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Spinor field in a Bianchi type-I universe: Regular solutions
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Self-consistent solutions to the nonlinear spinor field equations in general relativity are studied for the case
of Bianchi type-1(Bl) space-time. It is shown that, for some special type of nonlinearity the model provides a
regular solution, but this singularity-free solution is attained at the cost of breaking the dominant energy
condition in the Hawking-Penrose theorem. It is also shown that the introduction @éam in the Lagrangian
generates oscillations of the Bl model, which is not the case in the absenca ¢éran. Moreover, for the
linear spinor field, the\ term provides oscillatory solutions, which are regular everywhere, without violating
the dominant energy condition.
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[. INTRODUCTION their nonstationarity. The idea of an expanding Universe, fol-
lowing from this property, is confirmed by the astronomical
Nonlinear phenomena have been one of the most popularbservations and it is now safe to assume that the isotropic
topics during recent years. Nevertheless, it must be admittechodel provides, in its general features, an adequate descrip-
that nonlinear classical fields have not received general cortion of the present state of the Universe. Although the Uni-
sideration. This is probably due to the mathematical difficul-verse seems homogenous and isotropic at present, it does not
ties which arise because of the nonrenormalizability of thenecessarily mean that it is also suitable for description of the
Fermi and other nonlinear couplingd]. Nonlinear self- early stages of the development of the Universe and there are
couplings of the spinor fields may arise as a consequence o observational data guaranteeing the isotropy in the era
the geometrical structure of the space-time and, more presrior to the recombination. In fact, there are theoretical argu-
cisely, because of the existence of torsion. As early as 1938nents that support the existence of an anisotropic phase that
Ivanenko[2—4] showed that a relativistic theory imposes in approaches an isotropic of&6]. Interest in studying Klein-
some cases a fourth-order self-coupling. In 1950, W&yl Gordon and Dirac equations in anisotropic models has in-
proved that, if the affine and the metric properties of thecreased since Hu and ParKdi7] have shown that the cre-
space-time are taken as independent, the spinor field obewsion of scalar particles in anisotropic backgrounds can
either a linear equation in space with torsion or a nonlineadissipate the anisotropy as the Universe expands.
one in a Riemannian space. As the self-action is of spin-spin A Bianchi type-I(BI) universe, being the straightforward
type, it allows the assignment of a dynamical role to the spirgeneralization of the flat Robertson-WalKBW) universe, is
and offers a clue about the origin of the nonlinearities. Thisone of the simplest models of an anisotropic universe that
question was further clarified in some important papers bydescribes a homogenous and spatially flat universe. Unlike
Utiyama, Kibble, and Sciam@—8]. In the simplest scheme, the RW universe, which has the same scale factor for each of
the self-action is of pseudovector type, but it can be showrthe three spatial directions, a Bl universe has a different scale
that one can also get a scalar couplifg]. An excellent factor in each direction, thereby introducing an anisotropy to
review of the problem may be found it0]. Nonlinear quan-  the system. It moreover has the agreeable property that near
tum Dirac fields were used by Heisenb¢id,12 in his am-  the singularity it behaves like a Kasner universe, even in the
bitious unified theory of elementary particles. They are prespresence of matter, and consequently falls within the general
ently the object of renewed interest since the widely knownanalysis of the singularity given by Belinskit al.[18]. Also
paper by Gross and Nevé3]. in a universe filled with matter fop= (e, {<1, it has been
The quantum field theory in curved space-time has been shown that any initial anisotropy in a Bl universe quickly
matter of great interest in recent years because of its appldies away and a BI universe eventually evolves into a
cations to cosmology and astrophysics. The evidence of thEriedmann-RW(FRW) universe[19]. Since the present-day
existence of strong gravitational fields in our Universe led touniverse is surprisingly isotropic, this feature of the BI uni-
the study of the quantum effects of material fields in externalrerse makes it a prime candidate for studying the possible
classical gravitational field. Since the appearance of Parkersffects of an anisotropy in the early universe on present-day
paper on scalar fieldgl4] and spins fields [15], several observations. In light of the importance mentioned above,
authors have studied this subject. The present cosmology &everal authors have studied a Bl universe from different
based largely on Friedmann’s solutions of the Einstein equaaspects.
tions, which describe the completely uniform and isotropic In [20], Chimento and Mollerach studied the Dirac equa-
universe(“closed” and “open” models, i.e., bounded or un- tions in a Bl universe and obtained their classical solutions.
bounded univerge The main feature of these solutions is They also claimed that for each value of the momentum only
two independent solutions exist and they showed that it is
not possible to obtain the solutions from those of a FRW
*Email address: saha@thsunl.jinr.ru, bijan@cv.jinr.ru universe only by perturbation. One of the solutions obtained
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would describe a particle with a given helicity, while the Il. REVIEW OF Bl COSMOLOGY
other one would represent antiparticles with the opposite he-

licity. This fact posed a very interesting problem. Spin- spatially homogeneous space-time, which admits an Abelian

particles canno.t live in a BI, at Iea§t if they.keep their We”'group G, acting on spacelike hypersurfaces, generated by
known properties of flat space-time. This problem wasg,o spacelike Killing vectorg, =a,, &= d,, and&;=ds. In

handled by Castagninet al.[21], where they showed that if ¢\chronous coordinates. the metrid 38,39
the Dirac equation is separable, the number of independen%/ ' ’

solutions is four, contrary to the claim made[R0]. A spinor
field in a BI universe was also studied by Belinskii and Kha- ds’=dt?~ >, a¥(t)dx’. (2.7)
latnikov [22]. In this paper they solved Einstein-Dirac equa- -
tions when both the cosmological constant and the mass f the three scale factors are equak., a;=a,=aj3), Eq.
the spinor field vaniskineutrinos. They also noticed that for (2.1) describes an isotropic and spatially flat Friedmann-
Bl models filled with neutrinos, the principal directions of Robertson-WalkefFRW) universe. The Bl universe has a
expansion vary with time. Using Hamiltonian techniques,different scale factor in each direction, thereby introducing
Henneaux studied class-A Bianchi universes generated by an anisotropy to the system. Thus, a Bianchi type-I universe,
spinor sourcd23,24. In [23], he derived the general solu- being the straightforward generalization of the flat FRW uni-
tion to the massive Dirac equation in Bianchi type-l spaceverse, is one of the simplest models of an anisotropic uni-
time with a cosmological constafi23], which was further verse that describes a homogeneous and spatially flat uni-
extended for the Bianchi type-ll modg24]. verse. When two of the metric functions are eq(ad.,a,

