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Minijet transverse spectrum in high-energy hadron-nucleus collisions
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Hadron-nucleus collisions at CERN LHC energies are studied by including explicitly semihard parton
rescatterings in the collision dynamics. Under rather general conditions, we obtain explicit formulas for the
semihard cross section and the inclusive minijet transverse spectrum. As an effect of the rescatterings the
spectrum is lowered at smallpt and is enhanced at relatively large transverse momenta, the deformation being
more pronounced at increasing rapidity. Its study allows to test the proposed interaction mechanisms and
represents an important baseline to examine nucleus-nucleus collisions.
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I. INTRODUCTION

Given the rapid growth of the hard cross section in h
ronic and nuclear collisions@1#, a typical inelastic event will
be dominated by the perturbative regime at very high en
gies so that, at the CERN Large Hadron Collider~LHC!, one
may expect to be able to derive global features of the ine
tic interaction by perturbative methods. When the pertur
tive regime dominates a physical observable which rep
sents global features of the inelastic interaction, the had
~or nuclear! scale should therefore also appear in the co
sponding perturbative calculation, presumably introduc
through the nonperturbative input. At LHC energies the p
ton densities involved in the typical interaction are so h
that one has to deal with processes initiated by many part
The non-perturbative input in this case is given by the m
tiparton distribution function, which is a dimensional qua
tity, and may therefore introduce the above mentioned s
in the perturbative computations, which would otherwise
scale free.

By introducing interactions initiated by many partons o
may therefore gain the capability of describing, by means
perturbative QCD, at least a few general properties of
typical interaction at the energy of the LHC. To pursue su
a program one should then~i! evaluate perturbative QCD
processes involving many partons in the initial state,~ii ! face
the problem of the unknown non perturbative input and
velop a strategy in that respect, and~iii ! study the infrared
problem by finding observable quantities which are infra
stable. This last step represents the final achievement o
whole program.

An explicit approach to semihard interactions in hea
ion collisions at the LHC, on the lines previously describe
has been accomplished, at least partially, with the help o
few simplifying hypotheses. The program was implemen
in Refs. @2–5#, and various physical quantities have be
evaluated in Refs.@6,7#.

The purpose of the present paper is to discuss the cas
hadron-nucleus interactions (hA, for brevity!. Being inter-
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mediate between hadron-hadron (hh) and nucleus-nucleus
(AA) interactions, hadron-nucleus interactions allow seve
simplifications in the formalism developed to discuss hea
ion collisions. In fact, as will be shown hereafter and diffe
ently with respect to the latter case, in the hadron-nucl
instance we were able to obtain closed analytical express
for the semihard cross section under rather general co
tions. We will then study the inclusive minijet transver
spectrum, which is related in a direct way to the underlyi
dynamics, and is therefore an important baseline for
study of nucleus-nucleus collisions.

Besides its intrinsic interest, inclusion of semihard resc
terings in the computation of the transverse spectrum
been advocated by many authors@8–12# as the basic mecha
nism underlying the Cronin effect@13#, namely the deforma-
tion of the hadronpt spectra in nuclear collisions as com
pared with the expectations of a single large-pt production
mechanism. Multiple parton collisions have also been rela
to higher-twist parton distributions@14–16#. A nonperturba-
tive study of the transverse spectrum inhA collisions in the
framework of the McLerran-Venugopalan model for nucle
and hadronic collisions was presented in Ref.@17#.

Another reason for the interest in hadron-nucleus co
sions is that theoretical models can be tested against ex
mental data in a situation where further nuclear effects
absent, like, e.g., the formation of a hot and dense med
which can further modify the transverse spectrum via ene
loss@18,19#. Therefore a detailed understanding ofhA colli-
sions represents an important baseline for the generaliza
to AA collisions @20,21# and for the discovery of nove
physical effects@22#.

In Sec. II we discuss the semihardhA cross section and
recall the main ideas and tools needed in the present
proach. Section III is devoted to a discussion of the inclus
minijet transverse spectrum, with particular emphasis on
mechanism of subtraction of infrared divergences, which
explicitly implemented in our approach. Results of numeri
evaluations of the inclusive spectra of minijets in hadro
nucleus collisions are presented in Sec. IV. Section V is
voted to a concluding summary.

II. SEMIHARD HADRON-NUCLEUS CROSS SECTION

To face the problem of unitarity corrections to the com
putation of thehA cross section, we make use of the se
©2001 The American Physical Society04-1
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shadowing property of the hard component of the interac
@23#, which we recall briefly in Sec. II A. Because of sel
shadowing all unitarity corrections to the semihard cro
section will be expressed by means of semihard parto
cross section only@see Eq.~2.3!#, so that one does not nee
to make any commitment on the soft component when o
the semihard part of the nuclear cross section is of inter
Self-shadowing allows, moreover, to also control the s
component of the interaction by perturbative means, si
that contribution is limited to a fraction of the cross secti
proportional to the probability of not having any hard inte
action at all@see Eq.~2.4!#.

While Ref. @23# considered colliding nucleons as bas
degrees of freedom, we want to represent the semihardhA
cross section in an analogous way, but considering par
instead of nucleons as elementary objects. Indeed, the s
hard component of the interaction satisfies the requirem
of the self-shadowing cross sections if one assumes th
parton which has undergone interactions with a large m
mentum exchange can always be recognized in the fi
state. To represent the interaction between hadrons and
clei in terms of partonic interactions, each one with a re
tively large momentum exchange, one needs to write
cross section for a given nonperturbative input, namely fo
definite partonic configuration of the two interacting objec
Then, as a perturbative input, one needs to write the p
ability of having at least one semihard interaction betwe
the two configurations of partons. We discuss the latte
Sec. II B, and in Sec. II C we introduce a functional forma
ism to deal with multiparton distributions@4# and we com-
bine them with partonic interaction probabilities to obtain t
semihardhA cross section@24#.

A. Self-shadowing

Let us consider the inelastic hadron-nucleus cross-sec
(s in)A , whose expression may be expanded, in the Glau
approach, as a binomial probability distribution of inelas
hadron-nucleon collisions:

~s in!A5E d2b@12~12s inT~b!!A#

5E d2b (
n51

A S A

n D @s inT~b!#n@12s inT~b!#A2n.

~2.1!

In Eq. ~2.1! T(b) is the nuclear thickness function, whic
depends on the impact parameterb and is normalized to 1,A
is the atomic mass number ands in is the inelastic hadron
nucleon cross-section. One may classify all events accor
to a given selection criterion, which we callC, while we use
N to refer to events that are not of typeC. In particular,C
may represent hard hadron-nucleon interactions. We ass
that in a hadron-nucleon collision all events of typeC con-
tribute tosC ; all other events contribute tosN , so that the
inelastic hadron-nucleon cross-section may be written as

s in5sC1sN . ~2.2!
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One may then ask for an expression of the cross sec
(sC)A to produce events of typeC in a collision of a hadron
against a nuclear target. Then, using Eq.~2.2! in Eq. ~2.1!
and disregarding the terms that do not containsC one obtains
@23#

~sC!A5E d2b@12~12sCT~b!!A#

5E d2b (
n51

A S A

n D @sCT~b!#n@12sCT~b!#A2n.

