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The s-wave meson-baryon scattering is analyzed for the strang&ye8ssector in a Bethe-Salpeter coupled
channel formalism incorporating chiral symmetry. Four channels have been considiredyN, KA, KX.
The needed two-particle irreducible matrix amplitude is taken from lowest order chiral perturbation theory in
a relativistic formalism and low energy constants are fitted to the eladiphase shifts and the p— #n
and 7~ p—KCA cross section data. The position of the complex poles in the second Riemann sheet of the
scattering amplitude determines masses and widths o8 eN(1535) and—N(1650) resonances, in rea-
sonable agreement with experiment. A good overall description of data, fidnthreshold up to 2 GeV, is
achieved, keeping in mind that the two-pion production channel has not been included.
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[. INTRODUCTION meson dynamics. There have been previous studies of the
7N—S;; partial wave using a coupled channel formalism
The N(1535) andN(1650) resonances appear as out-and imposing CS constraints. In Rdf3] a Schralinger
standing features not only in elastieN scattering in the coupled channel treatment was employed and the additional
strangeness zer8y; (L, ;) partial wave but also in other inclusion of phenomenological hadronic form factors was
meson-baryon reactions at intermediate energies. In quaikvoked. Within this framework, thp-wave contribution has
model approaches these excited nucleon resonances aiso been recently examingd]. The two pion production
mainly composites of three valence quarks, and their widthehannel is not considered in these works. Perturbative esti-
are computed as matrix elements of hadronic transition opmates[5—7] for the reactionmN— 7N indicate that this
erators. However, the description of hadron scattering readhree-body channel keeps moderately small not only at
tions becomes cumbersome in this framework, and it rethreshold but also in a certain region above it. An attempt to
quires quite elaborate techniques as the resonating groupclude the two-pion production reaction can be found in
approach, where it becomes extremely difficult to imposeRef. [8], but the treatment of thewN channel is effective
chiral symmetry(C9) [1]. and it is represented by an unphysical two-body channel
Renouncing to find out a picture of the hadron as a vawhich represents all remaining processes.
lence quark bound state, a different point of view consists of In Ref. [9] the Bethe-Salpeter equatidBSE) has been
describing scattering reactions taking the hadrons as the retmployed in the spirit of an effective field theotEFT).
evant degrees of freedom at low energies. Then, resonanc&bere, thewwN channel is not considered either and the
manifest themselves as poles of the scattering amplitude in@uthors require the introduction of less renormalization con-
certain Riemann sheet in the complex energy plane. To pestants than allowed by CS. Despite these restrictions, the
form such a program requires implementing unitarity in themodel describes not only the elastitN channel, but also the
model. A multichanneK-matrix method is used in the work two-body inelastic ones in an energy window around the
of Ref.[2]. Though CS is not incorporated, this phenomeno-N(1535) resonance. Nevertheless, it fails at threshb.
logical approach is able to reproduce a large amount of dat&@iven this partial success and the great technical difficulties
related to therN— 7N reaction. The three-body final state, to solve the BSE incorporating the three-bagyN channel,
two-pion production channet=N is incorporated through one might wonder what features of the data can be explained
an effective use of two-body channels with higher mesonidncorporating CS constraints and restoring two-body unitar-
and baryonic resonances. In this paper, we will work in thisity.
latter type of approaches, but explicitly imposing CS con- In the present work we restrict our study to the nonstrange
straints as an indirect way of incorporating the bulk of themeson-baryors;; partial wave and adopt a similar frame-
underlying quantum chromodynami¢@CD). Thus, we will  work as in those references, but with some important differ-
establish a unitarity scheme based on the chiral perturbatioences. First, we will implement exact unitarity by solving the
theory (ChPT) amplitudes. BSE taking the needed input from lowest order relativistic
CS provides important constraints to the description ofChPT. A similar program has been successfully undertaken
low energy hadronic processes and, in particular, to baryorboth in the pion-pion sectdil1] and in thewN— P35 partial
wave [12]. Thus, we avoid the use of phenomenological
form factors and all required informatiofow energy con-
*Email address: jmnieves@ugr.es stant$ can be, in principle, obtained from higher orders in
"Email address: earriola@ugr.es the chiral expansion. Besides, we aim at describing not only
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a narrow energy window, placed at threshold or in the neighbination in case it occurin a unitarized approach, the only
borhood of some resonance, but also a wider energy regiomway to avoid this parameter redundancy is to match the uni-
ranging from«N threshold up to almost a center of masstarized amplitude to the standard ChPT amplitude. As we
(c.m) meson-baryon energy afs=2 GeV. have already said, there is no standard one-loop ChPT calcu-
As we discussed at length in Réfl1] the BSE, in the lation for theS,; partial wave of the meson-baryon reaction
context of EFT’s, can be solved in two different schemes: offwith open channels to compare with. An indirect way to
shell and on shell. Here, we use the off-shell scheme becausgtect such a parameter redundancy might be through a fit to
of the lack of information on the next-to-leading order in the @xperimental data if the errors in some parameters turn out to
chiral expansion. In this scheme, the on-shell scattering anf2€ very large.
plitude requires some knowledge of the off-shell behavior of We have considered four coupled channedsy, 7N,
the two-particle irreducible amplitudépotentia). After KA, K2 and taken into accour8U(3)-breaking symmetry
renormalization of the amplitude this off-shell input leads to©ffeCts but neglected the considerably smaller isospin viola-

a finite number of phenomenological constants which encodHon onig. r\]N.e h]flivgg?und thathCS a(ljlows_[)or ahsolultion. of the
the detailed underlying short-distance dynamics. In practicel?’SE which IS TIexibie enoug 0 escn eot e elasti
hase shifts, and the” p— »n and 7~ p—K"A cross sec-

these constants can be either fitted to experiment or detef- .
mined by matching the resulting Bethe-Salpg@8) ampli- ion data from threshold' to c.m. energies WQII abo.ve thg
tude to standard ChPTObviously, the method of determin- N(1650) resonance. Besides the rest of elastic and inelastic
ing the constants by matching to ChPT seems a better or%’n?'gggqyerzzcnfg d&?;?}gé:)ﬂﬁgc'r;g dg}e‘l?r?é)ptﬁgitfgam(i‘l-the
than a direct fit to experimental dat#&or the case of meson- P ) P

baryon scattering, the only known information coming fromffoﬂglzxet%?ﬁisnég tr:Zssseecsogi dR:Eigtigno?r;;?— Ef(;gegsa)mpll-
ChPT involves tree-level amplitudes and free propagators nd — N(1650) resonances, which turn out fo be in reason-

there is no possibility to compare with ChPT beyond leadin bl t with . t prelimi It
order and thus one is forced to fit the unknown low energ € agreement with experiment. Freliminary resufts were
presented if18].

constantgLEC’s) to data. ) . ]
As is the case in the purely mesonic sector, the off-shel The paper IS _organlzed as follows: In Sec. Il we present
scheme generates a rich structure of unknown constanl € basic form_ahsm used along the paper. We start \.N'th the
chiral Lagrangian relevant to our calculation, from which the

which allow for a good description of the amplitudes. Al- . . . .
though the appearance of more undetermined constants m%xest order meson-baryon two-particle irreducible matrix

appear a less predictive approach as, say, putting a cutd plitude is deduced. After presenting our notations for the

(one single parametein the divergent integrals as is done in coupled channel kinematics we discuss the basic_ pertinent
Ref. [9], it reflects the real state of the art of our lack of features of the BSE fas-wave meson-baryon scattering. U.S'

knowledge on underlying QCD dynamics. The number of"9 the amplitude froml lowest orde_r ChET as the potential,
adjustable LEC’s should not be smaller than those allowe € soIII\I/e and renorrt‘nahze the B.SEIm theltspl?t Oftﬁn EFIhln
by symmetry; this is the only way both to falsify all possible ec. lll we present our numerical results, togetner with a
theories embodying the same symmetry principles and t(gie'[alled discussion on the fitting procedure and Monte Carlo

Limiting such a rich structure allowed by CS results in aresonancés as qnstable articles requires det(frm'n'n their
poor description of experimental data. u parti qul ining :

Before going further we would like also to say a word on mass and width as poles in a u_nphysicgl Riemann sheet. I'.q
the opposite situation, i.e., the possibility of having more lowOUr case there are 16 sheets which we discuss in some detail,

energy parameters than one actually needs. A possible reduﬁrJd we search for the most important pole singularities. Er-

dancy of parameters is obviously an undesirable situation. |for estimates are made in terms of the available experimental

standard ChPT the number of LEC’s is controlled to anyuncertainties in the phase shifts and amplitudes. Finally, in
order of the calculation by crossing and unitarity. Moreover,se(r:l'( IV we present some conclusions and outlook for future
the dependence of the observables on them is strictly Iinea\‘\,’0 '

so that it becomes possible to detect such a redundant com-

3A good example of this isrr scattering to two loopg[15,16)
where one gets, besides the four one-loop paraméters,, six

