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Minijet transverse spectrum in high-energy hadron-nucleus collisions
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Hadron-nucleus collisions at CERN LHC energies are studied by including explicitly semihard parton
rescatterings in the collision dynamics. Under rather general conditions, we obtain explicit formulas for the
semihard cross section and the inclusive minijet transverse spectrum. As an effect of the rescatterings the
spectrum is lowered at smal| and is enhanced at relatively large transverse momenta, the deformation being
more pronounced at increasing rapidity. Its study allows to test the proposed interaction mechanisms and
represents an important baseline to examine nucleus-nucleus collisions.
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[. INTRODUCTION mediate between hadron-hadrohhj and nucleus-nucleus

(AA) interactions, hadron-nucleus interactions allow several

Given the rapid growth of the hard cross section in had-simplifications in the formalism developed to discuss heavy-

ronic and nuclear collisiongl], a typical inelastic event will ion collisions. In fact, as will be shown hereafter and differ-
be dominated by the perturbative regime at very high enerently with respect to the latter case, in the hadron-nucleus
gies so that, at the CERN Large Hadron CollileiC), one instance we were able to obtain closed analytical expressions
may expect to be able to derive global features of the inelas{-.Or thevieml_fl}a[ﬁ crosts dsef;cllon_ ur|1dgr rather gtetneral condi-

tic interaction by perturbative methods. When the perturba-'ons' € will thén study the inclusive minijét transverse

tive regime dominates a physical observable which repre§peCtrum’ which is related in a direct way to the underlying

sents global features of the inelastic interaction, the hadrogzjndi/mc'ﬁ]'u;gislfnleeerfgoég"ii?oérsnportant baseline for the

(or nuplea} scale Sh.OUId therefqre also appear mlthe COITe~ " pasides its intrinsic interest, inclusion of semihard rescat-
sponding perturbative calculation, presumably introducedejngs in the computation of the transverse spectrum has
through t_h_e n(_)nperturb_anve input. At_ LHC energies the Paheen advocated by many authf@s-12 as the basic mecha-
ton densities mvolved_ in the typlcal_ mfceracnon are so highnism underlying the Cronin effe¢13], namely the deforma-
that one has to deal with processes initiated by many partongon of the hadronp, spectra in nuclear collisions as com-
The non-perturbative input in this case is given by the mulpared with the expectations of a single lameproduction
tiparton distribution function, which is a dimensional quan-mechanism. Multiple parton collisions have also been related
tity, and may therefore introduce the above mentioned scalg higher-twist parton distributiongl4—16. A nonperturba-
in the perturbative computations, which would otherwise beive study of the transverse spectrumhi collisions in the
scale free. framework of the McLerran-Venugopalan model for nuclear

By introducing interactions initiated by many partons oneand hadronic collisions was presented in R&f].
may therefore gain the capability of describing, by means of Another reason for the interest in hadron-nucleus colli-
perturbative QCD, at least a few general properties of theions is that theoretical models can be tested against experi-
typical interaction at the energy of the LHC. To pursue suchmental data in a situation where further nuclear effects are
a program one should thef) evaluate perturbative QCD absent, like, e.g., the formation of a hot and dense medium
processes involving many partons in the initial stéit¢ face ~ Which can further modify the transverse spectrum via energy
the problem of the unknown non perturbative input and deloss[18,19. Therefore a detailed understandinghdk colli-
velop a strategy in that respect, afiil) study the infrared ~SIONs represents an important baseline for the generalization
problem by finding observable quantities which are infrared® AA collisions [20,21] and for the discovery of novel
stable. This last step represents the final achievement of tH1ysical effectd22]. , _
whole program. In Sec. Il we Q|scuss the semihalnch cross section and

An explicit approach to semihard interactions in heavy'€call the main ideas and tools needed in the present ap-
ion collisions at the LHC, on the lines previously described,Proach. Section lilis devoted to a discussion of the inclusive
has been accomplished, at least partially, with the help of &nijet transverse spectrum, with particular emphasis on the
few simplifying hypotheses. The program was implemented“eclh‘?m'sjm of subtracpon of infrared divergences, whlch is
in Refs.[2-5], and various physical quantities have been€XPlicitly implemented in our approach. Results of numerical
evaluated in Refd6,7]. evaluations _o_f the inclusive spectra of minijets in haqlron-

The purpose of the present paper is to discuss the case gecleus collisions are presented in Sec. IV. Section V is de-
hadron-nucleus interaction$1A, for brevity). Being inter-  VOt€d to a concluding summary.

Il. SEMIHARD HADRON-NUCLEUS CROSS SECTION

*Email address: accardi@ts.infn.it To face the problem of unitarity corrections to the com-
"Email address: daniel@ts.infn.it putation of thehA cross section, we make use of the self-
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shadowing property of the hard component of the interactioDne may then ask for an expression of the cross section
[23], which we recall briefly in Sec. Il A. Because of self- (o) to produce events of typ@in a collision of a hadron
shadowing all unitarity corrections to the semihard crossagainst a nuclear target. Then, using E22) in Eq. (2.1
section will be expressed by means of semihard partoniand disregarding the terms that do not contairone obtains
cross section onlysee Eq(2.3)], so that one does not need [23]
to make any commitment on the soft component when only
the semihard part of the nuclear cross section is of interest.
Self-shadowing allows, moreover, to also control the soft
component of the interaction by perturbative means, since A A
that contribution is limited to a fraction of the cross section _ 2 n A-n
proportional to the probability of not having any hard inter- _f d ’8,121 (n)[UCT(B)] [1=ocT(AI.
action at all[see Eq(2.4)].
While Ref. [23] considered colliding nucleons as basic 2.3

degrees of freedom, we want to represent the semihard Note that, in spite of the fact that we included superpositions
cross section in an analogous way, b_ut considering partonss elementary events of tyggwith events both of kind’ and
instead of nucleons as elementary objects. Indeed, the semjs king N, the nuclear cross sectiomrg), is obtained by
hard component of the interaction satisfies the requirementgmming all possible multiple hadron-nucleon interactions
of the self-shadowing cross sections if one assumes that g type C alone with a binomial probability distribution, pre-

parton which has undergone interactions vyith a large MOgisely as @) is obtained by a binomial distribution of
mentum exchange can always be recognized in the final;qron-nucleon inelastic interactions.

state. To represent the interaction between hadrons and nu- the only part of the nuclear interaction still missing is the
clei in terms of partonic interactions, each one with a relaqss section for elementary events of tyy@lone. It can be

tively large momentum exchange, one needs to write th@piained by considering the following difference:
cross section for a given nonperturbative input, namely for a

