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CP violation from noncommutative geometry

I. Hinchliffe and N. Kersting
Lawrence Berkeley National Laboratory, Berkeley, California 94720

~Received 16 April 2001; published 9 November 2001!

If the geometry of space-time is noncommutative, i.e.,@xm ,xn#5 iumn , then noncommutativeCP violating
effects may be manifest at low energies. For a noncommutative scaleL[u21/2<2 TeV, CP violation from
noncommutative geometry is comparable to that from the standard model alone: the noncommutative contri-
butions toe ande8/e in the K system may actually dominate over the standard model contributions. Present
data permit noncommutative geometry to be the only source ofCP violation. Furthermore the most recent
findings forg22 of the muon are consistent with predictions from noncommutative geometry.

DOI: 10.1103/PhysRevD.64.116007 PACS number~s!: 11.90.1t, 11.30.Er, 12.60.2i
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I. INTRODUCTION
In recent years there has been a growing interest in qu

tum field theory over noncommutative spaces@1#, that is,
spaces where the space-time coordinatesxm , replaced by
Hermitian operatorsx̂m , do not commute:

@ x̂m ,x̂n#5 iumn . ~1!

Here u is a real and antisymmetric object with the dime
sions of length-squared and corresponds to the smallest p
of area in physical space one may ‘‘observe,’’ similar to t
role \ plays in @ x̂i ,p̂ j #5 i\d i j , defining the corresponding
smallest patch of phase space in quantum mechanics. In
paper we define the energy scaleL[1/Au ~whereu is the
average magnitude of an element ofumn) which is a more
convenient parametrization in constructing an effect
theory at low energies. Many researchers setu0i50 to avoid
problems with unitarity and causality, but since this is on
an issue at energies aboveL @2#, we do not use this con
straint for the purposes of low-energy phenomenology.
may viewumn as a ‘‘backgroundB-field’’ which has attained
a vacuum expectation value, and, hence, appears in the
grangian as a Lorentz tensor of constants@3#. Assuming that
the components ofumn are constant over cosmologic
scales, in any given frame of reference there is a spe
‘‘noncommutative direction’’ given by the vectoru i

[e i jku jk . Experiments sensitive to noncommutative geo
etry will therefore be measuring the components ofuW , and it
is necessary to take into account the motion of the lab fra
in this measurement. Since noncommutative effects are m
sured in powers ofpmumnp8n, where p,p8 are some mo-
menta involved in the measurement, it is possible that
powers ofu will partially average to zero if the time scale o
the measurement is long enough. Effects of first order iu
vanish at a symmetrice1e2 collider, for example, if the
measurement averages over the entire 4p solid angle of de-
cay products. If the data are binned by angle then it is p
sible to restore the sensitivity tou. In addition to any other
averaging process over short time scales, terrestrial exp
ments performed over several days will only be sensitive
the projection ofuW on the axis of the Earth’s rotation. O
course binning the data hourly or at least by day-night, t
ing into account the time of year, can partially mitigate th
0556-2821/2001/64~11!/116007~10!/$20.00 64 1160
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effect. This axis, as well as the motion of the solar syste
galaxy, etc., does not vary over time scales relevant to
restrial experiments.

The basic idea of noncommutative geometry is not n
and has been known in the context of string theory for so
time @4#. We refer the reader to a few of the many excelle
reviews of the mathematics of noncommutative space@5–9#
for a more rigorous understanding of the present mate
Noncommuting coordinates are expected on quite gen
grounds in any theory that seeks to incorporate gravity int
quantum field theory: the usual semi-classical argumen
that a particle may only be localized to within a Plan
length lP without creating a black hole that swallows th
particle, hence( i , jDxiDxj>lP

2; alternatively, one is led to
think of space as a noncommutative algebra upon trying
quantize the Einstein theory@10,11#.

Much research has already gone into understanding n
commutative quantum field theory@12–15#; it is equivalent
to working with ordinary~commutative! field theory and re-
placing the usual product by the! product defined as fol-
lows:

~ f !g!~x![eiumn]m
y ]n

z
f ~y!g~z!uy5z5x . ~2!

With this definition, Eq.~1! holds in function space equippe
with a ! product:

@xm ,xn#!5 iumn . ~3!

