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S11ÀN„1535… and ÀN„1650… resonances in meson-baryon unitarized coupled channel chiral
perturbation theory

J. Nieves* and E. Ruiz Arriola†

Departamento de Fisica Moderna, Universidad de Granada, E-18071 Granada, Spain
~Received 27 April 2001; published 12 November 2001!

Thes-wave meson-baryon scattering is analyzed for the strangenessS50 sector in a Bethe-Salpeter coupled
channel formalism incorporating chiral symmetry. Four channels have been considered:pN, hN, KL, KS.
The needed two-particle irreducible matrix amplitude is taken from lowest order chiral perturbation theory in
a relativistic formalism and low energy constants are fitted to the elasticpN phase shifts and thep2p→hn
and p2p→K0L cross section data. The position of the complex poles in the second Riemann sheet of the
scattering amplitude determines masses and widths of theS112N(1535) and2N(1650) resonances, in rea-
sonable agreement with experiment. A good overall description of data, frompN threshold up to 2 GeV, is
achieved, keeping in mind that the two-pion production channel has not been included.
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I. INTRODUCTION

The N(1535) andN(1650) resonances appear as o
standing features not only in elasticpN scattering in the
strangeness zeroS11 (L2T,2J) partial wave but also in othe
meson-baryon reactions at intermediate energies. In q
model approaches these excited nucleon resonances
mainly composites of three valence quarks, and their wid
are computed as matrix elements of hadronic transition
erators. However, the description of hadron scattering re
tions becomes cumbersome in this framework, and it
quires quite elaborate techniques as the resonating g
approach, where it becomes extremely difficult to impo
chiral symmetry~CS! @1#.

Renouncing to find out a picture of the hadron as a
lence quark bound state, a different point of view consists
describing scattering reactions taking the hadrons as the
evant degrees of freedom at low energies. Then, resona
manifest themselves as poles of the scattering amplitude
certain Riemann sheet in the complex energy plane. To
form such a program requires implementing unitarity in t
model. A multichannelK-matrix method is used in the wor
of Ref. @2#. Though CS is not incorporated, this phenomen
logical approach is able to reproduce a large amount of d
related to thepN→pN reaction. The three-body final stat
two-pion production channelppN is incorporated through
an effective use of two-body channels with higher meso
and baryonic resonances. In this paper, we will work in t
latter type of approaches, but explicitly imposing CS co
straints as an indirect way of incorporating the bulk of t
underlying quantum chromodynamics~QCD!. Thus, we will
establish a unitarity scheme based on the chiral perturba
theory ~ChPT! amplitudes.

CS provides important constraints to the description
low energy hadronic processes and, in particular, to bary
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meson dynamics. There have been previous studies of
pN2S11 partial wave using a coupled channel formalis
and imposing CS constraints. In Ref.@3# a Schro¨dinger
coupled channel treatment was employed and the additi
inclusion of phenomenological hadronic form factors w
invoked. Within this framework, thep-wave contribution has
also been recently examined@4#. The two pion production
channel is not considered in these works. Perturbative e
mates@5–7# for the reactionpN→ppN indicate that this
three-body channel keeps moderately small not only
threshold but also in a certain region above it. An attemp
include the two-pion production reaction can be found
Ref. @8#, but the treatment of theppN channel is effective
and it is represented by an unphysical two-body chan
which represents all remaining processes.

In Ref. @9# the Bethe-Salpeter equation~BSE! has been
employed in the spirit of an effective field theory~EFT!.
There, theppN channel is not considered either and t
authors require the introduction of less renormalization c
stants than allowed by CS. Despite these restrictions,
model describes not only the elasticpN channel, but also the
two-body inelastic ones in an energy window around
N(1535) resonance. Nevertheless, it fails at threshold@10#.
Given this partial success and the great technical difficul
to solve the BSE incorporating the three-bodyppN channel,
one might wonder what features of the data can be expla
incorporating CS constraints and restoring two-body unit
ity.

In the present work we restrict our study to the nonstran
meson-baryonS11 partial wave and adopt a similar frame
work as in those references, but with some important diff
ences. First, we will implement exact unitarity by solving t
BSE taking the needed input from lowest order relativis
ChPT. A similar program has been successfully underta
both in the pion-pion sector@11# and in thepN2P33 partial
wave @12#. Thus, we avoid the use of phenomenologic
form factors and all required information~low energy con-
stants! can be, in principle, obtained from higher orders
the chiral expansion. Besides, we aim at describing not o
©2001 The American Physical Society08-1
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a narrow energy window, placed at threshold or in the nei
borhood of some resonance, but also a wider energy re
ranging frompN threshold up to almost a center of ma
~c.m.! meson-baryon energy ofAs52 GeV.

As we discussed at length in Ref.@11# the BSE, in the
context of EFT’s, can be solved in two different schemes:
shell and on shell. Here, we use the off-shell scheme bec
of the lack of information on the next-to-leading order in t
chiral expansion. In this scheme, the on-shell scattering
plitude requires some knowledge of the off-shell behavior
the two-particle irreducible amplitude~potential!. After
renormalization of the amplitude this off-shell input leads
a finite number of phenomenological constants which enc
the detailed underlying short-distance dynamics. In pract
these constants can be either fitted to experiment or de
mined by matching the resulting Bethe-Salpeter~BS! ampli-
tude to standard ChPT.1 Obviously, the method of determin
ing the constants by matching to ChPT seems a better
than a direct fit to experimental data.2 For the case of meson
baryon scattering, the only known information coming fro
ChPT involves tree-level amplitudes and free propagat
there is no possibility to compare with ChPT beyond lead
order and thus one is forced to fit the unknown low ene
constants~LEC’s! to data.

As is the case in the purely mesonic sector, the off-sh
scheme generates a rich structure of unknown const
which allow for a good description of the amplitudes. A
though the appearance of more undetermined constants
appear a less predictive approach as, say, putting a c
~one single parameter! in the divergent integrals as is done
Ref. @9#, it reflects the real state of the art of our lack
knowledge on underlying QCD dynamics. The number
adjustable LEC’s should not be smaller than those allow
by symmetry; this is the only way both to falsify all possib
theories embodying the same symmetry principles and
make wider the energy window which is being describ
Limiting such a rich structure allowed by CS results in
poor description of experimental data.

Before going further we would like also to say a word
the opposite situation, i.e., the possibility of having more l
energy parameters than one actually needs. A possible re
dancy of parameters is obviously an undesirable situation
standard ChPT the number of LEC’s is controlled to a
order of the calculation by crossing and unitarity. Moreov
the dependence of the observables on them is strictly lin
so that it becomes possible to detect such a redundant c

1Ideally, these phenomenological parameters should be comp
from first principles, a yet impossible task.

2In addition, if the matching is possible the off-shell scheme
comes unnecessarily complicated, as compared to other met
directly unitarizing the final on-shell amplitude given in terms
the standard low energy constants. For details, on the on-shell
approach or on the inverse amplitude method~IAM ! for meson-
meson scattering see, for instance, the thorough discussion in
second entry of Ref.@11#. For pN elastic scattering, recent IAM
studies have been pursued in Refs.@13# and @14#.
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bination in case it occurs.3 In a unitarized approach, the onl
way to avoid this parameter redundancy is to match the u
tarized amplitude to the standard ChPT amplitude. As
have already said, there is no standard one-loop ChPT ca
lation for theS11 partial wave of the meson-baryon reactio
with open channels to compare with. An indirect way
detect such a parameter redundancy might be through a
experimental data if the errors in some parameters turn ou
be very large.

We have considered four coupled channels:pN, hN,
KL, KS and taken into accountSU(3)-breaking symmetry
effects but neglected the considerably smaller isospin vio
tion ones. We have found that CS allows for a solution of
BSE which is flexible enough to describe the elasticpN
phase shifts, and thep2p→hn andp2p→K0L cross sec-
tion data from threshold to c.m. energies well above
N(1650) resonance. Besides the rest of elastic and inela
two-body reaction channels4 implicit in the adopted formal-
ism come as predictions of the model. The position of
complex poles in the second Riemann sheet of the am
tudes determines masses and widths of theS112N(1535)
and 2N(1650) resonances, which turn out to be in reas
able agreement with experiment. Preliminary results w
presented in@18#.

The paper is organized as follows: In Sec. II we pres
the basic formalism used along the paper. We start with
chiral Lagrangian relevant to our calculation, from which t
lowest order meson-baryon two-particle irreducible mat
amplitude is deduced. After presenting our notations for
coupled channel kinematics we discuss the basic pertin
features of the BSE fors-wave meson-baryon scattering. U
ing the amplitude from lowest order ChPT as the potent
we solve and renormalize the BSE in the spirit of an EFT.
Sec. III we present our numerical results, together with
detailed discussion on the fitting procedure and Monte Ca
propagation of inherited error bars to all possible react
channels. The quantum field theoretical interpretation
resonances as unstable particles requires determining
mass and width as poles in a unphysical Riemann shee
our case there are 16 sheets which we discuss in some d
and we search for the most important pole singularities.
ror estimates are made in terms of the available experime
uncertainties in the phase shifts and amplitudes. Finally
Sec. IV we present some conclusions and outlook for fut
work.

ed

-
ds

E

the

3A good example of this ispp scattering to two loops~@15,16#!

where one gets, besides the four one-loop parametersl̄ 1,2,3,4, six
new parameters but in redundant combinations. Instead, it is

tomary to use the sixb̄1,2,3,4,5,6 independent combinations, whic

depend on the one-loopl̄ ’s and the six new two loop paramete
and contain mixed orders. Such a situation also takes place inpN
scattering in heavy baryon ChPT~HBChPT! at fourth order@17#.