In a number of paperi25—27, several authors studied =as), the Bl space-time is reduced to the important class of
the behavior of gravitational wavé&Ws) in a Bl universe.  Plane symmetric space-tim@ special class of the locally
In [26] the evolution equations for small perturbations in thefotational Synjmetrlc.space_—t|m¢g0,4]]), wh|c.h- admits a
metric, energy density, and material velocity were derived®s 9roup of isometries acting multiply transitively on the
for an anisotropic viscous Bl universe. It has been showrsPacelike hypersurfaces of homogeneity generated by the

— 29 _ 3
that the results were independent of the equation of state JECIOIS &1, &, &, and £,=x"d X"0p. The_ Bl has th?
the cosmic fluid and its viscosity. They also showed that th greeable_property.that near the singularity it behaves like a
GWs need not necessarily be transversal in an anisotropical asner universe, given by
expanding Bl universe and the longitudinal components of a,()=altP1, a,(t)=adtP?, as(t)=adt’s, (2.2
the gravitational waves have no physical significance. In
[27], Cho and Speliotopoulos studied the propagation ofvith p; being the parameters of the Bl space-time which
classical gravitational waves in a Bl universe. They foundmeasure the relative anisotropy between any two asymmetry
that GWs in a BI universe are not equivalent to two mini- axes and satisfy the constraints
mally coupled massless scalar fields as in a FRW universe.

A diagonal Bianchi type-l space-tim@ereafter B) is a

3

Because of its tensorial nature, the GW is much more sensi- P1t+p2tp3=1, (2.3a
tive to the anisotropy in space-time than the scalar field is

o : 24 p3+pi=1 (2.3b
and it gains an effective mass term. Moreover, they found a P1TPz2TP3z=1. .

coupling between the two polarization states of the GW, . .
L . . Thus out of three parameters, only one is arbitrary. One par-
which is not present in a FRW universe.

A nonlinear spinor fieldNLSF) in an external FRW cos- ticular choice of parametrization is

mological gravitational field was first studied by Shikin in “p

1991[28]. The main purpose of introducing a nonlinear term p=——, (2.43
in the spinor field Lagrangian is to study the possibility of p2+p+1

the elimination of initial singularity. Followin¢28], we ana-

lyzed the nonlinear spinor field equations in an external Bl p(p+1)

universe[29]. In that paper, we consider the nonlinear term p2= Tﬂ (2.4b
in the spinor field Lagrangian as an arbitrary function of all P=+P

possible invariants generated from spinor bilinear forms.

There we also studied the possibility of the elimination of ps= p+1 (2.49
initial singularity, especially for the Kasner universe. For a 3 p2+p+1 '

few years we studied the behavior of a self-consistent NLSF

in a Bl universg 30,31 both in the presence of perfect fluid The condition B<p<1 on p then yields the condition- 3

and without it, which was followed by Reff32—34, where ~ <p;<0, 0<p,<%, $<psz=<1. Another particular param-
we studied the self-consistent system of interacting spinoetrization can be given using an angle on the unit circle,
and scalar fields. Recently, we stud|[&b,36] the role of the since Eqs(2.3) describe the intersection of a sphere with a
cosmological constant/A) in the Lagrangian, which, to- plane in the parameter spage;(p,.ps):

gether with Newton’s gravitational constar®), is consid- 1
Z:ZSitt;)[s?%.the fundamental constant in Einstein’s theory of D= §(1+cosi}+ J3sind), (2.53
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1 .
p2=§(1+cosﬂ—\/§smz‘}), (2.5b

1
p3=§(1—2 cosv). (2.50

tim
Although ¥ ranges over the unit circle, the labeling of each
p;j is quite arbitrary. Thus the unit circle can be divided into
six equal parts, each of which span 60°, and the choiqg of

is unique within each section separately. Ror 0, p;=p,
=2 andpz=—3% while for 9==/3, p;=1 andp,=p;3=0.
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and the Ricci scalar

. (2.19

—_-1 ’ §2
R=C 3D+2D+6Q

Note that in the sections to follow, we work with the usual
et.

IIl. FUNDAMENTAL EQUATIONS
AND GENERAL SOLUTIONS

The action of the nonlinear spinor and gravitational fields

Let us now go back to the BI metric. The nontrivial can be written as

Christoffel symbols for Eq(2.1) are

M=aa. TI.=T! _a& (2.6)
I alal’ 0i i0 ai’ "

while the components of the nontrivial Ricci tensor read

3
2

éi a, éi aJ é-k
ROO:_ - Rii: —+ —| =+ — i
i=1 ai ai ai aj ak

ijk=123, i#j#k (2.7

The Ricci scalar for the Bl universe has the form

a; a, a3 aja aa; aza
R=—2| 242428 222 2258 WA
a; a; az aqa aaz aga;

(2.9

St~ | =g (3.
with
L=Lg+Let L. (3.2
HereL 4 corresponds to the gravitational field
R+2A
0= e (3.3

whereR is the scalar curvature;=8=G, with G being Ein-
stein’s gravitational constant and is the cosmological con-
stant. The spinor field Lagrangidn,, is given by

i — — —
Lo=5 [y V= Vuby*dl-mygtLy, (3.4

Sometimes it proves convenient to introduce a new time

parametery by

n= f ta‘1<t_>olT, (2.9

where we define

[a(t)]?=C(t)=(a;885)"*=(C,C,C3)*", (2.10

with C;=a?. Note that in the isotropic limit, i.e.a;=a,
=ag, 7 reduces to conformal time. Further, defining

3 /

1 C 1
=g P 321"' c © 72;;((1' W
(2.1

where the prime denotes differentiation with respechtave

get the following nonzero Christoffel symbols for the metric

(2.D:

(2.12

The nonzero components of the Ricci tensor now read

3 . G
R,,=3D'+6Q, Rij=-5=(di+dD) (213

where the nonlinear termy describes the self-interaction of

a spinor field and can be presented as some arbitrary func-
tions of invariants generated from the real bilinear forms of a
spinor field. Sincey and ¢* (complex conjugate of) have

four component each, one can construst4= 16 indepen-
dent bilinear combinations. They are

S=yy  (scalay, (3.59
P=iyy°y (pseudoscalar (3.5b
vh=(yy"y)  (vecto, (3.50
AL= (v ")  (pseudovector (3.50
THY = (Ea’”z//) (antisymmetric tensor (3.5

where o#”=(i/2)[ v*y"— v"vy*]. Invariants, corresponding
to the bilinear forms, are