This ! product intuitively replaces the point-by-point mult
plication of two fields by a sort of ‘‘smeared’’ product~see
Fig. 1!. Indeed the concept of ‘‘smearing’’ is borne out

FIG. 1. An illustration of the star product between two fun
tions. The two scalar functionsc and f are strongly orthogona
@c(x)f(x)50 ;x# yet the! product is nonzero.
©2001 The American Physical Society07-1
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I. HINCHLIFFE AND N. KERSTING PHYSICAL REVIEW D64 116007
more detailed analysis of 1- and 2-point functions@16#:
spacetime is only well defined down to distances of orderAu
so functions of spacetime must be appropriately avera
over a neighborhood of points. In each (i , j ) plane, we must
replace

f~xi ,xj !→E dxi8dxj8f~x8!

3e2[(xi2xi8)21(xj 2xj8)2]/u i j ~pu i j !
21. ~4!

Examples of theories which have received attention
clude scalar field theory @13,17,18#, NCQED ~the
noncommutative analog of QED! @19#, as well as noncom-
mutative Yang-Mills theory@20,21#; perturbation theory inu
is applicable and the theories are renormalizable@22,23#. For
gauge theories, a suitably adjusted definition of the ga
transformations@24,25# permits the construction ofSU(N)
theories. There has been no work explicitly proving that f
mion representations are consistent with such theories, h
ever we know that the proof must exist sin
noncommutative geometry is derived from a string the
which of course is self-consistent for all gauge groups a
representations.1

A noncommutative modification of the standard mod
~SM! is possible as a working field theory, at least up
O(u). Replacing the ordinary product with the! product in
the Lagrangian, the appropriate Feynman rules for
noncommutative SM~NCSM! follow straightforwardly and
are reproduced in Appendix A.

Whatever the physics at the Planck scale is like, we
pect there to be some residual effect at low energies bey
that of classical gravity. If we parametrize this effect as
Eq. ~1!, then low energy physics will receive corrections
powers of the small parameteru. Several papers have ad
dressed how these corrections may modify observations a
accelerator@26#, precision tests of QED in hydrogen@27#,
and various dipole moments@28#; in general, ifL<1 TeV,
there will be some observable effects in these systems a
next generation of colliders. This paper aims to investig
the CP violating potential of noncommutative geometry
low energy phenomenology.

II. COMPUTING IN THE NONCOMMUTATIVE
STANDARD MODEL „NCSM…

The method of computing noncommutative field theo
amplitudes is effected by replacing the ordinary functi
product with the! product in the Lagrangian. The theory
otherwise identical to the commuting one@i.e. the Feynman
path integral formulation provides the usual setting for do
quantum field theory~QFT!#: for example a Yukawa theory
with a scalarf, Dirac fermionc, has the action

S5E d4x„c̄ i ]”c1~]f!21lc̄!c!f…. ~5!

1We thank B. Zumino for useful discussion on this point.
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@Here we have used the fact that*dxj!j5*dxjj, which
follows straightforwardly from Eq.~2!.# Gauge interactions
likewise generalize from the standard form; the action
NCQED for example is

S5E d4xS 2
1

4e2
FmnFmn1c̄ i ]”c2ec̄!A” !c2mc̄c D

~6!

where

Fmn[]mAn2]nAm2 i @Am ,An#! . ~7!

Note the extra term in the field strength which is absent
ordinary QED; this nonlinearity gives NCQED a non
Abelian-like structure. There will be, for example, 3- an
4-point photon self-couplings at tree level~see Appendix A!.

In momentum space the! product becomes a momentum
dependent phase factor which means that the theory e
tively contains an infinite number of derivative interactio
suppressed by powers ofu. This directly exhibits the nonlo-
cal character of noncommutative geometry. From Eqs.~5!
and ~6! we can derive the action for the noncommutati
version of the standard model~NCSM!. We present its con-
tent as the list of Feynman rules in Appendix A.

A central feature of computations in the SM is the pre
ence of divergences and the need to absorb them into c
terterms. The NCSM is similar in this respect, yet it is ne
essary to renormalize carefully: if one simply us
dimensional regularization and sums virtual energies to
finity, bizarre infrared singularities appear in the theo
which are difficult to handle@13#. To illustrate, consider the
loop integral

E ddk
eikmumnpn

~k22m2!2
~8!

which is finite for uu•puÞ0 but is logarithmically divergent
if uuu50. Explicitly, we Wick-rotate Eq.~8!, introduce the
Schwinger parameters@29#, integrate over momenta, and ob
tain

E dS S12d/2e2(1/4)(u•p)2S212m2S. ~9!