4Each of the entries of the 434 matrix solution of the BSE is the
T-scattering amplitude for a meson-baryon reaction constructed
of the four considered channels:pN→pN, pN→hN, pN
→KL, pN→KS, hN→hN, hN→KL, hN→KS, KL→KL,
KL→KS, KS→KS and the reverse processes.
8-2
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II. THEORETICAL FRAMEWORK

A. Chiral baryon-meson Lagrangian

At lowest order in the chiral expansion the chiral baryo
meson Lagrangian contains kinetic and mass baryon pi
and meson-baryon interaction terms and is given by@19#

L15Tr$B̄~ i ¹” 2MB!B%1 1
2 D Tr$B̄gmg5$um ,B%%

1 1
2 F Tr$B̄gmg5@um ,B#%. ~1!

The meson kinetic and mass pieces and the baryon m
chiral corrections are second order and read

L25
f 2

4
Tr$um

† um1~U†x1x†U !%2b0 Tr~x1!Tr~B̄B!

2b1 Tr~B̄x1B!2b2 Tr~B̄Bx1! ~2!

where ‘‘Tr’’ stands for the trace inSU(3). In addition,

¹mB5]mB1 1
2 @u†]mu1u]mu†,B#,

U5u25ei A2F/ f , um5 iu†]mUu†,

x15u†xu†1ux†u, x52B0M. ~3!

MB is the common mass of the baryon octet, due to spo
neous chiral symmetry breaking for massless quarks.
SU(3) coupling constants which are determined by semil
tonic decays of hyperons areF;0.46, D;0.79 (F1D
5gA51.25). The constantsB0 and f ~pion weak decay con
stant in the chiral limit! are not determined by the symmetr
The current quark mass matrix isM5Diag(mu ,md ,ms).
The parametersb0 , b1, andb2 are coupling constants with
dimension of an inverse mass. The values ofb1 andb2 can
be determined from baryon mass splittings, whereasb0 gives
an overall contribution to the octet baryon massMB . The
SU(3) matrices for the meson and the baryon octet are w
ten in terms of the meson and baryon spinor fields, resp
tively, and are given by5

F5S 1

A2
p01

1

A6
h p1 K1

p2
2

1

A2
p01

1

A6
h K0

K2 K̄0 2
2

A6
h

D ,

~4!

and

5For the purpose of our work we do not consider any mixi
between octet and singletSU(3) representations.
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B5S 1

A2
S01

1

A6
L S1 p

S2
2

1

A2
S01

1

A6
L n

J2 J0
2

2

A6
L

D ,

~5!

respectively. TheMB→MB vertex obtained from the forme
Lagrangian reads6

LMB→MB5
i

4 f 2
Tr$B̄gm@†F,]mF#, B‡%. ~6!

Assuming isospin conservation, the scattering amplitude7 in
the Dirac spinor basis, whose relation to the cross sectio
given in Sec. II B, at lowest order is given by

tP
(1)~k,k8!5

D

f 2 ~k”1k” 8!, ~7!

wherek andk8 are incoming and outgoing meson momen
and D a coupled-channel matrix. For strangenessS50 and
isospinT51/2 the coupled channel matrixD reads8

DS50
T51/25

1

4

pN hN KL KS

S 22 0 23/2 11/2

0 0 13/2 13/2

23/2 13/2 0 0

11/2 13/2 0 22

D pN

hN

KL

KS

. ~8!

While amplitudes follow the chiral symmetry breakin
pattern from the effective Lagrangian to a good approxim
tion, it is well known that physical mass splittings have
important influence when calculating the reaction pha
space. Indeed, the correct location of reaction thresholds
quires taking physical masses for the corresponding reac
channels. We have taken into account this effect in our
merical calculation. Besides, chiral corrections to the am
tudes also incorporate explicit CS breaking effects in ad
tion to those already present in the Lagrangians above
practice, we use different numerical values forf p , f K , and

6We have omitted the pieces proportional to the couplingsD and
F because they do not contribute tos wave. On the other hand, th
Lagrangian below does not lead to a pures-wave contribution and a
further projection will be required.

7We use the convention, in symbolic notation,2 iTMB→MB

51 iLMB→MB .
8There is a mistake in the relative phases of Ref.@3#. We thank A.

Ramos for confirming this point to us. We use the isospin ph
convention of Ref.@20#: negative phases for the isospin stat

2up1&, 2uK̄0&, 2uS1&, 2uJ̄2&, 2uS̄2&, 2un̄&.
8-3
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f h , as it is discussed in Sec. III. This can be easily acco
plished through the prescription

D/ f 2→ f̂ 21D f̂ 21, f̂ [Diag~ f p , f h , f K , f K!. ~9!

For simplicity and a more clear bookkeeping of chiral ord
dependences we will use theD/ f 2 notation throughout the
paper, meaning Eq.~9! in practice.

B. Scattering amplitude and kinematics

The coupled channel scattering amplitude for the bary
meson process in the isospin channel,T5 1

2 ,

B~MA ,P2k,sA!1M ~mA ,k!→B~MB ,P2k8,sB!

1M ~mB ,k8! ~10!

with baryon~meson! massesMA and MB(mA and mB) and
spin indices~helicity, covariant spin, etc. . . . .! sA ,sB , is
given by

TP@B$k8,sB%←A$k,sA%#5ūB~P2k8,sB!tP~k,k8!

3uA~P2k,sA!. ~11!

Here, uA(P2k,sA) and uB(P2k8,sB) are baryon Dirac
spinors9 for the ingoing and outgoing baryons, respective
P is the conserved total four-momentum andtP(k,k8) is a
matrix in the Dirac and coupled channel spaces. On the m
shell and using the equations of motion for the free Di
spinors (P” 2k”2MA)uA(P2k)50 and its transposedūA(P
2k)(P” 2k”2MA)50 the parity and Lorentz invariant ampl
tude tP can be written as

tP~k,k8!uon shell5t1~s,t !P” 1t2~s,t ! ~12!

with s5P25P” 2, t5(k2k8)2, andt1 and t2 matrices in the
coupled channel space. The normalization of the amplit
TP is determined by its relation to the c.m. differential cro
section, and it is given above threshold,s.max$(MA
1mA)2,(MB1mB)2%, by

ds

dV
@B$kB ,sB%←A$kA ,sA%#5

1

64p2s

ukWBu

ukWAu
uTP@B$kB ,sB%

←A$kA ,sA%#u2. ~13!

Rotational, parity, and time-reversal invariances ensure
the on-shell particles

TP@$kB ,sB%←$kA ,sA%#528pAsAukWAu

ukWBu
$A~s,u!dsAsB

1 i B~s,u!~ n̂•sW !sBsA
%. ~14!

A and B are matrices in the coupled channel space,u the
c.m. angle between the initial and final meson thr

9We use the normalizationūu52M .
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momenta andn̂ a unit three-vector orthogonal tokWA andkWB .
Partial waves~matrices in the coupled channel space!, f L

J(s),
are related toA,B by @21#

A~s,u!5(
L

@~L11! f L
L11/2~s!1L f L

L21/2~s!#PL~cosu!,

B~s,u!52(
L

@ f L
L11/2~s!2 f L

L21/2~s!#
dPL~cosu!

du
.

~15!

In terms of the matricest1 and t2 defined in Eq.~12!, the
s-wave coupled-channel matrix,f 0

1/2(s), is given by

@ f 0
1/2~s!#B←A52

1

8pAs
AukWBu

ukWAu
AEB1MBAEA1MA

3F1

2E21

1

d cosu@Ast1~s,t !1t2~s,t !#BAG ,
~16!

where the c.m. three-momentum moduli read

ukW i u5
l1/2~s,Mi ,mi !

2As
, i 5A,B ~17!

with l(x,y,z)5x21y21z222xy22xz22yz and EA,B the
baryon c.m. energies. The phase of the matrixTP is such that
the relation between the diagonal elements (A5B) in the
coupled channel space off 0

1/2(s) and the inelasticities (h)
and phase shifts (d) is the usual one,

@ f 0
1/2~s!#AA5

1

2 iukWAu
@hA~s!e2 i dA(s)21#. ~18!

Hence, the optical theorem reads, fors>(MA1mA)2,

4p

ukWAu
Im@ f 0

1/2~s!#AA5(
B

sB←A54p(
B

u@ f 0
1/2~s!#BAu2

5sAA1
p

ukWAu2
~12hA

2 !, ~19!

where in the right-hand side only open channels contribu

C. Bethe-Salpeter equation

The Bethe-Salpeter equation reads

tP~k,k8!5vP~k,k8!1 i E d4q

~2p!4tP~q,k8!D~q!

3S~P2q!vP~k,q!, ~20!

where tP(k,k8) is the scattering amplitude defined in E
~11!, vP(k,k8) is the two-particle irreducible Green’s func
tion ~or potential!, and S(P2q) and D(q) are the baryon
8-4
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FIG. 1. Diagrams summed by the Beth
Salpeter equation at lowest order. Kinematics d
fined in the main text.
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and meson exact propagators, respectively. The above e
tion turns out to be a matrix one, both in the coupled chan
and Dirac spaces. The resulting scattering amplitu
tP(k,k8) fulfills the coupled channel unitarity condition

tP~k,k8!2 t̄ P~k8,k!52 i~2p!2E d4q

~2p!4
tP~q,k8!

