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Partially quenched chiral perturbation theory without F0
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This paper completes the argument that lattice simulations of partially quenched QCD can provide quanti-
tative information about QCD itself, with the aid of partially quenched chiral perturbation theory. A barrier to
doing this has been the inclusion ofF0, the partially quenched generalization of theh8, in previous calcula-
tions in the partially quenched effective theory. This invalidates the low energy perturbative expansion, gives
rise to many new unknown parameters, and makes it impossible to reliably calculate the relation between the
partially quenched theory and low energy QCD. We show that it is straightforward and natural to formulate
partially quenched chiral perturbation theory withoutF0, and that the resulting theory contains the effective
theory for QCD without theh8. We also show that previous results, obtained includingF0, can be reinter-
preted as applying to the theory withoutF0. We contrast the situation with that in the quenched effective
theory, where we explain why it is necessary to includeF0. We also compare the derivation of chiral pertur-
bation theory in partially quenched QCD with the standard derivation in unquenched QCD. We find that the
former cannot be justified as rigorously as the latter, because of the absence of a physical Hilbert space. Finally,
we present an encouraging result: unphysical double poles in certain correlation functions in partially quenched
chiral perturbation theory can be shown to be a property of the underlying theory, given only the symmetries
and some plausible assumptions.

DOI: 10.1103/PhysRevD.64.114510 PACS number~s!: 12.38.Gc, 11.15.Ha, 12.39.Fe
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I. INTRODUCTION

Numerical simulations of lattice QCD are hampered
the difficulty of including loops of light quarks. This ha
forced the use of approximations to the fermion determina
the quenched approximation~setting the determinant to
constant!, and, more recently, the partially quenched~PQ!
approximation~including the determinant but with sea qua
masses different from, and typically larger than, those of
valence quarks!. While all such simulations correspond
unphysical theories, they are not all equally unphysical
has been argued recently that PQ simulations can be us
obtain physical parameters if the quarks are light enough
one can use chiral perturbation theory to describe the
energy properties of the theory@1–3#. The only approxima-
tion necessary is the truncation of chiral perturbation the
On the other hand, if the sea quarks are too heavy, t
partial quenching is an uncontrolled approximation who
results will at best be a qualitative guide to those in
physical theory.

The main purpose of this paper is to complete the th
retical argument justifying the use of PQ simulations to o
tain physical parameters. The missing ingredient in the a
ments presented in Refs.@1,3# concerns the flavor-single
field, F0, which is the generalization of theh8 in PQ theo-
ries. This field must be kept in the low-energy effecti
theory for quenched QCD, because its correlation functi
contain poles at the masses of the light pseudo-Golds
mesons. The same holds true for the PQ theory with he
sea quarks. The need to includeF0 invalidates the standar
chiral power counting and introduces additional coupli
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constants in the chiral Lagrangian. Consequently, prog
with this theory can only be made by making further a
sumptions.

On the other hand, in QCD theh8 is not a pseudo Gold-
stone boson, the corresponding field need not be include
the chiral Lagrangian, and chiral perturbation theory can
developed as a low energy expansion@4–6#. What we dem-
onstrate here is that the situation is similar for PQ QCD w
sea~and valence! quarks in the chiral regime: It can be de
scribed by a chiral Lagrangian in whichF0 is absent, and for
which standard power-counting applies. As stressed in R
@1,3#, an important corollary is that the parameters of the
chiral Lagrangian are the same as those in the chiral
grangian for QCD. This is what is needed to show that
simulations can be used to extract physical parameters.

Another result shown here is of a more technical natu
All previous calculations using PQ chiral perturbation theo
have included theF0 field, and thus suffer from the prob
lems described above. Here we show that these problems
be avoided by sending theF0 mass parameter,m0, to infin-
ity, because this is mathematically equivalent to consider
the theory in whichF0 is absent. In this way, the results o
the previous calculations from PQ chiral perturbation the
can be reinterpreted as applying to the theory for which
matching to QCD is immediate. This observation also jus
fies thead hocprescriptions for integrating outF0 that were
used previously@7–9,3#.

A secondary purpose of this paper is to discuss the th
retical foundations of chiral perturbation theory for PQ the
ries, building on the work of@10,11#. We recall the line of
reasoning used to construct the chiral Lagrangian for QC
examine the extent to which it applies also to PQ QCD, a
point out the gaps that make PQ chiral perturbation the
stand on less secure grounds. We are able to show, how
that a signature prediction of PQ chiral effective theori
©2001 The American Physical Society10-1
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STEPHEN SHARPE AND NOAM SHORESH PHYSICAL REVIEW D64 114510
namely the presence of double pole contributions to fla
singlet correlators, can be derived in the underlying the
from the assumption that valence flavor non-singlet corre
tors have single poles. The latter assumption is well teste
numerical simulations.

This paper is organized as follows. In the next section
review the definition of PQ theories, and discuss their sy
metries. The set of two-point functions containing light po
is identified in Sec. III for both PQ and quenched theories
Sec. IV we construct the PQ effective Lagrangian that rep
duces the previously determined pole structure, and dis
its theoretical foundations. In Sec. V we explain how chi
perturbation theory includingF0 is equivalent to that exclud
ing F0 if one sendsm0→`. We then discuss the pole stru
ture of flavor-singlet correlators in Sec. VI, and summar
our conclusions in Sec. VII.

Five Appendixes contain technical details. Appendix
describes the true symmetries of the PQ QCD partition fu
tion, derives the resulting Ward identities, and shows h
these are in fact the same as those obtained assumi
‘‘fake’’ symmetry group. Appendix B collects useful resul
on the diagonal generators of graded Lie groups. Append
gives an alternative argument for why one does not nee
include F0 in PQ chiral perturbation theory. Appendix D
concerns a useful result about the limitm0→`. Finally, Ap-
pendix E derives the constraints on neutral pion correla
using graded symmetries.

II. PARTIALLY QUENCHED THEORIES AND THEIR
SYMMETRIES

We consider a theory withN sea quarks andNV valence
quarks, which is viewed as a tool to study an unquenc
theory with N quarks. We will shortly consider all quarks
sea and valence, to be light, although this is not needed to
up the definition of the theory. Clearly, the theories we ha
in mind are those withN52 ~treating only the up and down
quarks as light! and N53 ~also including the strange
quark—whose status as a light quark is less clear!. The num-
ber of valence quarks one usually uses isNV52 ~needed to
discuss simple meson properties!, or NV53 ~needed for
baryon properties!.

In practice, one obtains PQ results by generating ga
configurations including in the weight a determinant rep
senting the effect ofN sea quarks, and then calculating qua
propagators on these background gauge fields using ma
which are different from those of the sea quarks. This can
represented theoretically by Morel’s construction involvi
bosonic spin-1/2 ghost fields@12#, in which the Euclidean
partition function is

Z5E D@cc̄c̃c̄̃A#expS 2SG2E @c̄~D”1m!c

1 c̄̃~D”1m̃!c̃# D
5E D@A#exp~2SG!

det~D”1m!

det~D”1m̃!
. ~1!
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Here SG is the gauge action,c an (NV1N)-dimensional
column vector containing the quark fields, with mass mat
m, and c̃ an NV-dimensional vector of ghost quarks, wit
mass matrixm̃. For each valence quark there is a ghost qu
with the same mass, so that the valence quark determi
cancels precisely against that from the ghost quarks.
complete mass matrix is

M5S m 0

0 m̃
D

5diag~mV1 , . . . ,mVNV
;mS1 , . . . ,mSN;mV1 , . . . ,mVNV

!.

~2!

In the following, we will take all non-zero entries ofM to be
real and positive.

Our discussion will concern the theory obtained in t
continuum limit of PQ simulations. This allows us to take”
as having standard continuum properties: it is an a
Hermitian operator which connects left-handed fields
right-handed fields and vice versa. In this way we avoid
issue of how best to discretize fermions, and of possi
difficulties in simulating odd numbers of dynamical quark
We simply assume that these difficulties have been ov
come, and that the lattice simulations are done close eno
to the continuum limit that Eq.~1! represents them up to
small corrections, suppressed by powers of the lattice sp
ing, which can be extrapolated away.1 Indeed by using over-
lap fermions, or other fermions with an exact chiral symm
try, one can presumably formulate the discussion
symmetries at non-zero lattice spacing.

Correlation functions of quark and ghost fields are d
fined, as usual, by introducing source terms intoZ. Note that
if one considers correlation functions involving only se
quark fields, one obtains exactly the result of the unquenc
theory with N sea quarks, because the valence and gh
determinants cancel@10#. Furthermore, if one of the valenc
quarks has the same mass as a sea quark, then it can re
that sea quark in correlation functions without changing
result @10#.

To discuss symmetries, it is useful to collect quarks a
ghost quarks into a single (N12NV)-dimensional vector,Q,
defined by

QT5~cT,c̃T!. ~3!

The fermionic part of the action then takes the standard fo

SF5E Q̄~D”1M !Q

5E ~Q̄LD”QL1Q̄RD”QR1Q̄RMQL1Q̄LMQR!, ~4!

where the projections are defined by

1Some comments on the impact ofO(a) corrections are made in
Ref. @3#.
0-2
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PARTIALLY QUENCHED CHIRAL PERTURBATION . . . PHYSICAL REVIEW D64 114510
QL,R5
~16g5!

2
Q, Q̄L,R5Q̄

~17g5!

2
. ~5!

The symmetry group of the action Eq.~4!, whenM→0,
appears to be the graded group

U~NV1NuNV!L ^ U~NV1NuNV!R , ~6!

under which the fields transform in the usual way

QL,R~x!→UL,RQL,R~x!, Q̄L,R~x!→Q̄L,R~x!UL,R
† ,

~7!

with UL,RPU(NV1NuNV). As noted in Ref.@11#, however,
this is not the correct symmetry because the functional in
gral over the bosonic spin-1/2 fields converges only if th
are properly constrained~and if the mass matrix is positiv
definite!. As a result of the constraint, right- and left-hand
fields cannot be rotated independently in the usual way. N
ertheless, it turns out that one can proceed as if the symm
group were~6!, as long as one only considers small transf
mations. This is explained in Appendix A. In particular w
show that one obtains the correct vector and axial Ward id
tities if one pretends that the action has the symmetry gr
Eq. ~6!, rather than the actual symmetry group. In what f
lows we mostly use the ‘‘fake’’ symmetries, since this em
phasizes the similarities to the development for unquenc
QCD, and is usually simpler. We use the real symmet
only when global aspects of the symmetry group are imp
tant.

Certain of the transformations in Eq.~7! are anomalous
since they do not leave the measure invariant. Remov
these requires that we impose the constraint

sdetUL5sdetUR , ~8!

where ‘‘sdet’’ is the invariant ‘‘super-determinant.’’2 The
overall result is that the chiral symmetry group of the ma
less PQ theory can be taken to be the group proposed in@10#

SU~NV1NuNV!L ^ SU~NV1NuNV!R^ U~1!V . ~10!

Here theU(1)V transformations are common overall pha
rotations of the right- and left-handed fields.3

The form Eq.~10! reflects the fact that for the PQ cas
~i.e., N.0!, the U(1) factor can be chosen to be a flav
singlet, and thus to commute with all elements ofSU(NV
1NuNV). In particular, the anomalous symmetry current c
be chosen to be the flavor singlet,j Am

(I ) 5Q̄gmg5Q @using the

2Here the super-determinent is defined by sdetU5exp str lnU,
with the supertrace being

strS A B

C D
D 5tr A2tr D, ~9!

the blocks corresponding to theNV1N quark andNV ghost coor-
dinates, respectively.

3We are ignoring the fact that globallyU(NV1NuNV)5@SU(NV

1NuNV) ^ U(1)#/ZN , i.e., it is a coset rather than a direct produ
This is irrelevant for small transformations.
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notation of Appendix A, Eq.~A31!#. This has the same quan
tum numbers as the pseudoscalar densityQ̄g5Q, which is the
interpolating field associated withF0 @10#—the focus of
much of the subsequent discussion.

The symmetry structure is different for the fully quench
theory,N50. In particular, as noted in Ref.@13#, the flavor
singlet U(1) is part of SU(NVuNV), while the U(1) with
non-unit superdeterminant cannot be chosen to be a fla
singlet, and so does not commute with all elements
SU(NVuNV). This is explained more fully in Appendix B
where we collect some results on the generators of gra
groups. The net effect is that theSU(NVuNV) andU(1) fac-
tors form, locally, a semi-direct product, and the chiral sy
metry group can be taken to be

@SU~NVuNV!L ^ SU~NVuNV!R#›U~1!V . ~11!

