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Constraining quark-hadron duality at large Nc
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Quark-meson duality for two-point functions of vector and axial-vector QCD currents is investigated in the
large-Nc approximation. We find that the joint constraints of duality and chiral symmetry suggest degeneracy
of excited vector and axial-vector mesons in the large-Nc limit. We compare model-independent constraints
with expectations based on the Veneziano-Lovelace-Shapiro string model. Several models of duality are con-
structed, and phenomenological implications are discussed.
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I. INTRODUCTION

In the large-Nc limit, QCD correlators of quark bilinears
can be expressed as sums of zero-width meson tree gr
@1#. These sums must be infinite in order to be consist
with perturbative QCD logarithms at large momentum tra
fer. The detailed matching of hadronic and partonic degr
of freedom, known as quark-hadron duality@2–4#, has been
explicitly verified in QCD in 111 dimensions in the large
Nc limit @5#. It has long been thought that the exchange of
infinite number of vector mesons is in some sense dual to
perturbative QCD continuum@6#. Early work uncovered
various intriguing similarities between the simplest mod
of quark-meson duality and hadronic string models. Giv
the widespread belief that large-Nc QCD is in some sense
equivalent to a string theory, these similarities have recei
recent attention@7#. Following Ref. @7#, in this paper we
investigate duality in the large-Nc limit in the simplest corr-
elators that have an operator product expansion~OPE!: i.e.,
two-point functions of vector and axial-vector currents. W
point out that there are nontrivial chiral symmetry constrai
that must be satisfied in addition to those constraints imp
by duality. We discuss the interesting dilemma raised by
multaneous satisfaction of all constraints. These constra
suggest that there is an infinite tower ofdegeneratevector
and axial-vector mesons in the large-Nc limit. The phenom-
enological implications of this conjecture are considered i
simple model. As an example of a system with an infin
spectrum of mesons, we consider how chiral symmetry
satisfied in the Lovelace-Shapiro-Veneziano~LSV! string
model @8,9# and we investigate the implications of th
model for duality.

II. DUALITY CONSTRAINTS

In large-Nc QCD, mesons have the most general quant
numbers of the quark bilinearq̄Gq, whereG is some arbi-
trary spin structure@1#. Hence all mesons have zero or un
isospin and transform as~2,2!, ~3,1!, and /or~1,3! with re-
spect to SU~2!3SU~2! @to be precise, large-Nc QCD has a
U~2!3U~2! chiral symmetry#. We will assume that the orde
parameter of chiral symmetry breaking in QCD with tw
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massless flavors transforms as~2,2!. Assuming confinement
it then follows that chiral symmetry is spontaneously brok
@10#. The conserved vector and axial-vector currentsVm

a and
Am

a form a six-dimensional multiplet; hence they transfor
as (3,1) % (1,3). Consider the time-ordered product of vect
currents

PVV
mn~q!dab52i E d4x eiqx^0uT@Va

m~x!Vb
n~0!#u0&. ~1!

Here PVV transforms as (1,1) % (3,3) %¯ with respect to
SU~2!3SU~2!. Lorentz invariance and current conservati
allow the decomposition

PVV
mn~q!5~qmqn2gmnq2!PV~Q2!, ~2!

where Q252q2. Identical considerations for theAA cor-
relator lead toPA(Q2). One can write a dispersive represe
tation of the functionPV,A(Q2) and saturate it with an infi-
nite number of zero-width meson states. This dispers
relation requires one subtraction; however, we will assu
an unsubtracted dispersion relation and track the diverg
part. We find, in the large-Nc limit,

PV~Q2!52(
n50

` FV
2~n!

Q21MV
2~n!

, ~3a!

PA~Q2!52
Fp

2

Q2 12(
n50

` FA
2~n!

Q21MA
2~n!

, ~3b!

whereFV,A(n) andMV,A(n) are the vector and axial-vecto
decay constants and masses, respectively. Because the
tions PV,A(Q2) transform as~1,1!, they have perturbative
components that are easily computed in QCD perturba
theory. The Euler-Maclaurin summation formula implies t
duality matching condition

2E
0

`

dn
FV,A

2 ~n!

