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Quenched divergences in the deconfined phase of &) gauge theory

Joe Kiskis
Lattice Hadron Physics Collaboration, Department of Physics, University of California, Davis, California 95616

Rajamani Narayanan
American Physical Society, One Research Road, Ridge, New York 11961
(Received 27 June 2001; published 5 November 2001

The spectrum of the overlap Dirac operator in the deconfined phase of quenched gauge theory is known to
have three parts: exact zeros arising from topology, small nonzero eigenvalues that result in a nonzero chiral
condensate, and the dense bulk of the spectrum, which is separated from the small eigenvalues by a gap. In this
paper, we focus on the small nonzero eigenvalues in ai2)Syauge field background #=2.4 andN;=4.

This low-lying spectrum is computed on four different spatial lattices'(12%, 16°, and 18). As the volume
increases, the small eigenvalues become increasingly concentrated near zero in such a way as to strongly
suggest that the infinite volume condensate diverges.
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I. INTRODUCTION metry breaking. There are divergent corrections to the usual
relation between the quark and pion masses in the broken
In this paper, we will describe a numerical analysis of thesymmetry phase. This in turn implies that the chiral conden-
small, nonzero eigenvalues of the overlap Dirac operator isate diverges.
the deconfined phase of quenched 3Uattice gauge theory. Earlier quenched lattice simulations did not see the effect
This is a particularly interesting place to look for singulari- of these quenched pathologies for a variety of reasons. Cor-
ties associated with the strong infrared divergences that apections due to finite lattice spacing effects turn out to be
pear in quenched continuum theory in the limit of zero quarkarge for staggered fermions making it difficult to disentangle
mass and infinite volume. As indicated by the Wilson line,the quenched divergences. Wilson fermions are plagued by
this is the deconfined phase, which carries with it a naiveexceptional configurations at small masses in the quenched
expectation of unbroken chiral symmetry. Thus when chiralapproximation3]. The quark propagator diverges due to the
symmetry breaking effects appear, they are less expected azdro modes that appear for positive quark masses when chi-
more dramatic. On the other hand, and somewhat ironicallysal symmetry is explicitly broken. In spite of the problems
it may be easier to make a study in this region where theassociated with Wilson fermions, some recent simulations of
small and important eigenvalues have a relatively low specguenched Wilson fermions on larger lattices have shown
tral density and are well separated from the bulk of the specsome evidence for the continuum quenched divergepties
trum. Also it may be easier to study the possible associatiollso the use of a modified quenched approximation has
with instantons since the finite value Nf leads to relatively given evidence for quenched pathologiéd predicted by
sparse and well-separated instantons. We find strong eveontinuum theory. Since Wilson fermions do not allow the
dence for an infinite volume divergence in the spectral denexact zero modes due to global topology to be separately
sity at zero eigenvalue which implies a divergence in thedentified, the observed signal includes their contribution as a
chiral concentrate. This arises from smadinzeroeigenval- finite volume effect. Studies with several lattice volumes and
ues that become denser near zero as the volume increasest fixed lattice coupling could separate the contributions and
Lattice simulations of strong interactions are inevitablyidentify the true quenched divergence present in the thermo-
first performed in the quenched approximation where all ef-dynamic limit. Attempts to look for quenched divergences
fects from quark loops are ignored. However, there araising domain wall fermiong6] have been hampered by
strong theoretical arguments that quenching the continuurtarger than expected chiral symmetry breaking from the finite
version of the theory produces pathological infrared diversize of the fifth dimension. Overlap Dirac fermions do not
gences for massless quarks in infinite volufig?]. Thus a  have the problems at finite mass and finite volume that come
correct lattice implementation of massless fermions and chifrom exceptional configurations and explicitly broken chiral
ral symmetry should also have these infrared divergencesymmetry. In an arbitrary gauge field background, the over-
On one hand, their appearance is a test for a correct lattidap Dirac propagator can have poles only at zero bare quark
fermion formulation. On the other hand, they must be undermasg7,8]. Therefore there are no singularties in the overlap
stood and accounted for in drawing physical conclusion®irac propagator at finite volume and nonzero quark mass
from quenched lattice calculations. Thus without the fermi-even in the quenched approximation. First attempts to look
onic action in the path integral, fermionic observables musfor continuum quenched chiral logarithms using the overlap
be interpreted with care. The quark propagator can hav®irac operator can be found in Rég].
anomalous large distance behavior that is associated with The quenched approximation is also used in finite tem-
singular behavior of the spectral density near zero. This leadserature simulationgl0]. Earlier results using staggered fer-
to new issues in the discussion of spontaneous chiral synmions seemed to produce a spectrum consistent with an un-
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TABLE I. L is the spatial extent of the lattichl is the number ments. Based on previous work in the deconfined phb3g
of configurations generatedn) is the average number of small we used 0.05 as the cutoff for the small eigenvalues, and all
eigenvalues including exact zero modes per unit volumerarid  ejgenvalues below 0.05 were computed using the Ritz algo-
the total number of pairs of small, nonzero eigenvalues in eachithm [16]. The bulk of the spectrum becomes dense above