=%, (3.6
J=P?, (3.6b
Ly=0,0"= (Y )9, 0y ), (3.60
|A=AA"= (YY) 9, (0 YY), (3.60
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=T, TE = ("' )9,,a0, (b P ). (3.60 Vu(A*)=(V, A)*, (3.13b
According to the Pauli-Fierz theorefd2], among the five V,.7.=0, (3.139
invariants onlyl andJ are independent as all others can be
expressed by thenh; = —1,=1+J andl+=1-J. Therefore, where the asterisk denotes the Hermitian adj¢iné trans-

we choose the nonlinear terfto be the function of andJ  pose of the complex conjugateThe explicit form of the
only, i.e., Ly=F(1,J), thus claiming that it describes the covariant derivative of a spinor [¢3,44]
nonlinearity in its most general forn.,, is the Lagrangian

of a perfect fluid. Ay
Variation of Eq.(3.1) with respect to a spinor field; () V= Ixt Ty, (3.143
gives the nonlinear spinor field equations
| YAV, gy— g+ D+ Gi Y5 =0, (3.7 —
" Vu‘ﬂ_ﬂx_ﬂ"ﬂ‘w (3.14b
iV, gy"+my— Dy~ Giry°=0, (3.7
wherel" ,(x) are spinor affine connection matricgsmatri-
where we denote ces in the above equations obey the algebra
D= 25%, g= ZP%. Yy YTy =292 (3.19

and are connected with the flat space-time Dirac matri_ces

Varying Eq.(3.1) with respect to the metric tensgy,, , in the following way:

one finds Einstein’s field equation

1 9 =€20EXX) Tap,  Vu(X)=€%(X) Va,

R — 25ﬁR=—KT’;+A5’;, (3.9 (3.1
where 7,,=diag(1-1,—1,—1) andef is a set of tetrad
4-vectors. The spinor affine connection matridéggx) are
uniquely determined up to an additive multiple of the unit

whereR?/ is the Ricci tensorR=g*”R,,, is the Ricci scalar,
andT% is the energy-momentum tensor of the material field

given by matrix by the equation
T =Ts, T, (3.9 oy
_ vV p _ —
HereTy,, is the energy-momentum tensor of the spinor field Vu?n= IxH Do~ Tuyt 7 =0, (317

i — — — — . .
T, = 79" W,V U+ 47,V b=V Wy, =V py,p) - With the solution

1
— & Lsp, (3.10 T, (x) :ngg(x)(ﬁﬂegeﬁ— re)y’y’. (318

whereL g, with respect to Eqs(3.7) takes the form ) . .
Let us now write they’s andI’ ,'s explicitly for the BI metric

Lsp=—(DS+GP)+F(l,J). (3.1) (2.1 that we rewrite in the fornj45]

i, is the energy-momentum tensor of a perfect fluid. For a ds?=dt?—a?(t)dx>—b?(t)dy?*—c?(t)dZ%. (3.19
universe filled with perfect fluid, in the concomitant system _ '
of reference (°=1,u'=0,=1,2,3), we have For the metric(3.19 from Eq. (3.16 one finds

T, =(P+e)u,u"=6,p=(e,~p,—p,—p), (3.12 %=7%, 7n=alr, 7=b)y2, ys=c(t)s,
where energy is related to the pressupeby the equation of 0_70 1_71 2_2 3_73
statep={¢e. The general solution has been derived by Ja- v=yvh y=yia), =y, yi=yiie).
cobs [19]. Here ¢ varies between the interval<0/<1, (3.20

whereas/ =0 describes the dust universes 5 presents the  Eor the affine spinor connections from Eg.18 we find
radiation universei <¢<1 ascribes the hard universe, and

=1 corresponds to the stiff matter. 1. 1.
In Egs.(3.7) and(3.9), V,, denotes the covariant differen- I'r=0, Flzia(t)f)’o, T2=§b(t)7270.

tiation; its explicit form depends on the quantity it acts on.

This covariant differentiation has the standard properties

1.
V,(AB)=(V ,A)B+A(V,B), (3.13a Fa=5e07°7, 3.29

123501-4
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We will choose flat space-time matric?sin the form, given
in [46],

1 0 O 0 0 0O 0 1
_ 01 O 0 _ 0 0O 1 O
Y= . = :
0O 0 -1 O 0O -1 0 O
00 0 -1 -1 0 0 0
0 0 0 —i 0 01 0
_ 0O 0 i 0 _ 0O 0 0 -1
72: 3—
O i 0 o/ -1 0 0 O
-1 0 0 O 0O 1 0 O

Defining y° as follows:

i —
75:_ZEMW7"7”7”7”. Euvop= V=098 uop,

€012~ 1,

Y =—iV=07" Y 2= —iyPy R =15,

we obtain

For the space-timé3.19, the Einstein equation&.8) now
read

c
bTotpoT KkTI—A, (3.229
c a ca _,
ctotog KT A, (3.22h
a b ab 5

ab bc ca _,

56+EE+__:KTO A, (3.22d

where an overdot denotes differentiation with respedt to

PHYSICAL REVIEW D64 123501

SettingV;(t) = \7¢;(t), j=1,2,3,4, from Eq(3.24) one de-
duces the following system of equations:

Vi+i(m=D)V;—GV;3=0, (3.253
V,+i(m—D)Vo—GV,=0, (3.25h
V3—i(m—D)V3+GV,=0, (3.250
V,—i(Mm=D)V,+GV,=0. (3.250

Using the solutions obtained one can write the components
of a spinor current:

i“=uy . (3.26
Taking into account that y=y%° where ¢!
= (1 w5 05 ws) andyy =V, /\r, j=1,2,3,4 for the com-
ponents of a spin current, we write

1
J°= ZIVIVi+ V3 Vot V3V + ViV, (3.273
i1 1 * * * *
J :;[V1V4+V2V3+V3V2+V4Vﬂ, (3.27b
P2 i * * * *
1= E[V1V4_V2V3+V3V2—V4V1], (3.270
i3 l * * * *
] =a_[V1V3—V2V4+V3V1—V4V2]. (3.279

The componeni® defines the charge density of a spinor field
that has the following chronometric-invariant form:

e=(joi")"% (3.28
The total charge of a spinor field is defined as
Q=J’ Q\/—gg dxdydz (3.29
Let us consider the spin tensigt6]
1
StV e=—y{ y ot + Ty, (3.30

4

We write the componen8* (i ,k=1,2,3), defining the spa-

We will study the space-independent solutions to thetial density of a spin vector explicitly. From E¢3.30, we

spinor field equation$3.7) so thaty= i(t). Setting
r=abc=\—g

we rewrite the spinor field equatia.79 as

(3.23

'_°(a+-7)— +Dy+Giy y=0. (3.2
Y| op o |-yt Dyt Giy?y=0. (324

have
I T 1
S10=2u{y°c! + oy }=5yy oy, (33D

which defines the projection of a spin vector on thaxis.
Herei,j,k takes the value 1,2,3 andtj#k. Thus, for the
projection of spin vectors on the,Y, andZ axis we find
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823,0_

2b VAV VAV + VAV, + VEV,],

(3.323

sto_ !