Q21MV,A
2 ~n!

1O~Q22!

——→
Q2→`

2
Nc

12p2 logQ21¯1 (
m51

`
^O&V,A

d52m

Q2m ,

~4!
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where the ellipsis corresponds to the logarithmic diverge
that appears on both sides of the equation and the^O&’s are
Wilson coefficients of mass dimensiond. The coefficient of
the logarithm is computed in perturbative QCD@11,7#. The
duality matching condition implies

FV,A
2 ~n!/MV,A

2 ~n! ——→
n→`

n21. ~5!

In addition to this asymptotic constraint, there are constra
on then dependences of the couplings and masses:~i! the
existence of an OPE implies that the sums overn in Eq. ~3!
must generate functions that, aside from perturbative lo
rithms, are analytic in 1/Q2; ~ii ! the coefficients of the OPE
must have factorial behavior inn;1 ~iii ! chiral symmetry must
be preserved. We will address the issue of chiral symmetr
detail in the next section.

III. CHIRAL CONSTRAINTS

A. Matching to perturbation theory

In theQ2→` limit, duality dictates that the infinite sum
over vector and axial-vector meson states match to a pe
bative expansion inas . This expansion is defined in th
asymptotically free phase where chiral symmetry is unb
ken. Therefore, in the matching region, each vector meso
the infinite sum must be paired with adegenerateaxial-
vector chiral partner; pair by pair they fill outirreducible
(1,3) % (3,1) representations of the chiral group. This lea
to the asymptotic constraints

FV
2~n!/FA

2~n! ——→
n→`

1, ~6a!

MV
2~n!/MA

2~n! ——→
n→`

1. ~6b!

We will see that these constraints are naturally incorpora
in more general statements of chiral symmetry which will
derived below. Notice that, ifMV,A

2 (n) is linear inn, Eq.~6b!
implies a ‘‘universal’’ slope parameter.

B. Matching to the OPE

The procedures of expanding in 1/Q2 and summing overn
in PV,A(Q2) do not commute. This is due to the presence
logarithms which reorder the 1/Q2 expansion. Matching to
the OPE must be achieved by summing overn and only then
expanding in 1/Q2. However, this noncommutativity is no
true of the correlator

PLR~Q2![
1

2
@PV~Q2!2PA~Q2!# ——→

Q2→`

(
m51

` ^Q&~3,3!
d52m

Q2m .

~7!

1Reference@12# points out that forFV,A
2 (n)5FV,A

2 the sums overn
in Eq. ~3! are Eulerc functions which satisfy~i! and ~ii !. The
occurrence of gamma functions is reminiscent of hadronic st
models.
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The subscript labeling the Wilson coefficients indicates t
this correlator transforms as~3,3! and therefore contains n
perturbative logarithm. Hence performing the sum overn
does not rearrange the 1/Q2 expansion, and one can expan
in 1/Q2 before performing the infinite sum overn. We will
see in the next section that this commutativity is protected
chiral symmetry. Since the first two OPE coefficients in E
~7! vanish in QCD in the chiral limit, one reads directly from
Eq. ~3! the spectral-function sum rules in the large-Nc limit
@13,14#:

(
n50

`

FV
2~n!2 (

n50

`

FA
2~n!5Fp

2 , ~8a!

(
n50

`

FV
2~n!MV

2~n!2 (
n50

`

FA
2~n!MA

2~n!50. ~8b!

These sum rules must be satisfied by any model of largeNc
QCD consistent with chiral symmetry. Because of dual
the asymptotic constraints of Eq.~6! are enforced by these
sum rules.

C. Constraints from the chiral algebra

It will prove useful to give a derivation of Eq.~8! that is
independent of the OPE@15,16# as it will allow contact with
hadronic string models. For this purpose, it is convenien
work in the infinite-momentum frame. This is a natur
choice given our interest in large~Euclidean! momenta. Of
course, the results that we derive are true in all frames
useful property of the infinite-momentum frame is that t
axial charges annihilate the vacuum,Q5

au0&50. If we boost
the vector mesons along the three-axis topm5(p0,0,0,p3),
we can write, in thep3→` limit,

^0uAm
a upb&5dabFppm , ~9a!

