order to write Eq.(31), we have neglected the time
ture perturbations are therefore inevitably correlated at thé€pendence of the term that appears as a combination of the
end of inflation. Provided thaés#0, we can conclude that SIOW-roll parameters, since its time derivative(e®, 7°),!

the correlation will be present under the conditj@# 0. It is zinlg (ts)o gﬁczai;/zaixtt)r:(t::zgtézlSastearrgoﬁg:a(r):[ tirt]ialgtf)grgl/alu-
remarkable that only in some special cases this condition is : . ; ' .
not satisfied. As can be checked from Etp), 3 is exactly ated at horizon crossindgs=aH. At the end of inflationds

constant in time if there are attractor-like solutions for the!l °€

evolution of the two fieldsp and y of the kind y o ¢. For . (e (= e)
example, this is the case of the models of assisted inflation 5S|tf:B(k)exl{< X 4t PR G
[27]. Therefore, if the entropic modes are not strongly su- €tot €tot

pressed during inflation, the correlation between isocurvature 6
and adiabatic perturbations is quite natural to arise. X 77¢X——¢ 77”) Ny |- (32
Now let us introduce the following generalization of the €tot
low-roll parametergsee Eq.(2)] in the case of two scalar . . .
zel\(ljvs P bs a1 S wo s As for the adiabatic mode, E@19) can be written as
2 [y, \2 2\ . 87G [ a%A?\’ 2| .
Mpy [ V¢ Mp; Y ¢y ¢; - _p2_ pii — .
6|=ﬁ(v and 77|_]:§ v (28 Qa 3H Vaa a3 ( H Qat 3H (Bds)
- - Vo HY.
whereVy =dVId¢,, and¢=¢ or x. . (YA R Bos|. (33)
We have expanded the master equatit® and(19) to A H

lowest order in these parameters, since during inflatipn

and »z,; are <1. In the following we will quote only the

main results. More technical details can be found in Appen- with O(e, 7) andO(e?, »?) we indicate general combinations of
dix A. the slow-roll parameters of lowest order or next order, respectively.
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Putting the entropic solutiof81) into Eq. (33), and follow-

PHYSICAL REVIEW D 64 123504

A few comments are in order here. As can be seen in Eq.

ing the same procedure of expansion in the slow-roll param¢40) the cross correlation is proportional 8, as already

eters, we find the adiabatic soluti¢®2):

€ € (=ey) (£ Ve,
f(t)|tf:exl{(_?zt77n_?:t7l¢¢ T by
+ 26t0t> Nk} (34
and
- B 1
P(t)|tf:2[ﬁ |.o_g(t)|tf6(eCNk_l), (35

where[ B/H], .. is the expression oB/H to lowest order:

B} _eme (EVe(E ey
l.o

€tot

(g0~ Mxy)
(36)

H NgxT

€tot

andC is given by

€4 €y €, €y (Ve (= \/e—X)
C= Mx ™ Npp—4 Npx
€tot €tot €tot

+ Zetot .

37)

mentioned at the beginning of this section. Moreover, it de-
pends on the factae®N, which is the ratio betweehandg.

In other words,C is (u2— u2)/3H? to lowest order, where

w? and u2 are the effective masses for the entropic and
adiabatic perturbatiorighe terms proportional tés andQp

in Egs.(29), (33)]. This means that, in order to have a strong
correlation, what is important is just threlative magnitude

of the adiabatic and the entropic masses, even if they are
both O(€). This result is in agreement with our previous
findings[21], where we have demonstrated that the correla-
tion emerges as soon as there is a mixing between the origi-
nal fields¢ and y and that this mixing can be large even if
the masses of the scalar fields are@(le, , 7,3).

IV. INITIAL CONDITIONS IN THE POST INFLATIONARY
EPOCH

In the following we will assume that the mixing between
the scalar fields is negligible after inflation and that, for ex-
ample, the field¢ decays into “ordinary” matterpresent-
day photons, neutrinos and barygnand the scalar fielgy
decays only into cold dark matter. The figldcould also not
decay, as it happens in axion models. In fact, if during re-
heating all the scalar fields decay into the same species, the
perturbations will be only of adiabatic type deep in the ra-
diation era: no relative fluctuatio8,; is generated. In the
present case a CDM-isocurvature mode will survive after

Again[ B/H]; ,. andC, which areO(e, ), have been treated inflation. Using the notation of Sec. Il and RE£9], we can
as constant and can be taken at horizon crossing vikhen yyrite

=aH.

