PHYSICAL REVIEW D, VOLUME 64, 116010
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Quark-meson duality for two-point functions of vector and axial-vector QCD currents is investigated in the
largeN. approximation. We find that the joint constraints of duality and chiral symmetry suggest degeneracy
of excited vector and axial-vector mesons in the laxgeimit. We compare model-independent constraints
with expectations based on the Veneziano-Lovelace-Shapiro string model. Several models of duality are con-
structed, and phenomenological implications are discussed.
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I. INTRODUCTION massless flavors transforms @s2). Assuming confinement,
it then follows that chiral symmetry is spontaneously broken
In the largeN. limit, QCD correlators of quark bilinears [10]. The conserved vector and axial-vector currelﬁsand
can be expressed as sums of zero-width meson tree grapA$ form a six-dimensional multiplet; hence they transform
[1]. These sums must be infinite in order to be consistengs 3,1)®(1,3). Consider the time-ordered product of vector
with perturbative QCD logarithms at large momentum transcurrents
fer. The detailed matching of hadronic and partonic degrees
of freedom, known as quark-hadron duali~4], has been
explicitly verified in QCD in 1+1 dimensions in the large-
N, limit [5]. It has long been thought that the exchange of an
infinite number of vector mesons is in some sense dual to thelere 11, transforms as 1,1)®(3,3)®- -+ with respect to
perturbative QCD continuuni6]. Early work uncovered SU(2)XSU(2). Lorentz invariance and current conservation
various intriguing similarities between the simplest modelsallow the decomposition
of quark-meson duality and hadronic string models. Given
the widespread belief that largé- QCD is in some sense IGy(a) =(a*q"— g*"q*) 1\ (Q?), 2
equivalent to a string theory, these similarities have received
recent attentior{7]. Following Ref.[7], in this paper we Where Q?=—g? Identical considerations for th&A cor-
investigate duality in the largh, limit in the simplest corr-  relator lead tCHA(QZ)- One can write a dispersive represen-
elators that have an operator product expan$RE): i.e., tation of the functionHV,A(Qz) and saturate it with an infi-
two-point functions of vector and axial-vector currents. Wenite number of zero-width meson states. This dispersion
point out that there are nontrivial chiral symmetry constraintgelation requires one subtraction; however, we will assume
that must be satisfied in addition to those constraints implie@n unsubtracted dispersion relation and track the divergent
by duality. We discuss the interesting dilemma raised by sipart. We find, in the largé, limit,
multaneous satisfaction of all constraints. These constraints
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suggest that there is an infinite tower @égeneratevector F\Z/(n)

and axial-vector mesons in the larbje-limit. The phenom- My(Q*)= 22 QZ+—MV(n) (33
enological implications of this conjecture are considered in a

simple model. As an example of a system with an infinite 2 o F2(n)

spectrum of mesons, we consider how chiral symmetry is [1A(Q?%)=2 2+22 ZA— (3b)
satisfied in the Lovelace-Shapiro-VeneziafisS8V) string Q 0 Q%+ Mz(n)’

model [8,9] and we investigate the implications of that _
model for duality. whereFy o(n) andMy, 5(n) are the vector and axial-vector

decay constants and masses, respectively. Because the func-

tions HV,A(QZ) transform as(1,1), they have perturbative

components that are easily computed in QCD perturbation
In largeN, QCD, mesons have the most general quantuniheory. The Euler-Maclaurin summation formula implies the

numbers of the quark bilineal’q, wherel is some arbi- duality matching condition

trary spin structurg¢l]. Hence all mesons have zero or unit

isospin and transform ag,2), (3,1), and /or(1,3) with re- den VA( ) +OQ2)

spect to SWR2)xXSU(2) [to be precise, larghi, QCD has a Q%+ MVz Aln)

U(2)xU(2) chiral symmetry. We will assume that the order

parameter of chiral symmetry breaking in QCD with two
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where the ellipsis corresponds to the logarithmic divergenc@he subscript labeling the Wilson coefficients indicates that
that appears on both sides of the equation and@& are  this correlator transforms g8,3) and therefore contains no
Wilson coefficients of mass dimensiah The coefficient of  perturbative logarithm. Hence performing the sum ower
the logarithm is computed in perturbative QEIDL,7.. The  does not rearrange theQ@? expansion, and one can expand

duality matching condition implies in 1/Q? before performing the infinite sum over We will
see in the next section that this commutativity is protected by
F&AM/M{ A(N) ——n L, (5 chiral symmetry. Since the first two OPE coefficients in Eq.
n—e (7) vanish in QCD in the chiral limit, one reads directly from