As discussed below, the difference between this group
Eq. ~10! is the mathematical result which underlies the ne
to include theF0 field in the quenched, but not the PQ
chiral Lagrangian.

III. SYMMETRY BREAKING AND THE NEED FOR F0

As could already be seen in the previous section, the
troduction of valence and ghost quarks modifies the stand
flavor symmetry structure of the theory, and consequently
formulation of the chiral effective theory. One striking e
ample is the non-decoupling ofF0 in the fully quenched
theory. The main goal of this section is to analyze this p
nomenon in some detail, and to demonstrate why it does
carry over to PQ theories. To study this, we investig
which two-point correlation functions contain poles at lo
energies. In other words, we find the degrees of freedom
one must include in a low energy effective theory f
quenched and PQ QCD.

Throughout this section we consider the PQ theory in
chiral limit. This allows us to use the condensate as an or
parameter, and to use Goldstone’s theorem to determ
which channels have massless poles. In the usual way,
chiral limit is to be approached by working at non-zero qua
masses and then taking the masses to zero after the vo
has been sent to infinity. In the PQ theory there is, howe
a subtlety concerning the chiral limit. As noted in Ref.@8#,
chiral perturbation theory predicts that the PQ theory is s
gular if one sends valence quark masses to zero with fi
non-zero sea-quark masses. In particular, the condensa
self is singular in this limit. This singularity is similar to tha
which occurs in the quenched theory@14,13,15#. To avoid
this singularity, one should send all the quark masses to z
simultaneously with fixed ratios.4

Such a limiting proceedure is not available for th
quenched theory. Thus, in the following, when we refer
the quenched theory, we have in mind working close to,
not in, the chiral limit. Since our focus here is on the P

4This limiting procedure also avoids divergences from exact z
modes in topologically non-trivial sectors.
0-3
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STEPHEN SHARPE AND NOAM SHORESH PHYSICAL REVIEW D64 114510
theory, we do not revisit the subtleties associated with
quenched chiral limit.

A. Symmetry breaking pattern

As in QCD, we choose the vacuum expectation va
~VEV!

Vab[^Q̄aQb& ~12!

as an order parameter for chiral spontaneous symm
breaking.

We first consider the vector symmetries. It was sho
long ago by Vafa and Witten that vector symmetries do
spontaneously break in vector-like gauge theories@16#. Their
derivation does not make use of Hilbert space states
operators, and relies only on the fact that the quark dete
nant leads to a real and positive measure in the functio
integral over the gauge fields. This is still true for quench
and PQ QCD, and the Vafa-Witten result still holds. Con
quently,Vab is invariant under vector transformations. It
in fact easier to see what this implies for the related quan

Ṽab[^QbtQ̄at& ~13!

(t is a Dirac-color index that must still be contracted to fo
a Euclidean scalar!. This transforms under~‘‘fake’’ ! vector
transformations in the following way:

Ṽ→VṼV†, VPSU~NV1NuNV!. ~14!

The invariance ofV under Eq.~14! leads to

Ṽ5vdab ~15!

where v is a constant. InterchangingQ and Q̄ fields, we
obtain

Vab52vdab«a ~16!

where we introduce the notation

«a5H 1 a is a quark index,

21 a is a ghost index.
~17!

The question of whether the axial symmetry is sponta
ously broken or not depends on the value ofv. The sea
sector of PQ theories is equivalent to unquenched QCD w
N quark flavors. An important implication of this fact is th
the spontaneous breakdown of axial symmetries in QC
signaled by the non-vanishing of^q̄q&, is duplicated in the
sea sector of PQ theories, thus implying thatvÞ0. In other
words, given that there is spontaneous chiral symme
breaking in QCD, the symmetry breaking pattern of P
QCD is known:5

5Here we are assumingN>2, since there is no chiral symmetry t
break forN51 QCD.
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SU~NV1NuNV!L ^ SU~NV1NuNV!R^ U~1!V

→SU~NV1NuNV!V^ U~1!V . ~18!

This argument does not carry over to the quenched th
ries, because there is no QCD-like sea sector. For quen
theories the spontaneous breaking of axial symmetries i
additional assumption—though one that is supported by
merical evidence. If we make that assumption, the symm
breaking pattern for quenched QCD is

@SU~NVuNV!L ^ SU~NVuNV!R#›U~1!V

→SU~NVuNV!V›U~1!V . ~19!

B. Low energy poles from symmetries

Once the symmetry breaking pattern has been establis
it is a standard result in field theory that the number
pseudo-Goldstone bosons is determined by the numbe
non-anomalous generators that act non-trivially on
vacuum. For the case at hand one thus expects (2NV1N)2

21 Goldstone particles for PQ theory. Though the gro
structure in the quenched case is slightly different, the cou
ing argument still gives (2NV)221, which is the same ex
pression as for PQ theories withN50. There is, however, a
significant difference between the two cases. As the follo
ing more careful analysis shows, the simple counting ar
ment correctly predicts the number of Goldstone partic
only in the PQ case. For the quenched case it turns out
there are (2NV)2 fields which exhibit long range correla
tions. The additional field that is needed for quenched Q
is none other thanF0.

Consider the two-point correlation function between
axial current j Am

(T)(x) @defined in Eq.~A31!# and a pseudo-

scalar densityf (T8)(0)5Q̄g5T8Q(0),

Cm
(T,T8)~x!5^ j Am

(T)~x!f (T8)~0!&. ~20!

HereT andT8 label generators of the symmetry group. Fro
Euclidean invariance, its Fourier transform must have
form

C̃m
(T,T8)~p!5 ipmF (T,T8)~p2!, ~21!

whereF is an unknown function. Next, consider the Wa
identity which follows from applying an infinitesimal axia
transformation with generatorT to ^f (T8)(0)&:

]mCm
(T,T8)~x!52d~x!^dA

(T)f (T8)~0!& ~22!

@for the definition ofdA
(T)f see Eq.~A32!#. Together, Eqs.

~21! and ~22! give

p2F (T,T8)~p2!52^dA
(T)f (T8)~0!&. ~23!

A straightforward calculation of the right hand side, with th
use of the VEV~16!, gives

p2F (T,T8)~p2!52vstr~TT8!. ~24!
0-4
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PARTIALLY QUENCHED CHIRAL PERTURBATION . . . PHYSICAL REVIEW D64 114510
~Note that the order ofT and T8 is important for graded
generators.! Equation~24! relies on the fact thatT generates
a true ~non-anomalous! symmetry of the theory. Fo
quenched and PQ theories the non-anomalous symme

satisfystr(T)50. Consequently,C̃m
(T,T8)(p) has a pole atp

50 for any T and T8 for which str(T)50 and str(TT8)
Þ0.

It is straightforward to show that, for both quenched a
PQ theories, all the flavor off-diagonal~‘‘charged’’! genera-
tors give rise to light poles, like in QCD, and that they do n
mix with the neutral ones. Subtleties only arise in the neu
sector, and to study them we use a specific choice of dia
nal generators that is presented in Appendix B@Eq. ~B7!#.
There we find that, for the PQ theory,

Here theTa are diagonal members of the algebra,
straceless but the last one,T2NV1N}I , which generates the

anomalous U(1)A . Applying Eq.~B7! to Eq.~24! shows that
a complete set of~flavor neutral! fields that give rise to long
range correlations in two-point functions is

Q̄g5TaQ, a51, . . . ,2NV1N21. ~25!

Note that forNV of these fields, the coefficient of the mas
less pole has an unphysical sign, corresponding to the en
with 21 in Eq. ~B7!. The symmetries do not imply tha
f (T2NV1N)5f (I )/AN, has a pole atp50. Consequently, to
describe the long distance parts of the two-point function
the PQ theory we do not need to consider correlators inv
ing the corresponding field,F0.

In the quenched case Eq.~B7! is replaced by

str~TaTb!51
1

�

1

21

�

21

0 1

1 0

2 .

Again, the generator of the anomalous U(1)A is the last
one,T2NV

} Ī @defined in Eq.~B6!#. All the other generators

are straceless, includingT2NV215I . One obtains a new non

trivial equation from Eq.~24! by choosingT5I , which is
non-anomalous~a fact unique to quenched QCD!, and T8

5 Ī . We thus find that the Fourier transform of

^ j Am
(I ) ~x!f ( Ī )~0!& ~26!

has a pole atp50. SinceF0 has the same quantum numbe
as
11451
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j Am
(I ) 5Q̄gmg5Q ~27!

we conclude that it must be included in the effective L
grangian in order to correctly reproduce the low energy
havior of quenched QCD.

Let us summarize why one needs to includeF0 in
quenched, but not PQ, chiral perturbation theory. A fie
should be included if either the corresponding pseudosc
density or axial current can be shown to couple to a Go
stone boson. In unquenched and PQ theories, the argu
given above shows that the coupling of a density with flav
generatorT implies the coupling of the corresponding cu
rent @since str(TaTb) is diagonal#. The peculiarity of the
quenched theory is that the current with the same quan
numbers asF0, i.e., the flavor singletj Am

(I ) , is not anomalous
and thus should couple to a Goldstone boson. This is des
the fact that the corresponding density,Q̄g5Q, is invariant
under non-anomalous transformations. Conversely,

anomalous current,j Am
( Ī ) , is not a flavor singlet, and so, as

shown above, the corresponding density couples to a G
stone boson, contrary to naive expectation. Mathematica
this peculiarity is due to the fact that str(I )50, which leads
both to the key result that str(TaTb) is not diagonal, and to
the semi-direct product structure of the quenched symm
group, Eq.~11!. This is the sense in which the symmet
structure of the quenched theory leads to the need to inc
the F0.

In C we give an alternative argument for the need to ke
F0 in quenched, but not in PQ, theories.

IV. EFFECTIVE LAGRANGIAN

We now turn to the construction of the low energy effe
tive Lagrangian for PQ QCD. We first recapitulate the sta
dard approach, based on the ‘‘fake’’ symmetry group d
cussed previously. We point out the problems with th
approach, and spend most of this section discussing the
tent to which they can be alleviated. Our conclusion is t
the standard approach is appropriate when doing perturba
calculations, although the justification for using the effecti
theory is considerably less rigorous than for QCD itse
Some of these points have been discussed previously in
random matrix literature, e.g., in Ref.@11#, although in the
context of effective theories includingF0. Our aims here are
to clarify this work, and to generalize it to the case at hand
which F0 is absent. Parts of our discussion are based on
analysis of the quenched effective Lagrangian given in R
@17#.

A. The standard approach

The fields in the effective theory can be limited to tho
describing the pseudo-Goldstone hadrons. These, as we
seen, are in one-to-one correspondence with the gener
of

@SU~NV1NuNV!L ^ SU~NV1NuNV!R#/SU~NV1NuNV!V .

~28!
0-5
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STEPHEN SHARPE AND NOAM SHORESH PHYSICAL REVIEW D64 114510
In the standard approach@10# the pseudo Goldstone fields li
in this coset space, with the parametrization

U~x!5expS 2iF~x!

f D , F~x!5S f~x! h1~x!

h2~x! f̃~x!
D ,

f†5f, f̃†5f̃. ~29!

Here the blocks correspond to quarks and ghosts, andh1 and
h2 are independent Grassmann matrix fields. We are fre
interpreth2 ash1

† , in which caseU is unitary. The absence

of F0 implies the constraint str(F)5trf2trf̃50. The sym-
metries are implemented as usual:

U→LUR†, ~L,R!PSU~NV1NuNV!, ~30!

with the VEV ^U&5I breaking the symmetry in the require
way @note thatU transforms likeṼ—see Eqs.~13! and~14!#.
The invariant effective Lagrangian is

L~U !5
f 2

4
str~]U]U†!2

f 2

4
str~xU†1Ux!1higher orders,

~31!

where x is proportional to the quark mass matrix,x
52B0M , andB0 andf are unknown parameters. Clearly th
development mirrors that for QCD step by step.@Note that
Eq. ~31! differs from the form of the chiral Lagrangian fo
PQ QCD which is usually quoted: The absence ofF0 means
that arbitrary functions ofF0 which might multiply each
term in the PQ chiral Lagrangian are absent.#

A problem with this effective Lagrangian becomes app
ent when developing perturbation theory by expandingU

about its VEV. The ‘‘str’’ implies that the fieldsf̃ have ki-
netic and mass terms with the wrong sign, so that^U&5I is
not a minimum of the action.6 This is dealt with in the stan
dard treatment by simply ignoring the instability. A justific
tion for the use of ‘‘wrong sign’’ propagators for some of th
mesons is that it implements cancelations which corresp
at the quark level to the desired cancelations between
lence quark and ghost loops. Actually, onceF0 is excluded,
the connection between pseudo-Goldstone propagators
underlying quark and ghost flows is less clear, so this qu
tative justification is less convincing. Clearly a bette
founded treatment is desirable.