(o0)a= f d*B[1-(1-0a(T(B)"]

definite partonic configuration of the two interacting objects. d(oin)a  d(oo)a
Then, as a perturbative input, one needs to write the prob- PP
ability of having at least one semihard interaction between d°B d°B
the two configurations of partons. We discuss the latter in oA T(B) 1A
Sec. 1B, and in Sec. Il C we introduce a functional formal- =[1- 0 T(B)]*% 1—[1— NP }
ism to deal with multiparton distributiong!| and we com- 1=acT(B)
bine them with partonic interaction probabilities to obtain the A A a\T(B) K
semihardhA cross sectioh24]. =[1— o T(B)1AX ( )(—)
[1-ocT B2 |\ o
A. Self-shadowing onT(B) \AK
Let us consider the inelastic hadron-nucleus cross-section % ( 1= 1- o'CT(,B)) ' 24

(oin)a, Whose expression may be expanded, in the Glauber

approach, as a binomial probability distribution of inelasticwhich is therefore bounded ijy — o-T(8)]*, namely by the
hadron-nucleon collisions: probability of not having any interaction of tygkat a given
impact parameteB. The ratioo,T(B)/[1— o T(B)] may

be understood as the probability of a hadron-nucleon inter-
action at a given impact parameter, under the condition that
A A no event of typeC takes place. Hence after removing all
_ 2 n A-n events of typeC the interaction is expressed by a binomial
_f d BZ& (n)[ai”T(’B)] [1=oinT(B)]" distribution of events of typgV.

(Tin)a= f d?Al1-(1- o, T(B)A]

@D B. Semihard rescatterings
In Eq. (2.1) T(B) is the nuclear thickness function, which  When the kinematics of the collision allows a high den-
depends on the impact paramegeand is normalized to 14 sity of target partons, namely at a high center of mass energy
is the atomic mass number aiag,, is the inelastic hadron- and large atomic numbers, a single projectile parton may
nucleon cross-section. One may classify all events accordingiteract with several targets with large momentum exchange
to a given selection criterion, which we cé&ll while we use in different directions in transverse space. The simplest pos-
N to refer to events that are not of tyjge In particular,C  sibility of such an interaction was discussed in R,
may represent hard hadron-nucleon interactions. We assum¢here the forward amplitude of the process and all the cuts
that in a hadron-nucleon collision all events of typeon-  were derived in the case of a pointlike projectile against two
tribute to o; all other events contribute t@,,, so that the pointlike targets, in the limit of an infinite number of colors
inelastic hadron-nucleon cross-section may be written as and fort/s—0. In this case one finds that the different cuts
of the 3—3 forward amplitude are all proportional to one
Oin=0ct 0y (2.2 another, and the proportionality factors are the AGK weights
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[25]. A consequence is that one may express the three-body The general expression of the inelastic semihard cross
interaction as a product of two-body interaction probabilities.section at a fixed impact parameter may be obtained by fold-
The results obtained in this simple case may indicate a coring the interaction probabilityEq. (2.5)] with the exclusive
venient approximation of the many-parton interaction prob-multiparton distributions of the two colliding systerfis our
ability: one can in fact argue that the many-parton interactiorcase a hadroh and a nucleus of atomic numbAj:
process may be approximated by a product of two-parton
interactions, so that one can call the prooessteractionor doy *
rescattering - = 2
The whole interaction is therefore expressed in terms of d“ m.n=1
two-parton interaction probabilities, precisely as the interac- 1 n m
tion between two nuclei has been expressed in terms of Xpn’m[_lpgm)(ui, LUl H dUiH du/,
hadron-nucleon collisions in Sec. Il A. Hence, given a con- m: =1 j=1
figuration withn partons of the projectile anch partons of (2.6)
the target, we introduce the probabiliy, ,, of having at

least one partor_1ic coII_ision, in a way analogous to the eXWhereﬂ is the impact parameter betweénand A. In the
pression of the inelastic nucleus-nucleus cross-se¢86h  case of hadron-nucleus interactions one may be allowed to
n neglect rescatterings of the partons of the nucleus. Indeed,
poo= 1_1‘[ H (1_&”) ’ (2.5 even at very high cent_er of mass energigs the average num-

’ i=1j=1 ber of scattering per incoming parton is smaller than the

average number of nucleons along the parton trajectory, ex-

wherea;; is the probability of interaction of a given pair of cept in the very forward rapidity regiof6]. With this as-
partonsi andj. Since the distance over which the hard inter-sumption one can obtain a closed formula for the cross sec-

actions are localized is much smaller than the soft interactiotion [4]:

1
mPﬁ”)(ul, coup)

scale, one may approximate Er(xixj ;bi—bj)

~a(xx;) 8@ (b;—b;), wherex; andx; are the momentum doy L—ext 5. (e-% o1

fractions of the colliding partondy; andb; their transverse @_{ expo-(e )1}

coordinates, and(x;x;) is the partonic cross section, whose

infrared divergence is cured by introducing a regulgigr X Z [ I+ 1123 +1]]523/ 0, 2.7

For examplep, may be the lower cutoff on the momentum

exchange in each partonic collision, or a small mass introwhere the following notation is used:
duced in the transverse propagator to prevent the divergence

of the cross section at zero momentum exchange. The ex- S

pression forP, ., is the analogue of Eq2.3) and represents 5i=f du —=——; 5; ZJ' du
the explicit implementation of self-shadowing for the inter- SI(ui=p)

action of two partonic configurations.

S
8J'(uf)

A meaningful approximation is to consider the nuclear par-
C. Hadron-nucleus cross section tons uncorrelated, and if we neglect also the correlations in-

] ) _ side the projectile hadron we get an explicit expression:
At a given resolution, provided by the regulafog, one

may find the nucleafor hadroni¢ system in various partonic

configurations. We calP™(u;- - -u,) the probability of a Ckﬂzl_exp{ _f dul'(u— B)[1—eJouuTaw)du' |
configuration withn partons(the exclusive n-parton distribu-  d28
tion) whereu;=(b; ,x;) represents the transverse coordinate (2.9

of theith partonb; and its longitudinal fractional momentum o _
x; . The distributions are symmetric in the variablgs and  Note that the cross section is a function of
can be obtained from a generating functional defined with

the help of auxiliary functiong(u) as follows[4]: Wh(u,ﬁ):Fh(u—,B)[l—e*f‘}(“v“')FA(”')d“']
) )
PM™W(uy, ... =Ip(u=B)Pa(u), (2.9

1un): 5\](U1) T 5J(un)Z[J]|J=01

where which represents the number of projectile partons that have

Z[J]:exr{ f C(w[I(u)—1]du+ >, if c™(uy- - -up) interacted with the target, i.e., the projectiteunded partons
n=2 n! [2,4]; we call themminijets even if they did not yet had-
ronize.P,(u) represents the probability that a projectile par-
—11... _ . ton with a givenu=(x,b) has at least one semihard interac-
XU =] [Iun) ~1]duy du“}' tion with the target; hence the cross section is obtained by
summing all events with at least one interaction.
I'(u) is the single parton distribution an@™ are the One would obtain the same expression for the average
n-parton correlations number of wounded partori&q. (2.9] under more general
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hypotheses by working out directly from E.6) the aver- introducing a constraint in the transverse momentum inte-
age number of projectile partons which have undergone ajrals that give the integrated parton-parton cross sections in
least one semihard interaction. The only assumption needdatie expression above:
is that all the target partons are uncorreldtgd]. Therefore,
JSduW(u, 8)=(n)do/d?g represents the integrated inclusive dW, “ 1
cross section required to detect all scattered projectile parT(X,b,,B)=Fn(X,b—,3)2 ;J LCa(xq,b)- - Ta(X;,,b)
tons, and takes into account the correlations of the projectiléj Pt s
partons at all orders. dor dor