3d1@q22m̂2#~P” 2q”1M̂ !

3d1@~P2q!22M̂2# t̄ P~q,k!

~21!

where t̄ P(k,p)5g0tP
† (k,p)g0 and tP

† (k,p) stands for the to-
tal adjoint in the Dirac and coupled channel spaces~includ-
ing also the changes1 i e→s2 i e) andm̂ andM̂ the meson
and baryon~diagonal! mass matrices, respectively. Finall
d1(p22m2)5Q(p0)d(p22m2), Q being the Heaviside
step function.

If the on-shell amplitude depends only on the to
momentum10 P, tP(k,k8)uon shell5t(P” ), as will be the case
below, the unitarity condition can be rewritten in a mu
simpler and useful form as a discontinuity equation abo
the corresponding physical thresholds

Disc@ t~P” !21#52Disc@J~P” !# with

Disc@A~s!#[A~s1 i e!2A~s2 i e! ~22!

where the quadratic and logarithmically divergent integra

J~P” !5 iE d4q

~2p!4

1

q22m̂2

1

P” 2q”2M̂
~23!

has been introduced and Cutkosky’s rules used to evalua
discontinuity. This integral is treated in detail in Appendix
As usual, we take the ie prescriptionm̂2→m̂22 i e and M̂

→M̂2 i e which we implicitly assume in the sequel.

D. Solution of the BSE equation at lowest order

The BSE requires some input potential and baryon
meson propagators to be solved. We proceed here along
lines proposed in previous work@11# and use a chiral expan
sion to determine both the potential and propagator. From
chiral Lagrangian one gets at lowest order@Eq. ~7!#

10That is to say, the functionst1 andt2 in Eq. ~12! do not depend
on the Mandelstam variablet.
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vP~k,k8!5tP
(1)~k,k8!5

D

f 2 ~k”1k” 8! ~24!

with D the coupled-channel matrix, which was given in E
~8!. The propagators at lowest order are simply the free on

D~q!5
1

q22m̂2
, S~P2q!5

1

P” 2q”2M̂
~25!

which are diagonal in the coupled channel space. Once
have approximate expressions for both thepotentialand the
meson and baryon propagators, we proceed to exactly s
the BSE. The second order Born approximation to the so
tion of the BSE@i.e., approximatingtP(q,k8) in the kernel of
the equation byvP(q,k8)# suggests the following form for
the exact solution:

tP~k,k8!5a~P” !1k” 8bR~P” !1bL~P” !k”1k” 8c~P” !k” , ~26!

wherea, bR , bL , and c are Lorentz scalar matrices in th
Dirac and the coupled channel spaces. At this lowest orde
the BSE approach, these matrices only depend onP” , thus
they turn out to be independent of the Mandelstam variabt.

Such an amplitude contains an infinite sum of diagram
as shown in Fig. 1, but does not containall possible one-loop
dependences, for instance those coming from vertex re
malization. On the mass shell we may setk”→P” 2M̂ and
k” 8→P” 2M̂ . Hence, thanks to the equations of motion t
on-shell amplitude becomes a function of the total mom
tum P” and reads

t~P” !5a1~P” 2M̂ !bR1bL~P” 2M̂ !1~P” 2M̂ !c~P” 2M̂ !,
~27!

where the explicit dependence onP” of thea,bR ,bL ,c matrix
functions has been suppressed for simplicity.

Plugging the ansatz for the off-shell amplitude,tP(k,k8),
as given in Eq.~26! into the BSE equation and after som
algebraic manipulations described in detail in Appendix
we get for the inverse on-shell amplitude

t~P” !2152J~P” !1
Dm̂

P” 2M̂
1A21,

A5
1

f 2
$P” 2M̂ ,D%11

1

f 4 ~P” 2M̂ !D
Dm̂

P” 2M̂
D ~P” 2M̂ !

5m~s!1n~s!P” ,
8-5
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m~s!5
1

f 4 H 2@D,M̂ #
M̂Dm̂

s2M̂2
@D,M̂ #2 f 2$M̂ ,D%1

2DDm̂DM̂1@D,M̂ #Dm̂DJ ,

n~s!5
1

f 4 H 2@M̂ ,D#
Dm̂

s2M̂2
@M̂ ,D#1DDm̂D12 f 2DJ .

~28!

As we can see, the on-shell unitarity condition expresse
Eq. ~22! is manifestly fulfilled. To proceed further we ca
decompose the inverse on-shell amplitude in the form

t~P” !215K1~s!P” 1K2~s!, ~29!

whereK1(s) andK2(s) are matrices in the coupled chann
space. Straightforward calculation yields

K1~s!52
s2m̂21M̂2

2s
J0~s!1

Dm̂

s2M̂2
2

Dm̂M̂

2s

1~ns2mn21m!21,
~30!

K2~s!52M̂J0~s!1
M̂Dm̂

s2M̂2
2~nsm21n2m!21.

Thus, the amplitude can be written in the form of Eq.~12!:

t~P” !5t1~s!P” 1t2~s! ~31!

with

t15~K1s2K2K1
21K2!21,

t25~K22K1K2
21K1s!21. ~32!

As we already said, when the two-particle irreducible amp
tude vP and the meson and baryon propagators enterin
the BSE, the lowest ChPT order ones are taken, the mat
~in the coupled channel spaces! t1 and t2 turn out to be
independent of thet-Mandelstam variable.11 Hence the angle
integral in Eq.~16! becomes trivial and apart from kinemat
cal factors, the relevant combination entering in thes-wave
scattering amplitude is

t~s!5t1~s!As1t2~s!5@K1~s!As1K2~s!#21. ~33!

After some algebraic reshuffling the expression for the
verse coupled channel matrix amplitude can conveniently
written as

11Despite that and because of the Dirac structureP” , the amplitude
of Eq. ~31! not only containss-wave, but also a smallp-wave.
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t~s!2152
~As1M̂ !22m̂2

2As
Ĵ0~s!1

Dm̂

As2M̂
2

Dm̂M̂

2As

1F 1

f 2
$As2M̂ ,D%11

1

f 4
~As2M̂ !D

Dm̂

As2M̂

3D~As2M̂ !G21

. ~34!

Finally, thes-wave coupled-channel matrix amplitudef 0
1/2(s)

reads

@ f 0
1/2~s!#BA52

1

8pAs
AukWBu

ukWAu
AEB1MBAEA1MA@ t~s!#BA .

~35!

At this point we have to renormalize the divergent integr
appearing in the solution of the BSE. This issue has b
carefully discussed in the context of meson-meson scatte
~see Sec. 3.4 of Ref.@11#! and applies equally well in the
present context. In summary, the result of that discuss
amounts to write the renormalized amplitudes~finite! in the
same way as the divergent amplitudes but with the pre
ously divergent integrals taken as finite renormalized c
stants. Ideally one would like to derive them from the und
lying QCD dynamics, but in practice it proves easier to
them to experiment. This amounts to consider, besides
physical masses and weak meson decay constants, 12 fi
parameters that define three diagonal matrices in the cou
channel space which appeared already in the solution of
BSE given, e.g., in Eq.~29!. These matrices are

J0@s5~m̂1M̂ !2#5S JpN 0 0 0

0 JhN 0 0

0 0 JKL 0

0 0 0 JKS

D ,

D M̂5S DN,1 0 0 0

0 DN,2 0 0

0 0 DL 0

0 0 0 DS

D ,

Dm̂5S Dp 0 0 0

0 Dh 0 0

0 0 DK,1 0

0 0 0 DK,2

D , ~36!

where we have denoted the meson-baryon low energy c
stantsJ0@s5(mi1M j )

2#, i 5p,h,K,K, and j 5N,N,L,S of
Eq. ~A8! asJi j . The matrixDm̂,M̂ which appears in Eq.~29!
is determined by the matricesDm̂ and D M̂ above, as it is
defined in Eq.~A7!. On the other hand, theDK,1 and theDK,2
matrix elements of the matrixDm̂ and theDN,1 and theDN,2
matrix elements of the matrixD M̂ have been taken in genera
8-6
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to be different. This is because, though their formal expr
sion as divergent integrals in Eqs.~A5! and ~A7! are the
same, after doing the needed renormalization there is no
son why the finite parts in these two channels sho
coincide.12

III. NUMERICAL RESULTS

Throughout the paper we will use the following numeric
values for masses and weak decay constants of pseudoe
mesons~all in MeV!,

mp5139.57 mh5547.45 mK5497.67

MN5H M p5938.27

ML51115.68 MS51192.55

Mn5939.57

f p593.2 f h5 f K51.3f p ~37!

where for channel 11 the proton mass is used because
data have been obtained from thep2p scattering, and for
channel 22 we take the neutron mass because the ava
data come fromp2p→hn. In this way we ensure the exac
and physical position of the thresholds. This proves imp
tant due to the proximity of theN(1535) to thehn threshold.

A. Fitting procedure

We perform ax2 fit with 12 free parameters considerin
the following experimental data and conditions.