~2.3!

Note that, in spite of the fact that we included superpositio
of elementary events of typeC with events both of kindC and
of kind N, the nuclear cross section (sC)A is obtained by
summing all possible multiple hadron-nucleon interactio
of typeC alone with a binomial probability distribution, pre
cisely as (s in)A is obtained by a binomial distribution o
hadron-nucleon inelastic interactions.

The only part of the nuclear interaction still missing is t
cross section for elementary events of typeN alone. It can be
obtained by considering the following difference:

d~s in!A

d2b
2

d~sC!A

d2b

5@12sCT~b!#A3H 12F12
sNT~b!

12sCT~b!G
AJ

5@12sCT~b!#A3 (
k51

A S A

k D S sNT~b!

12sCT~b! D
k

3S 12
sNT~b!

12sCT~b! D
A2k

, ~2.4!

which is therefore bounded by@12sCT(b)#A, namely by the
probability of not having any interaction of typeC at a given
impact parameterb. The ratiosNT(b)/@12sCT(b)# may
be understood as the probability of a hadron-nucleon in
action at a given impact parameter, under the condition
no event of typeC takes place. Hence after removing a
events of typeC the interaction is expressed by a binom
distribution of events of typeN.

B. Semihard rescatterings

When the kinematics of the collision allows a high de
sity of target partons, namely at a high center of mass ene
and large atomic numbers, a single projectile parton m
interact with several targets with large momentum excha
in different directions in transverse space. The simplest p
sibility of such an interaction was discussed in Ref.@5#,
where the forward amplitude of the process and all the c
were derived in the case of a pointlike projectile against t
pointlike targets, in the limit of an infinite number of color
and for t/s→0. In this case one finds that the different cu
of the 3→3 forward amplitude are all proportional to on
another, and the proportionality factors are the AGK weig
4-2
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@25#. A consequence is that one may express the three-b
interaction as a product of two-body interaction probabiliti
The results obtained in this simple case may indicate a c
venient approximation of the many-parton interaction pro
ability: one can in fact argue that the many-parton interact
process may be approximated by a product of two-par
interactions, so that one can call the processreinteractionor
rescattering.

The whole interaction is therefore expressed in terms
two-parton interaction probabilities, precisely as the inter
tion between two nuclei has been expressed in terms
hadron-nucleon collisions in Sec. II A. Hence, given a co
figuration with n partons of the projectile andm partons of
the target, we introduce the probabilityPn,m of having at
least one partonic collision, in a way analogous to the
pression of the inelastic nucleus-nucleus cross-section@26#,

Pn,m5F12)
i 51

n

)
j 51

m

~12ŝ i j !G , ~2.5!

whereŝ i j is the probability of interaction of a given pair o
partonsi and j. Since the distance over which the hard int
actions are localized is much smaller than the soft interac
scale, one may approximate ŝ(xixj ;bi2bj )
's(xixj )d

(2)(bi2bj ), wherexi and xj are the momentum
fractions of the colliding partons,bi andbj their transverse
coordinates, ands(xixj ) is the partonic cross section, whos
infrared divergence is cured by introducing a regulatorp0.
For example,p0 may be the lower cutoff on the momentu
exchange in each partonic collision, or a small mass in
duced in the transverse propagator to prevent the diverg
of the cross section at zero momentum exchange. The
pression forPn,m is the analogue of Eq.~2.3! and represents
the explicit implementation of self-shadowing for the inte
action of two partonic configurations.

C. Hadron-nucleus cross section

At a given resolution, provided by the regulatorp0, one
may find the nuclear~or hadronic! system in various partonic
configurations. We callP(n)(u1•••un) the probability of a
configuration withn partons~theexclusive n-parton distribu-
tion! whereui[(bi ,xi) represents the transverse coordin
of the i th partonbi and its longitudinal fractional momentum
xi . The distributions are symmetric in the variablesui , and
can be obtained from a generating functional defined w
the help of auxiliary functionsJ(u) as follows@4#:

P(n)~u1 , . . . ,un!5
d

dJ~u1!
•••

d

dJ~un!
Z@J# uJ50 ,

where

Z@J#5expF E G~u!@J~u!21#du1 (
n52

`
1

n! E C(n)~u1•••un!

3@J~u1!21#•••@J~un!21#du1•••dunG .

G(u) is the single parton distribution andC(n) are the
n-parton correlations.
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The general expression of the inelastic semihard cr
section at a fixed impact parameter may be obtained by f
ing the interaction probability@Eq. ~2.5!# with the exclusive
multiparton distributions of the two colliding systems~in our
case a hadronh and a nucleus of atomic numberA):

dsH

d2b
5E (

m,n51

` F 1

n!
Ph

(n)~u1 , . . . ,un!G
3Pn,mF 1

m!
PA

(m)~u18 , . . . ,um8 !G)
i 51

n

dui)
j 51

m

duj8 ,

~2.6!

where b is the impact parameter betweenh and A. In the
case of hadron-nucleus interactions one may be allowe
neglect rescatterings of the partons of the nucleus. Ind
even at very high center of mass energies the average n
ber of scattering per incoming parton is smaller than
average number of nucleons along the parton trajectory,
cept in the very forward rapidity region@6#. With this as-
sumption one can obtain a closed formula for the cross s
tion @4#:

dsH

d2b
5$12exp@d•~e2d8•ŝ21!#%

3Zh@J11#ZA@J811#uJ5J850 , ~2.7!

where the following notation is used:

d i5E dui

d

dJ~ui2b!
; d j85E dui

d

dJ8~uj8!
.

A meaningful approximation is to consider the nuclear p
tons uncorrelated, and if we neglect also the correlations
side the projectile hadron we get an explicit expression:

dsH

d2b
512expH 2E duGh~u2b!@12e2*ŝ(u,u8)GA(u8)du8#J .

~2.8!

Note that the cross section is a function of

Wh~u,b!5Gh~u2b!@12e2*ŝ(u,u8)GA(u8)du8#

5Gh~u2b!PA~u!, ~2.9!

which represents the number of projectile partons that h
interacted with the target, i.e., the projectilewounded partons
@2,4#; we call themminijets, even if they did not yet had-
ronize.PA(u) represents the probability that a projectile pa
ton with a givenu5(x,b) has at least one semihard intera
tion with the target; hence the cross section is obtained
summing all events with at least one interaction.

One would obtain the same expression for the aver
number of wounded partons@Eq. ~2.9!# under more genera
4-3
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ALBERTO ACCARDI AND DANIELE TRELEANI PHYSICAL REVIEW D 64 116004
hypotheses by working out directly from Eq.~2.6! the aver-
age number of projectile partons which have undergone
least one semihard interaction. The only assumption nee
is that all the target partons are uncorrelated@2,4#. Therefore,
*duW(u,b)5^n&ds/d2b represents the integrated inclusiv
cross section required to detect all scattered projectile
tons, and takes into account the correlations of the projec
partons at all orders.