% effdx’FA(x’,b)o-(xx’) L

d%k,  d’k,
I1l. INCLUSIVE MINIJET TRANSVERSE SPECTRUM

. : . . X 6@ (ky+ - - +k,—
After the introduction of semihard parton rescatterings, (ks v Py

integrated quantities like the semihard cross section and the X d2K,- - -d2k,dx; - - - dX.. (3.2
minijet multiplicity show a weak dependence on the infrared . !
cutoff needed to regularize the infrared divergences arisin

Isnhope:ttjrzg?gyf?er(:e%TEIUIag?wrt]'?ég]i'kgc'zr?\e/?rzs'r?ly ’ Ist :Ic”tlr bn(: xx’s>4p§, respectively, and all the distribution functions
w : 'al quantities 1 Inijgspectru are evaluated for simplicity at a fixed scale.

are more sensitive to the detailed dynamics of the interac- By using the above formula one can study fhebroad-

ltgonérﬁﬂgﬂihqrvg arlesdtlzcc):r;gtehrisdedpeenedn(acjnecr?cgno:]?h(;UIngrtbgf %r:)éning of a wounded parton, in particular the square root of
9 : P She average transverse momentum squared acquired through

_needs_ to improve fu_rth_er the picture of th_e dynamics by als?ts path across the nucleus. Consider a single projectile par-
including gluon radiation in the interaction process. Some,[On

steps along this line in the case of deep inelastic electron- with fixed x and b. The probability that it acquires a
; . i certainp, after the collision is given by Eq3.2) divided by
nucleus scattering have been presented in R&. In this . . }
... the numbed,(x,b— B) of incoming partons:
paper, however, we neglect the problem of gluon radiation
and concentrate on the effects of elastic rescatterings.

The deformation of the higp; hadron spectra which dPa(x,b) =%(x b, )
leads to the Cronin effect was studied in terms of semihard d?p, d?p,
parton rescatterings in Ref8-11], where partons that suf-
fered up to two scatterings were included. This leads to &hen the average transverse momentum squared of a
good description of the data fguA collisions up to\s  wounded parton is given b§p?(x,b))a=(pZ)/{1), where
=39 GeV in the hadron-nucleon center of mass frame«f(pt)»:deptf(pt)dpA/det, By exploiting the azi-
However, the two-scattering approximation breaks down amuthal symmetry of the differential parton-parton cross-
higher energies, except at very high, and the whole sections, and the symmetry of EQ.2) under exchanges of
wounded parton transverse spectrum is needed. More phg- it is easy to see that
nomenological approach§$2,20 model the effects of mul-
tiple scattering as Gaussigp broadening for each rescatter- 1 do
ing suffered by a parton. A random-walk model of the (pf(x,b))Az—f dzptdx’pfz—(xx’)FA(x’,b)
multiple scatterings was proposed in Rgf1]. P d°p

%he limits of integration onx/ andx’ are xx/s=4k? and

_
Th(x.b=pB)"

A. Transverse spectrum =(Pc(x.b))y Pa(x,b) '

We can expand the average number of projectile wounded
partons[Eq. (2.9, at a givenx andb in a collision with ~ Where
impact parameteg, in the following way:

$o.dx’ zda(xx’)r (x'.b)
” (na(x,b))” f plax pr—; AlX7,
_ _ —(na(x.b)) dp
Wi(x,b,B)=Th(x,b— ) 2, — —e , (p2(x,b)); = t
(3.1 de’a(xx’)FA(x’,b)

where (na(x,b))=[dx'T'5(x’',b)a(xx") is the average is the average transverse momentum squared in a single
number of scatterings of a projectile parton at a gixeand  parton-parton collision. Th@, broadening of the wounded

b [4]. The average number of wounded partons is then givepartons in ahA collision is then given by th@; broadening

by the average number of incoming partdng, multiplied in a single collision multiplied by the average number of
by the probability of having at least one semihard scatteringrescatterings suffered by a wounded parton. A similar result
which is given by a Poisson distribution in the number offor the p; broadening of a fast parton traversing a nuclear
scatterings,v, with average numbetna(x,b)). Therefore, medium was derived in Ref27]. Two interesting limits can

we can obtain the inclusive differential distributiona by  be considered:
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(ptz(x,b))l aspo— > ~ _—
2 — . — (v)/,. .
(PEOCPDA™] 2k b)) s(a(x.b))  aspysO. Wi(3x,0) = 2, Wi (wix,b)
(3.9 "

=> ! ( dx'Tz(x',b
Since the minijet yield is dominated by transverse momenta =1 v X' TA(X",b)
of the order of the cutoff, these two limits say roughly that
the. minijets at highpt [i.e., highpy in Eq. (3_.4)], suffer x[?r(v;xx’)—?r(o;xx')])v
mainly one scattering. On the contrary, at lpy/[i.e., low pg
in Eq. (3.4)] they undergo a random walk in the transverse v
momentum plane and the broadening is proportional to the _( - dx’FA(x’,b)E(O;xx’)) }
average number of steps in the random waik). This pic-
ture will be studied in more detail in Sec. IV A. (3.7

An explicit formula for the transverse spectrum can be
obtained by studying its Fourier transform, since all the conComing back to the, space, the expansion of the transverse
volutions in Eq.(3.2) turn into products and the sum over  spectrum in number of scatterings reads
may be explicitly performed. To this end, we introduce the

Fourier transform of the parton-parton scattering cross sec- 2 W)
tion: M 081~ 3, o (x,b,8)
: X,0,6)= X,0,
d?p, =1 d’py
~ . do o 2
. 1y — 2 k-v ’ d<v .

7(vixx) fd kelk-v 2 00X, -3, rh(x,b—ﬁ)f Rl

Note thata(0;xx’) = a(xx'), and that due to the azimuthal X W (v0;%,b). (3.8

symmetry ofda/d?k, its Fourier transform depends only on
the modulus,v, of v. Then the transverse spectruiiq. The seriegEq. (3.7)] can be obtained also by expanding

(3.2] may be written as W(v) around v=0. Since the variablev is Fourier-
conjugated top;, the expansion of the transverse spectrum
dW, d%y o [Eq. (3.8)], will be valid at highp,, and we expect a break-
Em (X,b,ﬁ)=rh(x,b—ﬁ)f (zw)ze_'p"”Wh(v;X,b), down of any truncation at sufficiently low momentum. Note
t

(3.5 that we can obtain this higp; expansion of the spectrum
: directly in p; space by expanding the exponential in 212

and collecting the terms of the same orderginAs an ex-

where ample, the first three terms Ed#é1), (A2), and(A6), can be
found in the Appendix A. The study of this series is the

~ , , L~ N subject of Sec. Il C; numerical results uprie- 3 scatterings
Wh(”;X'b)zgl ﬁ“ dx'Ta(x", D)o (v;xx") will be discussed in Sec. IVA, and compared to the whole
_ spectrum. In Appendix A we will discuss the symmetrization

x @~ JIX'TA(X"b)or(0:xX") of the terms of the series.