A related concern with the standard approach is that
chiral symmetry group of the PQ QCD functional integral
not SU(NV1NuNV)L ^ SU(NV1NuNV)R , and the unbroken
vector subgroup is notSU(NV1NuNV). As explained in Ap-
pendix A, the full group is the subgroup ofSL(NV

6Strictly speaking, this comment applies to fields living entire

within f̃. However, the anomaly constraint implies that one neu

meson must have components from bothf and f̃—that corre-
sponding to the generatorT2NV1N21 in Appendix B. Since
str(T2NV1N21

2 )521, this mixed field also turns out to have a k
netic term with the wrong sign.
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1NuNV)L^SL(NV1NuNV)R, in which ~using the nomenclature
of Ref. @18#! the ‘‘bodies’’ ~non-nilpotent parts! of the left-
and right-handed transformations are related by

L5exp~ iFL!, R5exp~ iFR!,

~FL!ggubody
† 5~FR!ggubody, ~32!

@with str(FL,R)50# while ~as explained at the end of Appen
dix A! the vector group is the subgroup ofSL(NV1NuNV) in
which the body of the ghost-ghost part is unitary:

L5R5V5exp~ iFV!, ~FV!ggubody
† 5~FV!ggubody.

~33!

The coset of these symmetries can be parametrized by tr
formations withL5R21, so that

L5R215A5expiFA , ~FA!ggubody
† 52~FA!ggubody.

~34!

Note that aside from the condition on the body of the gho
ghost block,FA is an arbitrary, straceless matrix. One wou
then expect that the correct Goldstone fields live in this co
space, i.e.

U8~x!5expS 2iF8~x!

f D , F8~x!5S f8~x! h18~x!

h28~x! i f̃8~x!
D ,

~35!

f̃8ubody
† 5f̃8ubody, str~F8!5tr~f8!2 i tr~f̃8!50.

~Note the crucial factor ofi multiplying f̃8.! f8 is an arbi-
trary matrix of complex c-number fields, constrained only
the stracelessness condition onF8.

It turns out that neither Eq.~29! nor Eq. ~35! is correct,
but before discussing this point it is useful to understand h
the form of the effective Lagrangian would differ were th
Goldstone fields given by Eq.~35!. This field transforms like
U8→LU8R21, with L,R given by Eq.~32!. The invariant
Lagrangian is constructed fromU8, U821, the mass term~a
spurion which transforms likeU821), and other sources. Th
rules for combining these are in one-to-one corresponde
with those for the usual chiral Lagrangian~with U↔U8,
U†↔U821). Thus one finds that the most general Lagran
ian has the standard form, Eq.~31!, except thatU821 appears
rather thanU†. We stress that this holds to all orders in th
chiral expansion. The fact that sdetU851 implies that there
are no additionalF0-like terms. One might be concerned th
the resulting Lagrangian has, in general, an imaginary p
This will turn out not to be true in the final form we consid
and so we do not discuss it further here.

B. The correct Goldstone manifold

Now we return to the issue of the correct Goldstone ma
fold to use. Clearly it should be based on the true symm
tries, and thus contained within Eq.~35!. The problem is that
U8 in Eq. ~35! has too many degrees of freedom, and
must pick an appropriate sub-manifold. This issue has b

l
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PARTIALLY QUENCHED CHIRAL PERTURBATION . . . PHYSICAL REVIEW D64 114510
addressed by Verbaarschot and collaborators, in the con
of a theory which containsF0 ~see e.g. Ref.@11#!. They
argue, based on the mathematical results of Zirnbauer@19#,
that the appropriate integration domain for the effect
theory is the maximal super-Riemannian manifold contain
in the coset of the true symmetry group and the unbro
vector group. This results in a Goldstone field parametri
by7

U9~x!5expS 2iF9~x!

f D , F9~x!5S f9~x! h19~x!

h29~x! i f̃9~x!
D ,

~36!

~f9!†5f9, ~f̃9!†5f̃9.

This form is then inserted in the effective Lagrangian d
scribed in the previous paragraph, i.e. Eq.~31! with U
→U9 and U†→U921. This leads to a Lagrangian whos
body is real.

In the following, we discuss the reasoning leading to
form ~36!, and address a technical difficulty which aris
when extending the argument to the theory withoutF0. We
then discuss the theoretical foundations of PQ chiral per
bation theory, and along the way give further physical mo
vation for the choice~36!.

The important differences between the parametrizati
~29!, ~35!, and ~36! are in the ghost-ghost and quark-qua
blocks of the exponents.8 We begin by focusing on the
former. Here the difference between the full coset space
Eq. ~35! and the manifold in Eq.~36! is only that the soul of
f̃8 is not required to be Hermitian while that off̃9 is. Thus,
f̃8 appears to contain more degrees of freedom thanf̃9.
However, since Gaussian integrals over c-numbers are i
pendent of the soul, as long as the integrals are conver
~see Appendix A!, these extra parameters can be absor
into f̃8. Thus the two forms~35! and ~36! do not differ in
this respect.

They do, however, both differ from the standard para
etrization, Eq.~29!, by the extra factor ofi. This factor re-
solves the stability problem raised above. If we expand eit
U8 or U9 aroundI to quadratic order, then the extra factor
i 2 cancels the minus sign from the supertrace, and the kin
terms forf̃8 or f̃9 ~which are equivalent parametrizations
this order! have the correct sign for stability. This also fixe
the overall sign of the kinetic term in the Lagrangian. T
same discussion holds for the mass term, as long asM is
proportional to the identity. We postpone discussion of

7For explicit non-perturbative calculations, the authors of R
@11# use a different parametrization. We use the form~36! as it is
closer to the standard parametrization of Eq.~29!.

8The anticommuting parts of the exponents have the same for
all three parametrizations. We note that the constrainth15h2

† im-
posed in Eqs.~29! does not change the rules for Grassmann in
gration, in whichh1 and h2 are treated as matrices composed
independent Grassmann variables. There are also no issues o
vergence in the Grassmann integrals.
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~most relevant! case of non-degenerate masses until la
since to address this we need first to understand the effe
the absence ofF0.

We now turn to the quark-quark block of the exponen
The full coset space~35! contains extra fields in this block
compared to the standard form of Eqs.~29!, sincef8 is not
constrained to be Hermitian. These extra fields correspon
the generators of the non-compact part of the broken s
metry group. The choice of Ref.@11# is to keep only the
usual, Hermitian part off8. A technical reason for doing so
is that, if one expands aboutU85I , the kinetic term in the
action~the sign of which is now fixed! is minimized in these
‘‘Hermitian’’ directions, but not in the ‘‘non-compact’’ direc-
tions. Thus, with this choice, the propagators of bothf9 and
f̃9 have the correct signs. For the moment we will acc
this as a sufficient reason for making this choice, but ret
to the point below when we discuss the foundations of
chiral perturbation theory.

C. Constraints from the absence ofF0

The analysis so far has not accounted for the constra
imposed by the absence ofF0, i.e. by the fact that only
non-anomalous symmetries should be represented by th
fective Lagrangian. There is no problem when we consi
the full coset space of Eq.~35!. The constraint is that
str(F8)50, and this can be satisfied by expanding the di
onal or ‘‘neutral’’ part of F8 using the basis for diagona
straceless generators given in Appendix B:

Fneu8 5 (
a51

2NV1N21

s8aTa . ~37!

The important point for us is that while all but one of the
generators are contained entirely within either the quark
the ghost sectors, there is one generator (T2NV1N21 in our
ordering! with components in both sectors. Now consider t
restricted manifold of Eq.~36!. Here the constraint str(F9)
5trf92 i trf̃950 is made more stringent by the fact thatf9

and f̃9 are Hermitian. Thusf9 and f̃9 must be separately
traceless, and there can be no component ofFneu9 propor-
tional to T2NV1N21. Thus the restrictions of the manifol

remove not onlyF0, but also another neutral generator. Th
is a problem because, as seen in the previous section,
are long range correlations in channels with the quant
numbers of this generator. In other words,U9 is missing one
of the neutral pseudo-Goldstone bosons.

This problem can be solved by a small change inU9. As
we have seen,U9 was constructed so that all bosonic fiel
have correct sign propagators. For the neutral fields, this
quires taking components in the quark sector to be real,
those in the ghost sector to be imaginary. The gener
T2NV1N21 is problematic because it straddles both secto

However, since it satisfies str(Ta
2)521, and is thus ghost-

like, we propose that the corresponding field,s92NV1N21,
should also be taken imaginary. Explicitly, we propose
placingF9 in Eq. ~36! with

.
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STEPHEN SHARPE AND NOAM SHORESH PHYSICAL REVIEW D64 114510
F95Fch9 1Fneu9 ,

Fch9 5S fch9 h19

h29 i f̃ch9
D , ~fch9 !†5f9, ~f̃ch9 !†5f̃ch9 ,

~38!

Fneu9 5 (
a51

NV1N21

s9aTa1 (
a5NV1N

2NV1N21

is9aTa .

Here ‘‘ch’’ refers to the off-diagonal, or charged, parts of th
field. In this way we include all the neutral Goldstone fl
vors, while maintaining the anomaly constraint, and the c
dition that all kinetic terms have the correct sign.

This is not quite the end of the story. The convergence
the functional integral depends also on the mass term. G
the choice of Goldstone fields just described, the Goldst
boson mass matrix can be calculated, and the functiona
tegral converges only if its real part is positive definite.
one might expect, there is competition between the sea q
masses and the valence~and ghost! ones. It turns out~the
derivation is somewhat tedious but straightforward, and
do not include the details here! that the quark masses mu
satisfy

NVxV
21~NVx V̄1Nx S̄!,~NV1N!2. ~39!

Here x V̄ and x S̄ are the average valence and sea qu
masses, andxV

21 the average inverse valence quark ma
Restricting lattice simulations to satisfy this constraint is u
desirable and very likely unnecessary. Although the theo
ical description of the simulations in terms of the PQ chi
effective theory is ill defined when relation Eq.~39! is vio-
lated, there is nothing special about this point in parame
space as far as the underlying PQ QCD is concerned. T
the simulations will show no special behavior when Eq.~39!
is violated. In addition, chiral perturbation theory is insen
tive to these global convergence considerations, and ifit is
regular at this point, and provides an adequate descriptio
low energy PQ QCD when the quark masses are such
the inequality is satisfied, it is unlikely that the chiral expre
sions derived from this theory will suddenly cease to ma
sense just when the inequality becomes an equality.

Aside from this point, our construction has yielded
effective Lagrangian with the correct number of Goldsto
fields ~i.e. the same number as there are independent W
identities!, and which one can consistently expand ab
^U9&5I . While in principle one can work with this Lagrang
ian, it is more convenient for perturbative calculations
change variables as follows:

f̃ch9 52 i f̃ch , s9a52 isa, a5NV1N,2NV1N21,
~40!

h1,29 5h1,2, fch9 5fch , s9a5sa, a51,NV1N21.

The effect of this change is thatU9 now appears to have th
form of U in Eq. ~29!. Since the underlying integrations a
unaltered, the only effect of this change of variables is
11451
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shuffle factors ofi between propagators and vertices~and
possibly external fields!. For example, all the chargedf̃
propagators now have an overall ‘‘wrong’’ sign, while verte
factors appear to satisfy the gradedSU(NV1NuNV) symme-
try. Indeed, we can now pretend thatUPSU(NV1NuNV),
and ignore the subtleties of this section, as long as we use
prescription that wrong sign kinetic terms lead to wrong s
propagators.

D. Foundations of PQ chiral perturbation theory

As promised, we now return to the foundations of P
chiral perturbation theory. We first revisit the issue of t
extra ‘‘non-compact’’ generators in the quark sector. Sin
this sector is a simple generalization of QCD, the constr
tion and justification of its effective low energy theory
well understood~see, e.g. Refs.@4,20#!. In particular, the
issue of extra generators arises also in QCD itself, thoug
is rarely discussed.