If we take uuu50 now, dimensional regularization gives th
usualG@12d/2# which we would absorb into a counterter
of the theory. However for small finite values ofuu•pu we
get an approximation of the integral~9! in four dimensions:

E d4k
eikmumnpn

~k22m2!2
' ln~m2uu•pu2!~11m2uu•pu2!.

~10!

There is a ln(uuu) divergence asuuu→0 which is expected
since in this limit the theory tends to the commutative o
and reproduces theG@12d/2# divergence mentioned above
This is formally correct, however the theory in this limit
awkward to work with since some contributions will diverg
7-2
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CP VIOLATION FROM NONCOMMUTATIVE GEOMETRY PHYSICAL REVIEW D 64 116007
as uuu→0 and must produce final results such as scatte
amplitudes which are finite. For the computational purpo
of this paper, in which e.g.mW

2 uuu!1, it is more convenient
to regularize with a Pauli-Vilars regulator with massM. Then
Eq. ~9! becomes

E dS S12d/2e2[ M221(1/4)(u•p)2]S212m2S. ~11!

Taking the limit uuu→0 now gives

E ddk
eikmumnpn

~k22m2!2
' lnS m2

M2
1m2uu•pu2D

1m2uu•pu2lnS m2

M2
1m2uu•pu2D .

~12!

Note that in the limituuu→0 the second term vanishes whi
the first term reproduces the ordinary~commutative! loop
integral divergence. We subtract this into a counterte
while the remaining piece gives a small correction to
commutative theory ofO„x ln(x)… where x[um u•pu2.
Renormalizing in this manner guarantees sensible result

III. CP VIOLATION IN THE NCSM

In the SM, there are only two sources ofCP violation: the
irremovable phases in the CKM matrix and theQFF̃ term in
the strong interaction Lagrangian~the coefficientQ has to be
minuscule to avoid contradicting experiment@30#!.

In the NCSM, there is an additional source ofCP viola-
it

y,

in
. A

e

11600
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tion: the parameteru itself is theCP violating object, which
is apparent from the NCQED action~6! considering the
transformation ofAm and ]m underC and P and assuming
CPT invariance@31#. Physically speaking, an area ofO(u)
represents a ‘‘black box’’ in which some or all spacetim
coordinates become ambiguous, which in turn leads to
ambiguity between particle and antiparticle. More detai
work reveals thatu is in fact proportional to the size of a
effective particle dipole moment @32#. Therefore
noncommutative geometry can actuallyexplain the origin of
CP violation. At the field theory level, it is the momentum
dependent phase factor appearing in the noncommuta
theory which givesCP violation. For example, the NCSM
W-quark-quarkSU(2) vertex in the flavor basis is

LWqq5u~p!gm~12g5!eip•u•p8d~p8!Wm . ~13!

Once we perform rotations on the quark fields to diagona
the Yukawa interactions, i.e.uL→UuL and dL→VdL , the
above becomes

LWqq5u~p!gm~12g5!eip•u•p8U†V d~p8!Wm . ~14!

Even if U†V is purely real, there will be some nonzer
phaseseip•u•p8 in the Lagrangian whose magnitudes increa
as the momentum flow in the process increases. Of cou
the above phase factor has no effect at the tree level~suitably
redefining all the fields! but will affect results at 1-loop and
beyond.

Experimentally, the signal for noncommutative geome
here is a momentum-dependent Cabibbo-Kobaya
Maskawa~CKM! matrix ~NCCKM! which we define as fol-
lows:
V̄~p,p8![S 12l2/21 ixud l1 ilxus Al3~r2 ih!1 iAl3rxub

2l2 ilxcd 12l2/21 ixcs Al21 iAl2xcb

Al3~12r2 ih!1 iAl3rxtd 2Al22Al2ixts 11 ixtb

D ~15!
is a

r
-

n

d-
n

where xab[pa
mumnpb8

n for quarks a,b. This matrix is an
approximation of the exact NCSM in the perturbative lim

where we expand2 eip•u•p8'11 ip•u•p8. In the limit u

→0, thexab all go to zero andV̄ becomes the CKM matrixV
in the Wolfenstein parametrization@33# in terms of the small

numberl'0.22. Note thatV̄ is not guaranteed to be unitar

since, in contrast to the SM CKM matrix,V̄ is not a collec-
tion of derived constants: a given matrix element will atta
different values depending on the process it is describing
an example, suppose we measure a non-zerot-polarization
asymmetry int→bt1n @34#; this puts a constraint on th