S [VIVo— VAV VAV, - VIV,

(3.32h

812,0_

5aba VIVI— VBV, +VEVa— Vi V).

(3.329

The chronometric invariant spin tensor takes the form

(3.33

and the projection of the spin vector on thaxis is defined
by

Ij _(S SIJ 0)1/2
Sk=f Siko/—3g dxdy dz (3.34

From Eqgs(3. 7) we also write the equations for the invariants
S= 4, P=iyy*ip, andA=yy°y0y,

PHYSICAL REVIEW D 64 123501
a b

c
+—+—)=0
c

a b
(3.39

a b
a b

a b+
a b

d
dt

ac bc
ac bc

a b+
a b

with the solution

a dt
5=D1ex X1f7 , Djy=const, X;=const.
(3.40

Analogically, one finds

_Dzexp(xzf ) _Dgexp(xsf )(3.4])

where D,,D3,X,,X3 are integration constants. In view of
Eq. (3.23 we find the following functional dependence be-
tween the constani®,,D,,D3,X;,X,,X3:

D2:D1D3, X2:X1+X3.
Finally, from Eqgs.(3.40 and(3.41) we writea(t), b(t), and
c(t) in the explicit form

So—2GA;=0, (3.353
. 2X,+ X5 [ dt
Po—2(M—D)A,=0, (3.35H a(t)=(D"{D3)”3r”3exr{Tf W} (3.423
Ag+2(m—D)Py+2GS,=0, (3.350 X Xa [ dt
_ b(t)=(D; 'D4) Y3 Bexg — = Sf—,
whereSy= 7S, Po=7P, andA,=7A, leading to the follow- i 3 7(t)
ing relation: (3.42bH
S?+P2+A%2=C?/7?, C2=const. (3.36 [ X 4+2Xa [ dt
c(t)=(D,D2) Y3rBexy - =2 3 3J ol
Let us now solve the Einstein equations. To do it we first . T (3.420

write the expressions for the components of the energy-

momentum tensor explicitly. Using the property of flat Thus the system of Einstein’s equations is completely inte-

space-time Dirac matrices and the explicit form of the cova-
riant derivativeV ,, one can easily find

To=mS-F(1,J)+¢,

(3.37
Ti=T3=T3=DS+GP—F(l,J)—p.
Summation of the Einstein equatior§8.223, (3.22D,

(3.2209, and(3.229 multiplied by 3 gives

E T 0y _
5 k(T{+Tg) —3A. (3.38
For the right-hand side of Eq3.38 to be a function ofr
only, the solution to this equation is well knoW#7]. As we
see in the next section, the right-hand side of 339 is
indeed a function ofr. Given the explicit form ofLy from
Eq. (3.38 one finds the concrete solution feiin quadrature.
Let us express,b,c through 7. For this we notice that
subtraction of Einstein equatiofi3.22h and(3.223 leads to
the equation

grated.
Defining the Hubble constant in analogy with a FRW uni-
verse from Eqs(3.42 we obtain

a T+Y;

i a 3. i=1,2,3, (3.43

or a generalized one,
H=(Hy+Hy+H3)/3=7/37. (3.44
Herea;=a, a,=b, az=c, Y;=2X;+ X3, Y,=—X;+ X3,

andY;= —X;—2X3. The deceleration parameter given by
RR
q=— = (3.49

for a FRW universe withR being the scale factor can also be
generalized for the Bl space-time to obtain

123501-6
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a;a; a; a\’ a\ /(a\?
A (—)/ ‘) B /(‘) |
(3.49
Inserting Eqs(3.42 into Eq. (3.46, one obtains
T—272-Yr+Y:
q=- . i=123. (347

2+ 2Y;7+Y?

Let us now go back to the Einstein equati@®). Taking
the divergence of the Einstein equation, we obtain

T;;V:TZ'V'F F;VTZ—FZVngo, (3.48
which in our case reads
0 T 0 1
To+ ;(TO—Tl)zo. (3.49
Putting T3 and T} into Eq. (3.49, we obtain
. T . .
8+(s+p);+(m—D)So—gP0=0, (3.50

whereS;= 7S and Py= 7P. From Eqs.(3.353 and(3.35h,

we have (h—D)S,—GP,=0. Further, taking into account
the equation of state, i.ep={e, we find

de N dT_O a5
(1+ e r (351
with the solutions
€ {eg
e= _7-”5' = _7“5' (3.52

wheregg is the integration constant. Note that the relation
(3.52 holds for any combination of the material field La-
grangian, e.g., spinor or scalar or interacting spinor and sc
lar fields. Thus we see that the right-hand side of B389

is a function ofr only. Then Eq.(3.38), multiplied by 2r,
can be written as

277={3[w(TH+T) 201 r=W(r)7. (353

We write the solution to Eq(3.53 in quadrature,

dr
J’ \/J’\IT(T)dT_t.

Given the explicit form of~ (I, J), from Eq.(3.54) one finds
the concrete function(t). Once the value of is obtained,
one can get expressions for componesiét), j=1,2,3,4.