Now we are able to give the expressions for the spectra

(25), (26) and (27):

2

H ? 2 B 1 CN
Pa, 277) 120y | 1+4| 5 |_o_C2(l e CNo2|,
(38)
Hi |2 €y (=\eg) (= e,
Pas (E) exr{(—Zan¢¢+4 €tot ox
€
-2~ XX)NK} (39)
tot
and
T
K B 1
CQA55=(2W 2H) 2], g(eM-1). (40
.0

Since the isocurvature perturbatia®s is a source for the

3
=5,=5,

Sa=73 6,7 (41

OcoM= ScpMm - restt Oa

where §, specifies the amplitude of the adiabatic mode of
perturbations, and “rest” stands for ordinary matter.

In order to set the initial conditions for the evolution of
cosmological perturbations, and which can be used in some
numerical codes calculating the CMB anisotropies, we must
link the two relevant quantitieScpy_rest @NdR deep in the
radiation era to the inflationary quantitiés andQ, .

For the adiabatic perturbations this is immediate from Eq.

17,

QA (42)

rad_

where the right-hand side of this equation is evaluated at the
end of inflation. As far aSc-py - rest IS CONcerned, it is useful
to introduce the following quantity:

adiabatic one, the curvature perturbation spectrum, which

characterizes the adiabatic mode, does not remain constant S = 5_X _ﬁ
during inflation in general, unlike the single field casee, x4 X ¢
for example, Ref[28]). This is the reason why we have

evaluated all the previous expressions at the end of inflatiorf-or the scalar fieldgs and y the isocurvature perturbation
In the next section we will specify the initial conditions in S,4, Eq. (4), resultsS, ,=a%d(3,,/a%)/dt [29].

the post inflationary epoch. On the other hand

(43
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X am| Bl [H\2L
= —_— = —0—| — — J— k —
05= —= o Oy (44) Pe 6m§,, HL ) (277 C(e 1)
Vx 0.
X ! 2 (48
. _ . —g
Then, to lowest order in the slow-roll parameters, one finds (+ \/e—¢)(t ‘/E—x) ;
S - V4w V€tot P (45) Now we can calculate the spectral indices to lowest order.
X T mey (+ e ) (= Jeo They are defined 4s
o dinP
To match to the radiation epoch we ta88py - resi= Sy at n—1=1nk: (49

the end of inflation.

The dependence of the above expressions on the comoving
A. Observables: Amplitudes and spectral indices wave numberk comes fromH,, Ny, and those slow-roll

In this subsection we will give the explicit expressions for Parameters which are evaluated at horizon crossing, and

the power spectra of the adiabatic and isocurvature mode¥/hich are contained i, g, [3/H]; ,. and C. Therefore, in
and their cross correlation. To lowest order, they can be writorder to calculate to lowest order, we have made use of the
ten as power laws<k", in a way analogous to the single following formula:

scalar field modelfcf. Eq.(1)]. This means that there will be

three amplitudes and three spectral indices. Moreover, we ~ dIn? dInP s dinP (50
have taken into account also the tensor perturbation dink dlIn(aH) a = E“")d InadH=k"
(gravitational-wavgspectrum, yielding a total of four ampli-

tudes and _four spect_ral indices. Ind(_eed, we must con_sider thehe spectral indices redd

normalization that fixes one amplitude and will bring to
sevenobservables.

H=k

dinP.
On the other hand, the reader should call that we have Np—l=—— = — 6 €+ 25X My
introducedfive slow-roll parameters. In the single field case dink €tot
thgre E521I’e 2three observabléhe ten.sor to scalar gmplltude (= \/6—¢)( + \/E—x) .
ratio A7/AS, ng andny), and one finds one consistency re- Ayt 2y
lation betweenA?/AZ and n; [see Eq.(3)]. Thus in the €tot €tot
present case we expect to fihmo consistency relations be- 1 B 2 &= CN
tween the observables. To fit the CMB anisotropies one must -8 =ila C (1—e “No, (51
consider the initial fluctuation spectra with their amplitudes 1 ﬂ lo.
and spectral indices. The existence of such consistency rela- |£2]
tions means that not all the amplitudes and spectral indices
must be considered as independent. dinP c
For the curvature perturbatidR, it results from Eqs(25) ng—1= S__ 2601+ 2% Moo
and(42): dink €tot
R:l(_k) _[|f2|+|ﬁ2|] , (46) -4 €tot 77¢>X+2;77XX' (52)
m|23| 277 6t0t tf ° ©
d In|79(;| CN
. —1= = —1— k
where we have used the fact that/H)?=m3,/47 €. N dink 'S N 1° 3