Yideally, these phenomenological parameters should be computdtfW Parameters bUt.iﬂ redunQant combinations. 'InsFead, it i? cus-
from first principles, a yet impossible task. tomary to use the SI)b123456|ndependent combinations, which

2In addition, if the matching is possible the off-shell scheme be-depend on the one-looPs and the six new two loop parameters
comes unnecessarily complicated, as compared to other methodsd contain mixed orders. Such a situation also takes pla@éin
directly unitarizing the final on-shell amplitude given in terms of scattering in heavy baryon ChRHEBChPT) at fourth order{17].
the standard low energy constants. For details, on the on-shell BSE*Each of the entries of theX44 matrix solution of the BSE is the
approach or on the inverse amplitude methb&M ) for meson-  T-scattering amplitude for a meson-baryon reaction constructed out
meson scattering see, for instance, the thorough discussion in tlef the four considered channelssN— N, 7N— 7N, «N
second entry of Ref{11]. For wN elastic scattering, recent IAM —KA, 7N—K3X, ysN—gyN, yN—KA, pN—K3, KA—KA,
studies have been pursued in R¢f3] and[14]. KA—KZX, K3 —KZ3 and the reverse processes.
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Il. THEORETICAL FRAMEWORK 1 1
A. Chiral b Lagrangi F = =7 P
. Iral baryon-meson Lagrangian \/5 \/E
At lowest order in the chiral expansion the chiral baryon-
meson Lagrangian contains kinetic and mass baryon pieces g— S 30 T A n ,
and meson-baryon interaction terms and is giverj 18} \/5 6
£,=Tr{B(i Y~ Mg)B}+ D Tr{By*ys{u,, .B}} = =0 _2.
- V6
+3 FTr{By*ys[u,,B]}. (1) (5)
The meson kinetic and mass pieces and the baryon masggspectively. Thé¢1B— MB vertex obtained from the former
chiral corrections are second order and read Lagrangian reads
f2 - i —
£2=ZTr{uLu”+(UTX+XTU)}—bOTr(X+)Tr(BB) EMBHMB=ﬁTr{Bv“[[<bﬂ¢D], BI}- (6)
—b, Tr(§X+B)—b2 Tr(§BX+) (2)  Assuming isospin conservation, the scattering amplitine
the Dirac spinor basis, whose relation to the cross section is
where “Tr” stands for the trace 8 U(3). In addition, given in Sec. I B, at lowest order is given by
vV, B=d,B+3i[ut9,ut+us,u B] W 1y 2 ,
w “ 2 w wH o BPh tp’(k,k )If—z(k-i-k ), (7)

2l 2RI it t , , _
U=u“=e , Up=iutd Uur, wherek andk’ are incoming and outgoing meson momenta
and D a coupled-channel matrix. For strangen8ss0 and

x:=uTyu'+uxtu, x=2ByM. ©) isospinT=1/2 the coupled channel matrix read$

My is the common mass of the baryon octet, due to sponta- aN N KA KX
neous chiral symmetry breaking for massless quarks. The PN 0 _32 +1/2 N
SU(3) coupling constants which are determined by semilep- ™

tonic decays of hyperons aré~0.46, D~0.79 (F+D o1 1 7N

=ga=1.25). The constant8, andf (pion weak decay con- Ds-0 =7 0 0 +3/2 +3/2 KA 8
stant in the chiral limit are not determined by the symmetry. -3/2 +3/2 0 0

The current quark mass matrix $1=Diag(m,,my,m). +1/2 +3/2 0 9 KX

The parameterby, b,, andb, are coupling constants with

dimension of an inverse mass. The valuebpfandb, can While amplitudes follow the chiral symmetry breaking

be determined from baryon mass splittings, whetgagives  pattern from the effective Lagrangian to a good approxima-
an overall contribution to the octet baryon mads. The  tjon, it is well known that physical mass splittings have an

SU(3) matrices for the meson and the baryon octet are Writimportant influence when calculating the reaction phase
ten in terms of the meson and baryon spinor fields, respegpace. Indeed, the correct location of reaction thresholds re-

tively, and are given By quires taking physical masses for the corresponding reaction
channels. We have taken into account this effect in our nu-

1,1 . . merical calgulation. Besides_, _chiral corregtions to th(=T ampli.—

EW +%7I ™ K tudes also incorporate explicit CS breaking effects in addi-

tion to those already present in the Lagrangians above. In

1 1 practice, we use different numerical values far, fx, and
o= T —— %+ —9 KO ,
V2o e
B _ 2 %We have omitted the pieces proportional to the couplifgand
K KO - % n F because they do not contributegavave. On the other hand, the

Lagrangian below does not lead to a petwave contribution and a
(4) further projection will be required.
"We use the convention, in symbolic notatiofs;iTyg_.ues
and =+iLlyp_mg-
8There is a mistake in the relative phases of R&f. We thank A.
Ramos for confirming this point to us. We use the isospin phase
°For the purpose of our work we do not consider any mixingconvention of Ref.[20]: negative phases for the isospin states
between octet and singl&tU(3) representations. —|7*), =|Ko), =IZF), —=|E7), =[=7), —[n).
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f,]., as it is discussed in SIEC.. Ill. This can be easily acCommomenta an(ﬂ] a unit three-vector orthogona| E;« andEB_
plished through the prescription Partial wavegmatrices in the coupled channel spadg(s),

. . - are related to4,B by [21
D/f2—t-DF %, $=Diag(f, f,.fx.f). (9 yl21l

For simplicity and a more clear bookkeeping of chiral order A(s, 8)= Z [(L+1)fE" Y4 s)+Lf Y%(s)]P (cosh),
dependences we will use th2/f? notation throughout the
paper, meaning Eq9) in practice.

dP,(coséd
B. Scattering amplitude and kinematics B(s.0)= _2 [ftﬂlz(s)_ftim(s)] Lfﬂﬁ )
The coupled channel scattering amplitude for the baryon- (15
meson process in the isospin chanfie 3, In terms of the matrices, andt, defined in Eq.(12), the
B(Ma,P—k.S3)+ M(ma,k)—B(Mg,P—k',s5) swave coupled-channel matrixy'4(s), is given by
+M(mg,k") (10 1 K|

[félz(s)]sﬁ—A:_W ——Eg+MgVEp+M,
e

with baryon(meson massedM , and Mg(m, andmg) and |Kal
spin indices(helicity, covariant spin, etc...) S5,Sg, IS

) 101
given by X EJ d cosé[ Vsty(s,t) +ta(s,)]gal,
-1

To[B{k’, g} A{k,5a}]=Ug(P—K’,S5)tp(k,k')

(16)
XUa(P—K,S5). 11 .
Ual A ) where the c.m. three-momentum moduli read
Here, up(P—k,sp) and ug(P—k’,sg) are baryon Dirac
spinors for the ingoing and outgoing baryons, respectively, IIZI— AY2(s,M;,m) AR 17
i - —1 - 1

P is the conserved total four-momentum andk,k’) is a 2\s

matrix in the Dirac and coupled channel spaces. On the mass

shell and using the equations of motion for the free Diracyith \ (x,y,z)=x2+y2+z2— 2xy— 2xz—2yz and Eag the
spinors P—k—M y)ua(P—k)=0 and its transposeda(P baryon c.m. energies. The phase of the mafixs such that
—Kk)(P—k—M,)=0 the parity and Lorentz invariant ampli- the relation between the diagonal elemems=@B) in the
tudetp can be written as coupled channel space 6f%(s) and the inelasticities )

and phase shiftsd) is the usual one,

tP(kak,)|on sheII:tl(S:t)P+t2(syt) (12)
with s=P2=pP2 t=(k—k’)?, andt, andt, matrices in the [fY2(s)Ian=——=—T[ 7a(S)€? P —1]. (18)
coupled channel space. The normalization of the amplitude |kA|

Tp is determined by its relation to the c.m. differential cross ) )
section, and it is given above threshold>max(M, Hence, the optical theorem reads, &3¢ (Ma+ma)°,
+mu)?,(Mg+mg)?}, by

¥A(s) ]AA—E OB A= 4772 [fA(s)]gal?

|Ke| |kA|
Te[Blkg,s
sar7s o | TeBlke o)

—Afka,sa}]I% (13 :UAA+| A|2( — 7). (19

do
E[B{kBuSB}‘_A{kArSA}]

Rotational, parity, and time-reversal invariances ensure fofhere in the fight-hand side only open channels contribute.
the on-shell particles

C. Bethe-Salpeter equation

Tol{ke .Se}—{Ka,Sa}]= — 875 | | A(S,0) s, s, The Bethe-Salpeter equation reads
.- ’ “q
+iB(s,0)(N-0)gs,}- (14 tp(k,k’)=vp(k,k’)+ithp(q,k')A(Q)