In addition to this asymptotic constraint, there are constraint%zl% (132].the spectral-function sum rules in the layg-limit

on then dependences of the couplings and massés:the

existence of an OPE implies that the sums avan Eq. (3) P %

must generate functions that, aside from perturbative loga- > F2(n)— > F2(n)=F2, (89)
rithms, are analytic in ©@?; (ii) the coefficients of the OPE n=0 n=0 ”

must have factorial behavior im* (iii ) chiral symmetry must

be preserved. We will address the issue of chiral symmetry in “ ) ) “ ) )
detail in the next section. 20 FUnMy(n)— EO Fa(n)Mi(n)=0. (8b)
n= n=
IIl. CHIRAL CONSTRAINTS These sum rules must be satisfied by any model of large-
A. Matching to perturbation theory QCD consistent with chiral symmetry. Because of duality,

2 . L Lo the asymptotic constraints of E¢G) are enforced by these
In the Q“—co limit, duality dictates that the infinite sums g, rules.

over vector and axial-vector meson states match to a pertur-
bative expansion imxg. This expansion is defined in the
asymptotically free phase where chiral symmetry is unbro-
ken. Therefore, in the matching region, each vector meson in It will prove useful to give a derivation of Ed8) that is

the infinite sum must be paired with degenerateaxial- independent of the OPEL5,16 as it will allow contact with
vector chiral partner; pair by pair they fill outreducible  hadronic string models. For this purpose, it is convenient to
(1,3)®(3,1) representations of the chiral group. This leadswork in the infinite-momentum frame. This is a natural

C. Constraints from the chiral algebra

to the asymptotic constraints choice given our interest in larg&uclidean momenta. Of
5 5 course, the results that we derive are true in all frames. A
FUM/FA(N) —— 1, (68  useful property of the infinite-momentum frame is that the

n—oo

axial charges annihilate the vacuu@®g|0)=0. If we boost
the vector mesons along the three-axispip=(pg,0,0p3),

2 2
Mu(M)/M3(n) 1. (6b) we can write, in thgz;—oe limit,

n—soo

al, by _ sab
We will see that these constraints are naturally incorporated <0|A“|W )= O F by, (%3
in more general statements of chiral symmetry which will be
derived below. Notice that, If/I\Z,’A(n) is linear inn, Eq. (6b)
implies a “universal” slope parameter.

(0|A2|AP) (0= §2PF \M 5 €'Y = 62F sp,, + O(p3 1), o
9

B. Matching to the OPE (OIVAIV?) = 6" F Mye,) = 8Fyp,+Op: 1), (90
The procedures of expanding in@9 and summing oven  where the superscripts in parentheses label the helicity

in HV,A(QZ) do not commute. This is due to the presence ofwill prove worthwhile to consider matrix elements of the

logarithms which reorder the Q7 expansion. Matching to axial charges as well. The matrix element for a transition

the OPE must be achieved by summing ovend only then from a mesong to a mesona and a pion in the infinite-

expanding in 1D?. However, this noncommutativity is not momentum frame is given by

true of the correlator

MBI )=a(\)+m)=(F) H(Mi=MH ™"

1 o (Ds"
Me(Q%)= 5 MW@~ MTA(Q)] —— 2 <(BlQSlayMs,.,,  (10)
Qc—w>
() where the Kronecker delta ensures helicity conservation and
Qg is a conserved axial charge. We define
1 H 2 _r2
Referencg12] points out that foFy, (n) =Fy 5 the sums oven <7Tb|Qg| S)=—i8,4Gs,/F ., (113