S11pN elastic phase shifts and inelasticities@22#,
1077.84 MeV<As<1946.52 MeV. In this c.m. energy re
gion, there are a total number of 281 phase shifts and ine
ticity data points. Though we have considered four coup
channels, the three-bodyppN channel is not explicitly con-
sidered. This omission influences both the phase shifts
the inelasticities and we will assume here that the effec
much more important for the inelasticities than for the ph
shifts. Thus, we have fitted the phase shifts while inelast
ties have been considered only to impose some constr
on the fit. Whileh.0.99, we have considered that theppN
channel is essentially closed. In the data, this is the case
c.m. energies belowAs51406.4 MeV. In this energy region
we have assigned to the phase shifts a 3% relative e
added in quadrature with a systematic 1° absolute erro
the spirit of Ref.@5#. In this way, we are assuming that an
ppN subthreshold effects are effectively incorporated in
systematic error mentioned above. At higher energies, ine
ticities are smaller than 0.99 and we provide the phase s
with a systematic 15 ° absolute error added in quadra
with a 3% relative error. The reason for this big systema
error is to account for the explicit omission of the, now op

12This point is clearly exemplified in thepp BSE treatment, see
Eq. ~A15! in Ref. @11#, where constants which stem from the sam
divergent integrals, after renormalization, become in fact differ

functions of theSU(2) low energy constantsl̄ ’s.
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and likely important, three-body channel.
Despite being able to account for a part of the inelast

ties (hN, KL, andKS channels! and because of the explic
omission of theppN channel, inelasticities have not bee
fitted. Nevertheless, some constraints are imposed in ord
prevent the occurrence of smaller inelasticities than the
perimental ones. On a quantitative level this means the
lowing. Firstly, we provide the inelasticities with a 3% rel
tive error added in quadrature with 0.01 absolute error. In
second step within thex2 fit procedure and given a set o
parameters, we compute the theoretical inelasticity for e
As. If it turns out that for one c.m. energy the inelasticity
smaller than the experimental value, taking into account
provided errors, we strongly disfavor this set of paramet
by decreasing the total error on the inelasticity for this c.
energy by an order of magnitude when calculating its con
bution to the totalx2. Besides, those energies for which th
theoretical inelasticities fall above the experimental ones
set to contribute zero to the totalx2. In this way, we do not
force the fit to pass through the experimental inelasticities
all, but we avoid the unphysical scenario whe
( i 5hN,KL,KSs i

theoretical.s inel
experimental.

Total p2p→hn cross section@23#, 1488.4 MeV<As
<1563.8 MeV. We fit the region close to thehn threshold
and in terms of the commonly usedqLAB @incoming pion
momentum in the laboratory~LAB ! system#, the above range
corresponds to 687 MeV&qLAB&812 MeV. There is a total
number of 11 data points. The experimental uncertainties
provided in Ref.@23#. In addition, the experimental cros
section has the contribution not only of thes wave, the object
of this work, but also of the rest of the higher partial wave
Next to threshold thes wave is the dominant contribution
and the higher energy cut~1563.8 MeV! determines the re-
gion up to where it is still a good approximation to the to
cross section. For higher energies thep wave does play an
important role and cannot be neglected, Ref.@4#.

We have neglected any possible effect stemming from
ppN intermediate state in this inelastic channel, as it h
been also assumed previously in Refs.@3# and @9#.

Total p2p→K0L cross section@23#, 1617.5 MeV<As
<1724.8 MeV. We fit the region close to theK0L threshold,
904 MeV&qLAB&1097 MeV with the experimental erro
bars provided in Ref.@23#. There is a total number of 45 dat
points and the remarks concerning both the contribution
the ppN channel andp wave effects of the previous item
apply also here.

Note that we have not fitted thep2p→K0S0 total cross
section because of the likely sizable isospin 3/2 contributi

B. Results of the bestx2 fit

The best fit parameters are compiled in Appendix C. T
errors on the parameters turn out to be fairly small. They
purely statistical and have been obtained from the 68% c
fidence level on the best-fit parameter 12-dimensional dis
butions. We generate these parameter distributions out oN
5104 samples. Each of the samples is obtained from ax2 fit
t

8-7
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FIG. 2. S11-elastic pN phase
shifts and inelasticities as a func
tion of c.m. energyAs. Data are
from Ref. @22#. Solid lines stand
for the lowest-order BSE result
with parameters given in Appen
dix C. Dotted-dashed vertica
lines in the bottom plot indicate
the energies for which new chan
nels are opened.
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to a synthetic set of data points which are obtained from
original one by a Gaussian sampling procedure, i.e., the t
number of fits isN5104. We use the so obtained distribu
tions to evaluate the correlation matrix between the par
eters. The correlation matrix is also given in Appendix C.
addition, quantities coming from ax2 fit are Gauss distrib-
uted in the limit of small errors, as seems to be the case h
therefore the correlation matrix determines the param
distributions.

Systematic errors on the parameters are not included
they are difficult to estimate. We cannot completely disc
that they might be sizable. This situation reflects the pres
status of the art in unitarized calculations.

In Figs. 2 and 3 we show the results of our approach, w
parameters given in Appendix C, for those quantities wh
have been fitted to. In Fig. 3 only the data for energies be
the vertical dotted-dashed lines have been included in the
The overall description is remarkably good and that gives
some confidence on the used nonperturbative resumma
procedure based on the BSE. For the elasticpN→pN scat-
tering length we get
11600
e
al

-

re,
er

nd
d
nt

h
h
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s
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a0
1/2[@ f 0

1/2@s5~mp1MN!2##pN←pN50.17960.004 fm,
~38!

where the error is statistical and it has been obtained fr
those in the best fit parameters@Eq. ~C1!#, taking into ac-
count the existing statistical correlations, through a Mo
Carlo simulation. This value should be compared both to
recent experimental one 0.25260.006 fm of Ref.@24# and to
the HBChPT result to third order of Ref.@14# 0.1960.05 fm.
The agreement between our coupled channel unitarized s
tering length with that from NNLO-HBChPT is satisfactor
from a theoretical viewpoint since in both cases the same
of low energy data@22# have been used. The discrepancy
our number with the experimental one of Ref.@24# possibly
points toward a too conservative error assignment of the
energy phase-shifts in Ref.@22#.

In principle, the LEC’s of Eq.~C1! determine, or vice
versa they can be determined from, the next-to-leading o
results of ChPT, as is explicitly shown in Ref.@11#, for the
case of elasticpp scattering. However, the perturbative ca
culation is not available and it only exists next-to-leadi
8-8
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FIG. 3. Totalp2p→hn andp2p→K0L cross sections as a function of the c.m. energy. Data are from Ref.@23#. Solid lines stand for
the lowest-order BSES11 results with parameters given in Appendix C. Data for energies above the vertical dotted-dashed lines h
been included in the fit.
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results forpN, with no coupled channels@5,17,25,26#, in the
framework of heavy baryon chiral perturbation theo
~HBChPT!. In Appendix D we discuss this point in mor
detail.

C. Predictions for other processes

In Fig. 4 we show some of our predictions for pha
shifts, inelasticities ands-waveT51/2 partial cross section
for some other channels. For most of them there are no d
The hN→hN elastic phase shifts~top left panel! present a
steep raise close to the threshold going up to 70 °, wh
corresponds to a typical low energy resonance behavior
gered by theN(1535) resonance~see the next section!. Ac-
cordingly, the corresponding partial cross section~bottom
11600
ta.

h
g-

panel! takes an unnaturally large value as compared to o
elastic and transition cross sections. This is in contrast to
expectation based in the Born approximation, since the
responding potential in this channel vanishes@see Eq.~8!#.

The effect of theN(1535) can also be seen at the figu
~bottom panel! by the maximum inpN→hN cross section
and the cusp effect in thepN→pN partial cross section. On
the other hand,KL→KL phase shifts~top right panel! turn
out to be extremely small. The effect of theN(1650) can also
be seen at the cross sections, particularly in thepN→pN
partial cross section, though the effect is less pronoun
than in theN(1535) case. We have not plotted the elas
KS→KS cross section since the physical process invol
also the isospinT53/2 channel, not considered in this wor
8-9
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FIG. 4. Top panel:s-waveT51/2 phase shifts~in degrees! for elastichN→hN ~left panel! andKL→KL ~right panel! processes as
functions of the c.m. energy. Middle panel: same as before but for inelasticities. Vertical lines indicate the opening of reaction th
Bottom panel:s-wave T51/2 meson-baryon cross sections (pN→pN,hN,KL,KS; hN→hN,KL,KS; KL→KL,KS) in mbarns as
functions of the c.m. energy. Dashed lines indicate thepN initial state. Solid lines indicate thehN initial state. Crosses indicate theKL
initial state. All the lines start at the relevant final state threshold~with the exception of the elasticpN→pN reaction!.
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Our estimates forhN andKL scattering lengths~defined
for the elastic channels! similarly as in Eq.~38! are

ahN50.772~5!1 i 0.217~3! fm,

aKL50.0547~5!1 i 0.032~4! fm, ~39!

respectively. The scattering lengthahN compares reasonabl
well with the one obtained in Ref.@3#, ahN50.68
1 i 0.24 fm.

D. Second Riemann sheet: Poles and resonances

In this section we are interested in describing masses
widths of theS11 resonances. An illustrative picture of th
11600
nd

complex c.m. energy plane with the singularities from t
Particle Data Book@27# is presented in Fig. 5. For a mor
distinctive characterization of the resonances one has to
for poles in the complexs plane.

Since causality imposes the absence of poles in the ph
cal sheet@28#, one should search for complex poles in u
physical ones. Among all of them, thoseclosestto the physi-
cal sheet are the most relevant ones. For the sake of cla
we will devote some space here to explain, in a quantita
manner, the meaning of ‘‘close’’ in this context. We look fo
poles in the coupled channel matrix amplitudet(s) defined
in Eq. ~33!. We have only examined the entry 11,pN
→pN, of that matrix. The position of the complex poles,
long as they are produced for physical resonances, shoul
8-10
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FIG. 5. Location of reaction
thresholds and resonances in th
complex c.m. energy plane. Th
corresponding unitarity cuts hav
increasing thickness for increasin
energy.
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independent of the particular channel. However, residue
the pole do depend on the examined channel because
determine the coupling of each of the channels to the re
nances. This interesting point will be discussed elsewh
@29#.

