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This paper completes the argument that lattice simulations of partially quenched QCD can provide quanti-
tative information about QCD itself, with the aid of partially quenched chiral perturbation theory. A barrier to
doing this has been the inclusion @f,, the partially quenched generalization of thg, in previous calcula-
tions in the partially quenched effective theory. This invalidates the low energy perturbative expansion, gives
rise to many new unknown parameters, and makes it impossible to reliably calculate the relation between the
partially quenched theory and low energy QCD. We show that it is straightforward and natural to formulate
partially quenched chiral perturbation theory withekyg, and that the resulting theory contains the effective
theory for QCD without then’. We also show that previous results, obtained including can be reinter-
preted as applying to the theory witho®t,. We contrast the situation with that in the quenched effective
theory, where we explain why it is necessary to incldele We also compare the derivation of chiral pertur-
bation theory in partially quenched QCD with the standard derivation in unquenched QCD. We find that the
former cannot be justified as rigorously as the latter, because of the absence of a physical Hilbert space. Finally,
we present an encouraging result: unphysical double poles in certain correlation functions in partially quenched
chiral perturbation theory can be shown to be a property of the underlying theory, given only the symmetries
and some plausible assumptions.
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I. INTRODUCTION constants in the chiral Lagrangian. Consequently, progress
with this theory can only be made by making further as-

Numerical simulations of lattice QCD are hampered bysumptions.
the difficulty of including loops of light quarks. This has  On the other hand, in QCD the’ is not a pseudo Gold-
forced the use of approximations to the fermion determinantstone boson, the corresponding field need not be included in
the quenched approximatiofsetting the determinant to a the chiral Lagrangian, and chiral perturbation theory can be
constank, and, more recently, the partially quench@eQ developed as a low energy expansjdn-6]. What we dem-
approximation(including the determinant but with sea quark onstrate here is that the situation is similar for PQ QCD with
masses different from, and typically larger than, those of thesea(and valencequarks in the chiral regime: It can be de-
valence quarks While all such simulations correspond to scribed by a chiral Lagrangian in whiehy is absent, and for
unphysical theories, they are not all equally unphysical. Itwhich standard power-counting applies. As stressed in Refs.
has been argued recently that PQ simulations can be used|t,3], an important corollary is that the parameters of the PQ
obtain physical parameters if the quarks are light enough thathiral Lagrangian are the same as those in the chiral La-
one can use chiral perturbation theory to describe the lovgrangian for QCD. This is what is needed to show that PQ
energy properties of the theof§—3]. The only approxima- simulations can be used to extract physical parameters.
tion necessary is the truncation of chiral perturbation theory. Another result shown here is of a more technical nature.
On the other hand, if the sea quarks are too heavy, theAll previous calculations using PQ chiral perturbation theory
partial quenching is an uncontrolled approximation whosehave included theb, field, and thus suffer from the prob-
results will at best be a qualitative guide to those in thelems described above. Here we show that these problems can
physical theory. be avoided by sending thk, mass parametem,, to infin-

The main purpose of this paper is to complete the theoity, because this is mathematically equivalent to considering
retical argument justifying the use of PQ simulations to ob-the theory in which®, is absent. In this way, the results of
tain physical parameters. The missing ingredient in the arguthe previous calculations from PQ chiral perturbation theory
ments presented in Reffl,3] concerns the flavor-singlet can be reinterpreted as applying to the theory for which the
field, @4, which is the generalization of thg’ in PQ theo- matching to QCD is immediate. This observation also justi-
ries. This field must be kept in the low-energy effective fies thead hocprescriptions for integrating o, that were
theory for quenched QCD, because its correlation functionsised previously7-9,3.
contain poles at the masses of the light pseudo-Goldstone A secondary purpose of this paper is to discuss the theo-
mesons. The same holds true for the PQ theory with heavyetical foundations of chiral perturbation theory for PQ theo-
sea quarks. The need to includg invalidates the standard ries, building on the work o0f10,11. We recall the line of
chiral power counting and introduces additional couplingreasoning used to construct the chiral Lagrangian for QCD,