III. INCLUSIVE MINIJET TRANSVERSE SPECTRUM

After the introduction of semihard parton rescatterin
integrated quantities like the semihard cross section and
minijet multiplicity show a weak dependence on the infrar
cutoff needed to regularize the infrared divergences aris
in perturbative computations@2,6#. Conversely, it will be
shown that differential quantities like the minijetpt-spectrum
are more sensitive to the detailed dynamics of the inte
tion, and show a stronger dependence on the cutoff, if o
logarithmic. To reduce this dependence on the cutoff o
needs to improve further the picture of the dynamics by a
including gluon radiation in the interaction process. So
steps along this line in the case of deep inelastic elect
nucleus scattering have been presented in Ref.@16#. In this
paper, however, we neglect the problem of gluon radiat
and concentrate on the effects of elastic rescatterings.

The deformation of the high-pt hadron spectra which
leads to the Cronin effect was studied in terms of semih
parton rescatterings in Refs.@8–11#, where partons that suf
fered up to two scatterings were included. This leads t
good description of the data forpA collisions up toAs
539 GeV in the hadron-nucleon center of mass fram
However, the two-scattering approximation breaks down
higher energies, except at very highpt , and the whole
wounded parton transverse spectrum is needed. More
nomenological approaches@12,20# model the effects of mul-
tiple scattering as Gaussianpt broadening for each rescatte
ing suffered by a parton. A random-walk model of th
multiple scatterings was proposed in Ref.@21#.

A. Transverse spectrum

We can expand the average number of projectile woun
partons@Eq. ~2.9!#, at a givenx and b in a collision with
impact parameterb, in the following way:

Wh~x,b,b!5Gh~x,b2b! (
n51

`
^nA~x,b!&n

n!
e2^nA(x,b)&,

~3.1!

where ^nA(x,b)&[*dx8GA(x8,b)s(xx8) is the average
number of scatterings of a projectile parton at a givenx and
b @4#. The average number of wounded partons is then gi
by the average number of incoming partonsGh , multiplied
by the probability of having at least one semihard scatter
which is given by a Poisson distribution in the number
scatterings,n, with average number̂nA(x,b)&. Therefore,
we can obtain the inclusive differential distribution inpt by
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introducing a constraint in the transverse momentum in
grals that give the integrated parton-parton cross section
the expression above:

dWh

d2pt

~x,b,b!5Gh~x,b2b! (
n51

`
1

n! E GA~x18 ,b!•••GA~xn8 ,b!

3e2*dx8GA(x8,b)s(xx8)
ds

d2k1

•••

ds

d2kn

3d (2)~k11•••1kn2pt!

3d2k1•••d2kndx18•••dxn8 . ~3.2!

The limits of integration onxi8 and x8 are xxi8s>4ki
2 and

xx8s>4p0
2 , respectively, and all the distribution function

are evaluated for simplicity at a fixed scale.
By using the above formula one can study thept broad-

ening of a wounded parton, in particular the square roo
the average transverse momentum squared acquired thr
its path across the nucleus. Consider a single projectile
ton with fixed x and b. The probability that it acquires a
certainpt after the collision is given by Eq.~3.2! divided by
the numberGh(x,b2b) of incoming partons:

dPA~x,b!

d2pt

5
dWh

d2pt

~x,b,b!
1

Gh~x,b2b!
.

Then the average transverse momentum squared o
wounded parton is given bŷpt

2(x,b)&A5 ^̂ pt
2&&/ ^̂ 1&&, where

^̂ f (pt)&&5*d2pt f (pt)dPA /d2pt . By exploiting the azi-
muthal symmetry of the differential parton-parton cros
sections, and the symmetry of Eq.~3.2! under exchanges o
ki , it is easy to see that

^pt
2~x,b!&A5

1

PA
E d2ptdx8pt

2 ds

d2pt

~xx8!GA~x8,b!

5^pt
2~x,b!&1

^nA~x,b!&
PA~x,b!

, ~3.3!

where

^pt
2~x,b!&15

E d2ptdx8pt
2ds~xx8!

d2pt

GA~x8,b!

E dx8s~xx8!GA~x8,b!

is the average transverse momentum squared in a si
parton-parton collision. Thept broadening of the wounded
partons in ahA collision is then given by thept broadening
in a single collision multiplied by the average number
rescatterings suffered by a wounded parton. A similar re
for the pt broadening of a fast parton traversing a nucle
medium was derived in Ref.@27#. Two interesting limits can
be considered:
4-4
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^pt
2~x,b!&A;H ^pt

2~x,b!&1 asp0→`

^pt
2~x,b!&1^nA~x,b!& asp0→0.

~3.4!

Since the minijet yield is dominated by transverse mome
of the order of the cutoff, these two limits say roughly th
the minijets at highpt @i.e., high p0 in Eq. ~3.4!#, suffer
mainly one scattering. On the contrary, at lowpt @i.e., low p0
in Eq. ~3.4!# they undergo a random walk in the transver
momentum plane and the broadening is proportional to
average number of steps in the random walk^nA&. This pic-
ture will be studied in more detail in Sec. IV A.

An explicit formula for the transverse spectrum can
obtained by studying its Fourier transform, since all the c
volutions in Eq.~3.2! turn into products and the sum overn
may be explicitly performed. To this end, we introduce t
Fourier transform of the parton-parton scattering cross s
tion:

s̃~v;xx8!5E d2keik•v
ds

d2k
~xx8!.

Note thats̃(0;xx8)5s(xx8), and that due to the azimutha
symmetry ofds/d2k, its Fourier transform depends only o
the modulus,v, of v. Then the transverse spectrum@Eq.
~3.2!# may be written as

dWh

d2pt

~x,b,b!5Gh~x,b2b!E d2v

~2p!2
e2 ipt•vW̃h(v;x,b),

~3.5!

where

W̃h~v;x,b!5 (
n51

`
1

n! F E dx8GA~x8,b!s̃~v;xx8!Gn

3e2*dx8GA(x8,b)s̃(0;xx8)

5e*dx8GA(x8,b)$s̃(v;xx8)2s̃(0;xx8)%

2e2*dx8GA(x8,b)s̃(0;xx8). ~3.6!

An immediate consequence is that the transverse spec
has a finite limit aspt→0, even when a cutoff on the mo
mentum exchange is used:

dWh

d2pt
U

pt50

~x,b,b!5Gh~x,b2b!E d2v

~2p!2
W̃h~v;x,b!.

B. Expansion in the number of scatterings

We can obtain an expansion ofW̃h in the number of the
rescatterings suffered by the incoming parton by expand
Eq. ~3.6! in powers ofs̃:
11600
ta
t

e

-

c-

m

g

W̃h~v;x,b!5 (
n51

`

W̃h
(n)~v;x,b!

5 (
n51

`
1

n! F S E dx8GA~x8,b!

3@s̃~v;xx8!2s̃~0;xx8!# D n

2S 2E dx8GA~x8,b!s̃~0;xx8! D nG .
~3.7!