^0uAm
a uAb&~0!5dabFAMAem

~0!5dabFApm1O~p3
21!,

~9b!

^0uVm
a uVb&~0!5dabFVMVem

~0!5dabFVpm1O~p3
21!, ~9c!

where the superscripts in parentheses label the helicityl. It
will prove worthwhile to consider matrix elements of th
axial charges as well. The matrix element for a transit
from a mesonb to a mesona and a pion in the infinite-
momentum frame is given by

M„b~l8!→a~l!1pa…5~Fp!21~Ma
22Mb

2 !~l8!

3^buQa
5ua&~l!dl8l , ~10!

where the Kronecker delta ensures helicity conservation
Qa

5 is a conserved axial charge. We define

^pbuQa
5uS&52 idabGSp /Fp , ~11a!

^pbuQa
5uVc&52 i eabcGVp /Fp , ~11b!

g

0-2
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CONSTRAINING QUARK-HADRON DUALITY AT LARGE Nc PHYSICAL REVIEW D 64 116010
^AbuQa
5uVc&52 i eabcGVA /Fp . ~11c!

HereS, V, andA represent meson states withI G (JPC) given
by 01 (even11), 11 (odd22), and 12 (odd11), respec-
tively. We suppress the helicity labels on the states as we
interested only in zero-helicity transitions.

Consider the following matrix elements of the chiral a
gebra:

^0u@Q5
a ,Vm

b #uAe&5 i eabc^0uAm
c uAe&, ~12a!

^0u@Q5
a ,Am

b #uVe&5 i eabc^0uVm
c uVe&, ~12b!

^0u@Q5
a ,Vm

b #upe&5 i eabc^0uAm
c upe&, ~12c!

^peu@Qa
5,Qb

5#upd&5 i eabĉ peuTcupd&. ~12d!

By inserting a complete set of states in the commutators
using Eq.~9!, Eq. ~11!, and^pauTbupc&5 i eabc , it is easy to
derive a cornucopia of sum rules@16#. Consider, as an ex
ample, Eq.~12a!; there is a sum rule for each axial-vect
state, labeled byn8. Using Q5

au0&50 and inserting a com
plete set of states yields

2 (
n50

`

^0uVm
b uVf ;n&dJ,1̂ Vf ;nuQ5

auAe;n8&

5 i eabc^0uAm
c uAe;n8&, ~13!

where the Kronecker delta constrains the sum to spin-V
states. Using Eqs.~9! and ~11!, it is easy to derive

(
n50

`

FV~n!GVA
J51~n,n8!5FpFA~n8!, ~14!

where the superscript indicates that the sum is over spin-V
states. The sum rules from Eq.~12! that are of relevance to
this paper are

(
n50

`

FV
2~n!2 (

n50

`

FA
2~n!5Fp

2 , ~15a!

(
n50

`

FV~n!GVp
J51~n!5Fp

2 , ~15b!

(
n50

`

GSp
2 ~n!1 (

n50

`

GVp
2 ~n!5Fp

2 . ~15c!

The first sum rule is the first spectral-function sum rule. W
now see that, in the large-Nc limit, this sum rule is true
independent of the OPE; it is a simple consequence of ch
symmetry, which is encoded in the commutators of Eq.~12!.
The second and third sum rules constrain the pion ve
form factor andp-p scattering, respectively@16#.

There are additional sum rules which involve the mes
masses, and which can be derived without the OPE@16#.
11601
re

d

e

al

or

n

These sum rules require the assumption that the order pa
eter of chiral symmetry breaking transforms purely as~2,2!.
Those of relevance here are

(
n50

`

FV
2~n!MV

2~n!2 (
n50

`

FA
2~n!MA

2~n!50, ~16a!