To begin with, let us assume a situation where the coup
channel formalism is not needed, i.e., an artificial situat
where only the 11 element of the first column and row of
D matrix in Eq. ~8! is nonvanishing. In such a case, elas
unitarity requires only a unique finite branch point ats5s1

5(MN1mp)2 and a cut along the line@s1 ,1`@ . The scat-
tering amplitude in the unphysical second Riemann sh
@ t II (s)# is simply obtained by analytical continuation of th
amplitude in the physical first Riemann sheet@ t(s)[t I(s)#
across the unitarity cut, and therefore the following relat
for inverse amplitudes should hold (s real and aboves1):

t II
21~s1 i e!5t I

21~s2 i e!. ~40!

The unitarity condition for the inverse amplitude, deduc
from Eqs.~33!, ~30!, and~A12! reads

Disc@ t21~s!#[t I
21~s1 i e!2t I

21~s2 i e!52 i r~s!, s.s1

~41!

with sPR, where the phase-space function
11600
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r~s!5
l1/2~s,mp ,MN!

16ps
3

~As1MN!22mp
2

2As
~42!

has been introduced, understanding thatr(s) is a function of
the real variables. Then, analytically continuing the phase
space function to all complex planes, the unitarity conditi
reads

t I
21~s1 i e!2t I

21~s2 i e!52 i r~s1 i e!, s1,sPR
~43!

where the cuts forl1/2(z,mp
2 ,MN

2 ) go along the real axis for
2`,s,s2 and s1,s,`. The function is chosen to be
real and positive on the upper lip of the second cut,s1,s
,` and hence it satisfies:

l1/2~s1 i e,mp
2 ,MN

2 !52l1/2~s2 i e,mp
2 ,MN

2 !

5ul1/2~s,mp
2 ,MN

2 !u, s1,sPR.

~44!

Besides, the cut for theAz function, also appearing inr(z),
is taken along the line ]2`,0] and the multivalued function
e-

ts.
e.

is
of
a-
FIG. 6. Different paths in thes complex plane
showing how to reach the pointS located in the
physical scattering region in the interval@(mp

1MN)2,(mh1MN)2# from pointsP ~eventually
poles! located in different Riemann sheets, d
noted by the vectorn as introduced in Eq.~48!,
and placed both in the first and fourth quadran
The unitarity cuts are also depicted in the figur
The ‘‘distance’’ betweenS and P is obtained by
the length of the shortest path joining them. Th
can be achieved after continuous deformation
the paths depicted in the figure, i.e., any deform
tions without intersecting the branch points.
8-11
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is taken to be positive for real and positive values ofz. Now
using Eqs.~40! and ~43! one finds the amplitude in the se
ond Riemann sheet,

t II
21~z!5t I

21~z!22 i r~z!, zPC. ~45!

On the other hand,

t II
21~s2 i e!5t I

21~s2 i e!22 i r~s2 i e!5t I
21~s1 i e!

22 i r~s1 i e!22 i r~s2 i e!

5t I
21~s1 i e!, s1,sPR ~46!

which means that there are only two Riemann sheets lin
to the unitarity cut. The analytical structure, concerning
n

i
p

t-
o
ri
n
n
-

11600
d
e

unitarity cut, of the inverse amplitude is determined by t
function

2 J̄0~s!3S s2mp
2 1MN

2

2As
1MND ~47!

as it is deduced from Eqs.~33!, ~30!, and ~A8!. Because of
the choice of cuts for the multivalued functionAz above, the
functionL(s) introduced in Eq.~A9! determines the analyti
cal structure oft(s). Thus, the two Riemann sheets oft(s)
related to the unitarity cut are obtained from the valuesn
50 and 1 in Eq.~A13! for L(z,n).

In the general case of multiple thresholds, as is the cas
this work, the above conclusions hold for any of the fin
branch points, located at the physical thresholds, and un
ity related cuts going along the lines@branch point,̀ @.

For four channels there are a total number of 24516 Rie-
mann sheets related to unitarity. Now,J̄0(s) and henceL(s)
become diagonal matrices in the coupled channel sp
namely,
L ~z,n!5S LmpMN
~z,npN! 0 0 0

0 LmhMN
~z,nhN! 0 0

0 0 LmKML
~z,nKL! 0

0 0 0 LmKMS
~z,nKS!

D ~48!
s of
the
ted

in

on

el-

ed
with zPC, n5(npN ,nhN ,nKL ,nKS) and the dependence i
the masses of the functionL is explicitly given. The first
Riemann sheet@ t I(s)# corresponds to the choicen
5(0,0,0,0). As mentioned above, poles can only occur
any of the remaining 15 Riemann sheets. The closer the
sition of the pole to the scattering region~the upper lip of the
first Riemann sheet! the bigger is the influence on the sca
tering amplitude. All Riemann sheets can be reached c
tinuously from the first one by looping around the approp
ate branch points. From this point of view, close mea
proximity following a continuous path. Thus, for the regio
(mp1MN)2,s,(mh1MN)2 the poles of the (1,0,0,0) Rie
n
o-

n-
-
s

mann sheet, located in the fourth quadrant and with value
Rez belonging to the above interval, are expected to have
biggest influence on the scattering amplitude, as is illustra
in Fig. 6. Similarly, for the region (mh1MN)2,s,(mK
1ML)2 the poles of the (1,1,0,0) Riemann sheet, located
the fourth quadrant and with values of Rez belonging to the
above interval, are expected to play a crucial role, and so
. . . .

Thus, we define the ‘‘second Riemann sheet’’ in the r
evant fourth quadrant@ t II (s)# as that which is obtained by
continuity across each of the four unitarity cuts. It is obtain
using for the diagonal matrixJ̄0(s) the following function:13
LII ~z!55
L ~z;1,0,0,0! if ~mp1MN!2,Re~z!,~mh1MN!2

L ~z;1,1,0,0! if ~mh1MN!2,Re~z!,~mK1ML!2

L ~z;1,1,1,0! if ~mK1ML!2,Re~z!,~mK1MS!2

L ~z;1,1,1,1! if ~mK1MS!2,Re~z!.

~49!

13Though each of the functionsL (z;n) are analytical in the complex plane, except for the pertinent unitarity cuts, note thatLII so defined
is continuous for real values ofs, but presents additional discontinuities out of the real axis.
8-12



,

the
s
heet out of

S112N(1535) AND 2N(1650) RESONANCES IN . . . PHYSICAL REVIEW D 64 116008
FIG. 7. Modulus of thepN→pN element of the scattering amplitudet(s), defined in Eq.~33!, in the s-complex plane. In both plots
vertical lines indicate the position of the poles. Top panel: Fourth quadrant of the ‘‘second Riemann sheet,’’ as defined in Eq.~49!, and the
physical scattering line. The two observed poles are identified to be theS112N(1535) and2N(1650) resonances as it is discussed in
main text. Bottom panel: Fourth quadrant of the ‘‘second Riemann sheet’’ and the first quadrant of the first~physical! Riemann sheet. Beside
the two poles already appearing in the top panel, there is a third one. Though it is unphysical because it appears in the physical s
the real axis, it does not influence the scattering line as the plot clearly shows.
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In Fig. 7 we show the absolute value of thet11(s) element
of the scattering amplitude both for the fourth quadrant
the ‘‘second Riemann sheet’’ and the first quadrant of
first ~physical! Riemann sheet. The physical scattering tak
place in the scattering line in the plots~upper lip of unitarity
cut of the first Riemann sheet!. The positions of the two
poles in the ‘‘second Riemann sheet’’ are (s5MR

2

2 i MRGR):

first pole: MR51496.560.4, GR583.360.7, ~50!

second pole:MR51684.360.7, GR5194.360.8,
~51!
11600
f
e
s

where all units are given in MeV and errors have been tra
ported from those in the best fit parameters@Eq. ~C1!#, taking
into account the existing statistical correlations, through
Monte Carlo simulation. These poles are resonances and
be identified to be theS112N(1535) and2N(1650) ones
which, according to Ref.@27# @Particle Data Group~PDG!#,
are located at

N~1535!: MR51505610, GR5170680, ~52!

N~1650!: MR51660620, GR5160610, ~53!

where again units are in MeV and we quote data from
position of the poles which are slightly different to tho
8-13
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deduced from a Breit-Wigner fit. The agreement of our p
dictions and the PDG ones is satisfactory. Our calcula
width for the N(1535)/N(1650) turns out to be smaller
larger than the experimental one, in great part because
mass is slightly smaller/larger than the data and hence
available phase space for the decay decreases/increase
sides, the inclusion of the three-body channel (ppN) would
influence both the widths and the masses of the resonan

Residues at the poles depend on the examined cha
because they determine the coupling of each of the chan
to the resonances. Thus, from the results shown in Fig. 7
could predict the coupling of theN(1535) andN(1650)
resonances topN. A detailed study of the couplings of thes
resonances to all channels, not onlypN, is presently under
way.