If not written otherwise, we intend this and all the subse-
reasons explained at the end of Sec. IllA. For the isocurva- As far as the tensor power spectrum is concerned, it is
ture perturbatior§, we can write from Eqs(26) and (45): immediate to generalize the standard result for a single-field
model (see, for exampl€g,3]). To lowest order it is

47 [H,\% €
Pe= 9—2(2—k) ol 47 | . N
Mp \ &7/ €4€x t Note that the correlation can be positive or negative. In this case
the spectral index can be defined ms 1=dIn|P|/d Ink. In the
expressions below we have already taken it into account.
Finally, for the cross-spectru®, we find, from Eqgs.(27) 30ur definition of the isocurvature spectral index differs fropy
and (40), as given, for instance, in Refgll]; one has;,=ns—4.
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Pr= ii)z (54)
CWame)
and thus the spectral index reads
dInPr
=g = 2ot (55)

As can be seen from E¢51), in the case of a single fieldor
exampleg) we recover the standard result:

It can be checked that, to lowest order in the slow-roll pa

PHYSICAL REVIEW D 64 123504

in the case of assisted inflati¢@7]) there is only one con-
sistency relation, which corresponds to the standard formula
r+=—n¢/2.

The consistency relatiof60) can be further simplified if
the slow-roll parameters are smaller thamN,l/ In such a
case, to lowest order we get

5N, (62)

The consistency relatior{§9) and(60) [or (61) and(62)] are

_the main results of this paper.

rameters, these spectral indices can be treated as independent

of k, and so the spectra can be approximated, to the desired

accuracy, as power laws.

B. Consistency relations

V. CONCLUSIONS

In this paper we have considered the possibility that a
cold dark mattefCDM) isocurvature perturbation mode can
survive after an inflationary period in which two scalar fields

In order to get the consistency relations we have inverte@re present. Linking the post inflationary epoch to the dy-

the equations defining the observational quantified Ps,

Pr!Pe, PrlPr, Ni, Ng, Ne andny in terms of the slow-

roll parameters.

namics of inflation, under the slow-roll conditions, it is pos-
sible to get the expression for the spectra of the adiabatic, the
isocurvature modes and their cross-correlation spectrum in

Let us multiply the power spectra by suitable coefficientsterms of the slow-roll parameters defined for the two scalar

which are conventional in literaturésee Ref.[3]): A%
=5 Pr, A2=2P, andAZ= 155 Pr.
Defining

rr=— (57)

fields. From these expressions two consistency relations fol-
low, Egs.(59) and(60), in analogy to what one finds in the
single-field case. Thus these relations consitute a strong sig-
nature of inflation models with more than one scalar field.
For an analysis of the CMB anisotropy measurements, these
relations between observables must be taken into account, as
a prediction of inflation. The main trend is actually to con-
sider all the possible isocurvature mod@DM, baryon,

(not to be confused with the more traditional tensor-to-scalaheytrino and neutrino velocity isocurvature modiesa phe-

quadrupole ratipand
AZ
re=——,
¢ AAr

we have found the following consistency relatidtise inter-
ested reader can find the details in Appendjx B

(58)

r =—£n (1-r2) (59)
T 2 T c/

Ny
(Ne=Ng)rr=— Z(ch_ Ng—Ng). (60)

A few comments are in order at this point. From formula
(59), one can easily recover the single-field model predic

tion, since in this cas@? vanishes anth;= —2A2/A% . We

also learn from Eq(59) that the tensor to adiabatic scalar

nomenological way, considering all the amplitudes and the
spectral indices as independent observaf2@s23. Even if

the present treatment does not consider the possible origin of
isocurvature modes different from the CDM one, it could be
easily extended to the case of more than two scalar fields
giving rise to many isocurvature modes. Our analysis clearly
indicates that, in an inflationary scenario for the production
of primordial perturbations, not all the observables have to
be treated as independent. This has strong implications for
our ability to accurately constrain cosmological parameters
from CMB measurements in models where both adiabatic
and isocurvature modes are present.