in Eq. (3) are Eulery functions which satisfy(i) and (ii). The

occurrence of gamma functions is reminiscent of hadronic string 5 .
models. (7| QalVe) = —i€ap Gyl F (11b
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<Ab|Q2|Vc> = —i€apGyalF . (119  These sum rules require the assumption that the order param-
eter of chiral symmetry breaking transforms purely(22).
HereS V, andA represent meson states with (J°€) given ~ Those of relevance here are
by 0* (even*), 1* (odd 7), and 1 (odd"™), respec- - oo
f[ively. We suppress the he!iqity Iabel;_ on the states as we are E F\Z,(n)Mf,(n)— 2 Fi(n)MzA(n)=O, (169
interested only in zero-helicity transitions. n=0 n=0
Consider the following matrix elements of the chiral al-

gebra: S GLMMAN - GZ.(mME(n)=0.
(O[Q2, VA =i (0[AS|AT), (128 e i (16b)
(8 AV =ie(OIVEIVY. (125 The st s e e e second specay reton sum ke
(0l[Q3, Vi1l m®) =i 0|A%| ), (129 IV. TROUBLE WITH MASS SPLITTINGS
(779|[Q2,Qg]|7-rd):ieabc<q-re|Tc|7-rd). (120 In this section, we consider how duality and chiral sym-

metry constrain the meson decay constants and masses when
By inserting a complete set of states in the commutators aniyl \Z,VA(n) is a linear function oh. The duality constraint Eq.
using Eq.(9), Eq. (11), and( | Ty|7c) =i €apc, it is easy to  (5) allows the general parametrization
derive a cornucopia of sum rul¢46]. Consider, as an ex- ) 5
ample, Eq.(123; there is a sum rule for each axial-vector Fy(n)=F§+Xxv(n) +xy(n), (1739

state, labeled by’. Using Q2|0)=0 and inserting a com- -
y'. Using Qs0) J F2(n)=F2+Xa(n) + xa(n), (17b)

plete set of states yields
where’yy a(n) and xy A(n) are functions that vanish as

B - by f. o ~al e —oo. We will regulate the sums over states with a cutéff
nZO (O[VIV7im) 85, (Vin| Q5| A% n") on the number of vector and axial-vector mesons. The gen-
. . eral decomposition in Eq17) is such that)_ oy a(n) are
=ie®®%0[A,|A%N"), (13 divergent with no cutoff-independent finite parts, while

) ] Er':‘:OXV,A(n) are convergent. The first spectral-function sum
where the Kronecker delta constrains the sum to spin-1 yyle Eq.(8a) implies that

states. Using Eqg9) and(11), it is easy to derive

Fy=Fa=F, (189
> Fy(MGUa'(n,n")=F,Fa(n"), (14) Xv(n)=xa(n)=x(n), (180
" xv(n) = xa(n)=x(n), (180
where the superscript indicates that the sum is over spin-1 "
tsrtﬁlstepséi;lt':;ears:m rules from E@.2) that are of relevance to nzo ()= Fi 1 (180

2“’: , §: i , while the second spectral-function sum rule Bb) requires
Fy(n)— Fa(n)=FZ, 15
T = 2 FAm=F5 (153 M2 A(N)=M2Z ,+A2n, (193
N 2 2 N

” (MA—MY) ~

> Fy(mGZi(n)=F2, (15b) 2 nx(m)=—"17—| FAN+1)+ 2, %(n)

n=0 - -
- - + n) | —F2—, 19b
> GE.(n)+ 2 Gi.(n)=F2. (150 2o X | =Pz e
n=0 n=0

WhereM\z,vA andA? are free parameters; E@.9b) should be

The first sum rule is the first spectral-function sum rule. Wesatisfied in the limitN—occ. Note that Eqs(18a and (193
now see that, in the largd: limit, this sum rule is true ensure compliance with Eq&a) and (6b), respectively.
independent of the OPE; it is a simple consequence of chiral This parametrization illustrates the difficulty in satisfying
symmetry, which is encoded in the commutators of @g).  the chiral constraints and the duality constraints simulta-
The second and third sum rules constrain the pion vectoneously. There would appear to be no solutipfn) that
form factor andm-# scattering, respectivelyl6]. satisfies Eqs(18) and(19) with My # M, . For instance, by

There are additional sum rules which involve the mesomaive power counting, Eq18d) requires thaty(n) vanish
masses, and which can be derived without the QP&.  faster tham ™ for largen. But, with this asymptotic behav-
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ior, the sum in Eq(19b cannot generate the linear diver- as=ag+as. (23

gence necessary to balance the equation. Therefore, given the

assumption thalg A(n) is linear inn, we find no solution to ~ The parametex, the interceptr,, and the sloper determine

the duality and chiral constraints in the larye-limit with ~ the scattering. Chiral symmetry requires that the amplitude