[’

— @/ dX T A" B){a(vixx") = o(0:xx')} ' -
e 8 7 7 C. Cancellation of the divergences
— @ [ TAK,D)o(0xx) (3.6) All terms of expansior(3.9) are divergent in the infrared
region, so that we need to cure them with the regulatpr
An immediate consequence is that the transverse spectru_hlpvertheless, the infrared dlvergenc_es are alrea_ld_y regular-
has a finite limit asp,— 0, even when a cutoff on the mo- ized to a large extent by the subtraction terms originated by

mentum exchange is used: the expansion of eXp-(na(x,b))] appearing in Eq.(3.2);
namely, by the constraint of probability conservation. This

cancellation mechanism was observed also in Péffor the
two-scattering term and in Reff19] in a different context.

It is instructive to examine in detail how the subtraction
works for the lower order terms of the expansion. We start by
considering the case of a single rescattering 2). To sim-

B. Expansion in the number of scatterings plify the notation we write the elementary differential cross
- sectiondo/d?k aso(k), and notice that it depends only on

We can obtain an expansion W, in the number of the  the modulug of the momentum. By expressing the semihard
rescatterings suffered~by the incoming parton by expandingross section as= [d%ko(K) the term of ordeir? may be
Eq. (3.6) in powers ofo: written as

IWol b B) =T (xb— )Jﬁ\W( x,b)
dop, | TP TIIRTE) | phuR:
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dw? impact paramete=0. In the numerical computations we
n (X,b,[g)zrh(x,b_ﬁ)f L a(X],0)T A(X5,b) used the leading order perturbative parton-parton cross sec-
d’p, tion with a mass regulatan=p,,
o o(ky)o(ky) d 9 2
X dxq dxpd?ky d?ky————— TU Xx')= ?;(Qz)zﬂ(xx’s—4(p2+m2))0(1—x)0(1
d°p (p*+m®)
X[ 83Ky +ko—py) — 6@(ky—py) —x'),
— 8% (k,—py)], (3.9  wherek is thek factor that simulates next-to-leading order

corrections(we chosek=2). The single-parton nuclear dis-

where the first term in the square brackets represents tW@ibution function has been taken to be factorized andb,
successive scatterings with no absorption. The two negative

terms are the corrections induced by the expansion of the La(x,b)=7a(b)G(X,Q),

absorption factor exp-(na(x,b))] of the single-scattering \ nare - s the nuclear thickness function normalizedo
term,»=1in Eq.(3.2), and correspond to a single-scattering 5 is the proton distribution function. We evaluated the
along with the effects of absorption in the initial or final gyong coupling constant and the nuclear distribution func-
state. The expression we obtained is symmetric in the inteqgns at a fixed scal®=m. In the computations we used a

gration Variable&l and kz. hard_sphere geometry
The cutoff dependence is originated by the singular be-

havior of the integrand fok,~0 or for k,~0, since thes 3

functions in the square brackets prevent the possibilitl,of TA(b):AvaZ_ b*6(R?~b?),

andk, are both zero at the same time. Because of the sym-

metry under the exchandg«— ks, to study the cutoff depen- whereR=1.12A"2is the nuclear radius measured in fm. For

dence of Eq.(3.9) it is enough to discuss the integration G we used the 1998 Gik-Reya-Vogt(GRV98) leading or-

aroundk;=0. In the regionk;~0 the term&®(k,—p,)  der (LO) parametrization[28]. At low p, the spectrum is

does not contribute, as long psis finite. The integration in  obtained by computing numerically the Fourier transform in

k, is done with the help of thé functions, and one obtains Ed. (3.5, but at highp, the result begins to oscillate too
much, and in that region the spectrum was computed by
using the expansion in the number of scattering up to the

f d*kyo(ky)[o(p—Kq) = o(py)]. three-scattering territhe formulas actually used, Eqg\1),

(A4), and (A7), are discussed in Appendix]AWe checked

On the other hand, fok;~0, one may use the expansion that the spectrum obtained by Fourier transformation

o(pi—ky)=a(p)— o' (p)pi-K./p;, Where p,-k; repre- matched the expansion smoothly.

sents the scalar product of the two vectors, andp;)

= (d/d|p;|)o(p;) depends only on the modulus pf One is A. Effects of rescatterings

left with In this section we discuss the projectile and the target
transverse spectrum averaged over a given rapidity interval,
a’(py) 2
- pr-kio(ky)dk; =0, dwi, 1
Pt (B Mmins Mmax) = f dxd?b
dzpt TTmax™ 7min 7€ [ 7min. 7max

where the vanishing result is due to the azimuthal symmetry

of a(k;). The dominant contribution to the integral comes h

therefore from the next term in the expansionogk,—p,), Xdz—(X,b,B% (4.1)
which goes askf. Hence the resulting singularity is only Pt

logarithmic inp,, sincea(k)~k™* ask—0. The subtraction where we approximated the pseudorapidity by
terms, originated by the absorption factor exgna(x,b))] in =log(x\/s/py). The target spectrurdW,/d?p, is obtained

Eqg. (3.9, have canceled the singularity of the rescatteringby interchangindh andA in Eq. (4.1). Note that now we are
term almost completely. This feature is common to all thetaking into account all possible rescatterings of the target as
terms of the expansio(8.9) as it is discussed briefly at the well.

end of Appendix B, where the three-scattering term is dis- In Fig. 1 we compare the full transverse spectr(sulid

cussed in detail. line) with its expansion in the number of scatterings up to
three scattering&otted and dashed lines\Ve show both the
IV. NUMERICAL RESULTS AND DISCUSSION projectile and target minijet spectrum in a pseudorapidity

region e[ 3,4] for the projectile andy e[ —4,— 3] for the
In this section we discuss in detail, both qualitatively andtarget. Note that the rapidity is defined with reference to the
quantitatively, the modifications induced by the rescatteringgrojectile hadron direction of motion. The choice of a for-
on the minijet inclusive transverse spectrum. We consider @ard region(backward for the targgis done to enhance the
proton-lead collision with center of mass energys  effect of the rescatterings and to better discuss the deforma-
=6 TeV in the nucleon-nucleon center of mass frame andion induced in the spectrum. Indeed, in those regions the
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FIG. 1. Left: Targetp, spectrum fory e[ —4,— 3]. Right: Projectilep, spectrum fory e[ 3,4]. The full transverse spectrufsolid line)
is compared with the one-, two- and three-scattering approximatiensdotted, short-dashed, and long-dashed Jines

average fractional momentum of an incoming parton is largep; the minijet yield is more and more suppressed with re-

so that the number of available target partons is large and th&pect to the single scattering approximation.