(3.59

PHYSICAL REVIEW D64 123501

by investigating the invariant characteristics of the space-
time. In general relativity these invariants are composed
from the curvature tensor and the metric one. Contrary to the
electrodynamics, where there are two invariants only (
=F, F*" and J,=xF , F*"), in 4D Riemann space-time
there are 14 independent invariants. They[di&

1,=R, (3.553
12=R,,R*", (3.55h
| 3= R g, R, (3.550
l4=*Ryp, R, (3.550
ls=RIRORY, (3.550
l6=R*R*' Rz, (3.551
I;=R*¥RF*R,,.5,, (3.559
lg=R*""R,5,,R7,,, (3.55h
lg=*R*"'R,z,,R?",,, (3.55i)
l10=RER“*R,,,R}, (3.55)
11=R¢R,, 7R, PI"RY (3.55K
1= REXR7, R, PUURY (3.55)
l15= R* 5(A*,,+ RERERIRY 55), (3.55m
l14=*R,g""A%F (3.55n

where A“?,, =4R

_1
- fEaB(rp

“RORIRS+3RIRIRERY and *R,g,.,
Ro.p/u}: %E(J’p,uvRaBO.p ’ * Raﬁ"u]}: %Ea U'pRo-p/“/
With E,p,,=—0eap,, and E*PH’=(—1//—g)e*Pr".
Here g,p4,, is the totally antisymmetric Levi-Civita tensor
with e91,5= 1. Instead of analyzing all 14 invariants men-

Foned above, one can confine this study only to 3, namely

the scalar curvature =R, I2=R5V,uv, and the
Kretschmann scaldi= RQBMVR“W”. At any regular space-
time point, these three invarianits, |,, 15 should be finite.
Let us rewrite these invariants in detail.

For the Bianchi | metric one finds the scalar curvature

r—abc—bca—cab

T

Since the Ricci tensor for the Bianchi | metric is diagonal,
the invariantl ,=R,, ,R**"=R, R} is a sum of squares of di-
agonal components of Ricci tensor, i.e.,

Thus the initial systems of Einstein and Dirac equations havavith

been completely integrated.
Further we will investigate the existence of singularity
(singular point of the gravitational case, which can be done

1L,=[(R})Z+(RD?+(R3)2+(R3?],  (3.57
o abc+abc+abc
Ro=-—— . (3.583
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,  abc+abc+abe Y (t)=(Cy/\r)exd —imt], (4.13
Ri=m— (3.580)
a(t)=(Cp/\r)exd —imt], (4.1
abc+abc+abc
Reem—— (3.589 Ys(t)=(Ca/Vn)eximt], (4.10
c+abc+ab H)=(Ca/ imt], 4.1
, abctabc+abe Ya(t)=(Cy/\)exdimt] (4.10
T (3589 yith C,;,C,,C3,C,4 being the integration constants. On the

other hand, from Eq43.35 we find
Analogically, for the Kretschmann scalar in this case we

havel;=R"* 4 R“BW, a sum of squared components of all Co
nontrivial R“"uy: S= T (4.2)
l3=4[(R%01*+ (R™91)?+ + (R%,)*+ (R%%3)* whereC, is an integration constant and related to the previ-
+(R12,,)24 (R?,5) 24 (RPL, )2 ous ones a€,=C2+C5—C3—C3. For the components of
the spin current from Eq$3.27) we find
= i[(ébc)2+(aiiac)2+(ab"c)2+(:’;1bc)2 o 1o o 2 2
2 jo=Z[Ci+C3+Ci+Cl, (4.3a
+(abc)?+(abc)?], r=abc. (3.59 5
j'=—[C,C4+C,C3]cog2mt), (4.3b
From Egs.(3.42 we have ar- 174 TR
1/3 -1 P2 2 P
a=Arexp (Y,/3) | 7 1dt|, (3.603 j2= 52[C1C4—CyCylsin(2m), (4.30
. Yi +1 ai . .3 2
a=—3—— (=123, (3.60b J7= 5 [C1C3— CoCylcod 2mt), (4.30
L (YHD(Y—2) g whereas, for the projection of spin vectors on ¥er, andZ
= —, (3.6009 axis, we find
1
i.e., the metric functions,b,c and their derivatives are in S30= b C1Ca+ CaCul, (4.49
functional dependence with As we see from Eq<3.60, at
any space-time point, where=0 the invariantd ,l,,l; be- SBL0_ (4.41)
come infinity, hence the space-time becomes singular at this ' ‘
point. 1
§1%0= 5—-[Ci—C3+C5—Cil. (4.49

IV. ANALYSIS OF THE RESULTS

In this section we shall analyze the general results obFrom Eq.(3.29 we find the charge of the system in a volume
tained in the preceding section. In the following subsections),

we will study the system with linear and nonlinear spinor P,
fields, respectively. Q=[Ci+C5+C5+C ]V 4.5

Thus we see that the total charge of the system in a finite
volume is always finite.

In this subsection, we study the linear spinor field in a Bl | et us now determine the function In the absence of
universe. The reason for getting the solution to the selfperfect fluid for the linear spinor field, we have
consistent system of equations for the linear spinor and
gravitational fields is the necessity of comparing this solution To=mS Ti=T3=T3=0. (4.6)
with that for the system of equations for the nonlinear spinor
and gravitational fields, which permits clarifications of the Taking Eq.(4.6) into account, forr we write
role of nonlinear spinor terms in the evolution of the cosmo-
logical model in question. =M—3AT 4.7

In this case we get explicit expressions for the compo-
nents of spinor field functions and metric functions: with the solutions

A. Linear spinor field in a Bl universe

123501-8
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(1/3A)[M — gy sinh(y=3At)], A<O, 4x10% ' '
r=3 (LI2Mt?+y, t+y,, A=0, (4.9
(1/3M)[M —qgy sin(v3A1)], A>0, 3x10%7 |
whereM =3 xmGC, andy;,Yo.0;,0, are the constants. Let
us now analyze the solutions obtained. 2x10% | ]
First we study the case whehn=0. It can be shown that
[31]
2 2 2 1X1007 r T
yi—2Myg=(X7+ X X3+ X5)/3>0. 4.9
This means that the quadratic polynomial (MR&f+y,t
+yo=0 possesses real roots, i.e(t) in the case ofA=0 i 20 20 60 80 100
becomes zero dt=t; ,= —y1 /M= (y;/M)?—2y,/M and o _ S _
the solution obtained is the singular one tAt in this case FIG. 2. Perspective view of for a linear spinor field withA
we have <0.