It is useful to recall the steps needed to construct
effective Lagrangian for QCD-like theories withNf flavors.
First, one derives the Ward identities following from the ch
ral symmetries. Second, given the assumed VEV, Go
stone’s theorem determines that there is one light pion fi
for each axial current. Third, one assumes pion dominanc
correlation functions, i.e. that the light fields are the on
relevant degrees of freedom. One then writes down the m
general local Lagrangian incorporating these degrees of f
dom, which is invariant under the chiral symmetries, a
asserts that this will yield the most general amplitudes c
sistent with the Ward identities and the principles of relat
istic quantum mechanics@4#. To formalize this, one intro-
duces sources for currents, scalar and pseudoscalar den
etc., and defines the generating functional in the usual w

ZQCD@ f L
m , f R

m ,S,P, . . . #511E ^ j m
L ~x!& f L

m~x!1 . . . .

~41!

The Ward identities of the theory are encapsulated in
invariance ofZ under gauge-like transformations,

f L
m→L f L

mL212 i @~]mL !#L21,

f R
m→R fR

mR212 i @~]mR!#R21, ~42!

S2 iP→L~x!@S2 iP#R21~x!,

S1 iP→R~x!@S1 iP#L21~x!.

A similar definition is used forZeff@ f L
m , f R

m ,S,P, . . . #. The
claim is that, by adjusting the coefficients in the effecti
Lagrangian, including contact terms, one can match the g
erating functional between QCD and the effective theory,

Zeff@ f L
m , f R

m ,S,P, . . . #5ZQCD@ f L
m , f R

m ,S,P, . . . #, ~43!

to any desired accuracy in a momentum and quark m
expansion@20#.
0-8
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PARTIALLY QUENCHED CHIRAL PERTURBATION . . . PHYSICAL REVIEW D64 114510
The issue at hand is what group the transformationsL and
R belong to. This depends on whetherZQCD is defined using
the operator formulation or with a functional integral. In th
former case, the transformations ofc and c† are related,

sincec̄5c†g0. Thus only unitary chiral transformations a
symmetries@as in Eq.~7!#, and L(x) and R(x) in ~42! are
elements ofSU(Nf). On the other hand, in the functiona

integral formulation, the fact thatc and c̄ are independen
variables leads to a larger symmetry~see Appendix A!:
L,RPSL(Nf). Which of these symmetries shouldZeff re-
spect? The answer is the smaller, unitary symmetry. This
be seen in two ways. First, the ‘‘extra’’ transformations co
tained inSL(Nf)/SU(Nf) lead to non-Hermitian sourcesS
andP @see Eq.~42!#, and so to a non-Hermitian Hamiltonian
Thus they move us out of the space of physical theor
Second, as shown in Appendix A, the extra transformati
do not lead to additional Ward identities, and thus do not le
to additional Goldstone bosons. Since the effective Lagra
ian should certainly respect the symmetries of the oper
formulation of the theory, and this leads to all the desir
Goldstone bosons, one should not extend the effective th
to include non-compact symmetries. We conclude that
‘‘normal’’ choice of pion fields in the quark block of the
Goldstone matrix, Eq.~36!, is correct. The only exception i
for the part off9 proportional to the identity in this block
~i.e. the fields92NV1N21). The argument just given does n
apply to this field since it is a flavor singlet in the qua
block.

Finally, we address the extent to which one can derive
effective Lagrangian in the graded sector of the theory~i.e.
the parts involving ghosts!. The first two steps followed in
the quark sector go through in this sector as well: the W
identities of PQ QCD are the graded generalizations of th
in QCD, and the symmetry breaking pattern in PQ QC
follows from that in QCD. From these results, we have
tablished the presence of massless poles in two-point fu
tions of broken symmetry generators. In the standard
proach, the next step is to interpret each pole as being du
a physical single particle state created by the correspon
operator, from which follows the result that any correlati
function including these operators will have poles at
same positions. This deduction is key in justifying the effe
tive chiral Lagrangian for QCD, but its extension to PQ QC
is not obvious. Furthermore, when one includes qu
masses as small perturbations in QCD, one concludes f
similar arguments that this results in a small shift in t
position of the poles. In PQ QCD, on the other hand, qu
masses have a substantially different effect–they can lea
the appearance of a double pole atp250 with a coefficient
proportional to the quark masses, as will be seen explicitl
Sec. VI.

What is lacking in the PQ case is a positive-norm Hilb
space interpretation, since the theory contains ghosts. Th
not to say that a derivation of the effective Lagrangian is
possible for PQ theories, but rather that a generalization
the standard methods is needed. Since quark and ghost
relation functions differ simply by signs, we speculate th
the appropriate theoretical framework only differs from t
11451
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standard one by requiring a vector space with indefinite m
ric ~e.g. single anti-ghost states having negative norm!, as
well as bosonic ghost creation and annihilation operato
The Hamiltonian would still be physical—having real eige
values bounded from below—and ghost operator comm
tors would be causal. In this way Lorentz invariance is ma
tained, while unitarity is lost because of transitions betwe
positive and negative norm states.9 It is perhaps plausible in
such a set-up that a generalization of standard ‘‘pologo
could be derived, in turn leading to an effective Lagrangi
and that the requirement of Lorentz invariance would fo
this Lagrangian to be local.

V. INTEGRATING OUT THE F0

The work of the previous section has shown that we c
write the effective chiral Lagrangian for the PQ theory
terms of anSU(NV1NuNV) field U, transforming as in Eq.
~30!. In this section we need only write the form of th
Lagrangian schematically:

L~U !5(
i

l iOi~U !, ~44!

where thel i are unknown parameters, andOi are operators
constructed fromU,U†, their derivatives, the rescaled ma
matrix x, and sources for external operators. We note that
operators allowed by the graded chiral symmetry are ide
cal in form to those allowed by the usual chiral symmetry
QCD. In particular, there are no additional operators.

An important property of PQ chiral perturbation theory
that correlation functions involving external sources
stricted to lie within the sea-quark sector are identical
those obtained using the effective chiral Lagrangian for
quenched QCD~with Nf5N, and without theh8). This iden-
tity, which is trivial at the quark level, can be seen diagra
matically in chiral perturbation theory, due to cancellatio
between diagrams in which a valence quark is replaced w
a ghost quark. A compelling general argument in supp
of this fact, though not a proof, is the following. LetM be
the mass matrix for a specific valence quark and the co
sponding ghost,M5diag(mV ,mV). Let A be an operator
which does not depend on this valence-ghost pair. We w
its expectation value aŝA&5a(M), making only theM
dependence explicit. The flavor symmetry group includ
SU(1u1) transformations that mix the valence and gh
quark fields. These transformations are equivalent to
change of variables in the functional integral, in addition to
group transformation~by conjugation! of M. SinceA is un-
changed by the change of variables, it follows thata(M)
can depend only on SU(1u1) invariants constructed fromM.
These, however, can only be supertraces of powers of
mass matrix str(M n)50, soa is independent of the valenc
~and ghost! quark mass. To show independence ofa on the

9This is indeed the structure observed in explicit calculations
scattering amplitudes in quenched chiral perturbation theory:
results are Lorentz invariant but not unitary@21#.
0-9
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existenceof the valence-ghost fields in the theory one s
needs to show that any effect from these fields introducesM
dependence.

It follows that, with external sea-sector sources, one
restrict the internalU field to take the following block-
diagonal form

UQCD5„I NV
,SU~N!,I NV

…. ~45!

Since the terms inL(U) are in one-to-one corresponden
with those in the QCD effective Lagrangian, and the rest
tion ~45! does not change the form of the operators,10 it
follows that both PQ and unquenched Lagrangians share
parametersl i . As we emphasized in@1,3#, this means that the
parametersl i , which describe the chiral expansion for th
unphysical PQ theory, are in fact physical. For example
NLO, l i are the GL coefficients which encode our curre
experimental knowledge~and ignorance! of QCD at low en-
ergies for the light mesons. We stress that thel i do depend on
N, i.e. the GL parameters that one obtains depend on
number of light sea quarks.

From a theoretical point of view, this completes the co
struction of the PQ chiral effective Lagrangian, and the de
onstration that it contains only physical parameters. Wh
doing perturbative calculations with this Lagrangian o
must, however, implement the constraint that sdetU51, or,
if we write U5exp(2iF/f), that str(F)50. A standard way
of achieving this is using straceless generators. For the r
istic case ofNf53 and considering only mesons,NV52,
calculations involve the generators ofSU(5u2), and can be
quite tedious. In this section we point out that a simple
ternative is to reintroduce theF0 field—as a calculationa
device and not as a physical field—and then to integrat
out. This allows one to work in the ‘‘quark basis,’’ rathe
than with the actual pseudo-Goldstone fields. Calculation
the quark basis are more transparent since one can
quark flow through each diagram, and see the cancelat
between valence quarks and ghosts very simply@14,22#.
KeepingF0 also allows us to reinterpret previous calcu
tions, which have included it as a physical field, as apply
to the theory without this field~a point discussed at the en
of this section!.

A. Functional integral approach

We reintroduce F0 by enlarging U to SPU(NV
1NuNV),

10With Eq. ~45!, x, U and]U are proportional to matrices of th
general form

SA 0 0

0 B 0

0 0 A
D, ~46!

where the three entries correspond to valence, sea, and ghost
A,B stand for anyNV3NV and N3N blocks, respectively. Any
product of such matrices still has this structure, which causes e
supertrace in the Lagrangian to reduce to a simple trace ove
sea-sea block.
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S~x!5U~x!expS 2iF0~x!

fAN
D , ~47!

and considering a theory with Lagrangian

L8~S!5m0
2F0

21L~S! ~48!

5m0
2F0

21(
i

l iOi~S!. ~49!

In other words, we simply replaceU with S in all the terms
in L(U) and add a mass term forF0. It is useful to make the
F0 dependence explicit by expandingS:

L~S!5L~U !1(
j 51

`

Rj~U,]!~F0! j , ~50!

where we allowRj (U,]) to contain derivatives acting on th
F0 field. The enlarged theory is then

Z5E DS expS 2E L8~S! D ~51!

5E DUDF0 expH 2E S L~U !1m0
2F0

2

1(
j

Rj~U !~F0! j D J . ~52!

We assume that the theory is regulated with a chirally inva
ant fixed cut-off, such as the lattice@23#.

We now take the limitm0→`, and argue that we then
return to the original theory withS→U, i.e. the theory that
we want to do calculations with. The argument goes as
lows. We expect the fluctuations inF0 to be ofO(1/m0), and
thus that all theRi terms, which are independent ofm0, are
suppressed compared to the mass term. Similarly, correla
functions calculated in this theory should become indep
dent ofRi at m0→`. Furthermore, the expectation value
any operatorO(S)5O(U)1( j r j (U)(F0) j satisfies

^O~S!&L85
1

ZL8~m0!
E DUDF0O~S!expS 2E L8~S! D

~53!

→
m0→`

1

ZL8~`!
E DUDF0O~U !

3expH 2E @L~U !1m0
2F0

2#J ~54!

5
1

ZL
E DU O~U !expS 2E L~U ! D ~55!

5^O~U !&L . ~56!

and
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So we obtain correlation functions in the theory we wa
with anyF0 contribution to the external operators being pr
jected out.

It is crucial for this argument that the theory be regula
in such a way that loop momenta are limited.11 This allows
F0 to be integrated out in a trivial way. Without a fixe
cut-off, the (]F0)2 term @implicitly contained inR2(U)F0

2#
can dominate over them0

2 term in loop integrals. This in turn
leads to a non-decoupling ofF0. For example, using dimen
sional regularization,F0 tadpole diagrams give contribution
proportional to (m0

2/ f 2)ln(m0 /mDR). With a fixed cut-off, by
contrast, the contribution is of the formL4/( f 2m0

2), and van-
ishes whenm0→`.

There is a second subtlety which could invalidate the
gument just presented. In physical theories heavy parti
‘‘decouple,’’ meaning that physics at energies much low
than their mass is independent of the details of their inte
tions and dynamics. This idea is at the core of effective fi
theories in which only light particles are included as expli
dynamical degrees of freedom. In this sense, taking the m
of a particle to infinity in physical theories is well define
For unphysical theories, however, one might be concer
that this limit does not exist. That this is a legitimate conce
is shown by the fact, explained below, that the limit cann
be taken in quenched QCD. We will see, however, that thi
not a problem for the PQ theory.