2We thank D. A. Demir for help in clarifying the notation.
s

value of I(V̄tb) at the energy scale3 m'mt . We can get

another constraint onI(V̄tb) through aB02B̄0 oscillation
experiment, but we must take into consideration that this
measurement at the energy scalem'mb . In the former pro-

cess we would find~for h50! I(V̄tb)'O(mt
2uuu) whereas

in the latter it would beO(mtmbuuu), so these phases diffe
by a factor ofmt /mb'30. Therefore we expect the phenom

enology ofV̄ to be rather different from that of the SM. I
addition toCP violation from the weak interaction~in V̄),

3Actually, there is a lot of uncertainty in this measurement, inclu
ing the values of the MNS matrix@35#, so measuring the phase i
practice is not straightforward.
7-3
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I. HINCHLIFFE AND N. KERSTING PHYSICAL REVIEW D64 116007
there will also beCP violation from the strong and electro
magnetic interactions@since there are phases entering a
vertex with three~or more! fields~see Appendix A!#. We now
turn to the phenomenological implications of these.

A. CP violating observables

1. eK

The CP violating observable of choice in theK0-meson
system iseK which is directly proportional to the imaginar
part I(M12) of the box graph~see Fig. 2!:

eK[
I~M12!

Dm
. ~16!

The mass splittingDm between the long- and short-livedK0

eigenstates isDm'3.5310215 GeV @36#. We can rewrite

I~M12!5
GF

2mW
2f K

2BKmK

12p2
I~ loop! ~17!

in terms of the decay constantsf K ,BK , and the loop factor.
In the SM, the loop factor is

I~ loop!'I„lc
2f ~mc!1l t

2f ~mt!1lcl t f ~mc ,mt!…
~18!

wherelq[VqdVqs* and f (x) is a loop function~see Appendix
B!. In the SM, both charm and top quarks contribute roug
equally to the imaginary part of the loop, and the measu
value foreK puts a constraint on the parametersr,h of the
CKM matrix. However, in the NCSM we must replace th
entire loop since the momentum-dependent phases iV̄
change how the loop integral behaves. Note the charm q
will dominate the imaginary part of the graph because
phase of the product (V̄ts* V̄td)2 is a factor ofl8 suppressed

relative to the phase of (V̄cs* V̄cd)
2 @see Eq.~15!#. We record

the evaluation of the loop integral in Appendix B.
If the kaons used in the measurement emerge from a b

with an average velocityb[v/c in the lab frame, we mus
average over the motion of the internal constituents of
kaon, since the entire noncommutative effect is proportio
to p•u•p8, wherep,p8 are the momenta of the constituen
We assume that these momenta have random orientatio
the rest frame of the kaon, subject top1p85(mK ,0,0,0).
The average over these internal momenta produces a r

FIG. 2. The box graph forK0-K̄0 mixing in the standard mode
with exchange of virtualW bosons and up-type quarks from thei , j
generations.
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which is proportional to the velocity of the kaon in the la
frame: ^p•u•p8&'uuubg mK

2 . Therefore it is important tha
thebg of the beam not be so small as to wash out the sig
Recent determinations ofeK use a reasonablebg @37#, so we
do not concern ourselves further with this caveat. Expe
ments at ane1e2 collider ~e.g.@38,39#! where the center of
mass is stationary in the lab frame should, however, see
signal foreK since^bW g&50. As we mentioned in the Intro
duction, the data may be sensitive to the time of day. If th
is a component ofuW along the axis of the Earth, then give
enough statistics there should be a ‘‘day-night effect’’ foreK
which, as far as we know, no experiment has looked for.

In the caseh50 ~so the phase fromV̄ is due entirely to
noncommutative geometry), we obtain

eK'
GF

2mW
2f K

2BKmK

12p2Dm
l2

mK

mW
j2

j[
mW

L
. ~19!