B. Nonlinear spinor field

3
~ — 2 ~ ~ ~ 213
) 4 xMCot,  a(l~b()~c()=~t™ Let us now go back to the nonlinear case. We consider the

following forms of the nonlinear term(i) Ly=F(l); (i)
which leads to the conclusion about the asymptotical isotro = F(J); (jii) Ly=F(K.) with K. =1=*J.
pization of the expansion process for the initially anisotropic " (j) Let us consider the case whén=F(1). From Egs.
Bl space. Thus the solution to the self-consistent system of3 35 we find in this case
equations for the linear spinor and gravitational fields is the
singular one at the time=t; ,. In the initial state of evolu- Co
tion of the field system the expansion process of space is S=—, Co=const. (4.10
anisotropic, but at—oo the isotropization of the expansion

process takes place. As one can see, the components of SRiRte that in this case we denote the constants in the same
current and the projections of spin vector are singular alyay as we did for the linear case, but the constants in these

space-time points, , wherer vanishes. A qualitative picture ca5es are not necessarily identical. Spinor field equations in
of this case has been given in Fig. 1. this case read

For A<O0, we see that the solution is singulartatt,
=(1/y—3A)arcsinhiM/q,) and the isotropization of the ex-

pansion process takes placetaso. Note that the izotro- Viti(m=D)V1=0, (4.113
pization process in this case is rather ra@fl Fig. 2. ]
For A>0, we have the oscillatory solutiorisf. Fig. 3. V,+i(m—D)V,=0, (4.11b
Taking into account that is a non-negative quantity, it can
be shown that the model hag singular solutiong=at4k Va—i(m—D)Vs=0, (4.119
+1)m/2y3A, k=0,1,2,3... with M=q,. ForM>q,, we
have 7, which is always positive definite, i.e., the solutions S
obtained are regular at each space-time point. Va—i(m=D)V,=0. (4.119
200 : : 1.4 . .
150 - 1.3
100 - 1.2
50 - 1.1
O L L Il L 1 1 1 Il Il
0 20 40 60 80 100 0 20 40 60 80 100
FIG. 1. Perspective view of for a linear spinor field in the FIG. 3. Perspective view of for a linear spinor field withA
absence of a\ term. >0.
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As in the considered case wheR = F depends only org,
from Eq.(4.10 it follows thatF(l) andD are functions ofr

only. Taking this fact into account, we get explicit expres-

sions for the components of spinor field functions,

lpl(t):(cl/ﬁ)exp(—if (m—D)dt), (4.123
¢2(t)=(cz/ﬁ)exp<—if (m—D)dt), (4.12h
¢3(t)=(c3/ﬁ)exp<ij (m—D)dt), (4.129
¢4(t)=(c4/ﬁ)exp<if (m—"D)dt|, (4.129

with C;,C,,C5,C, being the integration constants and re-
lated toC, as Co=C3+C5—C3—C2. For the components

of the spin current from Eq$3.27) we find

1
j°=Z[Ci+C3+Ci+Cil, (4.133
42
| =;_[Clczl"'czcﬂco 2| (m=Djdt], (4.13b
L, 2 .
| :E_[C1C4_C2C3]5m 2| (m=Djdt], (4.139
3 2
i7= 5 [C1Cs=CyChfcog 2 | (m=D)dt),  (4.13d

whereas, for the projection of spin vectors on ¥jé&/, andZ
axis, we find

823’°=LCC+CC 4.14

bCT[ 1“2 3 4]1 ( ' a

SBLo— (4.14b
1

St20- —ZabT[cﬁ— Ci+c3-cCal. (4.140

We now study the equation for in detail choosing the
nonlinear spinor term af(1)=\1"2=)\S" with A\ being
the coupling constant ana>1. In this case forr one gets

7=(3/2 k[MCy+ A (N—2)C{/ " ]-3Ar. (4.19

The first integral of the foregoing equation takes the form

?=3k[MCyr—\C{/ "2+ g?]-3A7%.  (4.16

Hereg? is the integration constant that is positively defined

and connected with the constan¥s as gz=(X§+X1X3

PHYSICAL REVIEW D 64 123501

+X3)/9« C, [31]. The signC, is determined by the positivity
of the energy-densitirg of a linear spinor field, i.e.,

To=mCy/7>0. (4.17)
It is obvious from Eq(4.17) thatC,>0. Now one can write
the solution to Eq(4.16 in quadratures:

7_(n72)/2d7_

=3t.
(4.18

The constant of integration in E¢}.18) has been taken to be
zero, as it only gives the shift of the initial time. Let us study
the properties of the solution obtained for a different choice
of n, \, andA. First we study the case with=0.

Forn>2 from Eq.(4.18 one gets

f \/K[mcornfl-k gzrnfz—ACg]—AT”

7(1)] .~ (3/4) kM Cot2. (4.19
It leads to the conclusion about isotropization of the expan-
sion process of the Bl space-time. It should be remarked that
the isotropization takes place if and only if the spinor field
equation contains the massive tefaoi. the parametem in
Eq. (4.18]. This is not the case for a massless spinor field,
since from Eq.(4.18 we get

(1) |~ 3KkCog° t. (4.20
Substituting Eq.(4.20 into Egs.(3.42, one comes to the
conclusion that the functiore(t), b(t), andc(t) are differ-
ent.

Let us consider the properties of solutions to E4.15
whent—0. ForA<0 from Eq.(4.18 we get

(1) =[(3/4)n?k|\|C]]V"t2N -0, (4.21)
i.e., solutions are singular. Far>0, from Eq.(4.18 it fol-
lows that7=0 cannot be reached for any valuet@fs in this
case when the denominator of the integrand in &ql8
becomes imaginary. It means that for0 there exist regu-
lar solutions to the previous system of equati¢88]. The
absence of the initial singularity in the considered cosmo-
logical solution appears to be consistent with the violation
for A\>0 of the dominant energy condition in the Hawking-
Penrose theoref®9], which reads as follows.

Theorem.A space-timeM cannot be causally, geodesi-
cally complete if the GTR equations hold and if the follow-
ing conditions are satisfied.

(i) The space-timeM does not contain closed timelike
lines.

(i) The conditiongdominant energy condition

Toot Taa+ Top+ T33=0, (4.223
Too+ T1=0, (4.22h
Too+ T22=0, (4.229
Too+ T25=0, (4.229

123501-10
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on the equations of state are fulfilled, whétg is the energy

C, . _
density andTy;, T,,, and T3 are three principal values of V,= —Zg imtz4iCo/B, (4.28b
pressure tensor. T
(iif) On each timelike or null geodesic, there is at least one
point for which Ve &eimtz—mco/B, (4.280
-
KaRojedeK 1] K°K9#0, (4.23
whereK, is the tangent to the curve at the given point and V,= &eimtz—ﬁlihco/B, (4.280
where the brackets on the subscripts imply antisymmetriza- T
tion.