B. F0 in the flavor-neutral propagator

To understand this point, and also to gain insight into
nature of them0→` limit, we consider the form of the
propagator of ‘‘neutral’’ mesons, i.e. those created by
diagonal elements ofF. It is sufficient to consider this
propagator since this is the only place that them0

2 term enters
when one develops perturbation theory. We begin with so
notation. We useP(x) to denote the pion field includingF0:

S5expS 2iP

f D , P~x!5F~x!1F0~x!
I

AN
. ~57!

The set of meson fields$p i j % that make up the quark basis
defined through

P~x!5 (
i , j 51

2NV1N

Ti j p
i j ~x!, ~Ti j !kl5d ikd j l , ~58!

and the flavor neutral part is therefore

Pneu~x!5 (
i 51

2NV1N

Tii p
i i ~x!. ~59!

The neutral part ofP can also be decomposed using t
basis of generators ofU(NV1NuNV) given in Appendix B:

Pneu~x!5 (
a51

2NV1N

Tasa~x!, ~60!

11We thank David B. Kaplan for emphasizing this point to us.
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where the generators satisfy

str~TaTb!5gab . ~61!

The first 2NV1N21 components ofsa are true pseudo-
Goldstone fields, while the last entry is the field added
hand,F0.

We consider all the quadratic terms in the action that c
tribute to the leading order propagator. At this point we
not specify what these terms are, only require that theF0
mass term is included. For a given momentum, the inve
propagator will have the following form:

G(s)
215S A B

C m0
21dD . ~62!

Here we have separated off the last row and column of
matrix, corresponding to entries involvingF0. Thus A @a
(2NV1N21)3(2NV1N21) matrix# is the inverse propa-
gator in the theory withoutF0. The important point is thatA,
B, C andd are independent ofm0, and finite~because of the
momentum cut-off!. Using this, one can easily show~Appen-
dix D! that the only requirement needed for the propagato
have a limit asm0→` is thatA be non-singular. The limit is
then

Ḡ(s)5 lim
m0→`

G(s)5S A21 0

0 0D . ~63!

This propagator has the two properties needed so that on
effectively doing the calculation using only the physic
SU(NV1NuNV) degrees of freedom:~i! its projective form
removesF0 from the theory—factors ofF0 in vertices and
external fields simply do not propagate;~ii ! the propagator in
the physical subspace,A21, is the correct propagator fo
these degrees of freedom alone.12

Thus the only remaining question is whetherA21 exists.
To study this we first consider only the kinetic1m0

2 terms in
the Lagrangian Eq.~49!. A can be easily read off, using

12One might be concerned that the fact that some of the fie
have the wrong metric might lead to a basis dependence in
results of calculations. Indeed, the transformation between
‘‘sigma’’ and ‘‘pi’’ bases,sa5(bLa

bpbb, is not unitary, but instead
is a generalized Lorentz rotation. This follows from the results

str~Pneu
2 !5(

a,b
sagabs

b5(
a,b

paag̃abp
bb, ~64!

where gab ~defined in Appendix B! plays the role of the metric

tensor, andg̃ab has the same signature but with elements permu
Since Lorentz-like rotations do not preserve Euclidean inner pr
ucts, projections onto subspaces are not in general invariant u
these rotations. This turns out, however, not to be relevant in
calculations. All that we need in order to show the basis indep
dence of our calculations is that the propagator of the matrix fie
^Pneu(x)Pneu(0)&, which is the building block of perturbation
theory, is the same in either basis. It is straightforward to show
for this to hold, it is sufficient forL to be invertible, which is
clearly the case.
0-11
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str~]Pneu]Pneu!}gab]sa]sb, ~65!

and the explicit form ofgab from Appendix B:

PQ: A5p2diag~1, . . . ,1,21, . . . ,21,21!

~66!
Q: A5p2diag~1, . . . ,1,21, . . . ,21,0!.

Clearly A is invertible only in the PQ case, and the lim
m0→` can be taken only in that theory, but not in quench
QCD.

The usual mass term in the Lagrangian, which is of
same order in chiral perturbation theory as the kinetic te
can be treated as a vertex. This leads to a geometric seri
tree diagrams, all contributing to the leading order. T
propagator in these diagrams, when it exists in them0→`
limit, removes anyF0 contributions. This means that th
conclusions derived above from Eq.~66! still hold. There is,
however, a potential loophole in this argument: the infin
sum over tree level diagrams and them0→` limit might not
commute. That this is not a problem can be seen dire
from previous calculations of the LO propagator in chi
perturbation theory in which the quark mass term was
cluded before taking them0→` limit. In the case of PQ
QCD with 3 sea quarks, we have@10,3#

GAA
neu[E d4xe2 ip•x^pAA~x!pAA~0!&

5
1

p21xA

2
~p21x1!~p21x2!~p21x3!~m0

2/3!

~p21xA!2~p21Mp0

2 !~p21Mh
2 !~p21Mh8

2
!

~67!

→
m0→`

1

p21xA

2
1

3

~p21x1!~p21x2!~p21x3!

~p21xA!2~p21Mp0

2 !~p21Mh
2 !

where A is a valence quark label,x i normalized quark
masses~with i 51,2,3 for sea quarks!, and Mp0

,Mh ,Mh8
masses of neutral mesons in the sea sector@Mh8

2
5m0

2

1O(x i /m0
2)#. Clearly the limitm0→` exists, so the poten

tial problem does not arise.
The corresponding result in the quenched theory is

GAA
neu5

1

p21xA

2
m0

2/3

~p21xA!2
, ~68!

which shows that them0→` limit cannot be taken, irrespec
tive of the quark mass. The fact that onecannotintegrate out
F0 in the quenched theory is consistent with the result, d
cussed in Sec. III, thatF0 should notbe projected out of the
theory, as it contributes to long range correlations. We
serve again the central role played by the structure
str(TaTb) in the analysis.
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C. Reinterpreting previous calculations

We have argued above that theF0 field need not be in-
cluded in PQ chiral perturbation theory because, in the ma
less limit, its propagator does not have a massless Golds
pole, but instead has a pole at theh8 mass~if N53). Since
chiral perturbation theory does not converge forupu'1 GeV,
it will not, in general, be useful forupu'mh8 . Thus the natu-
ral choice is leaveF0 out of the effective Lagrangian de
scribing partially quenched simulations of QCD, perha
adding it back as a mathematical device to simplify calcu
tions, as described previously in this section.

Previous calculations in PQ chiral perturbation theo
e.g. Refs.@10,7,9,3,24#, have, however, includedF0 as a
physical field, rather than as a mathematical device. The
sons for this are partly historical~PQ chiral perturbation
theory is an extension of quenched chiral perturbation the
in which F0 must be kept!, and partly motivated by physic
~there are regimes, e.g. largeNc or possiblyN52, in which
F0 is lighter thanLx , and should be treated differently from
other non-Goldstone hadrons—see also the discussio
Ref. @9#!. Our purpose here is to show that these previo
calculations can be used to obtain the results in the the
without F0.

We recall that includingF0 as a physical field introduce
several problems. First, chiral power counting is lost
adding a loop does not lead to an extra small factor of s
mp

2 /Lx
2 , but rather to a factor of sizem0

2/Lx
2 . If this latter

factor is not small, diagrams with any number ofF0 loops
must be included. Second, because of the anomaly, one
multiply terms in the effective Lagrangian by arbitrary fun
tions ofF0 consistent with parity invariance. This introduce
many new and poorly known parameters. Finally, the para
eters l i are those of unquenched chiral perturbation the
including theh8, which are related non-perturbatively, in
poorly known way, to those of the usual QCD chiral L
grangian without theh8. It is possible that one can mitigat
some of these problems by assuming that the additional c
pling constants are small~since they are 1/Nc suppressed!.13

Such an analysis, however, inevitably involves assumpti
which go beyond the systematic application of chiral pert
bation theory.

What we note here is that if one takes the limitm0→` in
the results of these calculations, one recovers the resul
the theory withoutF0 in which the parameters are those
the QCD chiral Lagrangian without theh8. The argument is
a simple extension of that given in the previous section
we expand in powers ofF0, the total Lagrangian is

L9~S!5m0
2F0

21L~U !1(
j 51

`

Rj8~U,]!~F0! j . ~69!

This differs from Eq.~49! only in the replacement of the
Rj (U,]) terms by new functionsRj8(U,]) which include the

13Indeed, there has been significant success in applying quen
chiral perturbation theory to lattice data, despite the presence o
same problems~see, for example, Ref.@25#!.
0-12
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additionalF0 couplings. For example, a term proportional
a(]F0)2 is usually included. However, since theRj8 do not
depend onm0, the discussion of the previous section sho
that they are irrelevant asm0→`. The remainder of the ar
gument continues as before.

What happens to the previous calculations whenm0→`?
First, the neutral propagator goes to anm0 independent
limit—the same limit discussed in the previous section
including, in general, light single and double poles. Seco
‘‘ h8 loops’’—those involving propagators with poles atmh8
;m0—give vanishing contributions. Third, all additionalF0
couplings, such asa, do not contribute—as argued on ge
eral principles above. Thus the results of the calculati
simplify considerably.

In fact, this simplification has been noted and used pre
ously, though not fully justified@7–9,24#. It has been argued
that, becausem0;Lx , terms proportional tomp

2 /m0
2 are

higher order in chiral perturbation theory and contribute o
at the two-loop level. They can thus be dropped in NL
calculations. Contributions fromh8 loops are not higher or
der ~as noted above they can grow as lnm0 in dimensional
regularization!, but have been dropped by hand because t
would not be present in QCD chiral perturbation theory c
culations without theh8. Together, this amounts to integra
ing out F0 perturbatively, whereas a non-perturbative tre
ment is required. Our results effectively provide such
treatment, and justify thead hocprocedures adopted prev
ously.

VI. STRUCTURE OF THE FLAVOR-SINGLET
PROPAGATOR

A signature prediction of PQ chiral perturbation theory
LO and NLO concerns the peculiar features of the pole str
ture of correlation functions~‘‘polology’’ for short!. The ef-
fective theory predicts that propagators of flavor diago
~‘‘neutral’’ ! mesons have both single and double pole sin
larities. In this section we show that, with some plausi
assumptions about ‘‘normal’’ aspects of PQ polology, the
currence of the unphysical double poles is a consequenc
the symmetry structure of the theory. It follows that t
double poles really are a feature of PQ QCD, and
grounds for this important prediction of PQ chiral perturb
tion theory are better established and understood. We
present the argument in terms of quark fields, so that it
plies directly to PQ QCD, and then point out how the arg
ment extends to the effective theory.

A. PQ QCD

For simplicity, we discuss only the case of degenerate
quarks.

Consider the two-point correlator of pseudoscalar qu
bilinears,

Gi jkl ~x!5^P i j ~x!Pkl~0!&, P i j 5tr~QiQ̄jg5!. ~70!

The trace is over Dirac and color indices, and the order oQ

and Q̄ in the bilinears is chosen to simplify the transform
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tion properties. If i 5 j and k5 l , we call the correlators
‘‘neutral,’’ while if iÞ j andkÞ l we call them charged.14

We first focus on the neutral propagator in a particula
simple theory, that with a single valence quark,A, its ghost,

Ã, and one sea quark,S. In Appendix E we derive the con
straints onG that follow from the graded vector symmetr
together with Euclidian translation and rotation invarianc
We find that the neutral propagatorGj jkk takes the following

form in the (AĀ,SS̄,ÃÃ̄) basis:

G5S r 1s t r

t u t

r t r 2s
D . ~71!

The form holds at all separations and thus also in momen
space. By following quark propagators, we can interpret
elements ofG as follows.~We use the language of perturb
tion theory, although the results hold non-perturbative!
The off-diagonal termGAAÃÃ receives contributions only
from disconnected diagrams, because the quark lines ca

ing the A flavor cannot be contracted with theÃ flavors.
GAAAA, on the other hand, can get contributions from bo
connectedand disconnected diagrams. All the disconnect
graphs contributing to either of these terms inG have exactly
the same structure, except for the interchange ofÃ propaga-
tors withA ones. Since these propagators are equal, and t
are no relative signs from Wick contractions, it follows thar
in Eq. ~71! is the sum of all disconnected diagrams, ands is
the sum of all connected ones.15 Similarly, t is the sum of all
disconnected diagrams but with the quark line coupled to
of the external operators replaced by a sea quark~so thatt
5r if mA5mS). Finally, u is the completeSS̄ propagator,
including both connected and disconnected contributio
Note that the relative signs of the various contributions c
be determined simply by considering Wick contractions.