Coming back to thept space, the expansion of the transver
spectrum in number of scatterings reads

dWh

d2pt

~x,b,b!5 (
n51

` dWh
(n)

d2pt

~x,b,b!

5 (
n51

`

Gh~x,b2b!E d2v

~2p!2
e2 ipt•v

3W̃h
(n)~v;x,b!. ~3.8!

The series@Eq. ~3.7!# can be obtained also by expandin
W̃(v) around v50. Since the variablev is Fourier-
conjugated topt , the expansion of the transverse spectru
@Eq. ~3.8!#, will be valid at highpt , and we expect a break
down of any truncation at sufficiently low momentum. No
that we can obtain this high-pt expansion of the spectrum
directly in pt space by expanding the exponential in Eq.~3.2!
and collecting the terms of the same order ins. As an ex-
ample, the first three terms Eqs.~A1!, ~A2!, and~A6!, can be
found in the Appendix A. The study of this series is th
subject of Sec. III C; numerical results up ton53 scatterings
will be discussed in Sec. IV A, and compared to the wh
spectrum. In Appendix A we will discuss the symmetrizati
of the terms of the series.

C. Cancellation of the divergences

All terms of expansion~3.8! are divergent in the infrared
region, so that we need to cure them with the regulatorp0.
Nevertheless, the infrared divergences are already reg
ized to a large extent by the subtraction terms originated
the expansion of exp@2^nA(x,b)&# appearing in Eq.~3.2!;
namely, by the constraint of probability conservation. Th
cancellation mechanism was observed also in Ref.@9# for the
two-scattering term and in Ref.@19# in a different context.

It is instructive to examine in detail how the subtractio
works for the lower order terms of the expansion. We start
considering the case of a single rescattering (n52). To sim-
plify the notation we write the elementary differential cro
sectionds/d2k ass(k), and notice that it depends only o
the modulusk of the momentum. By expressing the semiha
cross section ass5*d2ks(k) the term of orders2 may be
written as
4-5
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dWh
(2)

d2pt

~x,b,b!5Gh~x,b2b!E GA~x18 ,b!GA~x28 ,b!

3dx18dx28d
2k1d2k2

s~k1!s~k2!

2

3@d (2)~k11k22pt!2d (2)~k12pt!

2d (2)~k22pt!#, ~3.9!

where the first term in the square brackets represents
successive scatterings with no absorption. The two nega
terms are the corrections induced by the expansion of
absorption factor exp@2^nA(x,b)&# of the single-scattering
term,n51 in Eq.~3.2!, and correspond to a single-scatteri
along with the effects of absorption in the initial or fin
state. The expression we obtained is symmetric in the i
gration variablesk1 andk2.

The cutoff dependence is originated by the singular
havior of the integrand fork1'0 or for k2'0, since thed
functions in the square brackets prevent the possibility ofk1
andk2 are both zero at the same time. Because of the s
metry under the exchangek1↔k2, to study the cutoff depen
dence of Eq.~3.9! it is enough to discuss the integratio
around k150. In the regionk1'0 the termd (2)(k12pt)
does not contribute, as long aspt is finite. The integration in
k2 is done with the help of thed functions, and one obtain

E d2k1s~k1!@s~pt2k1!2s~pt!#.

On the other hand, fork1'0, one may use the expansio
s(pt2k1).s(pt)2s8(pt)pt•k1 /pt , where pt•k1 repre-
sents the scalar product of the two vectors, ands8(pt)
5(d/duptu)s(pt) depends only on the modulus ofpt. One is
left with

2
s8~pt!

pt
E pt•k1s~k1!d2k150,

where the vanishing result is due to the azimuthal symm
of s(k1). The dominant contribution to the integral com
therefore from the next term in the expansion ofs(k12pt),
which goes ask1

2. Hence the resulting singularity is onl
logarithmic inp0, sinces(k);k24 ask→0. The subtraction
terms, originated by the absorption factor exp@2^nA(x,b)&# in
Eq. ~3.9!, have canceled the singularity of the rescatter
term almost completely. This feature is common to all t
terms of the expansion~3.9! as it is discussed briefly at th
end of Appendix B, where the three-scattering term is d
cussed in detail.

IV. NUMERICAL RESULTS AND DISCUSSION

In this section we discuss in detail, both qualitatively a
quantitatively, the modifications induced by the rescatteri
on the minijet inclusive transverse spectrum. We conside
proton-lead collision with center of mass energyAs
56 TeV in the nucleon-nucleon center of mass frame a
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impact parameterb50. In the numerical computations w
used the leading order perturbative parton-parton cross
tion with a mass regulatorm[p0,

ds

d2p
~xx8!5k

9pas~Q!2

~p21m2!2
u„xx8s24~p21m2!…u~12x!u~1

2x8!,

wherek is the k factor that simulates next-to-leading ord
corrections~we chosek52). The single-parton nuclear dis
tribution function has been taken to be factorized inx andb,

GA~x,b!5tA~b!G~x,Q!,

wheretA is the nuclear thickness function normalized toA
and G is the proton distribution function. We evaluated th
strong coupling constant and the nuclear distribution fu
tions at a fixed scaleQ5m. In the computations we used
hard-sphere geometry

tA~b!5A
3

2pR3
AR22b2u~R22b2!,

whereR51.12A1/3 is the nuclear radius measured in fm. F
G we used the 1998 Glu¨ck-Reya-Vogt~GRV98! leading or-
der ~LO! parametrization@28#. At low pt the spectrum is
obtained by computing numerically the Fourier transform
Eq. ~3.5!, but at highpt the result begins to oscillate to
much, and in that region the spectrum was computed
using the expansion in the number of scattering up to
three-scattering term@the formulas actually used, Eqs.~A1!,
~A4!, and ~A7!, are discussed in Appendix A#. We checked
that the spectrum obtained by Fourier transformat
matched the expansion smoothly.

A. Effects of rescatterings

In this section we discuss the projectile and the tar
transverse spectrum averaged over a given rapidity inter

dWh

d2pt

~b,hmin ,hmax!5
1

hmax2hmin
E dxd2b

hP[hmin ,hmax]

3
dWh

d2pt

~x,b,b!, ~4.1!

where we approximated the pseudorapidity byh
5 log(xAs/p0). The target spectrumdWA /d2pt is obtained
by interchangingh andA in Eq. ~4.1!. Note that now we are
taking into account all possible rescatterings of the targe
well.

In Fig. 1 we compare the full transverse spectrum~solid
line! with its expansion in the number of scatterings up
three scatterings~dotted and dashed lines!. We show both the
projectile and target minijet spectrum in a pseudorapid
regionhP@3,4# for the projectile andhP@24,23# for the
target. Note that the rapidity is defined with reference to
projectile hadron direction of motion. The choice of a fo
ward region~backward for the target! is done to enhance th
effect of the rescatterings and to better discuss the defor
tion induced in the spectrum. Indeed, in those regions
4-6
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FIG. 1. Left: Targetpt spectrum forhP@24,23#. Right: Projectilept spectrum forhP@3,4#. The full transverse spectrum~solid line!
is compared with the one-, two- and three-scattering approximations~viz. dotted, short-dashed, and long-dashed lines!.
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average fractional momentum of an incoming parton is lar
so that the number of available target partons is large and
probability of rescattering becomes large.