(
n50

`

GSp
2 ~n!MS

2~n!2 (
n50

`

GVp
2 ~n!MV

2~n!50.

~16b!

The first sum rule is the second spectral-function sum ru
The second sum rule constrainsp - p scattering@16#.

IV. TROUBLE WITH MASS SPLITTINGS

In this section, we consider how duality and chiral sym
metry constrain the meson decay constants and masses
MV,A

2 (n) is a linear function ofn. The duality constraint Eq
~5! allows the general parametrization

FV
2~n!5FV

21x̃V~n!1xV~n!, ~17a!

FA
2~n!5FA

21x̃A~n!1xA~n!, ~17b!

where x̃V,A(n) and xV,A(n) are functions that vanish asn
→`. We will regulate the sums over states with a cutoffN
on the number of vector and axial-vector mesons. The g
eral decomposition in Eq.~17! is such thatSn50

N x̃V,A(n) are
divergent with no cutoff-independent finite parts, whi
Sn50

N xV,A(n) are convergent. The first spectral-function su
rule Eq.~8a! implies that

FV5FA[F, ~18a!

x̃V~n!5x̃A~n![x̃~n!, ~18b!

xV~n!2xA~n![x~n!, ~18c!

(
n50

`

x~n!5Fp
2 , ~18d!

while the second spectral-function sum rule Eq.~8b! requires

MV,A
2 ~n!5MV,A

2 1L2n, ~19a!

(
n50

N

nx~n!5
~MA

22MV
2 !

L2 S F2~N11!1 (
n50

N

x̃~n!

1 (
n50

`

xV~n!D 2Fp
2

MA
2

L2 , ~19b!

whereMV,A
2 andL2 are free parameters; Eq.~19b! should be

satisfied in the limitN→`. Note that Eqs.~18a! and ~19a!
ensure compliance with Eqs.~6a! and ~6b!, respectively.

This parametrization illustrates the difficulty in satisfyin
the chiral constraints and the duality constraints simu
neously. There would appear to be no solutionx(n) that
satisfies Eqs.~18! and ~19! with MVÞMA . For instance, by
naive power counting, Eq.~18d! requires thatx(n) vanish
faster thann21 for largen. But, with this asymptotic behav
0-3
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SILAS R. BEANE PHYSICAL REVIEW D 64 116010
ior, the sum in Eq.~19b! cannot generate the linear dive
gence necessary to balance the equation. Therefore, give
assumption thatMV,A

2 (n) is linear inn, we find no solution to
the duality and chiral constraints in the large-Nc limit with
MVÞMA . However, we stress that we are not able to pro
that there is no solution; it is conceivable that a solut
without degeneracy exists, for instance, withx(n) a compli-
cated function ofn with alternating sign.

If the vector and axial-vector mesons are degener
MV5MA[M , and Eq.~19b! becomes

(
n50

`

nx~n!52Fp
2 M2

L2 . ~20!

By naive power counting, Eqs.~20! and ~18d! can be satis-
fied simultaneously ifx(n) vanishes faster thann22. We
will return to the degenerate case below.

Group theoretically the situation is as follows. As point
out above, if the vector and axial-vector mesons are deg
erate, pair by pair they fill outirreducible (1,3) % (3,1) rep-
resentations of the chiral group, which is rather trivial. In t
absence of degeneracy, the vector and axial-vector me
generally fill out infinite-dimensionalreducible sums of
~1,3!, ~3,1!, and~2,2! representations. The degenerate cas
certainly puzzling from the point of view of symmetry. Sinc
chiral symmetry is spontaneously broken there is no obvi
symmetry to protect the degeneracy between vectors
axial vectors. One possibility is that there is an enhan
global symmetry in the large-Nc limit. It has recently been
conjectured that QCD exhibits an enhanced global symm
as the numberNf of QCD flavors is increased to some crit
cal value@17#. This global symmetry leads to degeneracy
vectors and axial vectors.