M, # M 5. However, we stress that we are not able to provéhave an Adler zero at the poist=t=u=0. This determines

that there is no solution; it is conceivable that a solutionco=73. Scattering is then consistent with the low-energy

without degeneracy exists, for instance, witfn) a compli-  theorems of chiral symmetry if one takes\a=F_?. Nor-

cated function oh with alternating sign. malizing the Regge slope to the lightest exchanged state
If the vector and axial-vector mesons are degenerategives (2a)*1=Mi. Using

My=M,=M, and Eq.(19b becomes B

I'(ay+n)

e 2 ImM®(ag,a))=—72, =—————35as—n), (29

S, nx(m=-F2 . (20) iz Ty

i
it is straightforward to extract the generalized couplings and

By naive power counting, Eq$20) and (18d) can be satis- masses as a function af We find

fied simultaneously ify(n) vanishes faster than™2. We

will return to the degenerate case below.

Group theoretically the situation is as follows. As pointed

out above, if the vector and axial-vector mesons are degen-

erate, pair by pair they fill outreducible (1,3)®(3,1) rep-  Where

resentations of the chiral group, which is rather trivial. In the ) L

absence of degeneracy, the vector and axial-vector mesons ~F I'(z+n)

generally fill out infinite-dimensionateducible sums  of Xesv(M=—" T(HT(1+n)(n+1)

(1,3), (3,1), and(2,2) representations. The degenerate case is g 2

certainly puzzling from the point of view of symmetry. Since and

chiral symmetry is spontaneously broken there is no obvious

symmetry to protect the degeneracy between vectors and My =M&n)=M2%(1+2n), n=01,.... (27

axial vectors. One possibility is that there is an enhanced ]

global symmetry in the largdk, limit. It has recently been The sum rule Eq(15¢ is then

conjectured that QCD exhibits an enhanced global symmetry o o »

as the numbeN; of QCD flavors is increased to some criti- 2 2 _ _r2

cal value[17]. This global symmetry leads to degeneracy of ngo GS”(n)JrnZo Gu(n) ngo Xisv(M=F%,(28)

vectors and axial vectors.

2 2 1
Gy, (n)=Gg,(n)= EXst(”)y n=0,1,..., (25

(26)

which is indeed satisfied. The states that participate in the
V. THE LOVELACE-SHAPIRO-VENEZIANO STRING string amplitude are therefore in an infinite-dimensional rep-
MODEL resentation of the chiral group. This representation includes
states of all spins. Notice that the mass sum rule(E@p) is
Ideally, one would like to find a smooth ansatz for trivially satisfied by Eqs(25) and(27), a consequence of the
F\Z,,A(n) that generates both chiral and perturbative physicsfact that the amplitude with=2 in thet channel vanishes,
For vector and axial-vector squared masses linear @amd by construction, in the LSV mod¢lL8,19.
degenerate, this involves finding the functigtn) that sat-
isfies Egs.(18d) and (20). Hadronic string models are an VI. STRINGY IMPLICATIONS FOR DUALITY
interesting place to look for clues. Generally, these models
are interesting for largét, QCD because there are an infinite A. The LSV model
number of mesons exchangé@onsider the following rep- The LSV model is notable in that it satisfies the chiral
resentation of ther-7 scattering amplitude: constraints with an infinite number of mesons and is there-
fore consistent with largét, QCD. Given the symmetric ap-
A(stu)= = 3MP(as,a0) + Pl as, ay) ~ P(ar,ay)l, pearance of the chiral sum rules in E5) one might con-

(21) sider y, sy(n) as an ansatz for duality in EGL7) when the
where vector and axial-vector mesons are degeneratewever,
for n large, y_sv(n)—n~%?2 and therefore the sum in Eq.
'i1-a)l'(1-b) (20) does not converge. There is a further related problem
P(a,b)= TT-a-b) =(1-a-b)B(1-al-b) with this ansatz. The sum overis easy to do in the correla-