probability of rescattering becomes large. At very low transverse momentum=p, a parton under-
First we look at the projectile spectrum. At high the  goes a large number of rescatterings, all vetk-p,. Hence

spectrum is enhanced with respect to the single scatteringpe parton performs a random walk in the transverse plane

approximation because of thg broadening induced by the and the spectrum becomes flat@s-~0 because the phase

rescatterings. A9, is further increased it approaches the SPace becomes isotropically populated. This shows that at

single-scattering spectrum, as expected on general ground§"Y low p; multiple semihard scatterings are consistent with

when thep, distribution of the elementary scattering follows the random-walk model of Ref21], while at moderate and

a power law. This can be understood qualitatively by looking"'9n Pt the physical picture is rather different.

at the path inp, space followed by the incoming parton. ¥ SHIECCR TS TR G S DO o e tra
Given a final largep;, due to the leading divergences in Eg. P proj p

(3.9), the leading processes to obtain tpatwith two semi- versing a very dense target and the effects of the rescatter-

. i . : ings are large. Conversely, a target parton “sees” a rather
hard scatterings are a first scattering with momentum transfed”ute system, and its minijet spectrum does not differ too

q~po followed by a second one witlip~p;, and vice  mych from the single-scattering result, except at very low
versa. For an analogous reason, the leading configuration {9~ Mmoreover the changes induced by the rescatterings on
reach the finalp, with three scatterings is;~p; plusd.  integrated quantities, like those entering in the expression of
~03~Po and permutations. This sequence of three scattefthe hadron-nucleus cross section, are minimal. This is con-
ings is less probable than the process with two scatterings &sstent with our approximation of not including rescatterings
p; increases because the fraction of phase-space volume tifat the target partons to obtain analytical formulas for the
this process occupies decreases much faster pyithan in  hadron-nucleus cross section. One can also see that the three-
the two-scattering case. For an analogous reason the relatigeattering approximation describes well the projectile spec-
importance of the two-scattering term with respect to thetrum for p;=15 GeV, while it breaks down completely at
single-scattering term also decreasepgamcreases. In con- py=7 GeV, where it becomes negative. For the target spec-
clusion asp; increases the average number of scatterings pdfum the three-scattering approximation is not accurate for
parton decreases, and eventually the spectrum is well déx=4 GeV.

scribed by the single-scattering approximation.

At intermediatep, the average number of scatterings per
parton increases and the shape of the spectrum is more andIn this section we study the minijet transverse spectrum
more distorted with respect to the single-scattering case. Iresulting from the sum of the transverse spectra of the pro-
fact, the fraction of phase space available to the leading corjectile and target wounded partons:
figuration of a multiple scattering process;&p:, d»
~...~(Q,~Po and permutationsincreases ap, decreases. dWa

B. Minijet inclusive transverse spectrum

However, this is not the only mechanism at work. Indeed, in d%p (8. min max)

our computation each wounded parton is counted as one !

minijet in the final state, independently of the number of 1

rescatterings. On the other hand, in the single-scattering ap- =———| dxdb

proximation one identifies the number of minijets in the final TTmax Iminlne [ 1min  imasl

state with the number of parton-parton collision. This leads dwi dw
to an overestimate of the jet multiplicity and to a divergence X| — h(xybng)ju 5 A(X,b”g)> . 4.2
of the spectrum gb,=0 asp, goes to zero. Therefore at low d“p, d“py
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p—-Pb Vs =6TeV 8 =0fm m=1 GeV Kt = 2
....... :proj. — .:targ. —__ :p+t ._._:p+t (1 sc)

f 10t 3 FIG. 2. Projectile plus targep, spectrum
S 10° . (solid line) at different rapidities compared to the
10t ;- -. result of the one-scattering approximati¢aot-

:‘; 10-2 r _, dashed ling Also shown are the contributions of
\z 108 b 3 the projectile minijet{dotted ling and the target
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We analyze the spectrum in three rapidity regions, namelynnression of the projectile minijets, and it becomes convex
nel—4,-3], ne[-11], and ne[3,4] (respectively ,qain 4t lowp,, where the target begins to dominate.

“backward,” “central” and “forward” with reference to the :
R . : In Fig. 3 we study the dependence of the spectrum on the
projectile direction of motion While the target partons ba- choice of the cutoff, and plot the result far=1, 2, and 3

sically do not suffer any rescattering in all three regions, th};ev. The deformation of the spectrum decreases as the regu-

projectile partons undergo many rescatterings in the forwar : : :
region, some in the central region and basically no one bac ator increasesindeed, the average number of rescattering

wards. d%?rease)sand form=3 GeV it begins to become negli-

In Fig. 2 we show the spectrufd.2) (solid line) and the gibie. . .
contributions of the projectile and of the targeiotted and Thg effects O.f the rescatterings are better displayed by
dashed lines, respectivélyFor comparison the total spec- sFudymg the ratio of thg fu[l transverse spectrum and the
trum obtained in the one-scattering approximation is alscndle-scattering approximation,
plotted (dot-dashed ling The spectra are computed with a
regulating massn=1 GeV. dWiA/d?p, dW,a/d%p;

In the backward region both the projectile and the target Rp(P) = dwdg2 - A. dWwd/d?p.’ 4.3
suffer mainly one scattering over all tgg range except at hal@ P Ag AWpplEPr
p;~0, and the spectrum is dominated almost everywhere b
target minijets.

In central and forward regions the target jets still SUﬁerparameter
basically one scattering over all tipg range. Conversely, the S . .
projectile crosses a denser and denser target and undergogsm Fig. 4 we plotted the rati®(p,), which measures the

an average number of rescatterings that increases with pse i_;f(:anrg]ntef:gcljlgt)cr)r?nlgulet zprgﬂgcgogé\?ogﬁgtgd G"‘g{? tthheree
dorapidity. This means that at lopy the projectile spectrum o e
picity e prol P effect of the rescatterings is rather small in all the three ra-

is very reduced with respect to the one-scattering approxima-_d_t int | t at | dd t affect
tion, and the minijet yield may become negligible with re- pidity intérvals, except at very low,, and does not arec

spect to the minijet yield from the target. The overall effect isthe mtegrated_quannue; like the average number.of minijets.
that at lowp, the spectrum is dominated by minijet produc- As the regulating mass is decreased'the rescatterings pegln to
tion from the target while at intermediate and highit is show up, gnd lead .to a large effect in the forward rggpn.
dominated by minijet production from the projectile. The ratioRg(py) is characterized by three quantities: the