Turning now to the more interesting case ofN.1 degen-
erate sea quarks, it is straightforward to show that the sa
form of G holds for the neutral propagator in the basis
which SS̄is replaced byh8}( j 51,NSjS̄j . The quantitiesu, r,
s, and t are of course different, withu being theh8 propa-
gator. In this theory, there areN21 additional neutral bilin-

ears, but their correlators withAĀ, ÃÃ̄ andh8 vanish since
the latter are invariants under any symmetry transforma
that involves only sea quarks, while none of the former
Thus G is block-diagonal and we can consistently consid
only the 333 block Eq.~71!.

14In the latter case, the unbroken vector symmetries require
i 5 l and j 5k. This can also be seen by evaluating the correlato
terms of quark propagators.

15One can also show, using the graded symmetries, thats is re-
lated to correlators which are clearly charged:s5GÃAAÃ and s
5GABBA if mA5mB ~see Appendix E!.
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For future use, we separate out fromG the quantity

GC[diag~s,u,2s!. ~72!

We do this because we expect these quantities to have
dard pole structure. Theh8 propagatoru is physical, and so
has only single poles, with none of them being light. As
the connected propagators, our key assumption in this sec
tion is that it has a light single-pole. This is what is predict
by PQ chiral perturbation theory at LO and NLO@3#, and
also what is observed in numerical simulations of PQ th
ries.

In order to better understand the properties of the e
ments ofG, it is useful to study the form of its inverse:

G215S R1S T 2R

T U 2T

2R 2T R2S
D ~73!

with

R52
ur2t2

us2
; S5

1

s
; T52

t

us
; U5

1

u
~74!

r 52
UR2T2

US2
; s5

1

S
; t52

T

US
; u5

1

U
. ~75!

We now decomposeG21 as

G215GC
211S, ~76!

where

S5S R T 2R

T 0 2T

2R 2T R
D . ~77!

The form of Eq. ~76! is the same as that in perturbatio
theory, withGC corresponding to the free propagator, andS
to the one-particle irreducible self-energy. Thus we interp
S as the self-energy contributions arising from disconnec
diagrams involving at least some valence quarks or gh
~disconnected contributions involving sea quarks having
ready been included!.

We can now state our second assumption: that the
ments ofS (R andT) are regular in momentum space at t
position of the light pole ins. Our reasoning here is thatS is
one-particle irreducible with respect to the connected pro
gator, and thus does not have simple light poles. The o
source for non-analyticity at the position of the light po
would be a deeply bound state of pseudo Goldstone bos
but this should not be present because the interactions
weak.

Given our assumptions, we can now read off the p
stucture ofG, by expressing it in terms of quantities wit
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known, or assumed, behavior~simple light poles ins, around
which u, R, andT are regular!:16

G5S s2Rs21T2us2 2Tus T2us22Rs2

2Tus u 2Tus

T2us22Rs2 2Tus 2s2Rs21T2us2
D .

~79!

Thus we see that there are light double poles~the s2 terms!,
but no higher order poles. A more detailed analysis sho
that the residues of the double poles vanish whenmA5mS .

This completes the argument for a single valence qua
What if there are two or more valence quarks? At the qu
level, the addition of extra valence quarks does not cha
any of the elements of the block ofG we consider. Thus the
final form of G, Eq. ~79!, is unchanged, and the same doub
poles are present. The argument holds separately for e
valence quark, and thusGBBBB has double poles of the sam
form asGAAAA, etc., althoughR ands depend on the mass o
the valence quark. The argument can be generalized to s
the structure ofGAABB ~which has a double pole whenmA
5mB), but we do not give details here.

B. PQ chiral effective theory

The previous argument concerned two-point functions
quark bilinearsP i j . In the derivation of the structure ofG
@Eq. ~71!#, however, the Lagrangian of PQ QCD played
role, and the only properties ofP i j that were used were th
transformation properties under vector symmetries. Th
properties are shared by the meson fields of PQ chiral
turbation theory, and therefore the propagators of these fi
must also have the structure Eq.~71!. Moreover, the state-
ments about the analytic structure were based on the in
pretation of the different components ofG ~the distinction
between ‘‘connected’’ and ‘‘disconnected,’’ ‘‘charged’’ an
‘‘neutral’’ ! which in turn used the language of Feynman d
grams and the tracing of quark lines. As discussed in Sec
the effective theory can be formulated withF0, in which
case the use of this language is still justified.

It follows that in PQ chiral perturbation theory, withF0
included, if the propagators for the charged mesons h
only single poles, and the self-energy function is analytic
low momentum, then there are double poles in the neu
propagators, and no higher singularities. Since the limitm0
→` is well defined for these theories, and the low ene
analytic structure is independent of it, we conclude that
above discussion also applies when theF0 field is removed
from the effective theory.

Some of the assumptions and their implications are tes
by the NLO calculation described in@3#. There we found

16We note thatG21 can be simply inverted because the usu
geometric series truncates after three terms:

~GC
211S!215GC2GCSGC1GCSGCSGC . ~78!
0-14
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s5
ZA

p21MAA
2

, u5
1

~p21MSS
2 !/ZS1dSS1m0

2
, ~80!

R5m0
21dAA , T5m0

21dAS. ~81!

ZA and ZS are wave function renormalization factors a
MAA andMSS meson masses, the expressions for which
be found in@3#. Relevant here is the fact that they are
independent of momentum and ofm0, and thatMSS and
MAA are light.dSS,dAA ,dAS are defined through

dab5
16

f 2
L7xaxb1

1

48p2f 2
~p22xa2xb!

1

2
~xa1xb!

3 ln F1

2
~xa1xb!G . ~82!

We see that the connected contribution to the propag
for the valence quark~s! has only a simple light pole, while
the pole of the full sea quarkh8 propagator~u! is heavy~at
p252m0

21 . . . ). Also, the self-energy components (R,T)
are clearly analytic in momentum. Finally, we collect all t
terms intoG, and take the limitm0→` to get

G5S s1s2j 2s s2j

2s 0 2s

s2j 2s 2s1s2j
D , ~83!

with

j52dAA12dAS2dSS2
p21MSS

2

ZS
. ~84!

In summary, the argument presented above serves bo
a confirmation that~given the validity of the assumptions!
the pole structure of two-point functions predicted by L
and NLO PQ chiral perturbation theory is indeed that of P
QCD, and an extension of that prediction to all orders
chiral perturbation theory.

VII. CONCLUSIONS

The role ofF0 in quenched and PQ chiral perturbatio
theory has been the main focus of this paper. We have sh
that in order to reproduce the low momentum behavior
two-point correlation functions of quenched QCD,F0 must
be kept in the theory. On the other hand, in PQ QCD it d
not give rise to long range correlations, in closer analogy
theh8 in QCD, and should not be included. This point is k
in carrying out the program outlined in@1–3,26# of using PQ
simulations together with PQ chiral perturbation theory
determine the unknown constants that govern the low ene
behavior of real QCD.17 The central fact used in this progra
is that the parameters of the chiral Lagrangian in QCD~with

17First results from this program have recently been presen
@27#.
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2 or 3 light flavors! and in PQ QCD~with the corresponding
number of sea quarks! are the same. In the presence ofF0,
however, the PQ chiral Lagrangian matches the unquenc
chiral Lagrangian in which theh8 field is present. The latte
theory does not have a low energy expansion~for the physi-
cal valuesN52,3 andNcolor53), and its relation to low
energy hadron phenomenology cannot be calculated pe
batively. What we have shown is that this problem does
arise because the PQ chiral effective theory can and sh
be formulated withoutF0.

In seeming contradiction to what has just been stat
there are technical benefits from keepingF0 in the effective
theory. In this paper we have shown howF0 can be included
as an auxiliary field with a mass termm0

2F0
2, and its effects

can be then removed by takingm0 to infinity. This also es-
tablishes the status of previous results in PQ chiral pertu
tion theory in whichF0 was kept. By takingm0→`, all
effects ofF0 are removed from these results, irrespective
whether otherF0 couplings were included.

The role ofF0 is tied in with the more general theme o
the foundation and justification of PQ chiral perturbati
theory. We have addressed this issue by attempting to re
the line of reasoning that leads to the standard chiral
grangian. As a first step, we have identified the full symm
tries of PQ QCD. We then argued that the symmetry bre
ing pattern in this theory can be derived from the symme
breaking pattern of QCD. Goldstone’s theorem, with the u
of the appropriately generalized Ward identities, then lead
the conclusion that two-point correlation functions of ope
tors associated with generators of broken symmetries h
low-lying poles. We discussed at some length the constr
tion of the effective theory for the fields that have the sa
quantum numbers as these operators. This theory is gua
teed to recover the low energy behavior of two-point fun
tions of the chiral currents and densities. In the absence
Hilbert space, however, we do not know how to show th
the long range behavior ofgeneral n-point functions can be
attributed to the singularities of the two-point functions. Th
is a crucial implicit assumption that is made when one u
the PQ chiral effective theory.

Lacking a general argument to justify PQ chiral effecti
theory, we have focused instead on one of the strikingly
physical aspects of PQ chiral perturbation theory, the e
tence of light double poles in propagators of flavor-neut
mesons. We have demonstrated that the existence of t
double poles~and the absence of higher singularities! fol-
lows from the assumption that the propagators of char
mesons have only simple poles.18 The proof involves only
the symmetries of the theory, symmetries that are shared
the underlying microscopic theory and the low energy eff
tive theory. We learn two things from this result. First, th
this unphysical feature of the effective theory is correc
representing the properties of the underlying PQ theory. A
second, that the pole structure seen in LO and NLO ch

d

18This assumption can itself be derived in the massless theory~as
in Sec. III!, but not in the interesting case of massive quarks w
mVÞmS .
0-15
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perturbation theory will hold also at higher orders—the
will only be single and double poles.

Finally, we note that an interesting consistency check
our results can be obtained by taking the valence qu
masses to be much smaller than the sea quark masses, th
not so small that enhanced chiral logarithms@8#, proportional
to mSln mV , invalidate chiral perturbation theory.19 In this
regime the PQ theory has a ‘‘light’’ sector, with correlato
having poles atM light

2 }mV , and a ‘‘heavy’’ sector with poles
at Mheavy

2 }mS . We expect the relevant degrees of freedom
the light sector to be the valence quarks and ghosts al
and thus that it should be described by an effectivequenched
SU(NVuNV) chiral Lagrangian. In particular, this Lagrangia
should contain the quenchedF0

Q field, despite the absence o
the F0 in the underlying PQ chiral Lagrangian. We also e
pect that additional terms, such asa(]F0

Q)2, should appear
in the quenched effective Lagrangian. This issue can be
vestigated analytically, since both valence and sea quarks
in the chiral regime. We have checked that our expectati
are indeed borne out, by matching pole positions at one-l
obtained from the underlying PQ theory and the effect
quenched theory. We find, for example, that a PQ the
having N degenerate sea quarks matches with a quenc
theory havingm0

252B0mS5xS anda51 ~as well as small,
mS and N dependent, shifts inB0 and f between the two
theories!.
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APPENDIX A: REAL AND FAKE SYMMETRIES

In this appendix we discuss the symmetry group of the
theory defined in Eq.~1!, and the resulting Ward identities
We show that, although the flavor symmetry group diffe
from the naive expectationSU(NV1NuNV)L ^ SU(NV
1NuNV)R , the Ward identities coincide with those derive
assuming this ‘‘fake’’ symmetry to hold. This appendix
based in part on the analogous development for the quen
theory worked out in Ref.@17#.

Quark sector symmetries

Consider first only the quark part of the action, Eq.~4!,

E ~ c̄LD” cL1c̄RD” cR1c̄LmcR1c̄Rm̄cL!. ~A1!

19This is analogous to studying the chiralSU(2) theory as a limit
of chiral SU(3). Wethank Larry Yaffe for suggesting this regime t
us.
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In the massless limit it is invariant under transformations
the form

cL,R→GL,RcL,R , c̄L,R→c̄L,RGL,R
21 , ~A2!

where GL and GR need only be non-singular,GL,R
PGL(NV1N). Requiring that the functional measure be i
variant reduces the symmetry to

SL~NV1N!L ^ SL~NV1N!R^ U~1!. ~A3!