A and B are matrices in the coupled channel spagehe X S(P—q)vp(k,q), (20)
c.m. angle between the initial and final meson three-

where tp(k,k’) is the scattering amplitude defined in Eq.
(1), vp(k,k") is the two-particle irreducible Green’s func-
We use the normalizationu=2M. tion (or potentia), and S(P—q) and A(qg) are the baryon
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k k
k’ .
\\ /,' Koq N , FIG. 1. Diagrams summed by the Bethe-
. 4 N -/ v NPT N Salpeter equation at lowest order. Kinematics de-
N + NN+ YN o o o P q :
N Y N ' t fined in the main text.
P-k P-k P-k P-k’

and meson exact propagators, respectively. The above equa- " D
tion turns out to be a matrix one, both in the coupled channel vp(k, k) =tp (k,K") = 2 (k+K') (24)
and Dirac spaces. The resulting scattering amplitude

tp(k,k") fulfills the coupled channel unitarity condition ) _ ) _ .
with D the coupled-channel matrix, which was given in Eq.

d'q (8). The propagators at lowest order are simply the free ones,
tp(k k") —tp(k’ k)= —i(277)2f 2te(ak’)
(2’77) 1 1
. . Al@)=——=5, S(P-Q)=——= (29
X 5[0~ M) (P— 4+ M) o~ m’ P4
o
X8 [(P=a)*~M?]tp(q,k) which are diagonal in the coupled channel space. Once we

(21 have approximate expressions for both gutentialand the
meson and baryon propagators, we proceed to exactly solve
wheretp(k p)= yotp(k ) 7o andt! " (k,p) stands for the to- the BSE. The s_econd orde_r Bo_rn approxir_nation to the solu-
tal adjoint in the Dirac and coupled channel spa@eslud- tion of the. BSHi.e., apPrOX|mat|ngp(q,k’) n th_e kernel of
ing also the changs+i e—s—i €) andm andM the meson the equation by p(q,k’)] suggests the following form for

. . . . the exact solution:

and baryon(diagonal mass matrices, respectively. Finally,
5T (p2—m?)=0(p° s(p?°—m?), ® being the Heaviside
step function. tp(k,k")=a(P)+k'bgr(P)+b (P)k+Kk'c(P)k, (26

If the on-shell amplitude depends only on the total
momentum® P, tp(K,k")|onshei=t(P), as will be the case wherea, bg, b, , andc are Lorentz scalar matrices in the
below, the unitarity condition can be rewritten in a much Dirac and the coupled channel spaces. At this lowest order of
simpler and useful form as a discontinuity equation abovehe BSE approach, these matrices only dependPoithus

the corresponding physical thresholds they turn out to be independent of the Mandelstam variable
Such an amplitude contains an infinite sum of diagrams,
Disd t(P) 1]=—Disd J(P)] with as shown in Fig. 1, but does not contalhpossible one-loop
dependences, for instance those coming from vertex renor-
DisdA(s)]=A(s+ie)—A(s—i€) (22) ~ malization. On the mass shell we may #et-P—M and

k'—P—M. Hence, thanks to the equations of motion the

where the quadratic and logarithmically divergent integral On-shell amplitude becomes a function of the total momen-
tum P and reads

dq 1 1

30®)=i] dmpaem ) UP=ar oo b P (PP ),

has been introduced and Cutkosky’s rules used to evaluate it

discontinuity. This integral is treated in detail in Appendle where the explicit dependence Brof thea, bg, b, ,¢ matrix

functions has been suppressed for simplicity.

As usual, we take thed prescriptionm?—m?~i e and M Plugging the ansatz for the off-shell amplitudg(k,k’),
—M —i € which we implicitly assume in the sequel. as given in Eq(26) into the BSE equation and after some
algebraic manipulations described in detail in Appendix B,
D. Solution of the BSE equation at lowest order we get for the inverse on-shell amplitude

The BSE requires some input potential and baryon and
meson propagators to be solved. We proceed here along th&b) - _3(p)+
lines proposed in previous woff1] and use a chiral expan- P—M
sion to determine both the potential and propagator. From the
chiral Lagrangian one gets at lowest ordlEqg. (7)]

+A" L

1 - 1 N
A= E{P_M'D}++f_4(P_M)D

OThat is to say, the functionts andt, in Eq. (12) do not depend
on the Mandelstam variable =u(s)+v(s)P
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(s)=i —[D,M] s, [D,M]—f%{M,D} t(s)fl__(ﬁ“("—)z‘ﬁ‘zj (s)+i—Aﬁ“M
R T s o - 2ys 0 V=N 245
. - 1 . 1 - m
—DAr‘nDMJr[D,M]AﬁqD], + f—z{\/g—M,D}++f—4(\/§—M)D\/§_M
-1
V(S)=f£4 —[M,D]iW[M,D]wLDAr}]DwLZfZD}. XD(Vs—M) (34)
o

(28) Finally, thes-wave coupled-channel matrix amplitud@z(s)

As we can see, the on-shell unitarity condition expressed iﬁeads

Eqg. (22) is manifestly fulfilled. To proceed further we can =
decompose the inverse on-shell amplitude in the form [félz(s)]BA: _ 1 [Ke| VEg+MgvVEA+ MALL(S)Iga-

8mys V [Kal
t(P) 1=K (s)P+Kx(s), (29 (35)

whereK(s) andK,(s) are matrices in the coupled channel At this point we have to renormalize the divergent integrals
space. Straightforward calculation yields appearing in the solution of the BSE. This issue has been

carefully discussed in the context of meson-meson scattering
Ao . o (see Sec. 3.4 of Refll]) and applies equally well in the
s—m-+M An Amin . .
Jo(S) + —— — present context. In summary, the result of that discussion
2s s—M?2 2s amounts to write the renormalized amplitudénite) in the
same way as the divergent amplitudes but with the previ-
ously divergent integrals taken as finite renormalized con-
(300  stants. Ideally one would like to derive them from the under-

N MA;, . . lying QCD dynamics, but in practice it proves easier to fit
Ka(s)=—MJqo(s) + _Mz_(”sﬂ v p) them to experiment. This amounts to consider, besides the
s physical masses and weak meson decay constants, 12 fitting
parameters that define three diagonal matrices in the coupled
channel space which appeared already in the solution of the
BSE given, e.g., in Eq29). These matrices are

Ki(s)=—

+(vs—pv w7t

Thus, the amplitude can be written in the form of EfR):

t(P)=t1(s)P+1x(S) (3D
o J.n O 0 0
wit
D
t1=(Kys— KoK 'Ky ° 0 0 Jn 0|
0 0 0 Jks
t,=(K,— KK, 'K;8) L. (32
Ay:1 O 0 O
As we already said, when the two-particle irreducible ampli- 0 Ay, O O
tudevp and the meson and baryon propagators entering in Ay= ’ ,
the BSE, the lowest ChPT order ones are taken, the matrices 0 0 Ay O
(in the coupled channel spagels andt, turn out to be 0 0 0 As
independent of the Mandelstam variabl&: Hence the angle
integral in Eq.(16) becomes trivial and apart from kinemati- A, O 0 0
cal factors, the relevant combination entering in th@ave 0 A 0 0
scattering amplitude is A-= K (36)
m 0 0 Ag; 0]
t(s)=t1(8)VS+1ta(8) =[Ky(s)Vs+Kp(s)] 1. (33 0 0 0 A

After some algebraic reshuffling the expression for the inwhere we have denoted the meson-baryon low energy con-
verse coupled channel matrix amplitude can conveniently bstantsJo[ s=(m;+ MJ-)Z], i=m,7,KK,andj=N,N,A,3 of
written as Eq. (A8) asJj; . The matrixAy, i which appears in E¢29)
is determined by the matrices;, and Ay, above, as it is
defined in Eq(A7). On the other hand, th& ; and theA ,
Hpespite that and because of the Dirac struc®y¢he amplitude  matrix elements of the matrix;, and theAy ; and theAy ,
of Eqg. (31) not only containss-wave, but also a smagi-wave. matrix elements of the matriXy;, have been taken in general
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to be different. This is because, though their formal expresand likely important, three-body channel.
sion as divergent integrals in Eq6A5) and (A7) are the Despite being able to account for a part of the inelastici-
same, after doing the needed renormalization there is no red@es (yN, KA, andKX channelsand because of the explicit
son why the finite parts in these two channels shouldbmission of them#N channel, inelasticities have not been
coincide!” fitted. Nevertheless, some constraints are imposed in order to
prevent the occurrence of smaller inelasticities than the ex-
ll. NUMERICAL RESULTS perimental ones. On a quantitative level this means the fol-

Throughout the paper we will use the following numerical I(_)W'ng' Flrsdtg/, (\j/v_e prov(;de the m_erl]astlcmes Wllth a 3% relah
values for masses and weak decay constants of pseudoescdl¥f €ror added in quadrature with 0.01 absolute error. In the

mesongall in MeV), second step within thg? fit procedure and given a set of
parameters, we compute the theoretical inelasticity for each
m,=139.57 m,=547.45 my=497.67 \s. If it turns out that for one c.m. energy the inelasticity is
smaller than the experimental value, taking into account the
M,=938.27 provided errors, we strongly disfavor this set of parameters
My = M,=1115.68 Mys=1192.55 by decreasing the total error on the inelasticity for this c.m.