APPENDIX A: SLOW-ROLL EXPANSION

Here we report in more detail the calculations leading to

Egs.(29) and(33) to lowest order in the slow-roll parameters

€) and my-
Using the definiton of the adiabatic and entropic fields,

amplitude ratio is smaller thar ny/2 as soon as the adia- gqs.(14) and(15), and Eq.(20), we obtain the initial condi-

batic and entropy modes are cross-correlated. Equéiign

is a proof of the generic statement that<—n{/2 in the
multi-component casésee, for example, Ref§30,31)).

Equation(60) applies only wherr.#0; if the adiabatic
and isocurvature modes are not correlatesl, for instance,

tions at the time&, of horizon crossing:

S s~ e k). (AL
QA WeA( ’ S WES( .
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(£\eg) (Ve €

Nox™ ¢

The solution of Eq(29) will be

€
2 €tot

t
6s=B(k)ex J— Hs Hdt
t  3H?

where,u§=V33+ 332. Let us recall the explicit expression of
Vss! Recall now Eq(393) for the adiabatic perturbatioQ, :

Ves= (SIPB)V 45— (SiN2B)V 4, + (COP)V,,, . (A3)

€tot €tot

, (A2)

X[Ng—N(1)]]- (A10)

Qa=a(t)Qa+b(1), (ALD)
Using Eq.(12), we get
_ where
2
. X €
p=——5=—" A4 .
sinp Py €t (Ad) 1 ., 8wG(a*A?
a)==gg|Vaa=B'~— || |1 (AL2
wheree= €, + €, and we have used the following relations
holding to lowest order: and
H? 8 V(g,x) and ¢ ! (A5) 2 Vo H
= > WX an Iz_ﬁﬂ_' _fl [ Va, H).
3mg, ol b(t) 3 (B5s) A + 7| Bos|. (A13)
SinceV4/H*=3 7,4,, we obtain
The homogenous solutidi{t) is given by ex{)ﬁka(s)ds]. We
\% € 2
sinzﬂif:3 X N (A6) expanda(s) to lowest qrder. The same procedure ¥ar/H
H €tot holds forVaa/H?, and 82/H? is again neglected. As far as

the last term ima(t) is concerned, one has
In the same way one calculates the other two terms on the

et T A R |
uanti si it is — =3 — 4+ | —.
0(62,772?: ’ ’ ’ 2 a® | H m3 H2  m3 H2\ H
(A14)
1 d(tang) €4 1 d(tanp) _ _ _
ﬁ=cos’-,8ﬁ dt :aﬁ dt (A7) SinceA=(cospB)¢p+(sinP)y, it follows that
with 8w A2 B 8 ¢2+j(2_
3— —=3 =6€p1, (A15)
- - 2 2 2 2 tot
1dtang) 1 xo—xé mg H2 Tmg, H
H ™ dt  H g2
¢ and
1
"l e T ey 1 (AZ)' mé (H L d(H) .
m2\H/) ~ " 4x|\ 2] THdt\ 2] |
+€tot(i\/€—)()](i @) H H H

where we have used the formulaA%/H2=

1
+— +\e,)+ : :
€¢[%¢( @ Tox (—47) " *m3,H/H?. Since— H/H?= ¢, to lowest order, the

_ term in Eq.(A16) is negligible[it is easy to verify that the
X (e~ ol = Veg) I(= ey, time derivative ofe,, is O(e?,7?)].
(A8) Thusa(t) reads
and thus
€ €4 (+eg) (= e
. at)=— Ly gy 2y 2610,
B 1 €tot €tot €tot
|.0. ot
X (* \/e—x)(i \/6—(/))]_ (A9) and_Eq.(31) follows. _ .
Finally, we calculate the particular solutid(t) of the

The functiong(t) is full Eq. (33). This is given by
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t t T —+ —+
exr{J a(s)ds f exr{—J a(s)ds|b(7)dr. 21%45_4M,7¢X+2277”
ty ty ty €tot €tot €tot