On the other hand, there is a unphysical pole in the ph
cal ~first! Riemann sheet. It is located at (s5M21 i MG)M
'1582 MeV andG'166 MeV and it violates the Mandel
stam’s hypothesis of maximal analyticity@28#. This unphysi-
cal pole appears because we have truncated the iterate
tential to solve the BSE. However, as can be seen in
plots, the two poles in the ‘‘second Riemann sheet’’ hav
much larger influence on the physical scattering than the s
rious ~unphysical! one. Thus, the influence of this unphysic
pole may be disregarded.14

IV. CONCLUSIONS

In this paper we have developed a Bethe-Salpeter form
ism to studys-wave andT51/2 meson-baryon scattering u
to almost 2 GeV. We work on a four-dimensional two-bo
channel space and the kernel of the BSE takes into acc
chiral symmetry constraints as deduced from the correspo
ing effective Lagrangian. At lowest order in the chiral expa
sion for the potential, an analytical explicit solution is foun
which manifestly complies with multiple channel unitarit
Among the several issues which can be explored using
present formalism, we have focused our attention onpN
elastic scattering~phase shifts and inelasticities! and the
measured inelastic cross sections, the agreement with ex
ment being rather good. Besides, some predictions for o
cross sections, not yet measured, have also been given
have undertaken a careful discussion on the analytical st
ture and continuation of the scattering matrix amplitude
the complexs-plane, which becomes mandatory in order
extract the location of theS11 resonances. We have search
for poles in the ‘‘second Riemann sheet’’ and compared b
masses and widths to data. The agreement is also quite

14Because of Schwartz’s reflection principle there is also a pol
the fourth quadrant of the first Riemann sheet~complex conjugated
of that given above! whose influence is even more negligible th
that of the first quadrant. This is because it is placed at a subs
tially larger distance of the upper lip of the unitarity cut. The ex
tence of other complex conjugated poles, both in the first Riem
sheet or in any of the unphysical sheets, is not precluded, but f
Fig. 7 we infer that their influence in the scattering is not sign
cant.
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isfactory. Thus, and despite having neglected the three-b
production channelppN, we provide a rather successful d
scription of thes-wave andT51/2 meson (p,h,K)-baryon
(N, L, S) scattering up to almost 2 GeV in the strang
ness zero channel. Couplings of theN(1535) andN(1650)
resonances to the different open meson-baryon channels
be obtained from our amplitudes and it will be discuss
elsewhere.

Nevertheless our calculation has some obvious limitati
and hence it might be improved. Besides the inclusion of
ppN channel,15 one should consider the inclusion of highe
order terms in the two-particle irreducible matrix amplitu
~potential! which would lead to a realistic predictions fo
higher partial waves in theT51/2 channel. Understandin
the free parameters of our model and their numerical val
presented in Eq.~C1!, in terms of the LEC’s appearing in th
higher chiral Lagrangian order pieces, either within t
HBChPT formalism@17# or in the fully covariant framework
recently developed in Ref.@30#, would be obviously desir-
able. As we have shown in Appendix D, such a task wou
at least, require to know the perturbative 1/f 6 order to take
into account the likely importanthN-channel effects, which
are effectively incorporated in the BSE scheme presente
this work.

Given the phenomenological success of the presen
framework, it seems natural to extend it to other nonz
strangeness channels; for a recent overview of related asp
see for instance Ref.@31#, or to the study of meson photo
production processes.
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APPENDIX A: BASIC INTEGRALS

We display the explicit expressions for the loop integr
used in this paper. The basic integrals appearing in the s
tion of the BSE are

J~P” !5 i E d4q

~2p!4

1

q22m̂2

1

P” 2q”2M̂
, ~A1!

J1
R~P” !5 i E d4q

~2p!4

1

q22m̂2

1

P” 2q”2M̂
q”

5J~P” !~P” 2M̂ !2Dm̂ , ~A2!in

n-

n
m

15In our point of view, it is a highly nontrivial task to find a
solution of the BSE including a three-body intermediate state
actly complying to three-body unitarity. In some cases, for insta
for elasticpN→pN, mesonh production, . . . , someinsight might
be obtained by treating perturbatively the process, as our res
suggest.
8-14
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J1
L~P” !5 i E d4q

~2p!4

1

q22m̂2
q”

1

P” 2q”2M̂

5~P” 2M̂ !J~P” !2Dm̂ , ~A3!

J2~P” !5 i E d4q

~2p!4

1

q22m̂2
q”

1

P” 2q”2M̂
q”

5~P” 2M̂ !J~P” !~P” 2M̂ !2~P” 2M̂ !Dm̂ ~A4!

and the results are obtained from relativistic and translatio
invariance requirement in momentum space. Here,Dm̂ is a
quadratically divergent integral

Dm̂5 i E d4q

~2p!4

1

q22m̂2
, ~A5!

which would require renormalization. Besides, the linea
divergent integralJ(P” ) can be evaluated yielding

J~P” !5P” F S s2m̂21M̂2

2s
D J0~s!1

Dm̂M̂

2s
G1M̂J0~s!, ~A6!

Dm̂M̂5Dm̂2D M̂5 i E d4q

~2p!4

1

q22m̂2
2 i E d4q

~2p!4

1

q22M̂2
,

~A7!

whereDm̂M̂ is quadratically divergent as well and the log
rithmically divergent integralJ0(s) needs one subtraction t
make it finite. Choosing for definiteness the threshold va
s5(m̂1M̂ )2 we get

J0~s!5 i E d4q

~2p!4

1

q22m̂2

1

~P2q!22M̂2

5 J̄0~s!1J0@s5~m̂1M̂ !2# ~A8!

with J0@s5(m̂1M̂ )2# a divergent integral and the finit
function J̄0(s) is given by16

J̄0~s!5
1

~4p!2 H FM22m2

s
2

M2m

M1mG lnM

m
1L~s!J

~A9!

and for reals and above threshold, (m1M )2, we have

16J0(s) is a diagonal matrix in the coupled channel space and
simplicity we work from now on in a given channel.
11600
al

e

L~s![L~s1 i e!5
l1/2~s,m2,M2!

s

35 logF 11As2s1

s2s2

12As2s1

s2s2

G2 ip6 , ~A10!

where we have defined the pseudothreshold and thres
variables as

s25~m2M !2, s15~m1M !2, ~A11!

respectively, and the logarithm is taken to be real. Note t
L(s1)50. For s.s1 the imaginary part along the unitarit
cut may be computed directly from the above Eq.~A10! or
through Cutkosky’s rules,

2 i Im J0~s!5DiscJ0~s!5@J0~s1 i e!2J0~s2 i e!#

5 i E d4q

~2p!2 ~22p i!2d1~q22m2!

3d1@~P2q!22m2#

522 i
l1/2~s,m2,M2!

16ps
Q~s2s1!. ~A12!

Up to a 16p2 factor the functionL(s) has the same discon
tinuity as the functionJ0(s). Taking into account that we
have to evaluate the functionJ0(s) not only for reals.s1

but also below threshold17 and in the second Riemann she
as well, to look for the position of resonances in the comp
s plane, we give here the analytical continuation ofL(z)
used in our calculation. Definingr65uz2s6u and taking the
principal arguments, Arg(. . . ), u6 of uz2s6u to lie in the
range 0<u1,2p and2p<u2,p, respectively, we have

L~z,n!5
~r1r2!1/2

z
ei(u11u212np)/2$ lnuR~z!u1 i Arg@R~z!#

22p i%,

R~z!5
r1

1/2ei u1/21r2
1/2ei u2/2ei np

r1
1/2ei u1/22r2

1/2ei u2/2ei np
, ~A13!

where Arg@R(z)# should be taken in the interval@0,2p@ . For
n50 one gets the first Riemann sheetLI(z)5L(z,n50),
which only has a~unitarity! cut along the real axiss1<s
,`. When going across the unitarity cut once we jump in
the second Riemann sheet, corresponding ton51, LII (z)
5L(z,n51). If we loop twice around the threshold branc

r

17For instance, when calculating the elasticpN scattering, obvi-
ously there are values ofs below heavier thresholds
hN, KL, KS.
8-15
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point z5s1 we come back to the original Riemann she
The second Riemann sheet has an additional cut along
real axis2`,s,s2 and the following relation holds:

LII ~z!5LI~z!12p i
l1/2~z,m2,M2!

z
, ~A14!

where the cuts forl1/2(z,m2,M2) go along the real axis fo
2`,s,s2 and s1,s,`. The function is chosen to b
real and positive on the upper lip of the second cut,s1,s
,` and correspondsul1/2(s,m2,M2)u[l1/2(s1 i e,m2,M2).
The 22p i constant appearing in Eq.~A13! determines the
chosen Riemann sheet of the logarithm and ensures
LI(z) is purely real along the real axis below threshold. No
that sinceR(z) only vanishes at infinity we never have
chance to cross the cut of the logarithm and never cha
log-Riemann sheets.

APPENDIX B: DERIVATION OF THE SOLUTION
OF THE BSE

Here we show how to derive Eq.~28! displayed in the
main text. The ansatz of Eq.~26! reduces the BSE integra
equation Eq.~20! into a set of linear equations for the matr
coefficientsa, bR , bL , andc

a5a@~P” 2M̂ !J2Dm̂#
D

f 2 1bL~P” 2M̂ !@~P” 2M̂ !J2Dm̂#
D

f 2 ,

bR5bR@~P” 2M̂ !J2Dm̂#
D

f 2 1c~P” 2M̂ !@~P” 2M̂ !J2Dm̂#
D

f 2

1
D

f 2 ,

bL5aJ
D

f 2 1bL@~P” 2M̂ !J2Dm̂#
D

f 2 1
D

f 2 ,

c5bRJ
D

f 2 1c@~P” 2M̂ !J2Dm̂#
D

f 2 . ~B1!