ensemble. roughly 0.2. There are some loners in the desert that lies
between 0.05 and 0.2. We computed the eigenvalues in both

L N (m Ns chiral sectors to unambiguously separate the exact zero ei-

12 1014 7.7(3x10°° 58 genvalues from the non-zero ones. The combined average

14 538 8.0(4)x 1075 70 number of exact zeros and small, non-zero eigenvalues per

16 286 7.7(4X10°5 66 unit volume is(n). The total number of pairs of small, non-

18 146 8.5(5K 105 72 zero eigenvalues in each ensemblenis These data are

listed in Table I.

Since one expects gauge fields of all topology even in the
broken chiral symmetry in the deconfined phase.deconfined phase, instantons and anti-instantons are present.
Unfortunately, this result is an artifact of the lack of chiral But the topological susceptibility is small in the deconfined
and flavor symmetry for the staggered fermion action on théhase, and the gas of instantons and anti-instantons is dilute.
lattice[11]. The spectrum of the overlap Dirac operdtofin ~ The four values foxn) in Table | are equal within errors.
the deconfined phase does not have a [g&). Instead it  This is consistent with the hypothesis that the small eigen-
shows some interesting features. There are three pieces: es@lues are associated with a dilute gas of approximately non-
act zeros, a low density of very small eigenvalues, and théteracting instantons and anti-instantons and that this gas
dense part of the spectrum, which is separated from zero byas a good thermodynamic limit. This is not a surprise since
a gap. Furthermore, the very small eigenvalues appear t¢e do not expect anything pathological about the gauge field
have a finite spectral density at zero and thus produce a nogonfigurations themselves. Including the exact zero eigenval-
zero chiral condensate. We should emphasize here that thisi€s in each configuration, the spectrumH hasn,. small
the spectrum of nonzero eigenvalues obtained after one ha&igenvalues of positive chirality and. eigenvalues of nega-
removed all the exact zero eigenvalues of the overlap Dirative chirality. Assumingn .. is greater tham_ , we will have

operator due to global topology of the gauge fields. Q=n_,—n_ exact zeros of positive chirality amd. nonzero
eigenvalues of each chirality, which are paired. As in the
Il. CALCULATIONS AND RESULTS previous work[12], we find that the probability distribution

for n, andn_ is consistent with that ofi=n, +n_ nonin-

Our background fields were $P) gauge fields generated teracting objects. When combined with a numerical study of
on anL3x4 lattice at3=2.4 using the standard Wilson the fermion spectrum in a background of instantons and anti-
action. All configurations were forced to have a positive ex-instantong17], this picture also suggests that the chiral con-
pectation value for the Wilson line and anti-periodic bound-densate diverges.
ary conditions were imposed on the fermions in the time Let p(E) be the density of non-zero eigenvalues per unit

direction. This eliminates an “unphysical” signal for a chiral energy and per unit volume. The bare chiral condensate in
condensat¢l3]. To study the thermodynamic limit, we gen- the continuum is given by

erated gauge field configurations on four different lattices

listed in Table I. We computed the spectrum of the square of — ©  2Mp(E)
the massless Hermitian overlap Dirac operator, lﬂlﬂ(M):f dE =22 )
o "FEZrM
1 .
Ho=51{7st e[Hu(mu)1}; [ys,HZ]=0 (1) If p(E) goes to zero a& goes to zero, then there is no

condensate. Ip(E) is finite asE goes to zero, then we have
. . i a finite condensate. I5(E) diverges as goes to zero, we
where the argument of is the standardl Hermitian Wilson haye an infinite condensate. Since numerical computations
Dirac operator with the mass,, set to 1.5. The calculations  gre performed on a finite lattice, the spectrum per configura-
were embarrassingly parallel and were carried out on PC'§qp, is discrete, and it is convenient to use the cumulative