First we look at the projectile spectrum. At highpt the
spectrum is enhanced with respect to the single scatte
approximation because of thept broadening induced by th
rescatterings. Aspt is further increased it approaches t
single-scattering spectrum, as expected on general gro
when thept distribution of the elementary scattering follow
a power law. This can be understood qualitatively by look
at the path inpt space followed by the incoming parton
Given a final largept , due to the leading divergences in E
~3.9!, the leading processes to obtain thatpt with two semi-
hard scatterings are a first scattering with momentum tran
q1'p0 followed by a second one withq2'pt , and vice
versa. For an analogous reason, the leading configuratio
reach the finalpt with three scatterings isq1'pt plus q2
'q3'p0 and permutations. This sequence of three sca
ings is less probable than the process with two scattering
pt increases because the fraction of phase-space volume
this process occupies decreases much faster withpt than in
the two-scattering case. For an analogous reason the rel
importance of the two-scattering term with respect to
single-scattering term also decreases aspt increases. In con-
clusion aspt increases the average number of scatterings
parton decreases, and eventually the spectrum is well
scribed by the single-scattering approximation.

At intermediatept the average number of scatterings p
parton increases and the shape of the spectrum is more
more distorted with respect to the single-scattering case
fact, the fraction of phase space available to the leading c
figuration of a multiple scattering process (q1'pt , q2
'•••'qn'p0 and permutations! increases aspt decreases
However, this is not the only mechanism at work. Indeed
our computation each wounded parton is counted as
minijet in the final state, independently of the number
rescatterings. On the other hand, in the single-scattering
proximation one identifies the number of minijets in the fin
state with the number of parton-parton collision. This lea
to an overestimate of the jet multiplicity and to a divergen
of the spectrum atpt50 asp0 goes to zero. Therefore at low
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pt the minijet yield is more and more suppressed with
spect to the single scattering approximation.

At very low transverse momentumpt&p0 a parton under-
goes a large number of rescatterings, all withqi'p0. Hence
the parton performs a random walk in the transverse pl
and the spectrum becomes flat aspt→0 because the phas
space becomes isotropically populated. This shows tha
very low pt multiple semihard scatterings are consistent w
the random-walk model of Ref.@21#, while at moderate and
high pt the physical picture is rather different.

By comparing the results for the projectile and targ
transverse spectrum one sees that a projectile parton is
versing a very dense target and the effects of the resca
ings are large. Conversely, a target parton ‘‘sees’’ a rat
dilute system, and its minijet spectrum does not differ t
much from the single-scattering result, except at very l
pt . Moreover the changes induced by the rescatterings
integrated quantities, like those entering in the expressio
the hadron-nucleus cross section, are minimal. This is c
sistent with our approximation of not including rescatterin
for the target partons to obtain analytical formulas for t
hadron-nucleus cross section. One can also see that the t
scattering approximation describes well the projectile sp
trum for pt*15 GeV, while it breaks down completely a
pt&7 GeV, where it becomes negative. For the target sp
trum the three-scattering approximation is not accurate
pt&4 GeV.

B. Minijet inclusive transverse spectrum

In this section we study the minijet transverse spectr
resulting from the sum of the transverse spectra of the p
jectile and target wounded partons:

dWhA

d2pt

~b,hmin ,hmax!

5
1

hmax2hmin
E dxd2b

hP[hmin ,hmax]

3S dWh

d2pt

~x,b,b!1
dWA

d2pt

~x,b,b!D . ~4.2!
4-7
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FIG. 2. Projectile plus targetpt spectrum
~solid line! at different rapidities compared to th
result of the one-scattering approximation~dot-
dashed line!. Also shown are the contributions o
the projectile minijets~dotted line! and the target
minijets ~dashed line!.
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We analyze the spectrum in three rapidity regions, nam
hP@24,23#, hP@21,1#, and hP@3,4# ~respectively
‘‘backward,’’ ‘‘central’’ and ‘‘forward’’ with reference to the
projectile direction of motion!. While the target partons ba
sically do not suffer any rescattering in all three regions,
projectile partons undergo many rescatterings in the forw
region, some in the central region and basically no one ba
wards.

In Fig. 2 we show the spectrum~4.2! ~solid line! and the
contributions of the projectile and of the target~dotted and
dashed lines, respectively!. For comparison the total spec
trum obtained in the one-scattering approximation is a
plotted ~dot-dashed line!. The spectra are computed with
regulating massm51 GeV.

In the backward region both the projectile and the tar
suffer mainly one scattering over all thept range except a
pt;0, and the spectrum is dominated almost everywhere
target minijets.

In central and forward regions the target jets still suf
basically one scattering over all thept range. Conversely, the
projectile crosses a denser and denser target and unde
an average number of rescatterings that increases with p
dorapidity. This means that at lowpt the projectile spectrum
is very reduced with respect to the one-scattering approxi
tion, and the minijet yield may become negligible with r
spect to the minijet yield from the target. The overall effec
that at lowpt the spectrum is dominated by minijet produ
tion from the target while at intermediate and highpt it is
dominated by minijet production from the projectile.

At very forward rapidities this effect becomes quite dr
matic and the spectrum acquires a structured shape: it
lows the inverse power behavior of the single-scattering te
at high pt , it is concave at intermediatept because of the
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suppression of the projectile minijets, and it becomes con
again at lowpt , where the target begins to dominate.

In Fig. 3 we study the dependence of the spectrum on
choice of the cutoff, and plot the result form51, 2, and 3
GeV. The deformation of the spectrum decreases as the r
lator increases~indeed, the average number of rescatter
decreases! and for m*3 GeV it begins to become negli
gible.

The effects of the rescatterings are better displayed
studying the ratio of the full transverse spectrum and
single-scattering approximation,

Rb~pt!5
dWhA /d2pt

dWhA
(1)/d2pt

5
dWhA /d2pt

Ab dWpp
(1)/d2pt

, ~4.3!

where Ab5*d2bth(b2b)tA(b) is the number of targe
nucleons interacting with the projectile at a given impa
parameter.