At very forward rapidities this effect becomes quite dra- mrc:men_tumpxhwherhe theRﬁ. CTOSSEes dll rt]hehmp mentfupry
matic and the spectrum acquires a structured shape: it fofvhere it reaches the maximum and the eighy of the

lows the inverse power behavior of the single-scattering terpjraximum. The_ 59’?5'“"“3/ opx on the cutoff_decreases as
at high p,, it is concave at intermediate, because of the the pseudorapidity increases. Loosely speaking, when the av-

}/,vhere Aﬁ:fdszh(b—,B)TA(b) is the number of target
nucleons interacting with the projectile at a given impact

p-Pb Vs =6TeV g=10fm K., =2
—  :m=1GeV __ :m=2GeV . . : m=3 GeV

_|||||||||||||||||||I|||| |||||||||I||||I||||I|||| |||||||||||||||||||I||||_
~ 100 3
T 10" n e [-1,1]
é 5 FIG. 3. Regulator dependence of the projec-

_ 1ot E tile plus targetp, spectrum at different rapidities

c\_g' 10-2 1 for m=1, 2, and 3 GeMviz. solid, dashed and
\E 10-2 2 dotted lines.
Z 10-4 N

b b b e b b b S P b e 1 1000

Q rm

5 10 15 20 0 5 10 15 20 0 5 10 15 20 25
p, (GeV)
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FIG. 4. Ratio of the full projectile plus parton
p; spectrum to the one-scattering approximation
at different rapidities and fan=1, 2, and 3 GeV
(viz. solid, dashed, and dotted lines
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erage number of scatterings is high, as it is the casg, at On the other hand, the sensitivity Bf; on p, signals a
=p,, the jets lose memory gf,, which gives the order of weakness in our description of the dynamics underlying the
magnitude of the typical momentum exchanged in each colhadron-nucleus collision. We expect that such a sensitivity
lision. py shows a slightly larger sensitivity on the regulator, Will be considerably reduced when also including in the dy-
since it lies in a region where the average number of scatteamics the gluon radiation emitted by the multiply scattering
ings is smaller. This behavior is very different from the con-Partons. Some of the effects of the radiation on the transverse
clusions drawn by considering only the expansion up to twgsPectrum might however be described by the paranmter

scatterings, where both,, and p,, are proportional tgp,  °Yr model, in which radiation is neglected. Since the inclu-
[11]. In faé:t at low cgnter OfM mass energies the two-Sion of gluon radiation in the dynamics would introduce new

scattering is a good approximation in all rapidity ranges, exPhysical scales, such as the radiation formation time, related

cept may be very forward. However, it breaks down in anyto the energy of the collision and the nuclear size, we would

case at transverse momenta comparable to the regydgtor expect in any case that the valuepgfwill depend ony's and
Therefore, while most of the spectrum is well described by ~
the two-scattering approximation, the behaviopgfandpy V. CONCLUSIONS
iS not.

On the other hand, the height of the peak is much more The purpose of the present paper is to draw attention to
sensitive to the cutoff, since its leading term is roughly pro-some of the advantages of studying hadron-nucleus semihard

portional to some power of the logarithm of the regulator; interactions at the LHC. As in the case of lower enerdies,
interactions represent an important intermediate step to relate

hh and AA reactions, being much simpler to understand as

dWpa d hlA) pfn (fresdPw)) compared with the latter. Moreover, even at higher energies,
d?p B d?p NO log ? such as those obtainable at the BNL Relativistic Heavy lon
t tdp=py PO~ 0 Collider (RHIC) and LHC, inhA collisions we do not expect

the formation of a dense and hot system, like the quark-gluon

Sincepy, is not very large, the average number of rescatterl?'asma’ so that one can study directly the nuclear modifica-

; tion of the dynamics without the need of disentangling the
ings at that value of the transverse moment{m,s{Pm)),
is much greater than 1, and the sensitivityRy on po is effects of the structure of the target and those due to the

. : . ormation and evolution of the dense system. Hadron-
high. At highp th(_e_ayerage number of rescatterings te_nds tgnucleu:s interactions represent therefore the baseline for the
zero, so the sensitivity of thR; on p, decreases and disap-

detection and the study of the new phenomena peculiar to
pears at very large transverse momenta.

hat th Kis | ! . h ft AA collisions.
Note that the peak is located inm region, where so We faced the problem of unitarity corrections to the semi-

interactions(which have been disregarded in our approach harq cross section by including explicitly semihard parton
are expected to be negligible; therefore, in that region oufescatterings in the collision dynamics, and exploiting the
perturbative computations should describe the spectrum ake|f-shadowing property of the semihard interactions. In the
most completely. Following Ref11] we might interprefp,  interaction mechanism we took into account just elastic
as the momentum scale at which the interaction deviateparton-parton collisions, while we neglected the production
from the perturbative computations. With this interpretationprocesses at the partonic levelg., all 2—3 etc. elementary

po would acquire a physical meaning: though introdugipg  partonic processgswhose inclusion represents a nontrivial
to separate hard and soft interactions is only a theoreticatep in our approach and deserves further study.

device and physical phenomena do not depeng@rit is a Contrary to the case ohA collisions, it is possible to
well defined question to ask up to what scale the perturbativebtain closed analytical expressions for the seminhaad
computations are good. If the collision dynamics would becross section; see ER.9). To that end a crucial assumption
determined by parton multiple elastic scatterings alone, thehas been to consider the hadron as a dilute system, so that
the measure of the height of the peak would be a way ofescatterings of nuclear partons can be neglected while res-
measuringp,. catterings of the projectile are fully taken into account. In our
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expressions we have disregarded correlations in the nuclearprojectile parton it is convenient to implement the subtrac-
multiparton distributions, whose effect may nevertheless béion of the IR divergences directly in the integrand. In this
studied in a straightforward way within the present func-way the Monte Carlo integrations, which we use because of
tional approach. the high dimensionality of the phase spdteparticular for

We have then focused on the inclusive minijet transverse¢hree or more scatteringswork at their best. In fact, Egs.
spectrum at fixed impact paramet¢Eq. (3.5], which is (3.9 and (B1) are not suited for numerical implementation
influenced in a more direct way by the rescatterings. Thalue to the delta functions. The basic property that allowed
modifications of the transverse spectrum induced by the¢he cancellation of the divergence in the integrand was the
semihard rescatterings of the projectile partons is emphasymmetry under exchanges of the integration variables. Un-
sized in the ratidRg(p;) [EQq. (4.3)], defined as oup; spec-  fortunately after using the delta functions to perform the in-
trum divided by the impulse approximation. In particular, wetegrals, one obtains in general nonsymmetric expressions.
have evaluated it g8=0 for different values of the regulator The goal of this appendix is to study how to symmetrize
po- The results are described by the valuep ofidefined by  each term of the expansion of the transverse spectrum. We
Rsg(px)=1], pwm (Which is the value op, that maximizes  will discuss them in detail up to the three-scattering term, but
the ratio andRy, (which is the maximum oR;). We obtain  the techniques discussed can also be applied to the generic
that bothp,, andp,, depend weakly op,, while Ry, has, on  term in the expansion. For simplicity, we will use the follow-
the contrary, a strong dependencepgrwhen the regulator is  ing notation, already introduced in the main text:
rather small. Therefore, the results for the spectrum also al-
lows us to identify the limits of the picture of the dynamics o
considered in this paper. Analogously to the average trans- a(k)= @(XX')-
verse energy and the number of minijetsNA collisions[6],
some of the features d®s, such asp, and py, show a
tendency toward a limiting value at smal. All these quan- 1. One-scattering term

tities depend therefore only marginally on details of the dy- g gne-scattering term does not include any subtraction

namics which have not been taken into account in the preset, i, <o that we do not need to symmetrize it. It is simply
approach. Conversely, the limits of the simplified picture Ofgiver,1 by

the interaction show up iRy, . Because of its strong depen-
dence omg, in order to describe the spectrum one needs in dWh<1>
fact to fix experimentally the value @f, by measurindzy, .

