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Quenched divergences in the deconfined phase of SU„2… gauge theory
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The spectrum of the overlap Dirac operator in the deconfined phase of quenched gauge theory is known to
have three parts: exact zeros arising from topology, small nonzero eigenvalues that result in a nonzero chiral
condensate, and the dense bulk of the spectrum, which is separated from the small eigenvalues by a gap. In this
paper, we focus on the small nonzero eigenvalues in an SU~2! gauge field background atb52.4 andNT54.
This low-lying spectrum is computed on four different spatial lattices (123, 143, 163, and 183). As the volume
increases, the small eigenvalues become increasingly concentrated near zero in such a way as to strongly
suggest that the infinite volume condensate diverges.
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I. INTRODUCTION

In this paper, we will describe a numerical analysis of t
small, nonzero eigenvalues of the overlap Dirac operato
the deconfined phase of quenched SU~2! lattice gauge theory
This is a particularly interesting place to look for singula
ties associated with the strong infrared divergences that
pear in quenched continuum theory in the limit of zero qu
mass and infinite volume. As indicated by the Wilson lin
this is the deconfined phase, which carries with it a na
expectation of unbroken chiral symmetry. Thus when ch
symmetry breaking effects appear, they are less expected
more dramatic. On the other hand, and somewhat ironica
it may be easier to make a study in this region where
small and important eigenvalues have a relatively low sp
tral density and are well separated from the bulk of the sp
trum. Also it may be easier to study the possible associa
with instantons since the finite value ofNT leads to relatively
sparse and well-separated instantons. We find strong
dence for an infinite volume divergence in the spectral d
sity at zero eigenvalue which implies a divergence in
chiral concentrate. This arises from smallnonzeroeigenval-
ues that become denser near zero as the volume increa

Lattice simulations of strong interactions are inevitab
first performed in the quenched approximation where all
fects from quark loops are ignored. However, there
strong theoretical arguments that quenching the continu
version of the theory produces pathological infrared div
gences for massless quarks in infinite volume@1,2#. Thus a
correct lattice implementation of massless fermions and
ral symmetry should also have these infrared divergen
On one hand, their appearance is a test for a correct la
fermion formulation. On the other hand, they must be und
stood and accounted for in drawing physical conclusio
from quenched lattice calculations. Thus without the ferm
onic action in the path integral, fermionic observables m
be interpreted with care. The quark propagator can h
anomalous large distance behavior that is associated
singular behavior of the spectral density near zero. This le
to new issues in the discussion of spontaneous chiral s
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metry breaking. There are divergent corrections to the us
relation between the quark and pion masses in the bro
symmetry phase. This in turn implies that the chiral cond
sate diverges.

Earlier quenched lattice simulations did not see the eff
of these quenched pathologies for a variety of reasons. C
rections due to finite lattice spacing effects turn out to
large for staggered fermions making it difficult to disentang
the quenched divergences. Wilson fermions are plagued
exceptional configurations at small masses in the quenc
approximation@3#. The quark propagator diverges due to t
zero modes that appear for positive quark masses when
ral symmetry is explicitly broken. In spite of the problem
associated with Wilson fermions, some recent simulations
quenched Wilson fermions on larger lattices have sho
some evidence for the continuum quenched divergences@4#.
Also the use of a modified quenched approximation h
given evidence for quenched pathologies@5# predicted by
continuum theory. Since Wilson fermions do not allow t
exact zero modes due to global topology to be separa
identified, the observed signal includes their contribution a
finite volume effect. Studies with several lattice volumes a
at fixed lattice coupling could separate the contributions a
identify the true quenched divergence present in the ther
dynamic limit. Attempts to look for quenched divergenc
using domain wall fermions@6# have been hampered b
larger than expected chiral symmetry breaking from the fin
size of the fifth dimension. Overlap Dirac fermions do n
have the problems at finite mass and finite volume that co
from exceptional configurations and explicitly broken chir
symmetry. In an arbitrary gauge field background, the ov
lap Dirac propagator can have poles only at zero bare qu
mass@7,8#. Therefore there are no singularties in the over
Dirac propagator at finite volume and nonzero quark m
even in the quenched approximation. First attempts to lo
for continuum quenched chiral logarithms using the over
Dirac operator can be found in Ref.@9#.