Using GF51.16631025 GeV22, mW580.4 GeV, f K
50.16 GeV,mK50.498 GeV,BK50.7060.2, r50.360.2,
and the latest measurement ofeK'(2.28060.013)31023

@36#, this impliesj'(462)31022 ~see Fig. 3!; in this sce-
nario spacetime becomes effectively noncommutative at
ergies above'2 TeV.

2. e8Õe

Direct CP violation is measurable in the neutral kao
system as a difference between the rates at whichKL,S decay
into I 50,2 states of pions:

e8[
^2uTuKL&^0uTuKS&2^2uTuKS&^0uTuKL&

A2^0uTuKS&
2

. ~20!

Then the ratio of direct to indirectCP violation is

e8

e
5

1

A2
S ^2uTuKL&

^0uTuKL&
2

^2uTuKS&

^0uTuKS&
D . ~21!

FIG. 3. Variation ofe with j[mW /L. Here h50 so all CP
violation is from noncommutative geometry.
7-4
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CP VIOLATION FROM NONCOMMUTATIVE GEOMETRY PHYSICAL REVIEW D 64 116007
The theoretical computation of this ratio is a challenge in
SM not only because the perturbative description of
strong interaction is not reliable at low energies but a
because it is proportional to a difference between two ne
equal contributions, enhancing the theoretical error@40#. The
most naive way to estimatee8/e employs the so-called
vacuum-saturation-approximation~VSA! which is based on
the factorization of four-quark operators into products of c
rents and the use of the vacuum as an intermediate state~for
more details see@41#!. The estimate is

e8

e
'~0.860.5!31023S I~l t!

1024 D ~22!

where in the SMl t represents theCP violating phases from
the CKM matrix,l t5A2l5h'1.331024. The experiments
measuree8/e5(1.9260.46)31023 which does not closely
match the VSA number, but it is possible to use more ela
rate models that agree closely with the measured value@40#.

In the NCSM it is no less difficult to computee8/e; in
particular, the extra phases from noncommutative geom
will become involved in the complicated nonperturbati
quark-gluon dynamics. The best estimate we can make
is ~see Appendix C!

I~l t!'2
mK

mW
j2 lnS mW

jmK
D . ~23!

For j'0.04, we get roughly the same VSA value as in t
SM.

3. sin 2b and the unitarity triangle

The onlyCP violating observation from theB-system to
date, the asymmetry in the decay products ofB0→J/cKs

0

@42–45#, is a measurement in the SM of a combination
CKM elements called sin 2b:

sin 2b[IS 2FVtb* Vtd

VtbVtd*
GFVcs* Vcb

VcsVcb*
GFVcd* Vcs

VcdVcs*
G D ~24!

where the first bracketed factor is fromBd
02B̄d

0 mixing, the
second from the observed decay asymmetry, and the t
from K02K̄0 mixing. In the Wolfenstein parametrization,

sin 2b'
2h~12r!

h21~12r!2
~25!

which, for (r,h)'(0.2,0.3), corresponding to a point in th
center of the allowed region of ther2h plane@46# implies
sin 2b'0.7. The most recent experimental world average
this quantity is'0.4960.23 @47#.

In the NCSM the corresponding quantity is Eq.~24! with
each matrix elementVi j replaced byV̄i j extracted from the
relevant process:

sin 2b→IS 2F V̄tb* V̄td

V̄tbV̄td*
GF V̄cs* V̄cb

V̄csV̄cb*
GF V̄cd* V̄cs

V̄cdV̄cs*
G D . ~26!
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Of course experiments do not measure the precise value
given V̄i j but rather some combination of them integrat
over internal momenta. If we again consider the scena
whereh50 then the imaginary parts of these quantities
crease roughly proportionally to the momenta involved a
we expect the first bracketed term in Eq.~26! to dominate
since the size of the momenta involved inBd

02B̄d
0 mixing

exceeds that ofB0 decay orK02K̄0 mixing, i.e. mbmtu
@mb

2u,mKmtu. We therefore set the second and third brac
ets to unity, obtaining

sin 2b'IS 12 ixtb

11 ixtb
D'

mb

mW
j2. ~27!

If we use the measurement ofeK to fix j'1022, then the
NCSM predicts sin 2b'0 which is not excluded by experi
ment. The motion of the quarks inside theB-meson moreover
partially washes out the signal~see previous discussion fo
kaons! as the asymmetry of thee1e2 collider gives the
Bd

02B̄d
0 center-of-mass only a modest boost ofbg'0.6 in

the lab frame. We conclude that this model predicts that c
rent B-physics experiments should see a value of sinb
which is consistent with zero.