examine the extent to which it applies also to PQ QCD, and

point out the gaps that make PQ chiral perturbation theory
*Electronic address: sharpe@phys.washington.edu stand on less secure grounds. We are able to show, however,
Electronic address: shoresh@phys.washington.edu that a signature prediction of PQ chiral effective theories,
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namely the presence of double pole contributions to flavoHere Sg is the gauge actiony an (Ny+ N)-dimensional
singlet correlators, can be derived in the underlying theorcolumn vector containing the quark fields, with mass matrix

from the assumption that valence flavor non-singlet correlam and3 an Ny-dimensional vector of ghost quarks, with

tors have single poles. The latter assumption is well tested bPﬁass matribm. For each valence quark there is a ghost quark

numerical simulations. with the same mass, so that the valence quark determinant

This paper is organized as follows. In the next section wi ; ;
. ) ; ; ncels precisel inst that from the gh rks. Th
review the definition of PQ theories, and discuss their syme—Ca cels precisely against that from the ghost quarks ©

metries. The set of two-point functions containing light polesComplete mass matrix Is
is identified in Sec. Il for both PQ and quenched theories. In m 0

Sec. IV we construct the PQ effective Lagrangian that reproimv :( - )
duces the previously determined pole structure, and discuss

its theoretical foundations. In Sec. V we explain how chiral

m

perturbation theory including, is equivalent to that exclud- =diagMyy, - MynyMsg, - - MsNi My, - - My

ing ®, if one sendsny— <. We then discuss the pole struc- 2
ture of flavor-singlet correlators in Sec. VI, and summarize

our conclusions in Sec. VII. In the following, we will take all non-zero entries & to be

Five Appendixes contain technical details. Appendix Areal and positive.
describes the true symmetries of the PQ QCD partition func- Our discussion will concern the theory obtained in the
tion, derives the resulting Ward identities, and shows howcontinuum limit of PQ simulations. This allows us to take D
these are in fact the same as those obtained assumingag having standard continuum properties: it is an anti-
“fake” symmetry group. Appendix B collects useful results Hermitian operator which connects left-handed fields to
on the diagonal generators of graded Lie groups. Appendix @ght-handed fields and vice versa. In this way we avoid the
gives an alternative argument for why one does not need tissue of how best to discretize fermions, and of possible
include ®, in PQ chiral perturbation theory. Appendix D difficulties in simulating odd numbers of dynamical quarks.
concerns a useful result about the limig— . Finally, Ap-  We simply assume that these difficulties have been over-
pendix E derives the constraints on neutral pion correlator§ome, and that the lattice simulations are done close enough

using graded symmetries. to the continuum limit that Eq(1l) represents them up to
small corrections, suppressed by powers of the lattice spac-
Il. PARTIALLY QUENCHED THEORIES AND THEIR ing, which can be extrapolated awajndeed by using over-
SYMMETRIES lap fermions, or other fermions with an exact chiral symme-

try, one can presumably formulate the discussion of
We consider a theory witlN sea quarks andl,, valence  symmetries at non-zero lattice spacing.
quarks, which is viewed as a tool to study an unquenched Correlation functions of quark and ghost fields are de-
theory with N quarks. We will shortly consider all quarks, fined, as usual, by introducing source terms iAtdNote that
sea and valence, to be light, although this is not needed to s§tone considers correlation functions involving only sea-
up the definition of the theory. Clearly, the theories we havequark fields, one obtains exactly the result of the unquenched
in mind are those wittN=2 (treating only the up and down theory with N sea quarks, because the valence and ghost
quarks as light and N=3 (also including the strange determinants canc¢lQ]. Furthermore, if one of the valence
quark—whose status as a light quark is less glgdre num-  quarks has the same mass as a sea quark, then it can replace
ber of valence quarks one usually usedis=2 (needed to that sea quark in correlation functions without changing the
discuss simple meson properlie®r Ny=3 (needed for result[10].
baryon propertigs To discuss symmetries, it is useful to collect quarks and
In practice, one obtains PQ results by generating gaugghost quarks into a singleN(+ 2N,/) -dimensional vectorQ,
configurations including in the weight a determinant repre-defined by
senting the effect o sea quarks, and then calculating quark
propagators on these background gauge fields using masses QT=(y",y"). 3
which are different from those of the sea quarks. This can be
represented theoretica”y by Morel’'s construction inv0|ving The fermionic part of the action then takes the standard form
bosonic spin-1/2 ghost fieldsd2], in which the Euclidean

partition function is Ssz Q(D+M)Q

Z:f D”“”"’*”A]exp(_%_f["’(mmw :f<6LDQL+6RIDQR+6RMQL+6LMQR>. (4)