In the above equationJ stands forJ(P” ) defined and evalu-
ated in Appendix A. The solution of this matrix system
tricky although straightforward. The main complicatio
arises from the noncommuting character of the fermion m
matrix M̂ with the coupled channel matricesa, bL , bR , c,
andD. Defining

X5a, YR5~P” 2M̂ !bR , YL5bL~P” 2M̂ !,

Z5~P” 2M̂ !c~P” 2M̂ !, G5
1

f 2@~P” 2M̂ !J2Dm̂#.

~B2!

The set of matrix equations can be written as

X5XGD1YLGD, ~B3!
11600
.
he

at
e

ge

ss

YR5YRGD1ZGD1
~P” 2M̂ !D

f 2
, ~B4!

YL5XS G1
Dm̂

f 2 D 1

P” 2M̂
D~P” 2M̂ !1YLG

1

P” 2M̂

3D~P” 2M̂ !1
D~P” 2M̂ !

f 2
, ~B5!

Z5YRS G1
Dm̂

f 2 D 1

P” 2M̂
D~P” 2M̂ !1ZG

1

P” 2M̂

3D~P” 2M̂ !. ~B6!

Summing Eqs.~B3! and ~B4!, and Eqs.~B5! and ~B6!, we
get after some matrix reshuffling

~P” 2M̂ !

f 2
5~X1YR!~D212G!2~YL1Z!G, ~B7!

2
~P” 2M̂ !

f 2
5~X1YR!S G1

Dm̂

f 2 D 2~YL1Z!

3@~P” 2M̂ !21D21~P” 2M̂ !2G#. ~B8!

Subtracting and summing Eqs.~B7! and ~B8! we get

~X1YR!5~YL1Z!F ~P” 2M̂ !21D21~P” 2M̂ !

3S D211
Dm̂

f 2 D 21G , ~B9!

2~P” 2M̂ !

f 2
5~X1YR!S D2122G2

Dm̂

f 2 D 1~YL1Z!

3@~P” 2M̂ !21D21~P” 2M̂ !22G#, ~B10!

respectively. We can then solve forZ1YL from Eqs. ~B9!
and ~B10! yielding

~YL1Z!215H F ~P” 2M̂ !21D21~P” 2M̂ !

3S D211
Dm̂

f 2 D 21

11G ~22G!1~P” 2M̂ !21

3D21~P” 2M̂ !F S D211
Dm̂

f 2 D 21

3S D212
Dm̂

f 2 D 11G J f 2

2~P” 2M̂ !
. ~B11!

Using the proportionality relation betweenX1YR and
YL1Z given by Eq.~B9! we obtain the following expression
for the on-shellt(P” ) matrix:
8-16
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t~P” !5X1YR1YL1Z5~YL1Z!F ~P” 2M̂ !21D21~P” 2M̂ !

3S D211
Dm̂

f 2 D 21

11G . ~B12!

Inverting this equation and using Eq.~B11! we get finally the
expression given in Eq.~28!.

APPENDIX C: BEST FIT RESULTS

The best fit (x2/do f50.75) parameters are

JpN50.189760.0004,

JhN50.620660.0002,

JKL521.22760.003,

JKS520.014360.005,

DN,1 /~mp1MN!250.77660.002,

DN,2 /~mh1MN!251.837560.0004,
q.
te

de
-

ike
le

11600
DL /~mK1ML!2522.92360.008, ~C1!

DS /~mK1MS!251.00060.017,

Dp /~mp1MN!2520.012360.0003,

Dh /~mh1MN!2520.156060.0002,

DK,1 /~mK1ML!2520.00632460.000003,

DK,2 /~mK1MS!250.00112860.000003.

The correlation matrix, defined as usual,

r i j 5^xixj&,

xi5
ci2^ci&

A^ci
2&2^ci&

2
,

^ f ~c1 , . . . ,cn!&5
1

N (
a51

N

f ~c1,a , . . . ,cn,a!, ~C2!

ci being any of the 12 parametersJ8s andD8s, turns out to
be
¨

1.00

20.62 1.00

0.35 0.21 1.00

0.28 20.28 0.48 1.00

0.67 20.22 0.57 0.09 1.00

0.63 20.35 20.18 20.15 0.00 1.00

0.32 0.24 0.97 0.42 0.4920.10 1.00

0.36 20.30 0.51 0.99 0.14 20.09 0.43 1.00

0.50 20.51 20.30 20.08 20.21 0.91 20.25 20.04 1.00

20.51 0.48 20.48 20.62 20.71 0.30 20.33 20.65 0.30 1.00

0.10 20.37 0.12 0.20 0.56 20.59 0.01 0.18 20.55 20.77 1.00

0.19 20.03 0.54 0.48 0.67 20.56 0.42 0.48 20.69 20.84 0.72 1.00

©
. ~C3!
o a

ro-

the
i-
w-

le

yon
The large correlations~0.97 and 0.99! between the pairs
JKL2DL andJKS2DS can be understood by looking at E
~34! and taking into account the smallness of the parame
DK,1 andDK,2 , respectively.

APPENDIX D: THE HEAVY BARYON LIMIT
AND HBChPT

The study of the heavy baryon limit of the BSE amplitu
given in Eq.~34! is, in principle, of theoretical and phenom
enological interest. In the static limit, baryons behave l
fixed sources, and consequently the two-particle prob
rs

m

should reduce to a one-particle scattering problem~in our
case of meson-baryon scattering it would correspond t
Klein-Gordon equation with a spin-dependent potential!. It
has been known that the BSE has some difficulties in rep
ducing this heavy-light limit in certain situations~ladder ap-
proximation to one boson exchange@32#!. We show below
that our amplitude has a correct one particle limit due to
fact thes-wave interaction is of the contact type. If, in add
tion to a heavy baryon expansion, a chiral expansion in po
ers of 1/f 2 is carried out, we should recover in this doub
expansion some form of the results found in Refs.@25,26,14#
within HBChPT for the elasticpN scattering amplitude. The
heavy baryon expansion may be taken by making the bar
8-17
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massesM̂→` but keeping the meson masses,m̂, and the
meson momentum,q, finite. On the other hand, baryon ma
splittings must be considered higher order effects, see,
@19#, so that we take the mass matrix

M̂5MB1DM̂ ~D1!

with MB→` the common mass of the baryon octet which
proportional to the identity matrix. Accordingly, in thepN
elastic channel we take

As5E1v5MN1v1
v22mp

2

2MN
1•••, ~D2!

whereMN5MB1DMN . In this appendix we match our am
plitude to the HBChPT third order results of Ref.@14# based
on the previous analysis of Refs.@25,26#. The heavy baryon
expansion can be directly done for explicit variable
such as masses and c.m. energyAs. The constants
JpN , . . . ,DN,1 , . . . ,Dp , . . . , given by our numerical fit in
Eq. ~C1!, also might have a baryon mass dependence. Su
dependence should lead to some changes in the heavy ba
expansion which cannot be easily determined. In addit
given the nonperturbative nature of our solution and the
that many aspects of the coupled channel meson-baryon
in the S11–strangeness zero channel are described after
tarization up to energies as high asAs52 GeV, it seems
obvious that the parameters of Eq.~C1! also incorporate
higher-order effects in the chiral expansion.

1. Static limit

It is convenient to do the study in terms of the inver
coupled channel matrix amplitude,t21(s), given by Eq.~34!.
From the expression of the one-loop integral Eq.~A9! and
Eq. ~A10! we get to leading order

MJ̄0~s,m,M !uAs5AM
N
2 1v22m

p
2 1v5

1

16p2
logS M2

m2 D ~m2v!

1K̄m~v!1OS 1

M D .

~D3!

The subtraction point for the HBChPT integrals isv
5m, K̄m(m)50, and their explicit expression is

K̄m~v!5
1

8p2 5
2Av22m2 arccoshS 2

v

mD , v,2m,

1Am22v2 arccosS 2
v

mD , v2,m2,

1Av22m2FarccoshS v

mD2 i pG , v.m.

~D4!

Thus, one obtains for the unsubtracted integral
11600
g.,

,

a
yon
,

ct
ata
ni-

MJ0~s,m,M !uAs5AM
N
2 1v22m

p
2 1v

5KmM~v!1OS 1

M D
5MJmM

0 1
1

16p2
log

M2

m2
~m2v!1K̄m~v!1OS 1

M D ,

~D5!

where the HBChPT unsubtracted integralsKmM(v), fulfill-
ing KmM(m)5MJmM and the heavy baryon approximatio
of the subtraction constant defined through Eq.~A8!,

J0@s5~m1M !2#5JmM
0 H 11OS 1

M D J ~D6!

have been introduced. In the static limit we obtain from E
~16! and ~34! @ f (v)→2t(s)/(4p)#

f ~v!2158pF K̄m̂~v!1
1

16p2
ln

M̂2

m̂2
~m̂2v!1M̂Jm̂,M̂

0

1
Dm̂M̂

0

4M̂
G2

4p

v H Dm̂
0

2F 2

f 2
D1

1

f 4
DDm̂

0
DG21J

~D7!

with K̄m̂(v)5Diag@K̄p(v),K̄h(v),K̄K(v),K̄K(v)# and the
heavy baryon approximation of the subtraction constants
defined by means of the expansion

Dm̂5Dm̂
0 H 11OS 1

M D J ,

Dm̂M̂5Dm̂M̂
0 H 11OS 1

M D J .