(22)  tors of Eq.(3). For largeQ the resulting functions contain
fractional powers of 1p? and therefore do not match to the
and the linear Regge trajectory is

3A generalization of the LSV model to pion scattering on an arbi-
°Reviews of this model are given in Refd8,19. trary hadronic target suggesd®3(n) —M2(n)=(2a) * [20].
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OPE. This is no surprise sincg.sy(n) generates Regge Thereforex(n,Ny ,ao) with Ny>1 serves as an ansatz for

asymptotic behavior inr-7 scattering. duality when the vector and axial-vector mesons are degen-
The chiral sum rule Eq(15b) relatesF(n) to = scat-  erate. In effect, we find

tering and thus links duality and the LSV model. Consider

the ansatz

_ 2
Fu(MGIZ M =xisu(n), n=01,..., (29 2 x(nNy ) =F7, (343

which satisfies Eq(15b). Using the duality matching condi-

tion Eq. (5), this implies[Gf,jrl(n)]z—m‘3 for n large. We 2 nx(n,Ny ,ag)=— agF2, Ny>1 (34b)
can immediately put this to the test in the LSV model; n=0 i
partial-wave projection yields

which is in agreement with Eq$18d and (20) when aq

[GJZl(n)]2=3—i N 1) 74 rae « I'(x+n+1) =M?/A2. With ay= % one finds the spectrum E€7) of the
v T 2 —n T(n+DI'(x) LSV model. This is not really surprising since the sum rules
of Eq. (34) are a statement of chiral symmetry, and the
1 R i in Eq2 fi i hiral i
y 2x—§+n . (30 egge intercept in Eq27) was fixed using chiral symmetry.

. . L. . VII. MODELS OF DUALITY
We have not succeeded in evaluating this integral to a simple

expression. Asymptotically, one fini21] A. A string-inspired model
In this section we build a model of duality that is consis-
[GYH(n)]2——— n~¥Z(logn)~* (31)  tent with chiral symmetry and has no discontinuityninThe
n—o vector and axial-vector mesons are degenerate so it has little
to do with the real world. In our model we choog€n)
symmetry is
B. A generalization of the LSV model M\2/,A(n) =M2+A2n (353

The success of the LSV model in incorporating the chiral

symmetry constraints suggests that it might be profitable to 2,0\ _ 2 2/ 2
search for simple generalizations pfs\/(n) that are consis- Fu(n)=F=+nx(n,Ny , MTAS), (350
tent with duality as well. Consider, for instanf22],

Fa(n)=F2+(7—1)x(n,Ny ,M?/A?), (350

2 I'(Ny+ag)(=1)"
T(ag)'(Ny—MT(1+n)(n+aq)’

X(nvNM vaO)EF

wherey is a free parameter andy,> 1. Inserting this ansatz
into Eqg. (3) and doing the sums overyields

Ny>0. (32
2
For integral values ofNy, x(n,Ny,ag) vanishes forn n (Q2)=—2—F2¢, M?+Q? 29k 1—e
>Ny, while for nonintegral valueg(n,Ny ,ao) is nonva- ViA A2 A? Q? V.A
nishing for alln. Using this function one can define a one- 5 o 5 oo
parameter coupling which interpolates between a finite and F(MZ/A2+NM)F((MZJFQZ)/AZ)} (363
an infinite number of mesors.Note that x(n,3,3) F(MTAST(Ny +(M*+Q%)/A)

=xsv(n). We now have the asymptotic behavior
(Ny+1) I, (02 F2 T(MZ A2+ Ny T (M2+Q?)/A2)
(N + _ F
x(N,Ny ,ag) - n M (33 Lr(Q%) QZ F(MZ/AZ)F(NM+(M2+Q2)/A2)’

where the ellipsis represents a logarithmic divergenge;
“Reference[22] considersFy(n)GJ . (n)=x(n,Ny,1/2) as an =1 andey=(7—1)/7. At large Q? we then have
ansatz for the pion vector form factor. For integer valulg,
counts the number of vector mesons that contribute to the form
factor. Evidently, a fit to data givebl,~1.3, which implies an 5f, for instancex(n)—n~* for n large, its effect on duality is to
infinite number of vector mesons. generate logarithmic corrections to the OPE coefficients.
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2 2F? 2
Iy A(Q ):_Tz‘mgQ tee

29F? 2 M2 2 p2| |
T A7 27 /|Q?