energy by an order of magnitude when calculating its contri-
bution to the totaly?. Besides, those energies for which the
theoretical inelasticities fall above the experimental ones are
set to contribute zero to the totgf. In this way, we do not

where for channel 11 the proton mass is used because tfhigree the fit to pass through the experimental inelasticities at

data have been obtained from the p scattering, and for all. but Wetheo?(:{if:);d é?i”mgnrt‘aﬁ’hys'cm scenario where

channel 22 we take the neutron mass because the available=,N.KA ks O 5Uine‘? :

data come fromr~ p— #n. In this way we ensure the exact ~ Total = p— zn cross section[23], 1488.4 Me\k /s

and physical position of the thresholds. This proves impor<1563.8 MeV. We fit the region close to thgn threshold

tant due to the proximity of thBl(1535) to thenn threshold.  and in terms of the commonly useg] 55 [incoming pion
momentum in the laboratof. AB) systenj, the above range

A. Fitting procedure corresponds to 687 Me¥(q, a5 =812 MeV. There is a total

We perform ay? fit with 12 free parameters considering number of 11 data points. The experimental uncertainties are
the following experimental data and conditions. provided in Ref.[23]. In addition, the experimental cross
s,,mN elastic phase shifts and inelasticitiei?] section has the contribution not only of thevave, the object

1077.84 Me\k \s<1946.52 MeV. In this c.m. energy re- of this work, but also of the re_st of the hi_gher partia_l waves.
gion, there are a total number of 281 phase shifts and ineladl€*t to threshold thes wave is the dominant contribution
ticity data points. Though we have considered four coupled@nd the higher energy ci1563.8 MeV determines the re-
channels, the three-body=N channel is not explicitly con- 9ion up to _where it is still a gooq approximation to the total
sidered. This omission influences both the phase shifts angf0SS section. For higher energies thevave does play an
the inelasticities and we will assume here that the effect i§mportant role and cannot be neglected, Réf.

much more important for the inelasticities than for the phase We have neglected any possible effect stemming from the
shifts. Thus, we have fitted the phase shifts while inelastici-rN intermediate state in this inelastic channel, as it has
ties have been considered only to impose some constrainteen also assumed previously in R¢&. and[9].

on the fit. While>0.99, we have considered that therN Total 7~ p—KCA cross sectior23], 1617.5 Me\< /s
channel is essentially closed. In the data, this is the case foz1724.8 MeV. We fit the region close to th@A threshold,
c.m. energies below's=1406.4 MeV. In this energy region, 904 MeV=0.,g=1097 MeV with the experimental error
we have assigned to the phase shifts a 3% relative errafars provided in Ref23]. There is a total number of 45 data
added in quadrature with a systematic 1° absolute error, ipoints and the remarks concerning both the contribution of

the spirit of Ref.[5]. In this way, we are assuming that any the =N channel anch wave effects of the previous item
mmN subthreshold effects are effectively incorporated in thegpply also here.

systematic error mentioned above. At higher energies, inelas- Note that we have not fitted the  p— K°3° total cross
ticities are smaller than 0.99 and we provide the phase shifigeq(ion hecause of the likely sizable isospin 3/2 contribution.
with a systematic 15° absolute error added in quadrature
with a 3% relative error. The reason for this big systematic
error is to account for the explicit omission of the, now open

M, =939.57

f,=93.2 f,=f=1.3f, (37)

B. Results of the besty? fit

The best fit parameters are compiled in Appendix C. The
errors on the parameters turn out to be fairly small. They are
12This point is clearly exemplified in the BSE treatment, see purely statistical and have been obtained from the 68% con-
Eqg. (A15) in Ref.[11], where constants which stem from the samefidence level on the best-fit parameter 12-dimensional distri-
divergent integrals, after renormalization, become in fact differenfoutions. We generate these parameter distributions obit of
functions of theSU(2) low energy constantss. =10* samples. Each of the samples is obtained frogft #t
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o FIG. 2. S;;-elastic 7N phase
shifts and inelasticities as a func-
-20 . . . L tion of c.m. energyy/s. Data are
1 12 14 A
000 00 00 1600 1800 2000 from Ref. [22]. Solid lines stand
for the lowest-order BSE results
with parameters given in Appen-
1.1 dix C. Dotted-dashed vertical
. lines in the bottom plot indicate
i the energies for which new chan-
09l nels are opened.
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toa synthetic set of datg points which are obtain_ed from the aé/25[fé/2[s:(mw+ M) 21N on=0.179+0.004 fm,
original one by a Gaussian sampling procedure, i.e., the total (38)

number of fits isN=10*. We use the so obtained distribu-
tions to evaluate the correlation matrix between the paramwhere the error is statistical and it has been obtained from
eters. The correlation matrix is also given in Appendix C. Inthose in the best fit parametefisq. (C1)], taking into ac-
addition, quantities coming from g? fit are Gauss distrib- count the existing statistical correlations, through a Monte
uted in the limit of small errors, as seems to be the case her&arlo simulation. This value should be compared both to the
therefore the correlation matrix determines the parametetecent experimental one 0.259.006 fm of Ref[24] and to
distributions. the HBChPT result to third order of R¢fl4] 0.19+0.05 fm.
Systematic errors on the parameters are not included anthe agreement between our coupled channel unitarized scat-
they are difficult to estimate. We cannot completely discardering length with that from NNLO-HBChPT is satisfactory
that they might be sizable. This situation reflects the preserftom a theoretical viewpoint since in both cases the same set
status of the art in unitarized calculations. of low energy datd22] have been used. The discrepancy of
In Figs. 2 and 3 we show the results of our approach, withour number with the experimental one of REZ4] possibly
parameters given in Appendix C, for those guantities whichpoints toward a too conservative error assignment of the low
have been fitted to. In Fig. 3 only the data for energies belovenergy phase-shifts in RgR22].
the vertical dotted-dashed lines have been included in the fit. In principle, the LEC's of Eq.(C1) determine, or vice
The overall description is remarkably good and that gives uyersa they can be determined from, the next-to-leading order
some confidence on the used nonperturbative resummatiogsults of ChPT, as is explicitly shown in R¢i1], for the
procedure based on the BSE. For the elasfic— 7N scat-  case of elastiers scattering. However, the perturbative cal-
tering length we get culation is not available and it only exists next-to-leading
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FIG. 3. Totalw p— #n and 7 p—K°A cross sections as a function of the c.m. energy. Data are fron{Z8f.Solid lines stand for
the lowest-order BSES,, results with parameters given in Appendix C. Data for energies above the vertical dotted-dashed lines have not
been included in the fit.

results formN, with no coupled channe[$,17,25,28, in the  pane) takes an unnaturally large value as compared to other
framework of heavy baryon chiral perturbation theory elastic and transition cross sections. This is in contrast to any
(HBChPT). In Appendix D we discuss this point in more expectation based in the Born approximation, since the cor-
detail. responding potential in this channel vanishese Eq(8)].
The effect of theN(1535) can also be seen at the figure
C. Predictions for other processes (bottom panel by the maximum inmN— #N cross section

In Fig. 4 we show some of our predictions for phaseand the cusp effect in theN— 7N partial cross section. On
shifts, inelasticities and-wave T =1/2 partial cross sections the other handiKA—KA phase shiftstop right panel turn
for some other channels. For most of them there are no dat@Ut to be extremely small. The effect of thg1650) can also
The nN% 77N elastic phase Sh|ftéop left pane) present a be seen at the cross Sections, pal‘ticularly in #id— 7N
steep raise close to the threshold going up to 70°, whictpartial cross section, though the effect is less pronounced
corresponds to a typical low energy resonance behavior trighan in theN(1535) case. We have not plotted the elastic
gered by theN(1535) resonancésee the next sectigpnAc- K2 —KZ2 cross section since the physical process involves
cordingly, the corresponding partial cross sectitmottom  also the isospif =3/2 channel, not considered in this work.
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FIG. 4. Top panels-wave T=1/2 phase shiftgin degreesfor elastic yN— 7N (left pane) and KA —KA (right pane] processes as
functions of the c.m. energy. Middle panel: same as before but for inelasticities. Vertical lines indicate the opening of reaction thresholds.
Bottom panel:sswave T=1/2 meson-baryon cross sectionsN— 7N, 7N,KA,K; 7N— 7N, KA ,KX; KA—KA,K3) in mbarns as
functions of the c.m. energy. Dashed lines indicate #if initial state. Solid lines indicate thgN initial state. Crosses indicate tieA
initial state. All the lines start at the relevant final state thresliwith the exception of the elastieN— 7N reactior).