. . . .. d2
This feature might be not so unpleasant, because if one limits Pt
the analysis to the inclusive transverse spectrum of minijets

in hA collisions, all the effects which are not taken into . .
account in the interactiotlike the gluon radiation in the and corresponds to the result one obtains by considering only

elementary collision procesare summarized by the value of disconnected parton collisions and neglecting parton rescat-

a single phenomenological parameter. However this featurf€ings: It also corresponds to modeling the hadron-nucleus
will not hold any further if one had to evaluate more differ- collision as a superposition of hadron-nucleus collisions.
ential properties of the produced state, which can be properly

discussed only after explicitly introducing further details into 2. Two-scattering term

the description of the elementary interaction process.

The experimental measure of the Cronin effect in minijet
production inhA collisions would therefore be of major im- f the & functions. By simply callingg the remaining inte-
portance: it would allow one to establish the correctness °§ration variable we obtain
the whole approach described here, and it would represernt
the basis for a deeper insight in the semi hard interactiony\(2)

dynamics both fohA and AA collisions. e h (X,b,8)=T1(x,b—p) | dx;dx;T" a(x1,b)T a(x5,b)
Pt

(Xb,8)=Ty(x.b=8) [ A T4 D) (P,
(A1)

The two-scattering term is given by E¢3.9), and we
need to perform one integration ouer or overk, to dispose
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hAs discussed in Sec. Il C, the negative term in the expres-
sion above subtracts the leading inverse power divergence in
the integrand leaving only a logarithmic divergence. How-
ever, the cancellation happens only after performing the in-
tegration overg, which may be a difficult result to achieve
numerically (actually this is not a problem for the two-

For a numerical computation of the high-expansion of scattering term, due to the low dimensionality of the integral,
the minijet spectrum in the number of scatterings suffered byut becomes a large issue from three scatterings on

APPENDIX A: SYMMETRIZATION OF THE EXPANSION
IN THE NUMBER OF SCATTERINGS
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There are two divergences to be subtracted: ong~® 3. Three-scattering term
and the other irg~p;, but the subtraction term is divergent 14 prepare the ground for the treatment of the three-
just in g~0, and the cancellation of the inverse power Sin'scattering term, we note that generates the group of the
gularities is obtained only after performing the i”tegrationpermutations of the two singularities~0 andg~p;: this is
overg. To allow the numerical integration to do a better and.5jjed the symmetric group of order 2, and is indicated as
faster job, we require that the divergences in the convolution\;f@):{]LT}, where(T) means “generated b§." It is
term and in the subtraction term be canceled directly in the,qp, easy to see that we can construct the symmetrizing op-

integrand. This is obtained by symmetrizing the integrand, 4ior Eq.(A3) by summing all the elements &, and by
with respect to an interchange of the two singularities in thedividing by its cardinality.

convolution term. Let us introduce therefore an operator that ., Eq.(B1), after exploiting thes functions, the three-
performs the interchange of the two singularities: scattering term r,eads '

T:qg—pi—q, AW

so that d?p,

(X,b,B):Fh(X,b_ﬁ)f dXidXédXéFA(Xi,b)

1 datta- [ Fato-a. XL A0 DT AX3.D)

1
Note that the change of variables operatedibfias a unit ng dqd’r[o(q)o(r)o(p—q—T)
Jacobian and that?=1. Then we define the symmetrized '
two-scattering term as —30(q)o(pi—q)a(py)
AW iy AV +3a(q)o(r)a(p)]. (A5)
=5@) —
d?p, sym d*p, Following the general analysis previously done at the end of
o the last paragraph, we observe that in &p) in absence of
where we introduced the symmetrization operator the cutoff we would have four divergences, i.e.,
5(2):%(14_1[*)_ (A3) g~0, r~0, p—q-r~0, p—q~0. (A6)
. Then to write the symmetrized three-scattering term, we
The result is need to consider the groupy of the permutations of these
2) four divergences, which has #4124 elements,
i, (x,b,B)=Fh(x,b—B)f dx I a(Xy,b) P = sOP@,
sym
, ) where
X060 [ Falo@o(p-a)
1
) —
— (@)~ (P QP Vs 2, "

Ad

(A9 When applying this operator to the three-scattering term the
Note that the first term in EqA4) describes two subsequent resulting expression has 49 terms and is too long to be dis-
scatterings with total transverse momentymand is the cussed here. To obtain an idea of the result, we will consider
naive perturbative QCD result. The two negative terms ar@nly the subgrouB; given by the permutations of the first
the absorption terms induced by probability conservationthree divergences in E¢A6), which are the divergences that
The two IR divergences of the first term are canceled byappear in the first term of EqA5), i.e., the naive three-
these two subtraction terms: gs-0 by the first one and as scattering term. After symmetrization it will be immediate to
g—p; by the second one. The remaining linear singularitycheck that all the “single” divergences cancel explicitly in
gives a zero contribution because it is odd in a neighborhoothe integrand, while “double” divergences cancel only after
of =0 andq=p;, so that only the logarithmic divergence performing the integrations over the transverse momenta. We
remain. Note that now the two divergences are subtractedall a “single” divergence a pointd,r), such that only one
directly in the integrand, which was the goal of the symme-of the expressions in EGA6) is near zero, and a “double”

trization procedure. divergence a point such that two of these terms are nearly
Equation(A4) is the expression that we use in the numeri-zero. For example{q~0; r+0, p,p;—q} and {gq~0; r

cal computations of the transverse spectrum at Ilgghlt ~p} are a single divergence and a double divergence, re-

could have been guessed directly from E&2), but the use  spectively.

of symmetrization operatdA3) will facilitate the discussion The first step is the definition of the operators that ex-

of the more complicated three scattering term. change the three singularities:
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q—r q—pi—q—r q—q whereTy=1, T,=T,T, andTs="T,Tj3, so that the reduced
IE P 3! symmetrizing operator is
r—dg, r—r, r—pc—q-r.
5
Note that they are idempoterit;=1. Next we observe that S(Sé:i 2 T, .
the groupS; of the permutations of the three singularities is ed 31 !