V. THE LOVELACE-SHAPIRO-VENEZIANO STRING
MODEL

Ideally, one would like to find a smooth ansatz f
FV,A

2 (n) that generates both chiral and perturbative phys
For vector and axial-vector squared masses linear inn and
degenerate, this involves finding the functionx(n) that sat-
isfies Eqs.~18d! and ~20!. Hadronic string models are a
interesting place to look for clues. Generally, these mod
are interesting for large-Nc QCD because there are an infini
number of mesons exchanged.2 Consider the following rep-
resentation of thep-p scattering amplitude:

A~s,t,u!52 1
2 l$F~as ,a t!1F~as ,au!2F~a t ,au!%,

~21!

where

F~a,b![
G~12a!G~12b!

G~12a2b!
5~12a2b!B~12a,12b!

~22!

and the linear Regge trajectory is

2Reviews of this model are given in Refs.@18,19#.
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The parameterl, the intercepta0 , and the slopea determine
the scattering. Chiral symmetry requires that the amplitu
have an Adler zero at the points5t5u50. This determines
a05 1

2 . Scattering is then consistent with the low-ener
theorems of chiral symmetry if one takespla5Fp

22. Nor-
malizing the Regge slope to the lightest exchanged s
gives (2a)215M r

2. Using

Im F~as ,a t!52p (
n51

`
G~a t1n!

G~n!G~a t!
d~as2n!, ~24!

it is straightforward to extract the generalized couplings a
masses as a function ofn. We find

GVp
2 ~n!5GSp

2 ~n!5
1

2
xLSV~n!, n50,1, . . . , ~25!

where

xLSV~n![
Fp

2

p

G~ 1
2 1n!

G~ 1
2 !G~11n!~n1 1

2 !
~26!

and

MV
2~n!5MS

2~n!5M r
2~112n!, n50,1, . . . . ~27!

The sum rule Eq.~15c! is then

(
n50

`

GSp
2 ~n!1 (

n50

`

GVp
2 ~n!5 (

n50

`

xLSV~n!5Fp
2 , ~28!

which is indeed satisfied. The states that participate in
string amplitude are therefore in an infinite-dimensional re
resentation of the chiral group. This representation inclu
states of all spins. Notice that the mass sum rule Eq.~16b! is
trivially satisfied by Eqs.~25! and~27!, a consequence of th
fact that the amplitude withI 52 in the t channel vanishes
by construction, in the LSV model@18,19#.

VI. STRINGY IMPLICATIONS FOR DUALITY

A. The LSV model

The LSV model is notable in that it satisfies the chir
constraints with an infinite number of mesons and is the
fore consistent with large-Nc QCD. Given the symmetric ap
pearance of the chiral sum rules in Eq.~15! one might con-
siderxLSV(n) as an ansatz for duality in Eq.~17! when the
vector and axial-vector mesons are degenerate.3 However,
for n large, xLSV(n)→n23/2, and therefore the sum in Eq
~20! does not converge. There is a further related probl
with this ansatz. The sum overn is easy to do in the correla
tors of Eq.~3!. For largeQ the resulting functions contain
fractional powers of 1/Q2 and therefore do not match to th

3A generalization of the LSV model to pion scattering on an ar
trary hadronic target suggestsMA

2(n)2MV
2(n)5(2a)21 @20#.
0-4
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OPE. This is no surprise sincexLSV(n) generates Regg
asymptotic behavior inp-p scattering.

The chiral sum rule Eq.~15b! relatesFV(n) to p-p scat-
tering and thus links duality and the LSV model. Consid
the ansatz

FV~n!GVp
J51~n!5xLSV~n!, n50,1, . . . , ~29!

which satisfies Eq.~15b!. Using the duality matching condi
tion Eq. ~5!, this implies@GVp

J51(n)#2→n23 for n large. We
can immediately put this to the test in the LSV mod
partial-wave projection yields

@GVp
J51~n!#25

3Fp
2

p S n1
1

2D 24E
2n

1/2

dx
G~x1n11!

G~n11!G~x!

3S 2x2
1

2
1nD . ~30!