Our estimates fomN andK A scattering lengthgdefined complex c.m. energy plane with the singularities from the

for the elastic channelsimilarly as in Eq.(38) are Particle Data BooK27] is presented in Fig. 5. For a more
distinctive characterization of the resonances one has to look
a,n=0.7725)+i0.2173) fm, for poles in the comples plane.
] Since causality imposes the absence of poles in the physi-
agy =0.05475) +i0.0324) fm, (39 cal sheef28], one should search for complex poles in un-

respectively. The scattering len compares reasonabl physical ones. Among all of them, thosisesto the physi-
pectively. Y mN P -~ Y cal sheet are the most relevant ones. For the sake of clarity,
well with the one obtained in Ref[3], a,y=0.68

+10.24 fm we will devote some space herg to gxplain, in a quantitative
: ' manner, the meaning of “close” in this context. We look for
poles in the coupled channel matrix amplitui{s) defined
in Eq. (33). We have only examined the entry 1N
In this section we are interested in describing masses and- 7N, of that matrix. The position of the complex poles, as
widths of theS;; resonances. An illustrative picture of the long as they are produced for physical resonances, should be

D. Second Riemann sheet: Poles and resonances
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Complex CM Energy Plane
aN nN KA KE FIG. 5. Location of reaction
thresholds and resonances in the
l l complex c.m. energy plane. The
corresponding unitarity cuts have
increasing thickness for increasing
energy.
X
x N(1650)
N (1535)
independent of the particular channel. However, residues at AY2(s,m. My) (\/§+MN)2_mi
the pole do depend on the examined channel because they p(s)= (42)
determine the coupling of each of the channels to the reso- 16ms 2Vs
nances. This interesting point will be discussed elsewhere
[29]. has been introduced, understanding (@) is a function of

To begin with, let us assume a situation where the couple¢he real variables. Then, analytically continuing the phase-
channel formalism is not needed, i.e., an artificial Situationspace function to all Comp|ex p|anes] the unitarity condition
where only the 11 element of the first column and row of theregds
D matrix in Eq.(8) is nonvanishing. In such a case, elastic
unitarity requires only a unique finite branch pointsats,
=(My+m,)? and a cut along the lings, ,+%[. The scat-
tering amplitude in the unphysical second Riemann sheet
[t (s)] is simply obtained by analytical continuation of the
amplitude in the physical first Riemann shégts)=t,(s)] where the cuts fo)\l/z(z,mfr,Mﬁ,) go along the real axis for
across the unitarity cut, and therefore the following relation—*<s<s_ and s, <s<w. The function is chosen to be

for inverse amplitudes should hold ¢eal and abovs, ): real and positive on the upper lip of the second sut<s
<o and hence it satisfies:

t, Y(s+ie)—t; N(s—ie)=2ip(s+ie), s,<seR
(43)

t, Y (s+ie)=t; A(s—ie). (40)
The unitarity condition for the inverse amplitude, deduced AY2(s+i e,mi,Mﬁ)= V(s e,mi,Mﬁ)
from Egs.(33), (30), and(A12) reads
=\Y4s,m? ,M2)|, s,<seR.

Disdt™Y(s)]=t, Y(s+ie)—t; Y(s—ie)=2ip(s), s>s, (44)
(41)
Besides, the cut for thgz function, also appearing ip(z),
with se R, where the phase-space function is taken along the line}¢,0] and the multivalued function
Im (z)

FIG. 6. Different paths in the complex plane
showing how to reach the poi&located in the
physical scattering region in the intervg{m,,
+My)2,(m,+My)?] from pointsP (eventually
poles located in different Riemann sheets, de-
noted by the vecton as introduced in Eq(48),

~ and placed both in the first and fourth quadrants.
Re'(2) The unitarity cuts are also depicted in the figure.
The “distance” betweerS and P is obtained by
the length of the shortest path joining them. This
, can be achieved after continuous deformation of
the paths depicted in the figure, i.e., any deforma-
tions without intersecting the branch points.

i
'
'

]

/1P 1000
/' —(1100)
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is taken to be positive for real and positive valuez.dllow  unitarity cut, of the inverse amplitude is determined by the
using Egs(40) and(43) one finds the amplitude in the sec- function
ond Riemann sheet, ) )
s—m2+ Mg

24s

as it is deduced from Eq$33), (30), and(A8). Because of
the choice of cuts for the multivalued functigfz above, the
On the other hand, functionL(s) introduced in Eq(A9) determines the analyti-
cal structure ot(s). Thus, the two Riemann sheets t¢6)
related to the unitarity cut are obtained from the values

—Jo(8) X +My

(47)

t,}(2)=t, Y(20-2ip(2), zeC. (45)

e iyt Lia i Yo o re iyt Lia =0 and 1 in Eq(A13) for L(z,n).
ti(s—le)=t As—le)=2ip(s—ie)=t, (stie) In the general case of multiple thresholds, as is the case in
—2ip(stie)—2ip(s—ie) this work, the above conclusions hold for any of the finite
branch points, located at the physical thresholds, and unitar-
=t|_1(s+i €), s, <sel (46) ity related cuts going along the lin¢sranch pointge[.

For four channels there are a total number &£46 Rie-

_ _ ~ mann sheets related to unitarity. No@;(s) and hencé_(s)
which means that there are only two Riemann sheets linkedecome diagonal matrices in the coupled channel space:
to the unitarity cut. The analytical structure, concerning thenamely,

Lo (ZNan) 0 0 0
Loz 0 Lm”MN(ZvnnN) 0 0 48
' 0 0 LmKMA(ZanKA) 0
0 0 0 Ly (ZNks)

with ze C, n=(n,y,n,n,Nka ,Nks) and the dependence in mann sheet, located in the fourth quadrant and with values of
the masses of the functioh is explicitly given. The first Rez belonging to the above interval, are expected to have the
Riemann sheet[t;(s)] corresponds to the choicen biggest influence on the scattering amplitude, as is illustrated
=(0,0,0,0). As mentioned above, poles can only occur irn Fig: 6. Similarly, for the region r, +My)?<s<(my

any of the remaining 15 Riemann sheets. The closer the pot M,)? the poles of the (1,1,0,0) Riemann sheet, located in
sition of the pole to the scattering regitthe upper lip of the  the fourth quadrant and with values of Rbelonging to the
first Riemann shegthe bigger is the influence on the scat- above interval, are expected to play a crucial role, and so on
tering amplitude. All Riemann sheets can be reached con- - - -

tinuously from the first one by looping around the appropri- Thus, we define the “second Riemann sheet” in the rel-
ate branch points. From this point of view, close meansvant fourth quadraritt; (s)] as that which is obtained by
proximity following a continuous path. Thus, for the region continuity across each of thgfour unitarity cuts. It is obtained
(m,+My)2<s<(m,+My)? the poles of the (1,0,0,0) Rie- using for the diagonal matridy(s) the following function*?

L(21,0,0,0 if (m,+My?<Rez)<(m,+My)?
L(21,1,0,0 if (m,+My)’<Re(z)<(mg+M,)?
L(z1,1,1,0 if (mc+M,)2<Rez)<(mg+My)?2
L(z1,1,1,2 if (mg+Ms)?<Rez).

Ly(2)= (49

3Though each of the functioris(z;n) are analytical in the complex plane, except for the pertinent unitarity cuts, not€ thea defined
is continuous for real values &f but presents additional discontinuities out of the real axis.
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It11(8)] [fm]

Second Riemann Sheet

5 | 7 7 il Scattering Line

85

Second Riemann Sheet

Scattering Line First Riemann Sheet
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FIG. 7. Modulus of therN— 7N element of the scattering amplitudés), defined in Eq(33), in the ss<complex plane. In both plots,
vertical lines indicate the position of the poles. Top panel: Fourth quadrant of the “second Riemann sheet,” as defin¢49n &wl the
physical scattering line. The two observed poles are identified to b8,theN(1535) and—N(1650) resonances as it is discussed in the
main text. Bottom panel: Fourth quadrant of the “second Riemann sheet” and the first quadrant of {peyska) Riemann sheet. Besides
the two poles already appearing in the top panel, there is a third one. Though it is unphysical because it appears in the physical sheet out of
the real axis, it does not influence the scattering line as the plot clearly shows.

In Fig. 7 we show the absolute value of the(s) element  where all units are given in MeV and errors have been trans-
of the scattering amplitude both for the fourth quadrant ofported from those in the best fit parameteg. (C1)], taking
the “second Riemann sheet” and the first quadrant of the@nto account the existing statistical correlations, through a
first (physica) Riemann sheet. The physical scattering takesMonte Carlo simulation. These poles are resonances and can
place in the scattering line in the plaispper lip of unitarity = be identified to be theés;;—N(1535) and—N(1650) ones
cut of the first Riemann sheetThe positions of the two which, according to Ref.27] [Particle Data GrougPDG)],
poles in the “second Riemann sheet’ aressM% are located at
- | M RFR):

N(1535: Mg=1505-10, 'R=170+80, (52

first pole: Mg=1496.5-0.4, I'r=83.3:0.7, (50 N(1650: M g=1660+20, T'g=160+10 (53)

second pole:Mg=1684.3-0.7, ['r=194.3-0.8, where again units are in MeV and we quote data from the
(51)  position of the poles which are slightly different to those
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deduced from a Breit-Wigner fit. The agreement of our predisfactory. Thus, and despite having neglected the three-body
dictions and the PDG ones is satisfactory. Our calculateghroduction channek#N, we provide a rather successful de-
width for the N(1535)N(1650) turns out to be smaller/ scription of thesswave andT=1/2 meson fr, 7,K)-baryon
larger than the experimental one, in great part because i{N, A, X) scattering up to almost 2 GeV in the strange-
mass is slightly smaller/larger than the data and hence theess zero channel. Couplings of tN¢1535) andN(1650)
available phase space for the decay decreases/increases. Besonances to the different open meson-baryon channels can
sides, the inclusion of the three-body channel(N) would  be obtained from our amplitudes and it will be discussed
influence both the widths and the masses of the resonancesisewhere.