In Fig. 4 we plotted the ratioRb(pt), which measures the
Cronin effect for minijet production, computed with thre
different regulatorsm51, 2, and 3 GeV. Atm53 GeV the
effect of the rescatterings is rather small in all the three
pidity intervals, except at very lowpt , and does not affec
the integrated quantities like the average number of minij
As the regulating mass is decreased the rescatterings beg
show up, and lead to a large effect in the forward region

The ratioRb(pt) is characterized by three quantities: th
momentump3 where theRb crosses 1, the momentumpM
where it reaches the maximum and the heightRM of the
maximum. The sensitivity ofp3 on the cutoff decreases a
the pseudorapidity increases. Loosely speaking, when the
c-
FIG. 3. Regulator dependence of the proje
tile plus targetpt spectrum at different rapidities
for m51, 2, and 3 GeV~viz. solid, dashed and
dotted lines!.
4-8
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FIG. 4. Ratio of the full projectile plus parton
pt spectrum to the one-scattering approximati
at different rapidities and form51, 2, and 3 GeV
~viz. solid, dashed, and dotted lines!.
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erage number of scatterings is high, as it is the case apt
.p3 , the jets lose memory ofp0, which gives the order of
magnitude of the typical momentum exchanged in each
lision. pM shows a slightly larger sensitivity on the regulato
since it lies in a region where the average number of sca
ings is smaller. This behavior is very different from the co
clusions drawn by considering only the expansion up to t
scatterings, where bothp3 and pM are proportional top0
@11#. In fact, at low center of mass energies the tw
scattering is a good approximation in all rapidity ranges,
cept may be very forward. However, it breaks down in a
case at transverse momenta comparable to the regulatop0.
Therefore, while most of the spectrum is well described
the two-scattering approximation, the behavior ofp3 andpM
is not.

On the other hand, the height of the peak is much m
sensitive to the cutoff, since its leading term is roughly p
portional to some power of the logarithm of the regulator

FdWhA

d2pt

2
dWhA

(1)

d2pt
G

pt5pM

;
p0→0

F logS pM
2

p0
2 D G ^nresc(pM)&

.

SincepM is not very large, the average number of rescat
ings at that value of the transverse momentum,^nresc(pM)&,
is much greater than 1, and the sensitivity ofRM on p0 is
high. At highpt the average number of rescatterings tends
zero, so the sensitivity of theRb on p0 decreases and disap
pears at very large transverse momenta.

Note that the peak is located in apt region, where soft
interactions~which have been disregarded in our approa!
are expected to be negligible; therefore, in that region
perturbative computations should describe the spectrum
most completely. Following Ref.@11# we might interpretp0
as the momentum scale at which the interaction devia
from the perturbative computations. With this interpretati
p0 would acquire a physical meaning: though introducingp0
to separate hard and soft interactions is only a theore
device and physical phenomena do not depend onp0, it is a
well defined question to ask up to what scale the perturba
computations are good. If the collision dynamics would
determined by parton multiple elastic scatterings alone, t
the measure of the height of the peak would be a way
measuringp0.
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On the other hand, the sensitivity ofRb on p0 signals a
weakness in our description of the dynamics underlying
hadron-nucleus collision. We expect that such a sensiti
will be considerably reduced when also including in the d
namics the gluon radiation emitted by the multiply scatter
partons. Some of the effects of the radiation on the transv
spectrum might however be described by the parameterp0 in
our model, in which radiation is neglected. Since the inc
sion of gluon radiation in the dynamics would introduce ne
physical scales, such as the radiation formation time, rela
to the energy of the collision and the nuclear size, we wo
expect in any case that the value ofp0 will depend onAs and
A.

V. CONCLUSIONS

The purpose of the present paper is to draw attention
some of the advantages of studying hadron-nucleus semi
interactions at the LHC. As in the case of lower energies,hA
interactions represent an important intermediate step to re
hh and AA reactions, being much simpler to understand
compared with the latter. Moreover, even at higher energ
such as those obtainable at the BNL Relativistic Heavy
Collider ~RHIC! and LHC, inhA collisions we do not expec
the formation of a dense and hot system, like the quark-gl
plasma, so that one can study directly the nuclear modifi
tion of the dynamics without the need of disentangling t
effects of the structure of the target and those due to
formation and evolution of the dense system. Hadro
nucleus interactions represent therefore the baseline for
detection and the study of the new phenomena peculia
AA collisions.

We faced the problem of unitarity corrections to the sem
hard cross section by including explicitly semihard part
rescatterings in the collision dynamics, and exploiting t
self-shadowing property of the semihard interactions. In
interaction mechanism we took into account just elas
parton-parton collisions, while we neglected the product
processes at the partonic level~e.g., all 2→3 etc. elementary
partonic processes!, whose inclusion represents a nontrivi
step in our approach and deserves further study.

Contrary to the case ofAA collisions, it is possible to
obtain closed analytical expressions for the semihardhA
cross section; see Eq.~2.8!. To that end a crucial assumptio
has been to consider the hadron as a dilute system, so
rescatterings of nuclear partons can be neglected while
catterings of the projectile are fully taken into account. In o
4-9
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expressions we have disregarded correlations in the nuc
multiparton distributions, whose effect may nevertheless
studied in a straightforward way within the present fun
tional approach.

We have then focused on the inclusive minijet transve
spectrum at fixed impact parameter,@Eq. ~3.5!#, which is
influenced in a more direct way by the rescatterings. T
modifications of the transverse spectrum induced by
semihard rescatterings of the projectile partons is emp
sized in the ratioRb(pt) @Eq. ~4.3!#, defined as ourpt spec-
trum divided by the impulse approximation. In particular, w
have evaluated it atb50 for different values of the regulato
p0. The results are described by the values ofp3 @defined by
Rb(p3)51], pM ~which is the value ofpt that maximizes
the ratio! andRM ~which is the maximum ofRb). We obtain
that bothp3 andpM depend weakly onp0, while RM has, on
the contrary, a strong dependence onp0 when the regulator is
rather small. Therefore, the results for the spectrum also
lows us to identify the limits of the picture of the dynami
considered in this paper. Analogously to the average tra
verse energy and the number of minijets inAA collisions@6#,
some of the features ofRb , such asp3 and pM , show a
tendency toward a limiting value at smallp0. All these quan-
tities depend therefore only marginally on details of the d
namics which have not been taken into account in the pre
approach. Conversely, the limits of the simplified picture
the interaction show up inRM . Because of its strong depen
dence onp0, in order to describe the spectrum one needs
fact to fix experimentally the value ofp0 by measuringRM .
This feature might be not so unpleasant, because if one li
the analysis to the inclusive transverse spectrum of mini
in hA collisions, all the effects which are not taken in
account in the interaction~like the gluon radiation in the
elementary collision process! are summarized by the value o
a single phenomenological parameter. However this fea
will not hold any further if one had to evaluate more diffe
ential properties of the produced state, which can be prop
discussed only after explicitly introducing further details in
the description of the elementary interaction process.

The experimental measure of the Cronin effect in min
production inhA collisions would therefore be of major im
portance: it would allow one to establish the correctness
the whole approach described here, and it would repre
the basis for a deeper insight in the semi hard interac
dynamics both forhA andAA collisions.
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APPENDIX A: SYMMETRIZATION OF THE EXPANSION
IN THE NUMBER OF SCATTERINGS

For a numerical computation of the high-pt expansion of
the minijet spectrum in the number of scatterings suffered
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a projectile parton it is convenient to implement the subtr
tion of the IR divergences directly in the integrand. In th
way the Monte Carlo integrations, which we use because
the high dimensionality of the phase space~in particular for
three or more scatterings!, work at their best. In fact, Eqs
~3.9! and ~B1! are not suited for numerical implementatio
due to the delta functions. The basic property that allow
the cancellation of the divergence in the integrand was
symmetry under exchanges of the integration variables.
fortunately after using the delta functions to perform the
tegrals, one obtains in general nonsymmetric expression

The goal of this appendix is to study how to symmetri
each term of the expansion of the transverse spectrum.
will discuss them in detail up to the three-scattering term,
the techniques discussed can also be applied to the ge
term in the expansion. For simplicity, we will use the follow
ing notation, already introduced in the main text:

s~k!5
ds

d2k
~xx8!.