We have not succeeded in evaluating this integral to a sim
expression. Asymptotically, one finds@21#

@GVp
J51~n!#2 ——→

n→`

n25/2~ logn!21 ~31!

which is not~quite! consistent with Eq.~29!.

B. A generalization of the LSV model

The success of the LSV model in incorporating the ch
symmetry constraints suggests that it might be profitable
search for simple generalizations ofxLSV(n) that are consis-
tent with duality as well. Consider, for instance@22#,

x~n,NM ,a0![Fp
2 G~NM1a0!~21!n

G~a0!G~NM2n!G~11n!~n1a0!
,

NM.0. ~32!

For integral values ofNM , x(n,NM ,a0) vanishes forn
.NM , while for nonintegral valuesx(n,NM ,a0) is nonva-
nishing for all n. Using this function one can define a on
parameter coupling which interpolates between a finite

an infinite number of mesons.4 Note that x(n, 1
2 , 1

2 )
5xLSV(n). We now have the asymptotic behavior

x~n,NM ,a0! ——→
n→`

n2~NM11!. ~33!

4Reference@22# considersFV(n)GVp
J51(n)5x(n,NM,1/2) as an

ansatz for the pion vector form factor. For integer values,NM

counts the number of vector mesons that contribute to the f
factor. Evidently, a fit to data givesNM;1.3, which implies an
infinite number of vector mesons.
11601
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Thereforex(n,NM ,a0) with NM.1 serves as an ansatz fo
duality when the vector and axial-vector mesons are deg
erate. In effect, we find

(
n50

`

x~n,NM ,a0!5Fp
2 , ~34a!

(
n50

`

nx~n,NM ,a0!52a0Fp
2 , NM.1, ~34b!

which is in agreement with Eqs.~18d! and ~20! when a0
5M2/L2. With a05 1

2 one finds the spectrum Eq.~27! of the
LSV model. This is not really surprising since the sum ru
of Eq. ~34! are a statement of chiral symmetry, and t
Regge intercept in Eq.~27! was fixed using chiral symmetry

VII. MODELS OF DUALITY

A. A string-inspired model

In this section we build a model of duality that is cons
tent with chiral symmetry and has no discontinuity inn. The
vector and axial-vector mesons are degenerate so it has
to do with the real world. In our model we choosex̃(n)
50 in Eq.~17!.5 An ansatz consistent with duality and chir
symmetry is

MV,A
2 ~n!5M21L2n ~35a!

FV
2~n!5F21hx~n,NM ,M2/L2!, ~35b!

FA
2~n!5F21~h21!x~n,NM ,M2/L2!, ~35c!

whereh is a free parameter andNM.1. Inserting this ansatz
into Eq. ~3! and doing the sums overn yields

PV,A~Q2!52
2F2

L2 cS M21Q2

L2 D1¯1
2hFp

2

Q2 F12eV,A

3
G~M2/L21NM !G„~M21Q2!/L2

…

G~M2/L2!G„NM1~M21Q2!/L2
…

G , ~36a!

PLR~Q2!52
Fp

2

Q2

G~M2/L21NM !G„~M21Q2!/L2
…

G~M2/L2!G„NM1~M21Q2!/L2
…

,

~36b!

where the ellipsis represents a logarithmic divergence;eV
51 andeA5(h21)/h. At largeQ2 we then have

m
5If, for instance,x̃(n)→n21 for n large, its effect on duality is to

generate logarithmic corrections to the OPE coefficients.
0-5
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SILAS R. BEANE PHYSICAL REVIEW D 64 116010
PV,A~Q2!52
2F2

L2 logQ21¯

1F2hFp
2 2

2F2

L2 S M22
1

2
L2D G 1

Q2

1
F2

L2 S M42M2L21
1

6
L4D 1

Q4

2
2F2

3L2 S M22
1

2
L2D ~M22L2!M2

1

Q6

22heV,AFp
2 G~M2/L21NM !

G~M2/L2!

L2NM

Q2NM12

1O~Q22NM24,Q28!, ~37a!