Residues at the poles depend on the examined channel, Nevertheless our calculation has some obvious limitations
because they determine the coupling of each of the channetsd hence it might be improved. Besides the inclusion of the
to the resonances. Thus, from the results shown in Fig. 7 ong 7N channef'® one should consider the inclusion of higher-
could predict the coupling of thé&l(1535) andN(1650) order terms in the two-particle irreducible matrix amplitude
resonances tarN. A detailed study of the couplings of these (potentia) which would lead to a realistic predictions for
resonances to all channels, not oniN, is presently under higher partial waves in th&=1/2 channel. Understanding
way. the free parameters of our model and their numerical values

On the other hand, there is a unphysical pole in the physipresented in EqC1), in terms of the LEC’s appearing in the
cal (first) Riemann sheet. It is located a&=M?+i MI")M higher chiral Lagrangian order pieces, either within the
~1582 MeV andl'~166 MeV and it violates the Mandel- HBChPT formalisn17] or in the fully covariant framework
stam’s hypothesis of maximal analyticit28]. This unphysi- recently developed in Ref30], would be obviously desir-
cal pole appears because we have truncated the iterated pable. As we have shown in Appendix D, such a task would,
tential to solve the BSE. However, as can be seen in that least, require to know the perturbative®1brder to take
plots, the two poles in the “second Riemann sheet” have anto account the likely importangN-channel effects, which
much larger influence on the physical scattering than the spuware effectively incorporated in the BSE scheme presented in
rious (unphysical one. Thus, the influence of this unphysical this work.
pole may be disregardéd. Given the phenomenological success of the presented

framework, it seems natural to extend it to other nonzero
strangeness channels; for a recent overview of related aspects
IV. CONCLUSIONS see for instance Ref31], or to the study of meson photo-

In this paper we have developed a Bethe-Salpeter formaprOdUCtlon ProCesses.

ism to studys-wave andl = 1/2 meson-baryon scattering up
to almost 2 GeV. We work on a four-dimensional two-body ACKNOWLEDGMENTS
channel space and the kernel of the BSE takes into account
chiral symmetry constraints as deduced from the corresponq.l-
ing effective Lagrangian. At lowest order in the chiral expan-_’
sion for the potential, an analytical explicit solution is found
which manifestly complies with multiple channel unitarity.
Among the several issues which can be explored using the
present formalism, we have focused our attentionzdw APPENDIX A: BASIC INTEGRALS
elastic scatteringphase shifts and inelasticitieand the
measured inelastic cross sections, the agreement with expe
ment being rather good. Besides, some predictions for oth
cross sections, not yet measured, have also been given.
have undertaken a careful discussion on the analytical struc- 4
ture and continuation of the scattering matrix amplitude to IP)=i f d'qg 1 1 (AD)
the complexs-plane, which becomes mandatory in order to (2m)* q2—ﬁ12 p_a_m '
extract the location of th&,; resonances. We have searched
for poles in the “second Riemann sheet” and compared both 4
masses and widths to data. The agreement is also quite sat- J?(P)=i f (g (14 -
mq

We warmly thank C. Garcia-Recio, E. Oset, A. Paaen

R. Pelaz, and A. Ramos for useful discussions. This re-
search was supported by DGES under contract PB98-1367
and by the Junta de Andalucia.

. We display the explicit expressions for the loop integrals
Used in this paper. The basic integrals appearing in the solu-
rgn of the BSE are

1 1
-m? P—¢—M

4

YBecause of Schwartz's reflection principle there is also a pole in =J(P)(P—M)—Ag, (A2)
the fourth quadrant of the first Riemann shestmplex conjugated
of that given abovewhose influence is even more negligible than
that of the first quadrant. This is because it is placed at a substan-In our point of view, it is a highly nontrivial task to find a
tially larger distance of the upper lip of the unitarity cut. The exis- solution of the BSE including a three-body intermediate state ex-
tence of other complex conjugated poles, both in the first Riemanmactly complying to three-body unitarity. In some cases, for instance

sheet or in any of the unphysical sheets, is not precluded, but frorfor elasticwrN— 7N, mesony production, . . . , somdnsight might
Fig. 7 we infer that their influence in the scattering is not signifi- be obtained by treating perturbatively the process, as our results
cant. suggest.
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d4q 1 1 )\l/Z(S,mZ,M2)
Ji(P) |f(277)4 qZ—ﬁﬁqp—q—M (s)=L(stie) S
=(P—NM)I(P)—As, (A3) N
S—s_
4 1 ! X Iog T —imy, (AlO)
. q TS+
J — - - —
2(P) IJ(ZTT)4 q2—m2ﬂP—q—Mq ! S—s_
=(P—M)J(P)(P—M)—(P—M)A; (A4)  where we have defined the pseudothreshold and threshold
variables as

and the results are obtained from relativistic and translational
invariance requirement in momentum space. Harg,is a
quadratically divergent integral

s_=(m—M)?, s,=(m+M)? (A11)

respectively, and the logarithm is taken to be real. Note that
L(s;)=0. Fors>s, the imaginary part along the unitarity

_ d*q 1 cut may be computed directly from the above E410) or
Apn=i f 2m) (A5)  through Cutkosky’s rules,

2ilmJg(s)=Discly(s)=[Jp(s+i€)—Jp(s—ie€)]
which would require renormalization. Besides, the linearly

4
divergent integrall(P) can be evaluated yielding =j f g—q)z(—2wi)25+(q2—m2)
m
s—m?+M? M| - X 8 [(P—q)*—m?]
IP) =P | ——g | Jo(s)+ 5[+ MJo(s), (A6) AY2(s,m2,M2)
=—2i——————20(s—s;). (Al12)
167s

dlq 1 i dlq 1 Up to a 1672 factor the functionL(s) has the same discon-
(2m)* q2— 2 (2m)* q2—M2"  tinuity as the functionJy(s). Taking into account that we
(A7) have to evaluate the functiakly(s) not only for reals>s,
but also below threshold and in the second Riemann sheet

o . : as well, to look for the position of resonances in the complex
whereAp;,y is quadratically divergent as well and the loga s plane, we give here the analytical continuation Lefiz)

rithmically divergent integrallo(s) needs one subtraction to used in our calculation, Defining. =|z—s. | and taking the

make it finite. Choosing for definiteness the threshold value ~.~". o
S principal arguments, Arg(..), 6. of |z—s.| to lie in the
s=(m+M)~ we get

range G= 60, <2w and — w< 0_<r, respectively, we have

Ar=An—Ay=i

d*q 1 1 _(pep)'? i(0,+0_+2nm)12 -
Jo(s)=i f P~ L(zn)=—"}>—¢ {In|R(z)| +iArg[R(2)]
q?—m? (P—q)?~

_ A —2mi},
=Jo(s) +Jo[s=(m+M)?] (A8)

1/2ei 0+/2+ piHZei 0,/2ei nmw

R(z)= (AL13)

with Jo[s=(m+M)?] a divergent integral and the finite

1200 0,12 12,0 0_[24ina’
= 6 pi€e
function Jo(s) is given by

pe' -

where Ard R(z)] should be taken in the intervgd, 2| . For
M n=0 one gets the first Riemann shdg{z)=L(z,n=0),
In—+L(s)] which only has a(unitarity) cut along the real axis, <s
m (A9) <. When going across the unitarity cut once we jump into
the second Riemann sheet, correspondingntel, L, (2)
=L(z,n=1). If we loop twice around the threshold branch

MZ—m? M-m
S M+m

Jo(s)=

1
(477)2[

and for reals and above thresholdn(+M)?, we have

Eor instance, when calculating the elastitl scattering, obvi-
163,(s) is a diagonal matrix in the coupled channel space and foously there are values ofs below heavier thresholds
simplicity we work from now on in a given channel. 7N, KA, KX.
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point z=s, we come back to the original Riemann sheet. (P—N)D
The second Riemann sheet has an additional cut along the Ygr=YrGD+ZGD+ I (B4)
real axis—oo<s<<s_ and the following relation holds: f