1. One-scattering term

The one-scattering term does not include any subtrac
term, so that we do not need to symmetrize it. It is simp
given by

dWh
~1!

d2pt

~x,b,b!5Gh~x,b2b!E dx8GA~x8,b!s~pt!,

~A1!

and corresponds to the result one obtains by considering
disconnected parton collisions and neglecting parton res
terings. It also corresponds to modeling the hadron-nucl
collision as a superposition of hadron-nucleus collisions.

2. Two-scattering term

The two-scattering term is given by Eq.~3.9!, and we
need to perform one integration overk1 or overk2 to dispose
of the d functions. By simply callingq the remaining inte-
gration variable we obtain

dWh
(2)

d2pt

~x,b,b!5Gh~x,b2b!E dx18dx28GA~x18 ,b!GA~x28 ,b!

3E d2q@s~q!s~pt2q!22s~q!s~pt!#.

~A2!

As discussed in Sec. III C, the negative term in the expr
sion above subtracts the leading inverse power divergenc
the integrand leaving only a logarithmic divergence. Ho
ever, the cancellation happens only after performing the
tegration overq, which may be a difficult result to achiev
numerically ~actually this is not a problem for the two
scattering term, due to the low dimensionality of the integr
but becomes a large issue from three scatterings on!.
4-10
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There are two divergences to be subtracted: one inq;0
and the other inq;pt, but the subtraction term is divergen
just in q;0, and the cancellation of the inverse power s
gularities is obtained only after performing the integrati
overq. To allow the numerical integration to do a better a
faster job, we require that the divergences in the convolu
term and in the subtraction term be canceled directly in
integrand. This is obtained by symmetrizing the integra
with respect to an interchange of the two singularities in
convolution term. Let us introduce therefore an operator t
performs the interchange of the two singularities:

T:q→pt2q,

so that

TE d2q f~q!5E d2q f~pt2q!.

Note that the change of variables operated byT has a unit
Jacobian and thatT25I. Then we define the symmetrize
two-scattering term as

dWA
(2)

d2pt
U

sym

5S(2)
dWh

(2)

d2pt

,

where we introduced the symmetrization operator

S(2)5
1

2
~I1T!. ~A3!

The result is

dWA
(2)

d2pt
U

sym

~x,b,b!5Gh~x,b2b!E dx18dx28GA~x18 ,b!

3GA~x28 ,b!E d2q@s~q!s~pt2q!

2s~q!s~pt!2s~pt2q!s~pt!#.

~A4!

Note that the first term in Eq.~A4! describes two subseque
scatterings with total transverse momentumpt and is the
naive perturbative QCD result. The two negative terms
the absorption terms induced by probability conservati
The two IR divergences of the first term are canceled
these two subtraction terms: asq→0 by the first one and as
q→pt by the second one. The remaining linear singular
gives a zero contribution because it is odd in a neighborh
of q50 andq5pt, so that only the logarithmic divergenc
remain. Note that now the two divergences are subtrac
directly in the integrand, which was the goal of the symm
trization procedure.

Equation~A4! is the expression that we use in the nume
cal computations of the transverse spectrum at highpt . It
could have been guessed directly from Eq.~A2!, but the use
of symmetrization operator~A3! will facilitate the discussion
of the more complicated three scattering term.
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3. Three-scattering term

To prepare the ground for the treatment of the thr
scattering term, we note thatT generates the group of th
permutations of the two singularitiesq;0 andq;pt; this is
called the symmetric group of order 2, and is indicated
S25^T&5$I,T%, where ^T& means ‘‘generated byT.’’ It is
then easy to see that we can construct the symmetrizing
erator Eq.~A3! by summing all the elements ofS2 and by
dividing by its cardinality.

From Eq.~B1!, after exploiting thed functions, the three-
scattering term reads

dWh
(3)

d2pt

~x,b,b!5Gh~x,b2b!E dx18dx28dx38GA~x18 ,b!

3GA~x28 ,b!GA~x38 ,b!

3
1

3!E d2qd2r @s~q!s~r !s~pt2q2r !

23s~q!s~pt2q!s~pt!

13s~q!s~r !s~pt!#. ~A5!

Following the general analysis previously done at the end
the last paragraph, we observe that in Eq.~A5! in absence of
the cutoff we would have four divergences, i.e.,

q;0, r;0, pt2q2r;0, pt2q;0. ~A6!

Then to write the symmetrized three-scattering term,
need to consider the groupS4 of the permutations of thes
four divergences, which has 4!524 elements,

P Bsym
(3) 5S(3)P B

(2) ,

where

S(3)5
1

24 (
TPS4

T.

When applying this operator to the three-scattering term
resulting expression has 49 terms and is too long to be
cussed here. To obtain an idea of the result, we will cons
only the subgroupS3 given by the permutations of the firs
three divergences in Eq.~A6!, which are the divergences tha
appear in the first term of Eq.~A5!, i.e., the naive three-
scattering term. After symmetrization it will be immediate
check that all the ‘‘single’’ divergences cancel explicitly
the integrand, while ‘‘double’’ divergences cancel only aft
performing the integrations over the transverse momenta.
call a ‘‘single’’ divergence a point (q,r ), such that only one
of the expressions in Eq.~A6! is near zero, and a ‘‘double’
divergence a point such that two of these terms are ne
zero. For example$q;0; r;” 0, pt,pt2q% and $q;0; r
;pt% are a single divergence and a double divergence,
spectively.

The first step is the definition of the operators that e
change the three singularities:
4-11
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T1 :H q→r

r→q,
T2 :H q→pt2q2r

r→r ,
T3 :H q→q

r→pt2q2r .

Note that they are idempotent:Ti5I. Next we observe tha
the groupS3 of the permutations of the three singularities
made of 3!56 objects, and that

S35^T1 ,T2 ,T3&5$T0 ,T1 ,T2 ,T3 ,T4 ,T5%,
in
e

ra
d
-

es
nu

o
ing
ch
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whereT05I, T45T1T2 andT55T1T3, so that the reduced
symmetrizing operator is

Sred
(3) 5

1

3! (
i 50

5

Ti .

Finally one can write the partially symmetrized thre
scattering probability:
dWA
(3)

d2pt
U

sym

~x,b,b!5Sred
(3)

dWA
(3)

d2pt

~x,b,b!