made of 3=6 objects, and that ) ) ) )
Finally one can write the partially symmetrized three-

Se=(Ty, Ty, T3)={Ty, Ty, T, T3, T4, Ts}, scattering probability:

3) 3)

d
—c@® A
(X!b!ﬁ) - bred dzpt

(x,b,B)

2
d°p; sym

1
=I‘h(x,b—,3)fFA(xi,b)FA(xé,b)FA(xé,b)dxidxédxgdzkldzkzdzkgaf d?qd?r

X

1 1 1
o(q)o(r)o(pi—gq—r)— Eo(q)o(r)o(pt—q)Jr Eo(q)a(pt—q)a(pt)— zo(q)a(r)a(pt—r)
1 1 1
+50(P=No(@a(p) — 5o(p=q=r)o(@o(p—a) + 5 o(p=r)a(p—a)a(p)
1 1 1
- Ea(pt—q—l’)a(r)a(pt—r)+ EU(pt_r)O'(Pt_q_r)O'(pt)_ EU(")U(pt_q_r)U(Q‘*‘r)

1 1 1
+ Ea(r)o(q—r)«r(pt)— zo(q)o(pt—q—r)o(q+r)+ EU(Q)U(q_r)U(pt)} (A7)

Analogously to what has been done for the two-scatteringjm]s)
term, one can see by inspection that the four single diver 5
gences Eq. (A6)] explicitly cancel in the integrand, while P
double divergences cancel only after performing the integra- , , ,
tions overq andr. By considering all four singularities, and XL a(x1,b)Ta(X2,b)I'a(X3,b)
by using the whole5, group we obtained explicit cancella- o(ky) o (Ky) o (Ks)
tion of both “single” and “double” divergences directly in

(x,b,,B)th(x,b—,B)f dx}dx,dx5d%k,d%k,0%K

[8@(ky+ky+ks—py)

the integrand, as is discussed in Appendix B. Nonetheless, 6
the partial symmetrization is enough to get satisfactory nu- — 6@(ky+ky—pp) — 8Dk +ks—py)
merical results. 2) 2)
In conclusion, to compute numerically the expansion of — 0 9(kagt+ky—=py)+ 8 (ki—py)
the transverse minijet spectrum in the number of scatterings
o b + 6@ (ky—p)+ 82 (ks—py)]. (B1)

one has to fully exploit the symmetry properties of each
term, in such a way that all the divergences get cancelled

directl)_/ in the _in_tegrand. This is crucial to obtain_a gOOdThe differents functions in Eq.(B1) correspond to all the
numerical precision and to speed up the computation of th?erms of orders? in Eq. (3.2), and represent the triple scat-

terms with three or more scatterings. In this appendix we . k ! .
9 PP tering term together with all subtraction terms induced by the

gg;ilgllo-ped a general technique to perform such a Symme”:axpansion of the absorption factor €xgna(x,b))] of the
double- and single-scattering terms. The expression has been
symmetrized with respect to;, k,, andk; and is singular

for ky=0, k,=0, andk;=0. The § functions in Eq.(B1)
prevent the tree momenta from being close to zero at the
same time, then we start by discussing the most singular
configuration corresponding to two integration variables both
close to zero. Given the symmetry of the integrand it is

APPENDIX B: CANCELLATION OF THE DIVERGENCES
IN THE THREE-SCATTERING TERM

Hereafter we consider in detail the cancellation of the
divergences in the term with three scatterings:
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enough to study the integration region with~0 andk, o 2
~0. In this region the termss®(k;+ky,—p,), 8?(k, d°k;dkao(ky) o(ko){o(pr—kyi—ka) —o(pr—ky)
—py), and 8@ (k,—p,) do not contribute. The integrals on

the transverse momenta are therefore written as _U(pt_k2)+0(pt)}+f A2k, A2k (Ky) or(Ka)

f d?k,d%k,0 (k) o (ko) [ o(py— k1 — kp) — o (pr—Kq) X{—o(pi—ky)+o(py}

—o(pi—ka) T o(p)]- (B2) 1o study the singularity it is sufficient to keep the first two
terms in the expansion af(k) in Eq. (B3), the remaining

In the region where;~0 andk,~0 one may use the ex- ones leading to a logarithmic divergence. One obtains
pansion

opr k1= () =" (0P 1 2] 1y P J oot otp-io
P 2 Pt
(Pt
— ' _k
e )(ptxk) 3 o' (pr—k2)
Py

+ f d2k,d%kz0 (k) o(Ks)

|

—o(p—ka) +a(py)
where p; Xk represents the vector product pf andk and

a"(p) =(d?/d|p/?) a(p;) depends only on the modulus of
p:. All terms proportional too(p;) cancel and all the terms
linear ink integrate to zero thanks to the azimuthal symme-
try of (k). Then one is left with

p;- K
—o(p)+ 0’ (p) ——t

which simplifies to
a’(py)

t

| d2k1d2kzo<kl>a<kz>[ e (ki)

(pi—k2) kg

f d2k1d2k20(k1)0(k2){_U’(pt_kz) Kk
Pt— Kz

a'(py)

3 [(PeX (kg tky))?

_(pt'kl)z_(pt'kz)z]_ pi-k
Y +20" (p)—= 1]=0.
Y p

—(peX k) *= (X kz)z]] ;
As in the previous case one obtains a vanishing result thanks
to the azimuthal symmetry af(k). In summary, all integra-
which simplifies to tions in the singular points of the three-scattering t¢Eq.
(B1)] induce at most a square-logarithm singularity as a
a"(py) function of the cutoff.
f d?k,d%ky0(ky) o(kp)| ———(Pe- ko) (py-Ka) The reduction of the divergences from powerlike to loga-
pt rithmic is a common feature of all the terms of the expansion
of the transverse spectrum in the number of scatterings, as
(peX Kq)(peX kz)] one may see by looking at its Fourier transfdriag. (3.6)].
Indeed, to study the dependence of the inclusive spectrum on
the regulatomp, at a givenp, different from zero one needs
The result is again zero because of the azimuthal symmetr consider the first term in the square brackets only. The
of (k). Hence all terms of the expansigB3) up to the cutoff enters into the difference
second order itk do not contribute. All other terms linear in
k, or k,, which are obtained from the first terms in the
square brackets in EqgB2), do not contribute for the same
reason, so the first term different from zero is at least of
orderkfkg, and originates a square-logarithm singularity as a
function of the regulatop,. m (= ,do -

One may repeat the argument for the regions where only - _UZE p0k3Tdk+fln|te terms,
one of the integration variables is close to zero. We consider
in detail the case whetle;~0 andk, andkz are both finite.

In this region the tern®?)(p,— k) does not contribute to Eq. so that, also in this case, the divergence figi—0 is only
(B1). The transverse momentum integrals are therefore logarithmic.

(pt)

t

. do
a(v)—cr(O)zjd—z(lf([e'k'”—l]dzk
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