AY2(z,m2,M?2) Apl 1 - 1

= 7 Y =X|G+—|—=D(P-M)+Y.G =
Ly(z2)=L,(z)+2mi - , (A14) L e Py ( )+YL Py

where the cuts foh¥4(z,m?,M?) go along the real axis for . D(P—M)
—oo<s<s_ and s, <s<c, The function is chosen to be XD(P—M)+ £2 ' (BS)
real and positive on the upper lip of the second sut<s
<o and correspondd. Y3(s,m?,M?)|=\Y4(s+i e,m? M?). Azl 1 i 1
The —2i constant appearing in EGA13) determines the Z=Yg| G+ — ——D(P-M)+Z2G——+
chosen Riemann sheet of the logarithm and ensures that f</P—M P—M
L,(2) is purely real along the real axis below threshold. Note «D(P—K1). (B6)

that sinceR(z) only vanishes at infinity we never have a
chance to cross the cut of the logarithm and never changg§ymming Eqs(B3) and (B4), and Eqs.(B5) and (B6), we

log-Riemann sheets. get after some matrix reshuffling
APPENDIX B: DERIVATION OF THE SOLUTION (P— '\7') _ 1
OF THE BSE 2 =(X+Yr)(D™T*=G)—(Y_+2)G, (BY)
Here we show how to derive E@28) displayed in the A A
main text. The ansatz of E@26) reduces the BSE integral _ (P—M) = (X+Yg) G+ﬁ (Y, +2)
equation Eq(20) into a set of linear equations for the matrix 2 R 2 -

coefficientsa, bg, b, , andc R R
X[(P—M)" D Y (P-M)—-G]. (B8)

N D N N D
a=a[(P— M)J—Ar;w]f—2+bL(P— M)[(P—M)J—Ar;q]f—z, Subtracting and summing Eg87) and (B8) we get

(X+YR) =(Y +2)| (P—M)" D LP-M)

- D ) ) D
br=bR[ (P—NM) 3= Ag]ez +c(P—M[(P—NI-Ag]e

N1
D -1 _m
v, x| DT ] (B9)
2(P—M) A;
D N D D - -1_ _-m
bLZan—2+bL[(P—M)J—Ar}]]f—2+f—2, £2 (X+Yg)| D 2G f2 +(YL+2)

X[(P—M)"'D"YP-M)-2G], (B10)

D N D
c= bR‘]f_Z +el(P- M)J_A’}‘]f_z' (B1) respectively. We can then solve f@r+Y, from Egs.(B9)

and(B10) yielding
In the above equatiod stands forJ(P) defined and evalu-
ated in Appendix A. The solution of this matrix system is (YL+Z)‘1=H(P—I\7I)‘1D_1(P— N
tricky although straightforward. The main complication
arises from the noncommuting character of the fermion mass

N -1
matrix M with the coupled channel matrices b, , by, c, -1 ﬂ _ Ny -1
andD. Defining X\b 2 T11(=26G)+(P=M)
~ ~ -1
- —(P— - _ . A
X=a, YR (P M)bR, Y|_ bL(P M)v XD_l(P_M) D—l_‘_f_;n
N N 1 N
Z:(P—M)C(P_M), G:—Z[(P—M)J—Afn] A 2
f XD -2 4| f—m. (B11)
(B2) 2 2(P—N)
The set of matrix equations can be written as Using the proportionality relation betweeX+Yg and
Y, +Z given by Eq.(B9) we obtain the following expression
X=XGD+Y,_GD, (B3)  for the on-shellt(P) matrix:
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A /(mg+My)2=—2.923+0.008, (C1

t(P)=X+Yr+Y +Z=(Y +2)| (P—M)" D L P—-M)

As /(mg+My)?=1.000+0.017,
-1
+1

An
-1 m

A /(m,+My)?=—0.0123+ 0.0003,

X ) (B12)

A, /(m,+My)?=—0.1560+=0.0002,

Inverting this equation and using E@11) we get finally the
expression given in Eq28). Ay /(Mg + M , )%= —0.0063240.000003,

APPENDIX C: BEST FIT RESULTS Ag o/ (Mg +My)?=0.001128 0.000003.

The best fit §?/dof=0.75) parameters are The correlation matrix, defined as usual,
J,n=0.1897=0.0004, i = (XiX;}),
J,n=0.6206+0.0002, ci—(c;)
X =B —ioy?’
Jun=—1.227+0.003, {ci)—(ci)
N
_ 1
Jks=—0.01430.005, (fer, - el =5 Zl f(Crar -+ Cra)s (C2)

Ay /(M +My)?=0.776£0.002,
c; being any of the 12 parametei$s andA’s, turns out to

A2/ (M, +My)?=1.83750.0004, be
1.00
—~0.62  1.00

0.35 0.21 1.00

0.28 —0.28 0.48 1.00

0.67 —0.22 0.57 0.09 1.00

0.63 —-0.35 —-0.18 —-0.15 0.00 1.00

0.32 0.24 0.97 0.42 0.49-0.10 1.00

0.36 —0.30 0.51 0.99 0.14 —0.09 0.43 1.00

050 —-051 —-0.30 —-0.08 —0.21 091 -0.25 —-0.04 1.00
—0.51 0.48 —048 —-0.62 —-0.71 0.30 —0.33 —0.65 0.30 1.00

0.10 —-0.37 0.12 0.20 0.56 —0.59 0.01 0.18 —0.55 —-0.77 1.00
0.19 —-0.03 0.54 0.48 0.67 —0.56 0.42 0.48 —0.69 —-0.84 0.72 1.0

(C3

The large correlation§0.97 and 0.99between the pairs should reduce to a one-particle scattering problgmour
Jua—A, andJgs — Ay can be understood by looking at Eq. case of meson-baryon scattering it would correspond to a

(34) and taking into account the smallness of the parameter§lein-Gordon equation with a spin-dependent poteptill
Ay andAy ,, respectively. has been known that the BSE has some difficulties in repro-

ducing this heavy-light limit in certain situatiorifadder ap-

proximation to one boson exchan{g?]). We show below

APPENDIX D: THE HEAVY BARYON LIMIT that our amplitqde has.a correct one particle limit dge to 'ghe
fact thes-wave interaction is of the contact type. If, in addi-

AND HBChPT . . . o
tion to a heavy baryon expansion, a chiral expansion in pow-
The study of the heavy baryon limit of the BSE amplitude ers of 1f? is carried out, we should recover in this double
given in Eq.(34) is, in principle, of theoretical and phenom- expansion some form of the results found in RE28,26,14
enological interest. In the static limit, baryons behave likewithin HBChPT for the elastierN scattering amplitude. The
fixed sources, and consequently the two-particle problenmeavy baryon expansion may be taken by making the baryon
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massesMl — o but keeping the meson masses, and the MJy(S,MM)| 5= MZi w212+ o
.. N T
meson momentuny, finite. On the other hand, baryon mass

splittings must be considered higher order effects, see, e.g., 1
[19], so that we take the mass matrix =Knm(w) +0O M)
M=Mg+AN D1 0 1 M "2 1
B (D1) =MIou+ 16W2Iogﬁ(m—w)+Km(w)+(’) M)’
with Mg—o the common mass of the baryon octet which is (D5)
proportional to the identity matrix. Accordingly, in theN
elastic channel we take where the HBChPT unsubtracted integrilg (), fulfill-
ing K,m(m)=MJ,,» and the heavy baryon approximation
w?—m? of the subtraction constant defined through E&8),
Vs=E+w=My+w+ o, (D2)
2My 1
Jo[s=(m+M)?]=32,4 1+ 0 M)] (D6)

whereMy=Mg+AMy. In this appendix we match our am-
plitude to the HBChPT third order results of Rgf4| based  have been introduced. In the static limit we obtain from Egs.
on the previous analysis of Ref25,26. The heavy baryon (16) and(34) [f(w)— —t(s)/(4)]

expansion can be directly done for explicit variables,

such as masses and c.m. energ. The constants _ 1 M2 . ~ 0
Jans - - ANas - - AL, ..., given by our numerical fit in f(w)'=87 Ki(w) + ——In=— (M- w)+MJ: ¢
Eq. (C1), also might have a baryon mass dependence. Such a 167" m

dependence should lead to some changes in the heavy baryon 0 -1
expansion which cannot be easily determined. In addition, 4 MM 4—W[A9 _ ED+ iDAQD ]
given the nonperturbative nature of our solution and the fact 4M o | ™ |[f2 f4m

that many aspects of the coupled channel meson-baryon data D7)
in the S;;—strangeness zero channel are described after uni-
tarization up to energies as high ds=2 GeV, it seems with Efn(w)=Dia@[KT(w)K,,(w)KK(w)FK(w)] and the

obvious that the parameters of E(C1) also incorporate heayy haryon approximation of the subtraction constants are
higher-order effects in the chiral expansion. defined by means of the expansion

il
wl

The Eg. (D7) corresponds, as it should, to a one-particle
(M- ) scattering problem, fulfilling the coupled channel unitarity
condition