The other twoCP violating observables commonly de
fined in B physics area andg:

a[argS 2
Vtb* Vtd

VudVub* D , g[argS 2
Vcd* Vcb

VudVub* D ~28!

whereVtb* Vtd can be extracted fromBd
02B̄d

0 mixing and
VudVub* , Vcd* Vcb from neutral and chargedB decays such as
B0→pp and B1→p1K0, for example. In the SMa1b
1g5p because the CKM matrixV is unitary. The NCSM
matrix V̄ is not unitary~see Sec. III!, so we expecta1b

1gÞp as these ‘‘angles’’ are defined@by V̄ replacingV in
Eq. ~28! above#. For h50 the parametersa,b,g in the
NCSM assume the following form:

a'tan21S mb

mW
j2D

b'tan21S mb1mK

mW
j2D ~29!

g'p2tan21S mK

mW
j2D .

In Fig. 4 we plot the suma1b1g. The angles essentially
add up top in the same range ofj which is required by the
eK constraint. If all the matrix elements ofV̄ could be mea-
sured at the same energy then the unitarity triangle wo
close exactly. The small deviation from exact closure
O„(mb /mW)j2

… and represents the fact that the angles
defined in Eqs.~26! and ~28! are a combination of ampli-
tudes measured at different energies:m;mt ~for Bd

02B̄d
0

mixing! andm;mb ~for B decays!.
7-5
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I. HINCHLIFFE AND N. KERSTING PHYSICAL REVIEW D64 116007
4. Electric dipole moments

Nonzero values of the electric dipole moments~edms! of
the elementary fermions necessarily violateT, and henceCP
~assuming theCPT theorem!. This follows from the obser-
vation that a dipole momentDW is a directional quantity, so
for an elementary particle it must transform like the spinJW ,
the only available directional quantum number. The inter
tion with an external electric fieldEW is JW•EW which is there-
fore CP odd. The presence of anedmfor a particlec implies
an interaction with the electromagnetic field strengthFmn in
the Lagrangian of the form

Oedm52~ i /2!c̄g5smncFmn.

In the SM this operator is absent at tree level and even at
loop due to a cancellation of the CKM phases. For the e
tron, moreover, theedm(de) vanishes at two loops and th
three-loop prediction is minuscule, of order 10250e cm @48#.
For the neutronedm(dn), gluon interactions can give rise t
a two-loop contribution which isO(10233)e cm. Upper lim-
its from experiments exist:de<4.3310227e cm @49#, dn
<6.3310226e cm @50#.

Since the SM predictions ofedms are almost zero, we
might expect that new sources ofCP violating physics from
noncommutative geometry would be observable. The n
commutative geometry provides in addition a simple exp
nation for this type ofCP violation: the directional sense o
DW derives from the different amounts of noncommutivity
different directions~i.e. Di}e i jku jk) and the size of theedm,
classically proportional to the spatial extent of a charge d
tribution, is likewise in noncommutative geometry propo
tional to uuu, the inherent ‘‘uncertainty’’ of space. The effec
of noncommutative geometry will be proportional to th
typical momentum involved, which for an electronedmob-
servation is;keV. A detailed analysis of the size of theedm
appears in@28#, but a simple estimate of the expected dipo
moment is

de;eupuu'10220S pe

1 keVD j2 e cm ~30!

FIG. 4. Plot of the differencea1b1g2p in the NCSM illus-
trating that the unitarity triangle does not close exactly.
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which gives an apparently strong upper bound:j,1023. Al-
though the phenomenologically interesting values ofj from
theK-sector is well above this bound, we cannot exclude
possibility that the actualedm is much smaller than the
above naive estimate, a situation which can arise in su
symmetric models@51,52#.

IV. CONSTRAINTS FROM gÀ2 OF THE MUON

Since noncommutative effects are proportional to mom
tum, we might expect an even stronger constraint by con
ering the muonedm in an experiment using relativistic
muons, however the experimental bound here is wea
dm,1.05310218e cm @53#.

The recent measurement of the anomalous magnetic
ment of the muon@54#, am , although not aCP violating
observable, does however provide an interesting constr
on the NCSM. Experiments dedicated toam have undergone
continual refinement~for history and experimental details
see@53,55,56#! to the point wheream is now very precisely
known:

am
expt511659202~14!310210. ~31!