(iv) The space-timeV contains eithefa) a pointP such ~ Where Z=(t—t1)/2(t—t2), B=M(t;—tz), and tyo=
that all diverging rays from this point begin to converge if ~Y1/M= \/(y%/M) —2Yo/M are the roots of the quadratic
one traces them back to the past(lora compact spacelike equation Mt“+2y,t+2y,=0. As in the linear case, the

hypersurface. obtained solution is singular at tinte=t; , and asymptoti-
Proof. To prove that in the case considered the dominangally isotropic ast— .
energy condition is violated, we rewrite E¢4.22 in the We now study the properties of solutions to E4.19 for
following form: 1<n<2. In this case it is convenient to present the solution
(4.18 in the form
To=Tia’+T5b?+T3c?, (4.243 ]
7-
To=Tia?, (4.24b f \/mT_)\TZ—ncg—l+gz V31Cot. (4.29
To=Tab?, (4.240  Ast—oe, from Eq.(4.29 we get the equality4.19), leading
to the isotropization of the expansion processmi0 and
TOBTSCZ. (4.249 A>0, 7(t) lies on the interval

2 n—1y1/(2—n)
Let us go back to the energy density of a spinor field. From 0=mO=(g"ACo ) '

If m=0 and\ <0, the relation(4.29 att—o leads to the

m \C{ equalit
TI= TCO— ~ (425 AW
T (t)~[(34)n2k|\|CH1 M2, (4.30
it follows that at Substituting Eq.(4.30 into Egs.(3.42 and taking into ac-
count that at— oo
L, NCoT
i< = (4.26 ﬂN n(3x|\|n2Ch)tn

72/n+l_)o
: . : . T (n—2)2%"

the energy density of the spinor field becomes negative. On

the other hand, we have due to—2/n+1<0, we obtain

A(N—1)Ch a(t)~b(t)~c(t)~[r(t)]*~t? -, (4.3)

=—> 4.2 . . . : .
M 0 (.29 This means that the solution obtained tends to the isotropic

one. In this case the isotropization is provided not by the

for any non-negative value af. Thus, we see all four con- Massive parameter, but by the degmeen the termLy

ditions in (4.24) are violated, i.e., the absence of initial sin- =\S". Equation(4.29 implies

gularity in the considered cosmological solution appears to P

be consistent with the violation of the dominant energy con- 7(1)] .0~ V3kCog” t—0,

dition in the Hawking-Penrose theorem.

TI=T3=T3

(4.32

. : which means the solution obtained is initially singular. Thus
Let us consider the Heisenberg-lvanenko equaffso) for 1<n<2 there exist only singular solutions at initial time.

settingn=2 in Eq.(4.15. In this case the equation fa(t) X o :
does not contain the nonlinear term and its solution coincide’é‘t t—¢ the isotropization of the expansion process of the Bl

with that of the linear one. The spinor field functions in this space takes place both for#0 and. form=0. .
case are written as follows: Finally, let us study the properties of the solution to Eq.

(4.15 for 0<n<1. In this case we use the solution in the
form (4.29. Since now 2-n>1, then with the increasing of
V= &efimtzm)\CO/B (4.283 7(t) in the denominator of the integrand in E@.29 the
T ' second term\ 72~ "C{~ ! increases faster than the first one.
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lim 7~[ y/— 3\n2Cp/4t]?" (4.35
t—0

1.55

1.35 and att— oo asymptotic isotropization takes place since

lim r~e"3At, (4.36

t—oo

1.15

Case (iv) A>0 and\A<0. The solution is initially singu-

0.95

lar as
FIG. 4. Perspective view of showing the initially nonsingular lim 7~[ /= 3\n?Cg/4t]?" (4.37)
and oscillating behavior of the solutions. The continuous and dash =0
lines correspond to the massive and massless spinor field, respec- ) o )
tively. and is bound from the above, i.e., oscillating, since
lim 7=~siny3At. (4.38

Therefore, the solution describing the space expansion can
be possible only foh <O0. In this case at— o, for m=0 as
well as form#0, one can get the asymptotic representation
(4.30 of the solution. This solution, as for the choicelh
<2, provides an asymptotically isotropic expansion of the Bl
space-time. Fot—O0 in this case we shall get only the sin-
gular solution of the form4.32.

For a nonzero\ term we study the following situations
depending on the sign of and\.

Case (i) A=—€?<0, \>0. In this case fon>2 andt
—oo we find

t—o

(i) We study the system whery=F(J), which means in

the case considere®’=0. Let us note that, in the unified
nonlinear spinor theory of Heisenberg, the massive term re-
mains absent, and according to Heisenberg, the particle mass
should be obtained as a result of quantization of spinor pre-
matter[51]. In the nonlinear generalization of classical field
equations, the massive term does not possess the significance
that it possesses in the linear one, as it by no means defines
total energy(or mas$ of the nonlinear field system. Thus
without losing the generality we can consider the massless

T(t)%ev’?ﬂ, (4.33 spinor field puttingm=0. Then from Eqs(3.35 one gets

Thus we see that the asymptotic behaviorraloes not de-

pend onn and is defined by th& term. From Eqs(3.42) it

is obvious that the asymptotic isotropization takes place. . i ] o
From Eq.(4.18) it also follows thatr cannot be zero at The system of spinor field equations in this case reads

any moment, since the integrand turns out to be imaginary as

Do
P(t)= - Do=const. (4.39

T approaches zero. Thus the solution obtained is a nonsingu- Vi—GV;3=0, (4.403
lar one thanks to the nonlinear term in the Dirac equation and _
asymptotically isotropic. As it has been noted earlier, the V,—GV,=0, (4.40b
absence of initial singularity in the considered cosmological
[ir:)c;del results in the violation of the dominant energy condi- V34 GV, =0, (4.400
Case (ii) A>0 andA>0. Forn>2, Eq.(4.18 admits :
(il q.(4.18 V4 + GV, =0. (4.409

only nonsingular oscillating solutions, since>0 and is
bound from above. Consider the case with4 and for sim-

plicity setm=0. Then from Eq/(4.18 one gets Defining U(o)=V(t), where o= [Gdt, we rewrite Egs.