The quenched approximation is also used in finite te
perature simulations@10#. Earlier results using staggered fe
mions seemed to produce a spectrum consistent with an
©2001 The American Physical Society02-1
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broken chiral symmetry in the deconfined pha
Unfortunately, this result is an artifact of the lack of chir
and flavor symmetry for the staggered fermion action on
lattice@11#. The spectrum of the overlap Dirac operator@7# in
the deconfined phase does not have a gap@12#. Instead it
shows some interesting features. There are three pieces
act zeros, a low density of very small eigenvalues, and
dense part of the spectrum, which is separated from zer
a gap. Furthermore, the very small eigenvalues appea
have a finite spectral density at zero and thus produce a
zero chiral condensate. We should emphasize here that th
the spectrum of nonzero eigenvalues obtained after one
removed all the exact zero eigenvalues of the overlap D
operator due to global topology of the gauge fields.

II. CALCULATIONS AND RESULTS

Our background fields were SU~2! gauge fields generate
on an L334 lattice at b52.4 using the standard Wilso
action. All configurations were forced to have a positive e
pectation value for the Wilson line and anti-periodic boun
ary conditions were imposed on the fermions in the ti
direction. This eliminates an ‘‘unphysical’’ signal for a chir
condensate@13#. To study the thermodynamic limit, we gen
erated gauge field configurations on four different lattic
listed in Table I. We computed the spectrum of the square
the massless Hermitian overlap Dirac operator,

Ho5
1

2
$g51e@Hw~mw!#%; @g5 ,Ho

2#50 ~1!

where the argument ofe is the standard Hermitian Wilso
Dirac operator with the massmw set to 1.5.1 The calculations
were embarrassingly parallel and were carried out on P
with Pentium II, Pentium III, and Athlon processors. Th
computation was performed in double precision for a reas
ably accurate determination of the small eigenvalues.
polar approximation@14# for the e function was used. Smal
eigenvalues ofHw were projected out before the action ofe
and were treated exactly. In practice the action ofe on a
vector was obtained to a very high precision and the ‘‘tw
pass’’ algorithm@15# was used to minimize memory require

1Our convention is such that this mass corresponds to nega
quark mass for Wilson fermions at this lattice coupling.

TABLE I. L is the spatial extent of the lattice,N is the number
of configurations generated,^n& is the average number of sma
eigenvalues including exact zero modes per unit volume andns is
the total number of pairs of small, nonzero eigenvalues in e
ensemble.

L N ^n& ns

12 1014 7.7(3)31025 58
14 538 8.0(4)31025 70
16 286 7.7(4)31025 66
18 146 8.5(5)31025 72
11750
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ments. Based on previous work in the deconfined phase@12#,
we used 0.05 as the cutoff for the small eigenvalues, and
eigenvalues below 0.05 were computed using the Ritz a
rithm @16#. The bulk of the spectrum becomes dense ab
roughly 0.2. There are some loners in the desert that
between 0.05 and 0.2. We computed the eigenvalues in
chiral sectors to unambiguously separate the exact zero
genvalues from the non-zero ones. The combined ave
number of exact zeros and small, non-zero eigenvalues
unit volume is^n&. The total number of pairs of small, non
zero eigenvalues in each ensemble isns . These data are
listed in Table I.

Since one expects gauge fields of all topology even in
deconfined phase, instantons and anti-instantons are pre
But the topological susceptibility is small in the deconfin
phase, and the gas of instantons and anti-instantons is d
The four values for̂ n& in Table I are equal within errors
This is consistent with the hypothesis that the small eig
values are associated with a dilute gas of approximately n
interacting instantons and anti-instantons and that this
has a good thermodynamic limit. This is not a surprise sin
we do not expect anything pathological about the gauge fi
configurations themselves. Including the exact zero eigen
ues in each configuration, the spectrum ofHo

2 hasn1 small
eigenvalues of positive chirality andn2 eigenvalues of nega
tive chirality. Assumingn1 is greater thann2 , we will have
Q5n12n2 exact zeros of positive chirality andn2 nonzero
eigenvalues of each chirality, which are paired. As in t
previous work@12#, we find that the probability distribution
for n1 andn2 is consistent with that ofn5n11n2 nonin-
teracting objects. When combined with a numerical study
the fermion spectrum in a background of instantons and a
instantons@17#, this picture also suggests that the chiral co
densate diverges.

Let r(E) be the density of non-zero eigenvalues per u
energy and per unit volume. The bare chiral condensat
the continuum is given by

c̄c~M !5E
0

`

dE
2Mr~E!

E21M2 . ~2!