PLR~Q2!5Fp
2 G~M2/L21NM !

G~M2/L2!

L2NM

Q2NM12

1O~Q22NM24!. ~37b!

Here we see thatNM must be an integer in order to match
the OPE. HenceNM counts the number of vector and axia
vector mesons that contribute to thePLR(Q2) correlator. In
principle, one would expectNM to be infinite. TakingNM
~arbitrarily! large and matching to the OPE gives

F25
Nc

24p2 L2, ~38a!

^O&V,A
d525052h Fp

2 2
Nc

12p2 S M22
1

2
L2D , ~38b!
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d545
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12p
^GmnGmn&

5
Nc

24p2 S M42M2L21
1

6
L4D , ~38c!

^O&V
d5652
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9
pas^q̄q&2

52
Nc

36p2 S M22
1

2
L2D ~M22L2!M2, ~38d!

^O&A
d565

44

9
pas^q̄q&2

52
Nc

36p2 S M22
1

2
L2D ~M22L2!M2, ~38e!

]

^O&V
d52NM12

522hFp
2 G~M2/L21NM !

G~M2/L2!
L2NM1¯ , ~38f!
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^O&A
d52NM12

522~h21!Fp
2 G~M2/L21NM !

G~M2/L2!
L2NM1¯ .

~38g!

Since there is no local QCD operator withd52, we can fixh
using Eq. ~38b!. For largeNM , there is no solution with
^q̄q&Þ0. This is not inconsistent with degenerate vector a
axial-vector mesons. While this model is clearly unrealis
it provides an existence proof of a smooth chirally invaria
ansatz for duality with an infinite number of mesons.

B. A minimal realistic model

One way to satisfy all constraints is to make an artific
separation between the low-energy physics relevant to ch
symmetry and the high-energy physics relevant to dua
@23,7#. This requires introducing a discontinuity inn. A
simple ansatz@23# is

FV,A
2 ~n!5H Fr,a1

2 , n50,

FV,A
2 , n.0,

~39a!

MV,A
2 ~n!5H M r,a1

2 , n50,

MV,A
2 1LV,A

2 ~n21!, n.0.
~39b!

Here we have extracted the lowest-lying vector and ax
vector mesonsr and a1 , respectively. This is the minima
nontrivial model consistent with chiral symmetry. The dua
ity and chiral constraints then imply

FV
25FA

25
Nc

24p2 L2. ~40a!

MV5MA[M , ~40b!

LV5LA[L, ~40c!

where we have matched to the coefficient of the perturba
logarithm, and

Fr
22Fa1

2 5Fp
2 , ~41a!

Fr
2M r

22Fa1

2 Ma1

2 50. ~41b!

Notice that the vector and axial-vector mesons in the infin
tower are degenerate. With respect to thePLR(Q2) cor-
relator, this simple ansatz has been investigated in m
places @13,24,25#. Here p, r, and a1 , together with an
isoscalar S, fill out a reducible ~ten-dimensional!
(1,3) % (3,1) % (2,2) representation, while all other vecto
and axial-vector mesons are in irreducible (1,3) % (3,1) rep-
resentations. It is interesting that the chiral symmetry c
straints effectively decouple the hadronic parametersM and
L from low-energy chiral physics.6 Inserting the ansatz Eq

6The authors of Ref.@7# consider an ansatz given by Eq.~39! with
Fa1

2 50, match to the OPE, and experience no such decoupl
However, they do not impose the sum rules of Eq.~8!; according to
Eqs.~40! and~41!, consistency of their ansatz with chiral symmet
requiresFV

25FA
2, MV

2(n)5MA
2(n), and Mr

250. In this case,p and
r are in an irreducible (1,3) % (3,1) representation.
0-6
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~39! in Eq. ~3!, doing the sums overn, and matching to the
OPE gives

^O&V,A
d525052Fr

22
Nc

12p2 S M22
1

2
L2D , ~42a!

^O&V,A
d545

as

12p
^GmnGmn&522Fr

2M r
21

Nc

24p2

3S M42M2L21
1

6
L4D , ~42b!

^O&V
d5652

28

9
pas^q̄q&252Fr

2M r
42

Nc

36p2 S M22
1

2
L2D

3~M22L2!M2, ~42c!