The experimental technique employs muons trapped i
storage ring. A uniform magnetic fieldB is applied perpen-
dicular to the orbit of the muons; hence the muon spin w
precess. The signal is a discrepancy between the obse
precession and cyclotron frequencies.

Precession of the muon spin is determined indirectly fr
the decaym→e n̄e nm . Electrons emerge from the decay ve
tex with a characteristic angular distribution which in the S
has the following form in the rest frame of the muon:

dP~y,f!5n~y!@11A~y!cos~f!#dyd@cos~f!# ~32!

wheref is the angle between the momentum of the elect
and the spin of the muon,y52pe /mm measures the fraction
of the maximum available energy which the electron carri
andn(y),A(y) are particular functions which peak aty51.
The detectors~positioned along the perimeter of the ring!
accept the passage of only the highest energy electron
order to maximize the angular asymmetry in Eq.~32!. In this
way, the electron count rate is modulated at the freque
ameB/(2pmc).

Although am does receive a sizable contribution fro
noncommutative geometry, it is aconstantcontribution@28#,
i.e. the interaction with the external magnetic fieldDE
;Biu jke i jk is independent of the muon spin, and therefo
the experiment described above is not sensitive to this
turbation ofam . The effect of noncommutative geometry o
this measurement does however enter in the manner in w
the muon spin is measured in its decay. Specifically, the e
tron decay distribution~32! has a slightly different angula
dependence due to the departure of the NCSM from the s
dard V-A theory of the weak interactions~see Fig. 5!. The
electron distributiondP8 in the NCSM differs from the SM
~we reserve the details for a future publication!:
7-6
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dP8~y,f!'n~y!@11A~y!~pW e•sWm!1 f ~y!~ p̂e•u•sWm!~pW e•sWe!

1•••#dydV

→n~1!@11A~1!cos~f!1 f ~1!

3sin~2f!uuu1•••#dydV ~33!

where

U f ~1!

A~1!
U' a

16p2

pm

mW
j.

The effect of noncommutative geometry is greater than
would naively expect as, for reasons of efficiency, the mu
are stored at highly relativistic energies:pm'3 GeV. Hence
the ratio u f (1)/A(1)u'1026j. However, the frequency is
measured over many cycles and a more conservative
mate of the effective size of the noncommutative term
closer to (1027 to 1028)j. The angular distribution is there
fore not a pure cos(f) and we expect the measurement of t
precession frequency to differ from the SM prediction at
level of 1 part in 108.

Currently, the discrepancy between the measured valu
am and the SM prediction is

am
expt2am

SM543~16!310210 ~34!

which imposes the constraintj<531022. This bound ac-
commodates the values ofj inferred fromCP violating ob-
servables in Sec. III A. We expect the value ofj determined
from a g22 experiment to be smaller than that from aK or
B-physics experiment since the circulation of the muons
their cyclotron frequency introduces an additional averag
of the components ofuW . For a storage ring located at an Ear
latitude ofc degrees, there will be a sin(c) suppression fac-
tor.

V. CONCLUSIONS

The standard model~SM! is a highly successful effective
theory for energies below the weak scale;100 GeV, but it
must eventually give way to a description of nature that
cludes gravity. Noncommutative geometry is one candid
for such a description, exhibiting some features of grav
such as nonlocality and space-time uncertainty.

In this paper we have considered the potential effect

FIG. 5. Contributions to muon decay~a! SM tree level and~b!
NCSM graph which upsets the electron’s angular distribution.
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low energies of a noncommutative geometry which sets in
some high scaleL. Remarkably, forL in the TeV range,
noncommutative contributions toCP violating observables
such aseK ande8/e are competitive with the SM contribu
tions, whereas sin 2b'0. If L;2 TeV, the predictions of
these observables from noncommutative geometry is con
tent with data. Moreover the recent 2.6s deviation between
the SM prediction of (g22) of the muon and data is ex
plained in the noncommutative scenario for this same va
of L. These perturbative results in terms of the small para
eterj[mW /L are encouraging, but more work is needed
the treatment of the full, nonperturbative theory. Noneth
less, noncommutativity of the space-time coordinates offe
more physical interpretation ofCP violation which, if cor-
rect, suggests interesting physics at TeV energies.
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APPENDIX A: FEYNMAN RULES IN THE NCSM

Figure 6 displays the Feynman rules for fermions, gau
particles, and ghosts.