. (B5)
Inserting §s, Eq. (29) into b(t), we find
Note that in our results for the spectra, E¢46), (47) and

2 B 1 Vi H\B (48), there appear also two expressions in the slow-roll pa-
o= 5 = (Vest3B%) — AL |2 Ss, rameters evaluated at the end of inflatibat;, and not only
3|H HB3H A HJH slow-roll parameters atk=aH. They are :stm|tf and

(A18) (= Veg) (= ey, However, we have takes,,, equal to

where V= (cosp)V4+(sin AV, . To lowest order the only one at the end of inflation. So one can verify trh{allzhf

term which survives is\(4/A)(B/H), which to lowest order ~ M€totlk=an» and therefore there afE/e\Ti;a_blest/g_ainx,
is given by—3H[A/H], o . u, r, the one defined in EqB6), plus (+ Vey)(= 6X)|tf

Thusb(t) reads =s>0. _ _ _
In these new variables we have considered the following
3 equations:
b(t)=2H[—} g(t), (A19)
: o Ng—n =L£Inp (B6)
_ S C 2Nk \/5_1
andP(t) at the end of inflation becomes
B t n —n——ilnp— 1632 Ypo1]_ 1
B _ol P rlasyds | Ta-rra(ndr RUSTON In F(x,p)
P(t)|tf—2_H_|-0‘e e Sjtke 12 Hg(r)d 7 k p P (x,p ®7)
B t P Pem - s2p F B8
=2 g(t)ltff eCNH dt (A20) g/r/Ps=g7SP F(X.p) (B8)
L™ o, t
9 -1
whereC is given in Eq.(37) and we have extracted from the —PelPr=| —===—1In pLF(x,p)
integral[ B/H], . andg(t)|tf, since, to lowest order, they can 4 9 X 2N p-1 B9
be considered as being constant. The integral can be resolved (B9)
by the change of variabletidt=—dN and it yields 1 1
C 1(e“N«—1). Thus Eq.(35) follows. . - =
( ) q 2P/ PR 36r—p Fp) (B10)
APPENDIX B: CONSISTENCY RELATIONS 1
To calculate the formula&9) and(60), we must take into nr=- 2@ (B11)
account that there argevenobservables expressed through
five slow-roll parameters at horizon crossing. To invert theywhere
equations definin@g/Ps, Pr!/Pc, Pr!/Pr, Nz, Ng, Neand
ny, we have made a change of variables using five combi- (\/B— 1)2
nations of the slow-roll parameters at horizon crossing which F(x,p)=1+16x N2x? 5 , (B12
are always found in the expressions for the observables. (Inp) P
They are
with p=u/r>0, and we have used the fact that the quantity
B C given in Eq.(37) can be written a€~ (1/N,)In+/p.
[_} =x (B1) Using Eqs.(B8), (B9), (B10) and(B11) one gets the first
Hl o consistency relation Eq59) eliminating the variablez and
r.
[f?], =u>0 (B2) EquationsB7) and(B10), eliminatingx, give the follow-
! ing equation:
92|thr>0 (B3) 9 n 1—
7Pr/Pr=— %[%JEJF 36Nkns%
Etot|k=aH (B4)
_sonyng P (B13)
and KR Inp |
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Using Eqgs.(B6) and(B13), one gets the second consistency
relation (60). The procedure is as follows. We have defined
w=Inp and 1-.p=z. Thus the consistency relation is
found from the equatioe"'=(1—2)?, once the explicit ex-
pressions fow and z are obtained. This is straightforward
leading to

_ —(n¢—ny)
Pr
4 nTP—T

1-7 (B14)
w=—2N, (ng—ng)

4 Pr 4 Pr
—36N(nc—ng)nry P 36Ny(ne—ne)nrg e

(B15)

PHYSICAL REVIEW D64 123504

From these equations we get E§9) and

4(ne—ng)rv
nt(Ng+nz—2nc)

Nnt(Ng+ngz—2n;)
4r;

=Ny (ns—ne)+

(B16)

In order to make the solution time-independent, consis-
tently with our first-order slow-roll expansion, both sides of
Eqg. (B16) have to vanish. Equatiof60) then follows. The
relation (62) in the limit |C|[N,<1 can be easily derived by
noting thatn,—ng=—1/N, and 2n,—ng—np=—2/Ny.
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