^O&A
d565

44

9
pas^q̄q&252Fa1

2 Ma1

4 2
Nc

36p2 S M22
1

2
L2D

3~M22L2!M2 ~42d!

for the first few Wilson coefficients. One can develop a ph
nomenology for the QCD condensates with this~or other!
simple parametrizations of duality. This is hampered by la
uncertainties in the values of the condensates. The relat
of Eq. ~41! can be parametrized by a single mixing anglef,
via Fp5Fr sinf, Fa1

5Fp cotf, and M r5Ma1
cosf. The

known vector excited states arer8~1450!, r9~1700!, and
r-~2150! @26#. Fitting to r8~1450!, we haveM51450 MeV.
Using Eq.~42! with Fp , M r , andM as input we then find
L51189 MeV, which predictsM r951875 MeV andM r-
52220 MeV. These values differ from the experimental v
ues by amounts consistent withO(1/Nc) corrections. We
also predictf544.4°, compared to the valuef537.4° re-
sulting from fittingFr directly to r0→e1e2 @26#. One then
predictsFa1

595 MeV andMa1
51078 MeV, compared with

the experimental valuesFa1
5122623 MeV and Ma1

51230640 MeV. The predicted condensates a
as^GmnGmn&50.06 GeV4 andpas^q̄q&251.531023 GeV6,
respectively. These values are somewhat large; recent d
minations giveas^GmnGmn&50.04860.03 GeV4 @27# and
pas^q̄q&25(962)31024 GeV6 @28#.

This model predicts excited axial-vector states w
massesMa1851450 MeV, Ma1951875 MeV, andMa1-
52220 MeV. The Particle Data Group lists one excited ax
vector statea18(1640) @26#. The splitting between this stat
andr8~1450! is consistent with anO(1/Nc) correction. It will
be very interesting to have new data on the spectrum
excited vector and axial-vector mesons. It is expected
11601
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the masses and widths of the low-lying excited vectors a
axial vectors will be determined in the Hall D program
Jefferson Laboratory in the near future@29#.

VIII. CONCLUSION

Two-point functions of conserved vector and axial-vec
QCD currents offer an interesting system to investig
quark-hadron duality. In the large-Nc limit, the duality
matching conditions are tractable and, in contrast with Q
in 111 dimensions, there are chiral symmetry constrain
which take a particularly simple form. Finding asmoothan-
satz for duality, consistent with all constraints, is equivale
to finding the infinite-dimensional matrix that mixes the irr
ducible chiral representations filled out by the vector a
axial-vector mesons. We find no smooth solution consist
with the duality and chiral symmetry constraints when t
vector and axial-vector squared masses are linear inn and
nondegenerate. To avoid this degeneracy it would app
necessary to go beyond the Regge-type linear-spacing an
for the squared masses. In the large-Nc limit, the basic con-
straints of duality and chiral symmetry@see Eq.~6b!# require
vector–axial-vector degeneracy in the meson spectrum
sufficiently high excitation energy.7 The characteristic energ
at which degeneracy should set in is unknown. A sim
realistic model, which predicts a tower of degenerate vec
and axial-vector mesons, is roughly consistent with exist
data.

Although hadronic string models provide important i
sight into how correlators determined by sums of infin
numbers of simple poles can be consistent with chiral sy
metry, they do not provide an easy analogue that satisfies
constraints of duality as well. Fundamentally this is beca
string models exhibit Regge asymptotic behavior for fo
point functions, which is governed by fractional powers
the momentum transfer variableQ2, while duality for two-
point functions involves the OPE, which does not see fr
tional powers ofQ2. Hadronic string models do sugge
simple generalizations that give smooth solutions to the jo
duality and chiral constraints in the degenerate limit. Ho
ever, the relation, if any, between these models and la
Nc QCD remains unclear.
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