APPENDIX B: KAON SYSTEM

The loop function in Eq.~18! is given by

f ~x![
x

~12x!2 S 12
11x

4
1

x2

4
2

3x2 ln~x!

2~12x! D

f ~x,y![S 23

4~12x!~12y!
1

ln~y!S 122y1
y2

4 D
~y2x!~12y!2

1

ln~x!S 122x1
x2

4 D
~x2y!~12x!2

D . ~B1!

Numerically,

f „~mt /mW!2
…'2.5

f „~mc /mW!2
…'231024 ~B2!

f „~mc /mW!2,~mt /mW!2
…'231023.

In the noncommutative case withh50, the imaginary part
of the loop integral for the box graph with a virtual quarkq
becomes
7-7
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FIG. 6. Feynman rules for fermions~solid lines!, gauge particles~wavy lines!, and ghosts~dotted lines!. Notation:p,q,r ,s momenta,
m,n,r,s Lorentz indices,a,b,c,d gauge indices,Tbc

a gauge generator,f abc structure constants forSU(N): @Ta ,Tb#5 f abcT
c, dabc structure

constants for SU(N): $Ta ,Tb%5dabcT
c1(1/N)dab , Labcd[dabedcde1dadedcbe2 f abef cde2 f adef cbe, Mabcd[dabef cde2dadef cbe

1 f abedcde2 f adedbce, andTmnrs[gmngrs1gmsgnr22gmrgns . For QED or weak vertices, index 0 corresponds to a photon:d0,i , j5d i j ,
d0,0,i50, andd0,0,051, f 0,a,b50.
E d4k ū~p1!gm~12g5!~p” 12k”1mq!gn~12g5!d~p12k!

3ū~p2!gm~12g5!~k”2p” 21mq!gn~12g5!d~k2p2!

3
~V̄qdV̄qs* !2

„ ~p21k!22mq
2
…„~p12k!22mq

2
…~k22mW

2 !2 ~B3!

which in the high loop momentum limit (k@p1 ,p2) is ap-
proximately

il3rE
mW

M

d4k

S k2mq
4

4mW
4

1k22
2mq

4

mW
2 D ukuup1•u•p2u

~k22mq
2!2~k22mW

2 !2
~B4!

where we have introduced the cutoffM;L explicitly since
we do not know the theory at higher energies~taking this
11600
limit to infinity does not change the answer appreciably!. The
imaginary part of the integral~B4! for q5c is approximately

I~NC loop!'
l2

mW
2

mK

18mW
S 29p

2
j21

134j3

11j2
2

20j3

41j2D
~B5!

wherej'mW /L. For small values ofj!1, this is approxi-
mately

I~NC loop!'
l2

mW
2

mK

mW
j2 ~B6!

which is the simplified form we use in Eq.~19!.
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APPENDIX C: e8Õe

Direct CP violation in the SM implies that two or more
diagrams contribute to the kaon decay with disparate w
and strong phases. In noncommutative geometry, the ve
phases mimic a weak phase~i.e. we use the NCCKM ma
trix!. To give an estimate for the effects o
noncommutative geometry one8/e, we consider a typica
electroweak penguin loop integral. In the limit of high loo
momentum, the penguin is characterized by the dimens
less numberPl

Pl'E
m

M d4k

~2p!4

i mK sin~q•u•k!

k5
~C1!

wherem is the mass of the heaviest particle in the loop anq
is the typical momentum of the process;mt in a hadron
machine. Switching to Euclidean space and performing
integral,
nu

l

ys

u

gh

rgy

th

ys

B

11600
k
ex

n-

e

Pl'umKuqu@Ci~ uuqLu!2Ci~ uuqmu!#1
sin~ uuqmu!

m

2
sin~ uuqLu!

L
~C2!

where we takeM;L. We use the cosine integral functio
which for small values of its argument is

Ci~x!'const.1 ln~x!2
x2

4
1

x4

4!4
1••• . ~C3!

Taking the average massm;mK for simplicity, we obtain in
the limit of smallj[umW

2

Pl'2
mK

mW
j2 lnS mW

jmK
D ~C4!

as quoted in Eq.~23!.
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