If r(E) goes to zero asE goes to zero, then there is n
condensate. Ifr(E) is finite asE goes to zero, then we hav
a finite condensate. Ifr(E) diverges asE goes to zero, we
have an infinite condensate. Since numerical computat
are performed on a finite lattice, the spectrum per configu
tion is discrete, and it is convenient to use the cumulat
quantityN(E,V) which is the number of nonzero eigenva
ues belowE in a lattice of volumeV5L33NT averaged over
all configurations. It is from this thatr is defined

r~E!5
d

dE
lim

V→`

N~E,V!

V
. ~3!

A qualitative inspection of the spectral densities of t
nonzero eigenvalues in Fig. 1 shows that the spectrum
comes more sharply peaked near zero as the volume
creases. An alternative presentation of the data
N(E,V)/(EV) vs E in Fig. 2. A divergence inN(E,V)/(EV)
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FIG. 1. Distribution of the
small eigenvalues per unit volum
on four different lattices.
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asE goes to zero leads to a divergent condensate. Base
this range of volumes, a divergence forV→` followed by
E→0 is indicated. A least square fit of the data on the 13

34 lattice yields

N~E,V!

EV U
L518

'4.2310253E20.80. ~4!

FIG. 2. A plot of N(E,V)/(EV) from the small nonzero eigen
values on four different lattices plotted on a log-log scale. The s
line is a least squares fit to theL518 data weighted by the statis
tical errors.
11750
on We can also directly compute the contribution of t
small, nonzero eigenvalues to the chiral condensate@8#

^c̄c~M !&5K 1

V (
E.0

2M ~12E2!

E2~12M2!1M2L . ~5!

The contribution from the bulk of the spectrum is not re
evant at small masses where it gives a term linear inM. The
result is plotted in Fig. 3 for the four different lattices. Agai

d
FIG. 3. Contribution to the chiral condensate from the sm

nonzero eigenvalues on four different lattices plotted on a log-
scale. The solid line is a least squares fit to theL518 data weighted
by the statistical errors.
2-3
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BRIEF REPORTS PHYSICAL REVIEW D 64 117502
the curves do not seem to have an infinite volume limit in
small mass region. This can be used to test the functio
form found in @1# where a small negative power ofM is
predicted. A least square fit of theL518 curve weighted by
the statistical errors gives

^c̄c~M !&uL518'8.1310253M 20.81. ~6!

This fit is consistent with the fit ofN(E,V)/(EV) in Fig.
2. These fits are entirely based on the 18334 data and do no
necessarily imply that the same form or power would wo
at larger volume. The power is far more negative than
zero-temperature estimates@1# and is simply a reflection o
the strong peaking of the spectrum with increasing volu
seen in Fig. 2. The strong divergence could arise from
dilute gas of instantons. If the gas is dilute, the would-
zero modes will stay very close to zero.

With the assumption that there are Goldstone boson
this region, we can view this result from the perspective
the associated effective theory based on a chiral Lagrang
As a consequence of the finite extent in imaginary time,
leading infrared structure will be three dimensional, and
infrared divergences of the quenched chiral perturba
theory will be stronger than was the case for zero temp
ture. Thus power divergences can arise in single loop
grams rather than as an infinite sum of logs, and could
plain the stronger divergence at finite temperature.

III. CLOSING COMMENTS

Following this investigation of quenched divergences
the quark spectrum, it would also be interesting to look
meson correlators at small masses@18#. A loss of positivity is
H
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predicted in the scalar meson propagator. The scalar sus
tibility is the derivative of the chiral condensate in th
quenched approximation@8#. Since the divergent part of th
chiral condensate should dominate in the massless limit,
scalar susceptibility should be negative there. But it is n
essary to remove the contribution from exact zero mo
since these also cause a loss of positivity@19#. In the near
future, we plan to study the contribution of the small mod
to meson correlators in the deconfined phase. For other
ture work, studies with varying lattice gauge coupling a
Wilson massmw @Eq. ~1!# should be done.

In this paper, we have shown numerical evidence fo
quenched divergence in the chiral condensate for SU~2!
gauge theory in the deconfined phase. The divergenc
caused by a finite density of small eigenvalues whose dis
bution becomes increasingly peaked near zero as the the
dynamic limit is approached. We should emphasize ag
that this divergence is due to the nonzero eigenvalues of
overlap Dirac operator. The divergence from the exact ze
which we have not included, is a finite volume effect th
does not persist in the thermodynamic limit.
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