+ YD+ m) ] where the projections are defined by
= f D[A]exp _SG)M- 1) 1Some comments on the impact©{a) corrections are made in
def{D+m) Ref.[3].
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(1= ys) _ (15 ysg) notation of Appendix A, Eq(A31)]. This has the same quan-
Qur= 2 Q. Qur=Q 2 ) tum numbers as the pseudoscalar der@ix¢Q, which is the
interpolating field associated witb, [10]—the focus of
The symmetry group of the action E@l), whenM—0,  much of the subsequent discussion.

appears to be the graded group The symmetry structure is different for the fully quenched
theory,N=0. In particular, as noted in Reff13], the flavor
U(Ny+N[Ny) @ U(Ny+N[Ny)g, (6)  singletU(1) is part of SU(Ny|Ny), while the U(1) with

non-unit superdeterminant cannot be chosen to be a flavor
singlet, and so does not commute with all elements of
— — SU(Ny|Ny). This is explained more fully in Appendix B,
QurR(X)—=ULrQLR(X), QL'R(X)HQLR(X)UE,R’ where we collect some results on the generators of graded
@) groups. The net effect is that ti&U(Ny|Ny) andU(1) fac-
with U, ze U(Ny+N|Ny). As noted in Ref[11], however, tors form, locally, a semi-direct product, and the chiral sym-
this is not the correct symmetry because the functional inteMetry group can be taken to be
gral over the bosonic spin-1/2 fields converges only if they
are properly constraine@nd if the mass matrix is positive [SU(NyINy)L ® SU(NY|Ny)RIXU(1)y . 1D
definite). As a result of the constraint, right- and left-handed . ) )
fields cannot be rotated independently in the usual way. NeVAS discussed below, the difference between this group and
ertheless, it turns out that one can proceed as if the symmetfd- (10) is the mathematical result which underlies the need
group were(6), as long as one only considers small transfor-t0 include the®, field in the quenched, but not the PQ,
mations. This is explained in Appendix A. In particular we chiral Lagrangian.
show that one obtains the correct vector and axial Ward iden-
tities if one pretends that the action has the symmetry group |1I. SYMMETRY BREAKING AND THE NEED FOR @,

Eq. (6), rather than the actual symmetry group. In what fol- ] ) ) ]
lows we mostly use the “fake” symmetries, since this em- AS could already be seen in the previous section, the in-

phasizes the similarities to the development for unquenchefjoduction of valence and ghost quarks modifies the standard
QCD, and is usually simpler. We use the real symmetrieglavor symmetry structure of the theory, and consequently the

only when global aspects of the symmetry group are imporformulation of the chiral effective theory. One striking ex-
tant. ample is the non-decoupling @b, in the fully quenched

Certain of the transformations in E€f) are anomalous, theory. Thg main goal Qf this section is to analyze' this phe-
since they do not leave the measure invariant. Removin§omenon in some detail, and to demonstrate why it does not

under which the fields transform in the usual way

these requires that we impose the constraint carry over to PQ theories. To study this, we investigate
which two-point correlation functions contain poles at low
sdetU, =sdetUg, (8)  energies. In other words, we find the degrees of freedom that

one must include in a low energy effective theory for
where “sdet” is the invariant “super-determinanf.’”l’he quenched and PQ QCD.
overall result is that the chiral symmetry group of the mass-  Throughout this section we consider the PQ theory in the
less PQ theory can be taken to be the group proposgtDin  chiral limit. This allows us to use the condensate as an order

parameter, and to use Goldstone’s theorem to determine

SU(Ny+NINy) @ SUNy+NINy)r@U(1)y. (100 which channels have massless poles. In the usual way, the

chiral limit is to be approached by working at non-zero quark
masses and then taking the masses to zero after the volume
has been sent to infinity. In the PQ theory there is, however,
a subtlety concerning the chiral limit. As noted in RES],