1. Static limit ~_AO
Am—Aﬁ1 1+0

It is convenient to do the study in terms of the inverse
coupled channel matrix amplitude,*(s), given by Eq(34).
From the expression of the one-loop integral E&9) and AﬁwM:A%M
Eqg. (A10) we get to leading order

1+0

— 1 M2
MJo(s,m,M)] 5= \/Wﬂ”:r&-ﬁlog(ﬁ

+Em(w)+o($). Imf(w) = —Vw2—m26(w—m). (D8)

(D3)  The pole in Eq.(D7) for the inverse amplitude is a static

' ' . ' limit reminiscent from the baryonic Adler zerg's—M=0,
The subtraction point for the HBChPT integrals is  of the lowest order potential. The constant combination ap-

=m, K.(m)=0, and their explicit expression is pearing in the inverse amplitude, EqD7), I\A/IJ?m\;I
p +A?n,\7|/4l\7l should go to some definite value in the static
— Jol—m?2 arccos)(r _ ﬂ>, w<-—m, limit, M—oo. In case it would diverge, the scattering ampli-
m tude would become trivial. We may try to estimate these

_ 1 ® constants using the numerical values obtained inythdit
Km(w)= a2 { HVmP-ow? arcco% - E)’ w?<m?, carried out in this work and given in E¢C1). We get
o
w i A71'N
+Jw*—m? arccosh—|—i7|, o>m. MNJwN+—4M =—-0.4"Mm,,
\ m N
(D4)
AN
. . MNJ”N+—=—1.08’T1,7,
Thus, one obtains for the unsubtracted integral 4My
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In the heavy baryon limit we get for the elastitN— 7N

KA
MAJKA+4MA =+0.67my, amplitude in theS;; channel
A flw)=f)(w)+fi(w)+--- (D13
MsJys + ﬁz —1.24m, (DY)
2 with

in units of the relevant pseudoscalar meson masses. Though
the numerical values used for the subtraction constants con-

tain higher order effects in the heavy baryon expansion, we 2, 2 2. 9
see that there is indeed some trend to cancellation, becaugg )=+ —~_ — M+ ™  w@mste’) ! ,
theJ’s and theA’s contributions have opposite signs in the 47f2  8wfiMy  16mwfiM3E M3 2
first three cases, angky is very small. Moreover, the con- (D14)
stants do not seem to attain unnaturally large values, al-
though it is hard to say which should be an accurate appro-
priate value. )
N
2. Chiral and heavy baryon expansion fa(w)=~ Tfi E( 2K7TN(w)jLZM f2 2Kia(®)
Expanding Eq(34) in powers of 1f? we get
Bn ) Lo () +
2M,) 2| TR oM
t(s)=ty(S) +tys(s)+- -, (D10)
where 3w |16 9 Aot 1 A
256mf2|f2 7 f2 0t g2
1 A
to(s)= —{Vs—M,D}, (D11) 1
f +0 (D15)
M4

20 (5 )+ {5 1,D)
Js—M f4 ’ In the regiod® m_<w=my only theK () has an imagi-
R nary part, to comply with perturbative elastic unitarity,
(\/—+ M)2—m An A wherea , (w) andK s (w) are purely real. To write down
2.s ‘]O(S)_ Js—M + 2s this expression we have considered the prescripBafh?

—f7'Df ! given in Eq.(9). At threshold,w=m,,, the 7N

1 “
t4<s>=f—4<£—M)D

><{\/§—I\7I,D}. (D12 scattering length in this channel reads
|
m, m?2 me m2 (16 10 A?TN 9 g0 P [( | M,
a.N= - + - — - + —4+ — 1 (m,—mg)log—
NCanfl antiMy 4nfiM? 64nfllf2 Mot o) * 2| TTATKAT oMy g2 <% me

0

m,, Ags 1 M m,
+\/m§—miarcco€—m—) ZMEJKE+2M +—{(m mK)Iogm—EJm/mﬁ—mearcco%—m—)]D
K

K 4772 K
y M 12800, 9 o +1A° P (D16)
256mf2| 277 2t §2 72 2M3 M4’ 6

From Eg.(D15) and Eq.(D16) above it is clear that there is because on general grounds we expectriNechannel to be

no contribution from theyN channel to this ¥/ order of more important at low energies than tke\ andK3, chan-
approximation. This is a direct consequence of the structureels since their thresholds lie at higher energies. Using the
of the coupled channel matri@ given by Eq.(8) since the  numerical values of the coefficients obtained from the fit of
correspondingTN— zN transition matrix element vanishes

in the Born approximation. For this reason, the chanyil

starts contributing at order ff. This situation is unexpected, ®Note, that theyN channel appears at orderf4/
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Eq. (C1) to estimate the scattering length, EB16), we get  higher order corrections to thE andA° coefficients. This is
very reassuring because the full BSE amplitude, &4),

aN KA K% besides restoring unitarity automatically includes all orders
a,xy=022+022—1.06+0.18= —043 fm in the chiral expansion.
—_—
1/f2 1/]‘4 (Dl?)

3. Matching to HBChPT
which should be compared to the one of E88) obtained
from the full amplitude, 0.179 fm. Obviously, the different = The S, partial wave amplitude deduced from the work of
values should be attributed to non-negligible higher ordeRef.[14] based in HBChPT to third ord¢25,26| reads, after
effects, which in particular includejN contributions, and straightforward angular integration,

o m?g2+ w?mi[ — 6—48az+4g3]+ o[ —6+48(a; +a,) — 593]
+

fo(w)=

af2 g 48f2M T w?
mlg2— giw’m? + w*m3[6—48a,— 2a;) — 7gi]+ 0% 6—48a, + 7g3]
2012 _ 3 ) (D18)
48F2M2 7w
“)ziw( ) 3.2 2 = 2 2 2
fo(w)=— [~ 102m2 g2 7+ wm2[ — 130+ 144G, — 2302 ]+ 14492 7m0

_|._
27t 576002 78

13gam>

+ 03[115+ 720 b, + b, + b)) — 205921} + lo
[ Q(by +by+b3) — 205931} 384G 72— o) g

w? (1+g3)mie
m2)  128%73(w?—m2)
®[3(1+g2)m3+2w%(1+502)] '('w> g2(13m? — 460°m? + 480%) ’( wz—mz)
+ al arctan ————

1924 73\ w?—m2 m, 19204 72\ w?— m?

'6 ; )
arccosf—-
m

ks m

There is no unique way to match the low energy chiral exthe parameters in Ref14] in Eq. (D19) the following iden-
pansion of the coupled channel BSE amplitude, ®4.5), to tifications hold(in units of fm):

the third order HBChPT calculation of Reff25,26], Eqg.

(D'19).. The analytical stru_cture is different bgsides the elastic () 1g5-0 175+ 22-@+2-51&% + 17'3@ + 1.57@\
unitarity cut atw=m_ which turns out to coincide. Indeed, ' ’

while the former presents the inelastic unitarity cuts for the +2_1ﬂ‘2+ 0.17A%-7.60°%,—3.012,
consideredK A andKZ3, coupled channels, the latter includes
perturbatively the left-hand cut ai=0. Obviously, any par- —O.SSTJEE,

ticular choice of the matching point generates a specific set
of low energy constants. After explicitly separating the elas- — — — —
tic unitarity correction of both amplitudes, it seems reason- — 0-051=0.163+20.3A 7+ 5.01A 1+ 15.7Ak ; + 3.14A
able to do the matching of the remaining pieces in a polyno- ~0 il o _ 0
mial expansion around the elastic threshold poiss m_,, 1944 5 0.35% 5 ~ 15207~ 6.01

since neither inelastic unitarity cuts nor the left cut are ex- —0.714% (D20)
pected to be crucial at that point. Instead, we expect both

amplitudes to provide a sensible approximation. Also, direct 0 0 ) — 0 ) _
inspection of Eq.(D15) and Eq.(D19) reveals that only Wwhere A-=A-/(m+M)* and Ag=Ag/(m+M)“ are di-
some additive combinations among renormalization conmensionless. As we see, there is a large degree of redun-
stants can be established. In particular, in @iL5) there are dancy when the matching is performed considering only
two independent combinations of low energy constantsthese low orders of the expansion. By using the values of Eq.
Thus, it proves sufficient to Taylor expand aroune¢ m, up  (C1), to estimate the heavy-baryon mass independent param-
to first order. Using the numerical values for the input pa-eters appearing in the right-hand side of the two relations
rameters, Eq(37), in Eq.(D15) and the numerical values for established in Eq(D20), we obtain—0.43 and—0.618, re-
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spectively. The disagreement, with respect to the left-hangominally small difference§ O(1/M)] betweenA®s and

side values, is not completely surprising because the numerj®s and A’'s and J’s might lead to significant numerical

cal values used for the subtraction constants contain highehanges because the factors multiplying these constants are
order effects in the heavy baryon expansion. Besides, thkarge in units of the left-hand-side values of E§20).
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