In the following we focus on the flavor symmetries, and
not show the overallU(1) phase symmetry.

The group~A3! is larger than the symmetry group of th
Hamiltonian, SU(NV1N)L ^ SU(NV1N)R , because c̄
Þc†g0 in the functional integral formulation. To understan
the physical significance of the enlarged symmetry, we c
sider the resulting Ward identities. The infinitesimal transf
mations take the form~choosingGL for illustration!:

GL5exp~aT!.11aT ~A4!

dcL5aTcL , dc̄L52ac̄LT, ~A5!

whereT is an arbitrary traceless, Hermitian (NV1N)2 ma-
trix, and the small parameter,a, is complex. The usual, uni
tary, symmetry transformations correspond toa being pure
imaginary, and thus have half as many parameters. Choo
a to be space-time dependent, we have~still in the massless
theory!

S→S2E a~x!]m j Lm
(T)~x!, j Lm

(T)5c̄LgmTcL , ~A6!

O~y!→O~y!1a~y!dL
(T)O~y!, ~A7!

whereO is a local operator.20 Such a transformation can b
seen as a change of variables in the functional integral, w
unit Jacobian, and therefore leads~in the example of a single
operator! to

05d^O~y!&

5E a~x!]m^ j Lm
(T)~x!O~y!&dx1a~y!^dL

(T)O~y!&.

~A10!

Note that Eq.~A10! containsa but nota* . Thus, although it
appears that two equations can be obtained for each inde
dent matrixT ~for real and imaginarya), in fact only one
Ward identity results:

20It is convenient to use a somewhat inconsistent notation
which the variations of fundamental fields and generic operators
defined differently. Thus, in the case of left-handed transformati
of the quark fields

c→c1dLc, ~A8!

O→O1adLO, ~A9!

so that, in fact,dLO is not an infinitesimal quantity.
0-16
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]m^ j Lm
(T)~x!O~y!&52d~x2y!^dL

(T)O~y!&. ~A11!

Thus the unitary subgroup~imaginarya) is sufficient to gen-
erate all the Ward identities implied by the full symmet
group.

When the masses are not zero, another term is adde
Eq. ~A10!, corresponding to the variation in the action b
cause of the mass terms. These terms, however, like the
eratorO, do not involve complex conjugates of the qua
fields, and therefore their variation under the transformat
involves onlya. As in the massless case, this implies th
there is only one Ward identity@a modification of Eq.~A11!#
corresponding to each generatorT.

Clearly the same analysis holds for the right-handed tra
formations. We conclude that the unitary subgroup,SU(NV
1N)L ^ SU(NV1N)R , is sufficient to generate all the War
identities implied by the full symmetry group.

Ghost sector symmetries

In the PQ QCD partition function, Eq.~1!, one integrates
independently over the Grassmann fieldsc andc̄. The inte-
gral over the commuting ghost variables, however, conver
only if it has a Gaussian structure:

E DxDx† exp~2x†Ax!, ~A12!
le

s

ul

,

to
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where the Hermitian part ofA must be positive definite
SinceD” is anti-Hermitian, this constraint applies to the ma
term. Thus in the ghost part of the action,

E ~ c̄̃LD” c̃L1 c̄̃RD” c̃R1 c̄̃Lm̃c̃R1 c̄̃Rm̃c̃L!, ~A13!

we must identifyc̄̃L5c̃R
† and c̄̃R5c̃L

† . The ghost part ofSF
is then:

E c̃L
†D” c̃R1c̃R

†D” c̃L1c̃L
†m̃c̃L1c̃R

†m̃c̃R . ~A14!

The symmetries of the kinetic terms alone are thus

c̃L→Gc̃L , c̃R→~G21!†c̃R , ~A15!

where GPGL(NV). The anomaly reduces thisGL(NV)
symmetry group to a product ofSL(NV) and an overall
phase rotation.

Ward identities are derived from infinitesimal local tran
formations,G5exp(aT).11aT, with T a traceless, Hermit-
ian, NV3NV matrix, anda complex, leading to

dc̃L5aTc̃L , dc̃R52a* Tc̃R ,
~A16!

dc̃L
†5a* c̃L

†T, dc̃R
†52ac̃R

†T.

Local operators,O(c̃L ,c̃L
† ,c̃R ,c̃R

†), transform like
~A17!
e

ded
into
ring
ann

ann
es:
nc-

f

One obtains~for the case of the expectation value of a sing
operator!

E
x
a~x!^] j L

(T)~x!O~y!&2a~x!* ^] j R
(T)~x!O~y!&

52a~y!^dLO~y!&1a~y!* ^dRO~y!&, ~A18!

with

j L,Rm
(T) [c̃R,L

† gmTc̃L,R . ~A19!

By takinga real and imaginary the full set of Ward identitie
are seen to be equivalent to the equations

^] j L,R
(T) ~x!O~y!&52d~x2y!^dL,RO~y!&. ~A20!

The generalization tom̃Þ0 is straightforward.
The resulting identities are exactly those that one wo

obtain were one to pretend thatc̃ and c̄̃ were independent
and that the symmetry group wasSU(NV)L ^ SU(NV)R . We
note, however, that, unlike the situation in the quark sec
d

r,

the true symmetry groupSL(NV) does not contain the
‘‘fake’’ symmetry group SU(NV)L ^ SU(NV)R . While they
do share a common vectorSU(NV) subgroup, and have th
same number of generators, the axial transformations~left
and right handed fields rotating oppositely! differ. We also
note that the use of complexa is crucial for obtaining all the
independent Ward identities.

Graded symmetries

To complete the symmetries we need to consider gra
transformations which rotate Grassmann and ghost fields
each other. Once we do this, we are necessarily conside
the ghost fields to be commuting elements of a Grassm
algebra, with~in the notation of Ref.@18#! both a ‘‘body’’ or
‘‘base’’—the usual complex scalar field—and a ‘‘soul’’—
composed of products of an even number of Grassm
fields, and thus nilpotent. The following question thus aris
What constraint does the requirement of a convergent fu

tional integral impose onc̄̃ and c̃? We argue at the end o
this appendix that the answer is
0-17
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c̄̃Lubody5c̃R
† ubody, c̄̃Rubody5c̃L

†ubody, ~A21!

i.e. the relations discussed above hold for the bodies of th
quantities, but not for the souls. In this subsection we disc
the consequences of this constraint on the symmetries.

To do this, we return to the notation

QL,R
T 5~cL,R

T ,c̃L,R
T !, Q̄L,R5~ c̄L,R ,c̄̃L,R!. ~A22!

The most general anomaly-free flavor transformation wh
leaves the kinetic term

E Q̄LD” QL1Q̄RD” QR , ~A23!

invariant is

QL→LQL QR→RQR

~A24!
Q̄L→Q̄LL21 Q̄R→Q̄RR21.

HereL andR are independentSL(NV1NuNV) matrices, ex-
cept that they must maintain the constraint~A21!. If we write

L5S Lqq Lqg

Lgq Lgg
D , ~A25!

~and similarly for L21, R and R21) to denote the quark
quark block, quark-ghost block, etc., of the different ma
ces, then the constraint is

Lggubody5~Rgg
21!ubody

† . ~A26!

In deriving this, we have used

~L21!ggubody5~Lggubody!
215Lgg

21ubody ~A27!

and related results, which follow from the fact that only t
product of ‘‘bodies’’ contribute to the body of a product. Th
matricesL andR satisfying the constraint Eq.~A26! form a
subgroup ofSL(NV1NuNV)L ^ SL(NV1NuNV)R . The expo-
nential parametrization of elements of this subgroup is

L5exp~ iFL!, R5exp~ iFR!,
~A28!

str~FL,R!50, ~FL!ggubody
† 5~FR!ggubody.

To derive Ward identities we consider infinitesimal tran
formations of the form in Eq.~A28!. Transformations in the
quark-quark and ghost-ghost blocks lead only to the ide
ties described in the previous subsections. In particu
while the full symmetry group has axial transformations
the ghost-ghost block which were not considered above@in
which (FL,R)gg are both pure soul# these do not lead to
independent Ward identities.

Additional Ward identities do arise from purely grade
transformations. These are derived by consideringiFL,R
5aL,RT, with T Hermitian matrices contained entirely in th
quark-ghost and ghost-quark blocks, andaL,R anticommut-
ing parameters. Note that there are no constraints onaL,R
from Eq. ~A28!, and so the derivation of Ward identitie
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follows the same steps as in the quark sector, except that
must keep track of the anticommuting nature ofa. The result
is a single independent identity of the form of Eq.~A11! for
each ‘‘off-diagonal’’ generatorT. As in the quark sector, the
identities are the same as those that follow from the unit
subgroup in whichFL,R are constrained to be Hermitian
The extra freedom of complex parameters does not lea
additional identities.

Combining the results from all infinitesimal transform
tions, we see that all the Ward identities could have be
obtained if one had assumed the fake symmetry gr
SU(NV1NuNV)L ^ SU(NV1NuNV)R .

Vector and axial transformations and currents

The VEV of Eq. ~15! ~and also the mass term withM
}I ! breaks the chiral symmetry of Eq.~A24! down to its
vector subgroup:

L5R[VPSL~NV1NuNV! , Vggubody5~Vgg
21!ubody

† .

~A29!

The corresponding ‘‘fake’’ group, sufficient for deriving vec
tor Ward identities, is the subgroupVPSU(NV1NuNV), for
which the constraint in Eq.~A29! is automatically satisfied.

The axial transformations, the generators of which
broken by the VEV, are given by

L5R21[APSL~NV1NuN! , Aggubody5~Agg!ubody
† .

~A30!

Here the fake transformations haveAPSU(NV1NuN), and
are not contained in the transformations of Eq.~A30! be-
cause the constraint is not satisfied.

By combining infinitesimal left- and right-handed tran
formations in the appropriate way, we can derive vector a
axial Ward identities. They take the same form as Eq.~A11!,
with L→V,A, and contain

j V,Am
(T) ~x!5Q̄LgmTQL~x!6Q̄RgmTQR~x! ~A31!

and

dV,A
(T) O5dL

(T)O6dR
(T)O. ~A32!

The only subtlety here is that, when deriving Ward identit
for graded transformations, the factor ofa(y) which is
pulled out of Eqs.~A6!–~A10! should be accompanied b
the sign which results when movinga pastQ̄. This is needed
to be consistent with the definition ofj m

(T) , and impacts the
definition of d (T).

Convergence considerations

First recall that integrals over real c-numbers lead to
sults of the same form as over ordinary numbers@18#

E
a

b

dq f~q!5F~b!2F~a!, F85 f . ~A33!
0-18
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Here functions of c-numbers are defined by Taylor exp
sions,

f ~q!5 f ~qubody!1 (
n51

`
1

n!
~qusoul!

nf (n)~qubody!, ~A34!

where the sum actually truncates becausequsoul is nilpotent.
In our case we are interested in Gaussian integrals:

f ~q!5exp~2mq2!, a52`1ausoul, b51`1busoul,
~A35!

with Re(m) positive. Sincef (n)(6`)50 for all n, it follows
that Eq.~A33! is actually independent of the souls ofa and
b. Similarly, if we change variables by a quantity which
pure soul,q85q1dq, dqubody50, we do not have to chang
the limits of integration.21 This is true for an arbitrary chang
in soul—in particular, it does not need to be real.

Now consider a two-dimensional Gaussian integral

E
2`

1`

dq1dq2 exp@2m~q1
21q2

2!#. ~A36!

As we have just seen, the bodies ofq1,2 are real, but their
souls can be arbitrary without changing the value of the
tegral. Thus if we change to ‘‘complex’’ variables

q̃5q11 iq2 , q̄̃5q12 iq2 , dq̃dq̄̃[dq1dq2 ,
~A37!

then the integral takes on the usual complex Gaussian f

E dq̃dq̄̃exp~2mq̄̃q̃!, ~A38!

except thatq̄̃5q̃* holds only for the bodies, and not for th
souls~since the souls ofq1,2 are not real!. The integral itself
has the value given by Eq.~A36!, i.e. p/m. Note thatm can
also have an arbitrary soul—what matters for convergenc
that the real part of its body is positive.