with Pen';ium II, Pentium III_, and Athlon processors. The quantity N(E, V) which is the number of nonzero eigenval-
computation was performed in double precision for a reason;oq pelowE in a lattice of volume/= L3x N; averaged over
ably accurate determination of the small eigenvalues. Thg configurations. It is from this that is defined

polar approximatiori14] for the e function was used. Small

eigenvalues oH,, were projected out before the action of d N(E,V)

and were treated exactly. In practice the actioneobn a p(E)= Elim v 3

vector was obtained to a very high precision and the “two- Voo

pass” algorithm[15] was used to minimize memory require- A qualitative inspection of the spectral densities of the
nonzero eigenvalues in Fig. 1 shows that the spectrum be-
comes more sharply peaked near zero as the volume in-

our convention is such that this mass corresponds to negativereases. An alternative presentation of the data is
quark mass for Wilson fermions at this lattice coupling. N(E,V)/(EV) vsE in Fig. 2. A divergence ilN(E,V)/(EV)
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asE goes to zero leads to a divergent condensate. Based on We can also directly compute the contribution of the
this range of volumes, a divergence fér—« followed by  small, nonzero eigenvalues to the chiral condengite
E—O0 is indicated. A least square fit of the data on thé 18

X 4 lattice yields M) = 1 > 2M(1—-E?) 5)
V £ E(1-M?)+M? /"
N(E,V) I .
~4.2%10 5x E~080 (4y  The contribution from the bulk of the spectrum is not rel-
EV | _s evant at small masses where it gives a term linedvlilThe
result is plotted in Fig. 3 for the four different lattices. Again,
i L=14 o o1f Evinar
= L=16 —e—i ]
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FIG. 2. A plot of N(E,V)/(EV) from the small nonzero eigen- FIG. 3. Contribution to the chiral condensate from the small

values on four different lattices plotted on a log-log scale. The solichonzero eigenvalues on four different lattices plotted on a log-log
line is a least squares fit to the=18 data weighted by the statis- scale. The solid line is a least squares fit toltke18 data weighted
tical errors. by the statistical errors.
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the curves do not seem to have an infinite volume limit in thepredicted in the scalar meson propagator. The scalar suscep-
small mass region. This can be used to test the functionalbility is the derivative of the chiral condensate in the
form found in[1] where a small negative power & is  quenched approximatio8]. Since the divergent part of the
predicted. A least square fit of the=18 curve weighted by chiral condensate should dominate in the massless limit, the

the statistical errors gives scalar susceptibility should be negative there. But it is nec-
_ 5 081 essary to remove the contribution from exact zero modes
(Pp(M))|=1g~8.1x10 > XM 7L (6)  since these also cause a loss of positiyitg]. In the near

This fit is consistent with the fit oN(E,V)/(EV) in Fig.  future, we plan to study the contribution of the small modes
2. These fits are entirely based on thé & data and do not to meson correlators in the deconfined phase. For other fu-
necessarily imply that the same form or power would workture work, studies with varying lattice gauge coupling and
at larger volume. The power is far more negative than thaVilson masam,, [Eq. (1)] should be done.
zero-temperature estimatgl| and is simply a reflection of In this paper, we have shown numerical evidence for a
the strong peaking of the spectrum with increasing volumeguenched divergence in the chiral condensate fo(25U
seen in Fig. 2. The strong divergence could arise from thgauge theory in the deconfined phase. The divergence is
dilute gas of instantons. If the gas is dilute, the would-becaused by a finite density of small eigenvalues whose distri-
zero modes will stay very close to zero. bution becomes increasingly peaked near zero as the thermo
With the assumption that there are Goldstone bosons idynamic limit is approached. We should emphasize again
this region, we can view this result from the perspective ofthat this divergence is due to the nonzero eigenvalues of the
the associated effective theory based on a chiral Lagrangiamverlap Dirac operator. The divergence from the exact zeros,
As a consequence of the finite extent in imaginary time, thevhich we have not included, is a finite volume effect that
leading infrared structure will be three dimensional, and thedoes not persist in the thermodynamic limit.
infrared divergences of the quenched chiral perturbation
theory will be stronger than was the case for zero tempera-
ture. Thus power divergences can arise in single loop dia- ACKNOWLEDGMENTS
grams rather than as an infinite sum of logs, and could ex-
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