The Eq. ~D7! corresponds, as it should, to a one-partic
scattering problem, fulfilling the coupled channel unitar
condition

Im f ~v!2152Av22m̂2u~v2m̂!. ~D8!

The pole in Eq.~D7! for the inverse amplitude is a stati
limit reminiscent from the baryonic Adler zero,As2M̂50,
of the lowest order potential. The constant combination
pearing in the inverse amplitude, Eq.~D7!, M̂Jm̂M̂

0

1Dm̂M̂
0 /4M̂ should go to some definite value in the sta

limit, M→`. In case it would diverge, the scattering amp
tude would become trivial. We may try to estimate the
constants using the numerical values obtained in thex2 fit
carried out in this work and given in Eq.~C1!. We get

MNJpN1
DpN

4MN
520.47mp ,

MNJhN1
DhN

4MN
521.08mh ,
8-18
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MLJKL1
DKL

4ML
510.67mK ,

MSJKS1
DKS

4MS
521.24mK ~D9!

in units of the relevant pseudoscalar meson masses. Th
the numerical values used for the subtraction constants
tain higher order effects in the heavy baryon expansion,
see that there is indeed some trend to cancellation, bec
theJ8s and theD8s contributions have opposite signs in th
first three cases, andJKS is very small. Moreover, the con
stants do not seem to attain unnaturally large values,
though it is hard to say which should be an accurate ap
priate value.

2. Chiral and heavy baryon expansion

Expanding Eq.~34! in powers of 1/f 2 we get

t~s!5t2~s!1t4~s!1•••, ~D10!

where

t2~s!5
1

f 2
$As2M̂ ,D%, ~D11!

t4~s!5
1

f 4
~As2M̂ !D

Dm̂

As2M̂
D~As2M̂ !1

1

f 4
$As2M̂ ,D%

3S ~As1M̂ !22m̂2

2As
Ĵ0~s!2

Dm̂

As2M̂
1

Dm̂M̂

2As
D

3$As2M̂ ,D%. ~D12!
s

tu

s

,

11600
gh
n-
e
se

l-
o-

In the heavy baryon limit we get for the elasticpN→pN
amplitude in theS11 channel

f ~v!5 f 2~v!1 f 4~v!1••• ~D13!

with

f 2~v!51
v

4p f p
2

2
mp

2 1v2

8p f p
2 MN

1
v~3mp

2 1v2!

16p f p
2 MN

2
1OS 1

MN
3 f 2D ,

~D14!

f 4~v!52
v2

64p f p
2 F16

f p
2 S 2KpN~v!1

DpN

2MN
D1

9

f K
2 S 2KKL~v!

1
DKL

2ML
D1

1

f K
2 S 2KKS~v!1

DKS

2MS
D G

1
3v

256p f p
2 F16

f p
2

Dp1
9

f K
2

DK,11
1

f K
2

DK,2G
1OS 1

MNf 4D . ~D15!

In the region18 mp<v<mK only theKpN(v) has an imagi-
nary part, to comply with perturbative elastic unitarit
whereasKKL(v) andKKS(v) are purely real. To write down
this expression we have considered the prescriptionD/ f 2

→ f̂ 21D f̂ 21 given in Eq.~9!. At threshold,v5mp , thepN
scattering length in this channel reads
apN5
mp

4p f p
2

2
mp

2

4p f p
2 MN

1
mp

3

4p f p
2 MN

2
2

mp
2

64p f p
2 S 16

f p
2 F2MNJpN

0 1
DpN

0

2MN
G1

9

f K
2 F2MLJKL

0 1
DKL

0

2ML
1

1

4p2 H ~mp2mK!log
ML

mK

1AmK
2 2mp

2 arccosS 2
mp

mK
D J G1

1

f K
2 F2MSJKS

0 1
DKS

0

2MS
1

1

4p2 H ~mp2mK!log
MS

mK
1AmK

2 2mp
2 arccosS 2

mp

mK
D J G D

1
3mp

256p f p
2 F16

f p
2

Dp
0 1

9

f K
2

DK,1
0 1

1

f K
2

DK,2
0 G1OS 1

f 2MN
3

,
1

MNf 4
,

1

f 6D . ~D16!
the
of
From Eq.~D15! and Eq.~D16! above it is clear that there i
no contribution from thehN channel to this 1/f 4 order of
approximation. This is a direct consequence of the struc
of the coupled channel matrixD given by Eq.~8! since the
correspondingpN→hN transition matrix element vanishe
in the Born approximation. For this reason, the channelhN
starts contributing at order 1/f 6. This situation is unexpected
re

because on general grounds we expect thehN channel to be
more important at low energies than theKL andKS chan-
nels since their thresholds lie at higher energies. Using
numerical values of the coefficients obtained from the fit

18Note, that thehN channel appears at order 1/f 6.
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Eq. ~C1! to estimate the scattering length, Eq.~D16!, we get

~D17!

which should be compared to the one of Eq.~38! obtained
from the full amplitude, 0.179 fm. Obviously, the differe
values should be attributed to non-negligible higher or
effects, which in particular includehN contributions, and
ex

st
,

th
s

s
as
on
no

ex
o
ec

on

t

a
r

11600
r

higher order corrections to theJ0 andD0 coefficients. This is
very reassuring because the full BSE amplitude, Eq.~34!,
besides restoring unitarity automatically includes all ord
in the chiral expansion.

3. Matching to HBChPT

TheS11 partial wave amplitude deduced from the work
Ref. @14# based in HBChPT to third order@25,26# reads, after
straightforward angular integration,
f 2~v!5
v

4 f p
2 p

1
mp

4 gA
21v2mp

2 @26248a314gA
2 #1v4@26148~a11a2!25gA

2 #

48f p
2 MNpv2

1
mp

6 gA
22gA

2v2mp
4 1v4mp

2 @6248~a222a3!27gA
2 #1v6@6248a117gA

2 #

48f p
2 MN

2 pv3
, ~D18!

f 4~v!52
v2K̄p~v!

2p f p
4

1
1

5760f p
4 p3

$2102mp
3 gA

2p1vmp
2 @213011440b̃62230gA

2 #1144gA
2pmpv2

1v3@1151720~ b̃11b̃21b̃3!2205gA
2 #%1

13gA
2mp

5

3840f p
4 p2~mp

2 2v2!
logS v2

mp
2 D 1

~11gA
2 !mp

4 v

128f p
4 p3~v22mp

2 !
FarccoshS v

mp
D G2

1
v2@3~11gA

2 !mp
2 12v2~115gA

2 !#

192f p
4 p3Av22mp

2
arccoshS v

mp
D1

gA
2~13mp

4 246v2mp
2 148v4!

1920f p
4 p2Av22mp

2
arctanSAv22mp

2

mp
D . ~D19!
dun-
nly
Eq.
am-
ns
There is no unique way to match the low energy chiral
pansion of the coupled channel BSE amplitude, Eq.~D15!, to
the third order HBChPT calculation of Refs.@25,26#, Eq.
~D19!. The analytical structure is different besides the ela
unitarity cut atv5mp which turns out to coincide. Indeed
while the former presents the inelastic unitarity cuts for
consideredKL andKS coupled channels, the latter include
perturbatively the left-hand cut atv50. Obviously, any par-
ticular choice of the matching point generates a specific
of low energy constants. After explicitly separating the el
tic unitarity correction of both amplitudes, it seems reas
able to do the matching of the remaining pieces in a poly
mial expansion around the elastic threshold point,v5mp ,
since neither inelastic unitarity cuts nor the left cut are
pected to be crucial at that point. Instead, we expect b
amplitudes to provide a sensible approximation. Also, dir
inspection of Eq.~D15! and Eq. ~D19! reveals that only
some additive combinations among renormalization c
stants can be established. In particular, in Eq.~D15! there are
two independent combinations of low energy constan
Thus, it proves sufficient to Taylor expand aroundv5mp up
to first order. Using the numerical values for the input p
rameters, Eq.~37!, in Eq. ~D15! and the numerical values fo
-

ic

e

et
-
-
-

-
th
t

-

s.

-

the parameters in Ref.@14# in Eq. ~D19! the following iden-
tifications hold~in units of fm!:

0.18550.175122.8D̄p
0 12.51D̄N,1

0 117.3D̄K,1
0 11.57D̄L

0

12.12D̄K,2
0 10.179D̄S

0 27.60JpN
0 23.01JKL

0

20.357JKS
0 ,

20.05150.163120.3D̄p
0 15.01D̄N,1

0 115.7D̄K,1
0 13.14D̄L

0

11.94D̄K,2
0 10.359D̄S

0 215.2JpN
0 26.01JKL

0

20.714JKS
0 , ~D20!

where D̄m̂
0

5Dm̂
0 /(m1M )2 and D̄ M̂

0
5D M̂

0 /(m1M )2 are di-
mensionless. As we see, there is a large degree of re
dancy when the matching is performed considering o
these low orders of the expansion. By using the values of
~C1!, to estimate the heavy-baryon mass independent par
eters appearing in the right-hand side of the two relatio
established in Eq.~D20!, we obtain20.43 and20.618, re-
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spectively. The disagreement, with respect to the left-h
side values, is not completely surprising because the num
cal values used for the subtraction constants contain hig
order effects in the heavy baryon expansion. Besides,
c

.

d

.

cl

E

11600
d
ri-
er
e

nominally small differences@O(1/M )# betweenD̄0’s and
J0’s and D̄ ’s and J’s might lead to significant numerica
changes because the factors multiplying these constants
large in units of the left-hand-side values of Eq.~D20!.
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