1
Q°
I'(M2/A%4+Ny) A2Nwm

(MZ_AZ)MZ

1
_ 2_ A2
(M 2./\

_ZnEV,AFET
+0(Q 2N=4.Q78),

I'(M2/A%+Ny) AZNwm
F(MZ/AZ) Q2NM+2

+O(Q Nw—4y,

1, r(Q?)=F2

Here we see thall,, must be an integer in order to match to
the OPE. Henc&l, counts the number of vector and axial-
vector mesons that contribute to thg g(Q?) correlator. In

F(MZ/AZ) QZNM+2

(37a

(37b

principle, one would expediy, to be infinite. TakingN,

(arbitrarily) large and matching to the OPE gives

F2=%A2,
<O>Q/,:A2:OZZ77F37_ 12;_2(“/'2— %AZ),
(O)4 A= 15(G G
= 2:‘; (M4—M2A2+%A4),

. 28
(O)°=— 5 mag(@a)®

N¢

1
= (MZ_EAZ)(MZ_AZ)MZ,

3672

_g 44 _
(0)4 0= ma(@a)?

N 1
- _ 36;2(M2_§A2)(M2_A2)M2,

, T(M?/A%+Ny)

2N
TrMEAL MM

(383

(38b

(380

(380

(389

(38f)
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2/A2
o PMPIAZENY)
" T(MPA?)

(389

Since there is no local QCD operator will- 2, we can fixn
using Eq.(38b). For largeNy,, there is no solution with
(gqq)#0. This is not inconsistent with degenerate vector and
axial-vector mesons. While this model is clearly unrealistic,
it provides an existence proof of a smooth chirally invariant
ansatz for duality with an infinite number of mesons.

(O) M P=—2(n-1F

B. A minimal realistic model

One way to satisfy all constraints is to make an artificial
separation between the low-energy physics relevant to chiral
symmetry and the high-energy physics relevant to duality
[23,7]. This requires introducing a discontinuity in. A
simple ansatz23] is

any n:O,
F2 n)= P (39@
v.a(n) [F\Z,,A, h=0.
M2 n=0
p’al’ l
MY a(n) = 39
VAl [M\Z/,AJrA\Z/,A(n—l), n>0. (39

Here we have extracted the lowest-lying vector and axial-
vector mesong anda,, respectively. This is the minimal
nontrivial model consistent with chiral symmetry. The dual-
ity and chiral constraints then imply

N
Fi=Fa=s5z2A% (403
MV:MAEM, (40b)
AV:AAEA, (40C)

where we have matched to the coefficient of the perturbative

logarithm, and
9 F2-F2 =F2, (413

2np2 2 2 _
F2M2—F2 M3 =0. (41b)

Notice that the vector and axial-vector mesons in the infinite
tower are degenerate. With respect to tHegr(Q?) cor-
relator, this simple ansatz has been investigated in many
places[13,24,25. Here o, p, and a;, together with an
isoscalar S fill out a reducible (ten-dimensional
(1,3)@(3,1)@(2,2) representation, while all other vector
and axial-vector mesons are in irreducible3) & (3,1) rep-
resentations. It is interesting that the chiral symmetry con-
straints effectively decouple the hadronic paramekérand

A from low-energy chiral physicSInserting the ansatz Eq.

5The authors of Ref.7] consider an ansatz given by E§9) with
F§1=O, match to the OPE, and experience no such decoupling.
However, they do not impose the sum rules of Bj); according to
Eqgs.(40) and(41), consistency of their ansatz with chiral symmetry
requiresFy=F3%, MZ(n)=M3(n), and M2=0. In this cases and
p are in an irreducible{,3) ®(3,1) representation.
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(39 in Eg. (3), doing the sums oveam, and matching to the the masses and widths of the low-lying excited vectors and
OPE gives axial vectors will be determined in the Hall D program at

Jefferson Laboratory in the near futUr9.
1

(O AZ=0=2F2 ICHVEREIE (423
V.A P 1272 2 ’ VIII. CONCLUSION

Two-point functions of conserved vector and axial-vector
QCD currents offer an interesting system to investigate
guark-hadron duality. In the largé; limit, the duality
matching conditions are tractable and, in contrast with QCD
> ( M4—M2A2+ EA“) (42b) in 1+1 dimensions, there are chiral symmetry constraints,