5Gh~x,b2b!E GA~x18 ,b!GA~x28 ,b!GA~x38 ,b!dx18dx28dx38d
2k1d2k2d2k3

1

3!E d2qd2r

3Fs~q!s~r !s~pt2q2r !2
1

2
s~q!s~r !s~pt2q!1

1

2
s~q!s~pt2q!s~pt!2

1

2
s~q!s~r !s~pt2r !

1
1

2
s~pt2r !s~q!s~pt!2

1

2
s~pt2q2r !s~q!s~pt2q!1

1

2
s~pt2r !s~pt2q!s~pt!

2
1

2
s~pt2q2r !s~r !s~pt2r !1

1

2
s~pt2r !s~pt2q2r !s~pt!2

1

2
s~r !s~pt2q2r !s~q1r !

1
1

2
s~r !s~q2r !s~pt!2

1

2
s~q!s~pt2q2r !s~q1r !1

1

2
s~q!s~q2r !s~pt!G . ~A7!
t-
the
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Analogously to what has been done for the two-scatter
term, one can see by inspection that the four single div
gences@Eq. ~A6!# explicitly cancel in the integrand, while
double divergences cancel only after performing the integ
tions overq andr. By considering all four singularities, an
by using the wholeS4 group we obtained explicit cancella
tion of both ‘‘single’’ and ‘‘double’’ divergences directly in
the integrand, as is discussed in Appendix B. Nonethel
the partial symmetrization is enough to get satisfactory
merical results.

In conclusion, to compute numerically the expansion
the transverse minijet spectrum in the number of scatter
one has to fully exploit the symmetry properties of ea
term, in such a way that all the divergences get cance
directly in the integrand. This is crucial to obtain a go
numerical precision and to speed up the computation of
terms with three or more scatterings. In this appendix
developed a general technique to perform such a symm
zation.

APPENDIX B: CANCELLATION OF THE DIVERGENCES
IN THE THREE-SCATTERING TERM

Hereafter we consider in detail the cancellation of t
divergences in the term with three scatterings:
g
r-

-

s,
-

f
s

d

e
e
ri-

dWh
(3)

d2pt

~x,b,b!5Gh~x,b2b!E dx18dx28dx38d
2k1d2k2d2k3

3GA~x18 ,b!GA~x28 ,b!GA~x38 ,b!

3
s~k1!s~k2!s~k3!

6
@d (2)~k11k21k32pt!

2d (2)~k11k22pt!2d (2)~k21k32pt!

2d (2)~k31k12pt!1d (2)~k12pt!

1d (2)~k22pt!1d (2)~k32pt!#. ~B1!

The differentd functions in Eq.~B1! correspond to all the
terms of orders3 in Eq. ~3.2!, and represent the triple sca
tering term together with all subtraction terms induced by
expansion of the absorption factor exp@2^nA(x,b)&# of the
double- and single-scattering terms. The expression has
symmetrized with respect tok1 , k2, andk3 and is singular
for k150, k250, andk350. The d functions in Eq.~B1!
prevent the tree momenta from being close to zero at
same time, then we start by discussing the most sing
configuration corresponding to two integration variables b
close to zero. Given the symmetry of the integrand it
4-12
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enough to study the integration region withk1'0 and k2
'0. In this region the termsd (2)(k11k22pt), d (2)(k1
2pt), and d (2)(k22pt) do not contribute. The integrals o
the transverse momenta are therefore written as

E d2k1d2k2s~k1!s~k2!@s~pt2k12k2!2s~pt2k1!

2s~pt2k2!1s~pt!#. ~B2!

In the region wherek1'0 andk2'0 one may use the ex
pansion

s~pt2k!.s~pt!2s8~pt!
pt•k

pt
1

1

2 Fs9~pt!
~pt•k!2

pt
2

2s8~pt!
~pt3k!2

pt
3 G , ~B3!

wherept3k represents the vector product ofpt and k and
s9(pt)5(d2/duptu2)s(pt) depends only on the modulus o
pt. All terms proportional tos(pt) cancel and all the term
linear in k integrate to zero thanks to the azimuthal symm
try of s(k). Then one is left with

E d2k1d2k2s~k1!s~k2!H s9~pt!

2pt
2 @~pt•~k11k2!!2

2~pt•k1!22~pt•k2!2#2
s8~pt!

2pt
3 @~pt3~k11k2!!2

2~pt3k1!22~pt3k2!2#J ,

which simplifies to

E d2k1d2k2s~k1!s~k2!H s9~pt!

pt
2 ~pt•k1!~pt•k2!

2
s8~pt!

pt
3 ~pt3k1!~pt3k2!J 50.

The result is again zero because of the azimuthal symm
of s(k). Hence all terms of the expansion~B3! up to the
second order ink do not contribute. All other terms linear i
k1 or k2, which are obtained from the first terms in th
square brackets in Eq.~B2!, do not contribute for the sam
reason, so the first term different from zero is at least
orderk1

2k2
2, and originates a square-logarithm singularity a

function of the regulatorp0.
One may repeat the argument for the regions where o

one of the integration variables is close to zero. We cons
in detail the case wherek1'0 andk2 andk3 are both finite.
In this region the termd (2)(pt2k) does not contribute to Eq
~B1!. The transverse momentum integrals are therefore
11600
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E d2k1d2k2s~k1!s~k2!$s~pt2k12k2!2s~pt2k1!

2s~pt2k2!1s~pt!%1E d2k1d2k3s~k1!s~k3!

3$2s~pt2k1!1s~pt!%.

To study the singularity it is sufficient to keep the first tw
terms in the expansion ofs(k) in Eq. ~B3!, the remaining
ones leading to a logarithmic divergence. One obtains

E d2k1d2k2s~k1!s~k2!H s~pt2k2!

2s8~pt2k2!
~pt2k2!•k1

pt2k2
2s~pt!1s8~pt!

pt•k1

pt

2s~pt2k2!1s~pt!J 1E d2k1d2k3s~k1!s~k3!

3H 2s~pt!1s8~pt!
pt•k1

pt
2s~pt!J ,

which simplifies to

E d2k1d2k2s~k1!s~k2!H 2s8~pt2k2!
~pt2k2!•k1

pt2k2

12s8~pt!
pt•k1

pt
J 50.

As in the previous case one obtains a vanishing result tha
to the azimuthal symmetry ofs(k). In summary, all integra-
tions in the singular points of the three-scattering term@Eq.
~B1!# induce at most a square-logarithm singularity as
function of the cutoff.

The reduction of the divergences from powerlike to log
rithmic is a common feature of all the terms of the expans
of the transverse spectrum in the number of scatterings
one may see by looking at its Fourier transform@Eq. ~3.6!#.
Indeed, to study the dependence of the inclusive spectrum
the regulatorp0 at a givenpt different from zero one need
to consider the first term in the square brackets only. T
cutoff enters into the difference

s̃~v !2s̃~0!5E ds

d2k
@eik•v21#d2k

52v2
p

2Ep0

`

k3
ds

d2k
dk1finite terms,

so that, also in this case, the divergence forp0→0 is only
logarithmic.
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