The generalization to many complex variables is straig

forward. Letq̃ and q̄̃ now represent a vector and transpos
vector, respectively. Then the integral

E dq̃dq̄̃ exp~2 q̄̃Mq̃! ~A39!

is convergent ifM ~taken to have no soul for now! is Her-

mitian and positive, and ifq̄̃5q̃† holds for the bodies. To se
this we diagonalizeM: M5U†DU, with D being diagonal
and positive, andU unitary. Thus if we use the variable

q̃85Uq̃ and q̄̃85 q̄̃U† ~which leaves the measure un
changed!, then the integral factorizes into a product of int
grals of the form of Eq.~A38!, each of which is convergen

21Note that this is not true for general integrals: one must take c
when making changes of variables involving nilpotent parts, si
they can lead to so-called anomalies@11,19#.
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as long asq̄̃8ubody5q̃8ubody
† . This relation is maintained by the

unitary transformation back to the unprimed fields. The
gument goes through ifM has an arbitrary soul, since th
integrand can be expanded in powers of this soul, and e
term is convergent. Note that the general symmetry trans
mation, Eq.~A24!, maintains the Hermiticity of the body o
M.

APPENDIX B: THE DIAGONAL GENERATORS
OF U„NV¿NzNV…

Here we collect some useful results concerning the g
erators of graded symmetry groups. These are represente
the Hermitian (2NV1N)2 matrices labeledT in the forego-
ing. Note that the same generators serve for both the true
fake symmetry groups. We consider here the properties
the diagonal generators.

Let la be theNV1N21 diagonal generators ofSU(NV

1N), chosen to satisfy tr(lalb)5dab . Similarly, let l̃a be
theNV21 diagonal generators ofSU(NV), normalized in the
same fashion. We defineTa , a51, . . . ,N12NV22 to be
the set of matrices:

~B1!

where we use a schematic notation. They satisfy

str~Ta!5H tr~la!

2tr~ l̃a!
J 50 ~B2!

and

str~TaTb!5H tr~lalb!

2tr~ l̃al̃b!

0
J 5dab«a . ~B3!

Two more generators need to be defined to complete
basis for the diagonal part ofU(NV1NuNV).

Partially quenched „NÅ0…

We choose

T2NV1N215
1

2ANNV~NV1N!
@NĪ2~2NV1N!I # ~B4!

and

T2NV1N5
1

AN
I , ~B5!

where

~B6!
re
e
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The last element,T2NV1N , has non-vanishing supertrace, a

generates the anomalousU(1) factor ofU(NV1NuNV).
Considering now all 2NV1N generators, it is straightfor

ward to check that

~B7!

Quenched„NÄ0…

In this case we choose

T2NV215I ~B8!

T2NV
5

1

2NV
Ī . ~B9!

While the identity is straceless,Ī is not, and is taken as
the generator of the anomalousU(1) factor. Equation~B7!
becomes

„str~TaTb!…[~gab!

51
1

�

1

21

�

21

0 1

1 0

2 .

~B10!

APPENDIX C: ANOTHER ARGUMENT CONCERNING F0

In this appendix we give an alternative argument conce
ing the status ofF0 in quenched and PQ chiral perturbatio
theory. We consider two-point functions of pseudoscalar d
sities,

G(T,T8)~x!5^f (T)~x!f (T8)~0!&, ~C1!

where T,T8 run over all the generators ofU(NV1NuNV)
~and thus include the identity!. For the diagonal generator
we use the basis given in Appendix B. We assume that
quark and ghost masses are equal, although they do not
to vanish.22

22Note that the PQ theory differs from the unquenched the
~with N flavors! even if all masses are equal. This is because
extra fields in the PQ theory allow one to separately determ
certain Wick contractions which always arise in certain linear co
binations in the unquenched theory.
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Consider first the PQ theory. As long asN>2, some of
the generators lie entirely in the sea-quark sector. ChoosinT
andT8 of this form, we can use chiral perturbation theory f
QCD-like theories to infer that the resulting correlator ha
pseudo-Goldstone boson~PGB! pole if T5T8, while flavor
symmetry implies that it vanishes ifTÞT8. Thus we know
that

G(T,T8)~x!5dT,T8GPGB~x!, T,T8PTsea. ~C2!

We note for future reference thatGPGB(x) is ‘‘connected’’ in
the sense that the only contractions which contribute
those in which the two bilinears are connected by qu
propagators.

We can extend this result to all the straceless genera
using the graded vector symmetry~which, as argued in the
text, is not spontaneously broken!, with the result

G(T,T8)~x!5str~TT8!GPGB~x! str~T!5str~T8!50.
~C3!

This can be shown either directly using the symmetry, alo
the lines of Appendix E, or by a direct comparison of t
contributing contractions. In the latter case, the overall fac
str(TT8), which can be of either sign~see Appendix B!, ac-
counts for the signs arising from fermionic Wick contra
tions. The result~C3! shows that there are PGB poles in th
correlation functions for each of the generators ofSU(NV
1NuNV). This agrees with the result obtained in Sec. III
and implies that the corresponding fields should be inclu
in the effective Lagrangian.

Now consider the correlation functions involving the i
terpolating field corresponding toF0, which are obtained by
settingT and/orT8 to the identity. Flavor symmetry implies
that if T5I and str(T8)50, or vica-versa, then the correlato
vanishes. IfT5T85I , then, by inspecting contractions, on
can show that the correlator is proportional to that for theh8
@10#:

G(I ,I )~x!5^F0~x!F0~0!&}^h8~x!h8~0!& ~C4!

where theh8 is the flavor singlet mesonin the sea sector.
Valence quark and ghost contributions completely can
Now, due to the axial anomaly, we know that theh8 cor-
relator does not have a light pole. Thus none of the two-po
functions involvingF0 have PGB poles. Conversely, to d
scribe the long distance parts of the two-point functions
the PQ theory we do not need to consider correlators invo
ing F0.

We now contrast this analysis with that for the quench
theory. By examining contractions, or using the graded fla
symmetries, one can show that

GQ
(T,T8)~x!5str~TT8!Gconn~x!1str~T!str~T8!Gdisc~x!,

~C5!

where ‘‘conn’’ and ‘‘disc’’ refer to connected and discon
nected contractions, andT andT8 run over the generators o
U(NVuNV). Since there is no sea sector in the quench
theory, we cannot rely on experience with QCD to imply th

y
e
e
-
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there are PGB poles in some channels. Instead, base
numerical data, we assume that there is such a pole in
connected correlatorGconn(x). Then we see from Eq.~C5!
that, if we use the basis explained in Appendix B, there i
PGB pole in correlators corresponding to all the genera
of SU(NVuNV) exceptT5I . This if because, for such gen
erators, str(T2)Þ0 @so the first term in Eq.~C5! is present#
but str(T)50 ~so the second term is absent!. However, for
T5T85I , both str(T) and str(TT8) vanish, and so
GQ

(I ,I )(x)50. On the other hand, ifT5I and T85 Ī ~the
anomalous generator!, or vica-versa, then str(TT8)Þ0, and
so

GQ
(I , Ī )}Gconn~x!. ~C6!

Thus this cross-correlator also has a PGB pole. Finally
T5T85 Ī , then

GQ
( Ī , Ī )}Gdisc~x!, ~C7!

about which the present analysis says nothing, altho
quenched chiral perturbation theory predicts a double P
pole.

The important conclusion is that, to include all chann
which have PGB poles in them one must include bothf ( Ī )

andf (I )}F0.

APPENDIX D: GÀ1 IN THE LIMIT m0\`

In this section we calculate the propagatorG(s) in the
largem0 limit, where the inverse propagator is given by

G(s)
215S A B

C m0
21dD , ~D1!

with A, B, C, and d independent ofm0. Note thatA is a
square matrix,B and C a column and row vectors, respe
tively, andd a number. Sinced appears only in the combi
nationm0

21d it can be dropped in the largem0 limit.
We write

G(s)5S A8 B8

C8 d8
D . ~D2!

To learn about them0 dependence of the blocks ofG(s) we
consider the equation

G(s)G(s)
215I . ~D3!

One of the equations contained in Eq.~D3! is

C8A1d8C50, ~D4!

which impliesd8;C8, where the tilde refers to the scalin
with m0.

Another equation in Eq.~D3! is

C8B1d8m0
251. ~D5!
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Sinced8 andC8 scale the same, only the second term on
left hand side of Eq.~D5! is important whenm0→`, and we
conclude that

d8,C8;
1

m0
2

. ~D6!

Similarly, from

A8B1B8m0
250 ~D7!

we get

B8;
1

m0
2

A8, ~D8!

which is then used in

A8A1B8C51 →
m0→`

A8A51. ~D9!

In the last equation we see thatG(s)
21 cannot be inverted when

m0→` unlessA is a non-singular matrix.
Putting everything together, in the largem0 limit

A85A211OS 1

m0
2D 5O~1!, ~D10!

B8,C8,d85OS 1

m0
2D , ~D11!

and therefore

lim
m0→`

G(s)5S A21 0

0 0D . ~D12!

APPENDIX E: THE STRUCTURE OF THE PROPAGATOR
FROM GRADED SYMMETRIES

In this appendix we derive the constraints on the struct
of the pion propagator that imply the form Eq.~71!. The
following symmetries are used:

~i! Independent phase rotations of individual flavo
These form a subgroup of the vector transformations, E
~A24!–~A29!, where one takes

V5diag~expuA ,expuS ,expu Ã!, ~E1!

anduA , uS andu Ã are independent. Under a phase rotati
of only the flavorm,

Gi jkl →Gi jkl exp„um~d im2d jm1dkm2d lm!…. ~E2!

~ii ! SU(1u1) transformations that involve onlyA and Ã.
These too are vector transformations, this time with
0-21
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V5S a 0 b

0 1 0

c 0 d
D , ~E3!

where

U5S a b

c dD PSU~1u1!. ~E4!

~iii ! Gi jkl 5(2)Gkli j . This symmetry follows from

^P i j ~x!Pkl~0!&5^P i j ~2x!Pkl~0!&

5^P i j ~0!Pkl~x!&

5~2 !^Pkl~x!P i j ~0!&, ~E5!

where the first equation is obtained by rotation, the sec
by translation, and the (2) sign in the third is only needed
when bothP i j andPkl are fermionic fields.

The invariance ofG under transformations of the form
Eq. ~E2! implies that the indices must be paired up~quark
lines must be followed, corresponding to legal contraction
quark fields!. The non-vanishing elements ofG therefore
take the form Gii j j or Gi j j i . The implications of the
SU(1u1) symmetries are slightly less straightforward. W
first form the following 2-indexed objects out of the elemen
of G:

(
j 5A,Ã

Gi j jk ~x!5^@P~x!P~0!# ik&

(
j 5A,Ã

« jGj j ik ~x!5^str„P~x!…P ik~0!&

~E6!
GSSik~x!5^PSS~x!P ik~0!&

GiSSk~x!5^P iS~x!PSk~0!&.

The matrix notation (P with no indices, matrix multiplica-
tion, and the strace symbol! refers to 232 matrices in the
A2Ã subspace. In a consistent manner,i ,kP$A,Ã%. All of
the combinations above transform similarly underSU(1u1)
transformations:
gy
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Oik→ (
m,n5A,Ã

UimOmnUnk
† , ~E7!

or, using the 232 notation again,

O→UOU†. ~E8!

SinceSU(1u1) is a symmetry, each of the combinations a
invariant under these transformations. Direct examinat
shows that this implies that eachO must be proportional to
the identity. From this argument we obtain the following s
of equations:

(
j 5A,Ã

Gi j jk 5rd ik⇒H GAAAA1GAÃÃA5r

GÃAAÃ1GÃÃÃÃ5r
~E9!

(
j 5A,Ã

« jGj j ik 5sd ik⇒H GAAAA2GÃÃAA5s

GAAÃÃ2GÃÃÃÃ5s
~E10!

GSSik5td ik⇒GSSAA5GSSÃÃ5t ~E11!

GiSSk5vd ik⇒GASSA5GÃSSÃ5v. ~E12!

Finally, with the use of Eq.~E5!, these equations can b
solved to yield:

GAAAA5r 1s ~E13!

GÃÃÃÃ5r 2s ~E14!

GAAÃÃ5GÃÃAA5r ~E15!

GÃAAÃ52GAÃÃA5s ~E16!

GSSAA5GAASS5GSSÃÃ5GÃÃSS5t ~E17!

GASSA5GSAAS5GÃSSÃ52GSÃÃS5v. ~E18!

The last independent element ofG is GSSSS. The form
shown in Eq.~71! follows ~what appears there is the restri
tion of G to the subspace ofAA, SSand ÃÃ).
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