6 ' which take a particularly simple form. Findingsanoothan-
satz for duality, consistent with all constraints, is equivalent

, 1., to finding the infinite-dimensional matrix that mixes the irre-

M*— EA ducible chiral representations filled out by the vector and
axial-vector mesons. We find no smooth solution consistent

as

N
d=4_ _ 2n 2 c
<O>V,A - 127 <G,U,VG,U,V> - ZFpMp+ 24777

N¢

28
d=6_ NA\2 — 2pnp 4
<O>V - EWOIS(CICD - ZFpMp_ 367T2

X(M2—=A?)M?, (420 with the duality and chiral symmetry constraints when the
vector and axial-vector squared masses are linear amd
Y . - N , 1., nondegenerate. To avoid this degeneracy it would appear
(O)a =§7Tas<QQ> =2F3 Mg, — 3672 M*— 5 necessary to go beyond the Regge-type linear-spacing ansatz

for the squared masses. In the lafgglimit, the basic con-
X(M2—A2)M?2 (420 straints of duality and chiral symmetfgee Eq(6b)] require

vector—axial-vector degeneracy in the meson spectrum at
for the first few Wilson coefficients. One can develop a phe-sufficiently high excitation energyThe characteristic energy
nomenology for the QCD condensates with thig othe)  at which degeneracy should set in is unknown. A simple
simple parametrizations of duality. This is hampered by larggealistic model, which predicts a tower of degenerate vector
uncertainties in the values of the condensates. The relatior@d axial-vector mesons, is roughly consistent with existing
of Eq. (41) can be parametrized by a single mixing angle data. . ) o .
via F,=F,sin¢, F, =F, cot$, andM,=M, cosé. The ~ Although hadronic string models provide important in-
known vector excited states age (1450, p'(1700, and sight into how correlators determined by sums of infinite

o " p B numbers of simple poles can be consistent with chiral sym-
P (.2150 [26]. F|Ft|ng t0 p'(1450, we haYe'V' =1450 Mey. metry, they do not provide an easy analogue that satisfies the
Using Eq.(42) with F., M, andM as input we then find

) pr constraints of duality as well. Fundamentally this is because
A=1189 MeV, which predictdVl ,,=1875 MeV andM,»  string models exhibit Regge asymptotic behavior for four-
=2220 MeV. These values differ from the experimental val-point functions, which is governed by fractional powers of
ues by amounts consistent with(1/N;) corrections. We  the momentum transfer variab®@?, while duality for two-
also predict¢=44.4°, compared to the valug=37.4° re-  point functions involves the OPE, which does not see frac-
sulting from fittingF , directly to p°—e*e™ [26]. One then  tional powers ofQ2 Hadronic string models do suggest
predictsF, =95 MeV andM, =1078 MeV, compared with  simple generalizations that give smooth solutions to the joint
the experimental valuesd=, =122+23 MeV and M, duality and chiral constraints in the degenerate limit. How-
—=1230+40 MeV. The predicted condensates are€Ver, the relation, if any, between these models and large-
as(G,,,G,.,)=0.06 GeV andray(qq)?=1.5x10 3 Ge\’, ~ NcQCD remains unclear.

respectively. These values are somewhat large; recent deter-

minations giveas(G,,G,,,)=0.048+0.03 GeV* [27] and ACKNOWLEDGMENTS

mag(qq)’=(9+2)x 10" GeV° [28]. | thank Martin Savage and Michael Strickland for useful
This model predicts excited axial-vector states withconversations, and Curtis Meyer and Francesco Sannino for

massesM ;- =1450 MeV, M,1»=1875 MeV, andM,;»  valuable correspondence. This work was supported by the

=2220 MeV. The Particle Data Group lists one excited axial-U.S. Department of Energy grant DE-FG03-97ER-41014.
vector statea;(1640) [26]. The splitting between this state

andp’(1450 is consistent with a®(1/N.) correction. It will

be very interesting to have new data on the spectrum of "Reference[30] has come to similar conclusions for not com-
excited vector and axial-vector mesons. It is expected thaletely dissimilar reasons in the excited-baryon sector.
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