(4.40 as
1 , U;—U3=0, (4.41a
7(t)= —=[ kCo7o+ Vk2Ci75+ 4ANCy sin 2y/3At]Y2 1
\/ﬁ[ 0’0 \/ 0‘0 0 ] ’
(4.39 Uz—U4=0, (4.41b
For a massive spinor field with >0 and\>0 andn Us+U;=0, (4.410
=10, a perspective view aof is shown in Fig. 4. The period
for the massive field is greater than that for the massless one. U,+U,=0, (4.410

As it occurs, the order of nonlinearity) has a direct effect
on the periodthe more inn the less is the perigd

where the primes denote differentiation with respecisto

Case (iii) A<0 and\<0. The solution is singular at Differentiating the first equation of systef.41) and taking

initial moment, that is,

123501-12
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Uj+U;=0, (4.42 Let us now estimate using the equation
which leads to the solution 7l 7=3k\(n—1)P?", (4.46
U,;=D,e'"+iDge ", where we chosé y=\P?". Putting the value oP into Eq.

UaziD .67+ Dag i (4.49 and integrating, one gets
37T 1 3 .

2 2n_2-2n 2
Analogically for U, andU, one gets 7°= =3k NDg T Y5 (4.47
U,=D,e’+iD4e 7, where y? is the integration constant having the foryd
_ _ =(X3+ X X3+X3)/3>0. The solution to EQ.(4.47 in
U,=iD,e'"+D,e ', quadrature reads

where D; are the constants of integration. Finally, we can dr

write f =t. (4.48
. V=3kAD2"72 2+ y?
= E(Dle"’+iD3e""), (4.43a Let us now analyze the solution obtained here. As one can
see, the case=1 is the linear one. In the case »K 0 for
1 n>1,ie., 2-2n<0, we get
= —(D,e'7+iD e '), (4.43b
Jr ()] —o~[(VBxIN\[Dgm "

1 _ _ and
lﬂ3= _(iDle|0—+D3e7|a—), (443()
T

y

7|0~ 3Ky L.

1 i i This means that for the teriny considered withh <0 and
- io —io N
iz \/;('D2e TDqe ). (4.43d n>1, the solution is initially singular and the space-time is
anisotropic att—co. Let us now study it fom<1. In this
Putting Egs(4.43 into the expressiongl.39), one comes to case we obtain

Do=2(D3+D%-D3-D3?). o~ V3ky?t
For the components of the spin current from E@27 we  and
find
2 7~ (V3x|\[Dgn)t]™".
0 “rp2 2 2 2
I7=7ID1+ D2+ D5+ Dal, (4.443 The solution is initially singular as in the previous case, but
as far as >1, it provides an asymptotically isotropic ex-
. 4 pansion of Bl space-time. The analysis for- 0 completely
1_
"= §[D2D3+D1D4]C°S(2f gdt)’ (444D coincides with those foF =AS" with m=0.
(iii ) In this case we studizy=F(l,J). Choosing
4
j2=b—T[D2D3—D1D4]sin(2f gdt), (4.449 Ly=F(Ky), Ki=l+J=l,=—1,, K_=1-J=I,
(4.49
4 . .
j3= C—T[Dle—DzDﬂCOS(ZJ G|d), (4.449 N the case of a massless NLSF we find
D=2SF, G=+*2PF_, Fy =dF/dK..
whereas, for the projection of spin vectors on ¥é/, andZ B N B
axis, we find Putting them into Eqs(3.35), we find
2 2, p2_
§0= - [DyD,+D3D,], (4.453 So*Po=D-. (4.50
ChoosingF =\K'l from Eq.(3.38 we get
s*0=0, (4.45b
L 7=3k\(n—-1) D% 717", (450
120_ _~ rn2_p2 2 R2
S 2ab7-[Dl D2+ D5~ Dal (4.459 with the solution
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Tn— 1 dT 10 T T T T
=t, (4.52 »
J Jg 7 2 3nDL N |
where g?= (X34 X, X5+ X3)/3. Let us study the case with
A<0. Forn<1 from Eq.(3.33 one gets 6 .
7(t)|y_o~gt—0, (4.53
4+ i
i.e., the solutions are initially singular, and
(O]~ [V(3x[\[DD)]*", (454  2r 7
which means that the anisotropy disappears as the Univers 7 : . . . . . .
expands. In the case of>1 we get 0 0 > 4 6 8 10
(t)|[_o~t""—0 FIG. 5. Perspective view af when the BI universe is filled with
perfect fluid only. The lines from left to right at the upper corner
and correspond to dustZ=0), radiation ¢=3), hard universe {
(t)| gt = %), and stiff matter {=1), respectively.
T toow y
i.e., the solutions are initially singular and the metric func-A Perspective view of these solutions is given in Fig. 5.
tions a(t), b(t), and c(t) are different att—, i.e., the Let us now consider the system as a whole with the non-

isotropization process remains absent. Kor0 we get that  linear term being_y=X\S". In this case we get
the solutions are initially regular, but it violates the dominant

energy condition in the Hawking-Penrose theoifd®). Note dr
that one comes to the analogical conclusion choogigg f =+ V3kt.
=)\S2"p2n, \/mCOT—XCS/T(n72)+SOT(17§)+gz

(4.58

C. Analysis of the results obtained when the Bl universe is

filled with perfect fluid As one can see in the case of dust(0), the fluid term can

] ] ] be combined with the massive one, whereas in the case of
Let us now analyze the system filled with perfect fluid. In giitf matter (£=1), it mixes up with the constant. Analyzing
the absence of other matter, i.e., spinor field, in this casgq, (4.59 one concludes that in the presence of a spinor
from Eq.(3.38 we find field, perfect fluid plays a secondary role in the evolution of
a Bl universe.

. 3k (1-9e
= # (4.55
T V. CONCLUSION
with the first integral Within the framework of the simplest nonlinear model of
) 7 a spinor field it has been shown that theterm plays a very
T:V?’KSOTE )+C, (4.56 important role in Bianchi-I cosmology. In particular, it in-

vokes oscillations in the model, which is not the case when

whereC is an integration constant. From Egh.56 one es- the A term remains absent. It should be noted that regularity

timates of the solutions obtained by virtue of the term, especially
7t for ¢=0 (dus), (4573 for the linear spinor field, does not violate the dominant en-
ergy condition, while this is not the case when regular solu-
rct¥2 for ¢=1% (radiation, (4579  tions are attained by means of a nonlinear term. The growing
interest in studying the role of th& term by present-day
7ct8’®  for =% (hard universg (4.570 physicists of various disciplines indicates its fundamental
value. For details on the time-dependentterm, one may
Tt for (=1 (stiff matten. (4.570 consult[36] and references therein.
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