Here theU(1), transformations are common overall phase
rotations of the right- and left-handed fiefds.
The form Eq.(10) reflects the fact that for the PQ case

:(sli.r?g.g,lg>£n)gj ttr;]ig (té)cgaéﬁztza&i?ﬁ :Ilhcs:;;ﬁtsbgﬁi I\fllavor chiral .perturbation theory predicts that the PQ theor){ is gin-
NN ') In particular. the anomalous svmmetr curren\{ Cangular if one sends valence quark masses to zero with f|xeq
v)-inp ' o  SY y ) non-zero sea-quark masses. In particular, the condensate it-
be chosen to be the flavor singlgf),=Qv,,ysQ [using the  self is singular in this limit. This singularity is similar to that
which occurs in the quenched thedri4,13,13. To avoid

this singularity, one should send all the quark masses to zero
’Here the super-determinent is defined by é#letexp strinU, simultaneously with fixed ratios.

with the supertrace being Such a limiting proceedure is not available for the
A B} quenched theory. Thus, in the following, when we refer to
st p|~UA-UD, ©  the quenched theory, we have in mind working close to, but

the b|ocks Corresponding to trN}\/+N quark ande ghost coor- not |n, the Ch'ral I|m|t S|nce our fOCUS here |S on the PQ
dinates, respectively.

3We are ignoring the fact that globally (Ny+ N|Ny)=[ SU(N
+N|Ny)®U(1)]/Zy, i.e., itis a coset rather than a direct product. “This limiting procedure also avoids divergences from exact zero
This is irrelevant for small transformations. modes in topologically non-trivial sectors.
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theory, we do not revisit the subtleties associated with the SU(Ny+N|Ny) ® SU(Ny+N|Ny)r®U(1)y
guenched chiral limit.
—SU(Ny+N|Ny)y®U(1)y . (18
A. Symmetry breaking pattern This argument does not carry over to the quenched theo-

As in QCD, we choose the vacuum expectation valueies, because there is no QCD-like sea sector. For quenched

(VEV) theories the spontaneous breaking of axial symmetries is an
_ additional assumption—though one that is supported by nu-
Qp=(Q.Qp) (12 merical evidence. If we make that assumption, the symmetry
breaking pattern for quenched QCD is

as an order parameter for chiral spontaneous symmetry
breaking. [SU(NyINy) ® SU(Ny[Ny)RIXU(1)y

We first consider the vector symmetries. It was shown
long ago by Vafa and Witten that vector symmetries do not —SUNYINyyXU(1)y. (19
spontaneously break in vector-like gauge thedridés. Their
derivation does not make use of Hilbert space states and B. Low energy poles from symmetries

operators, and relies only on the fact that the quark determi- .o the symmetry breaking pattern has been established,
nant leads to a real and positive measure in the functiong{ is 5 standard result in field theory that the number of
integral over the gauge fields. This is still true for quenChedpseudo-Goldstone bosons is determined by the number of
and PQ QCD, and the Vafa-Witten result still holds. Consey,5n_ anomalous generators that act non-trivially on the

quently, Q4 is invariant under vector transformations. It is \,o~,um. For the case at hand one thus expedss, (2N)2
in fact easier to see what this implies for the related quantity_ 1 5gidstone particles for PQ theory. Though the group
~ _ structure in the quenched case is slightly different, the count-
Q2p=(Qb:Qar (13)  ing argument still gives (®y)2—1, which is the same ex-
) . . . pression as for PQ theories with=0. There is, however, a
(7 is a Dirac-color index that must still be contracted to form significant difference between the two cases. As the follow-
a Euclidean scalar This transforms undef‘fake” ) vector  jng more careful analysis shows, the simple counting argu-

transformations in the following way: ment correctly predicts the number of Goldstone particles
~ ~ only in the PQ case. For the quenched case it turns out that
Q—VAVT, Ve SUNy+NINy). (14 there are (R)? fields which exhibit long range correla-
) ) tions. The additional field that is needed for quenched QCD
The invariance of) under Eq.(14) leads to is none other tha,.
- Consider the two-point correlation function between an
0= wqp (19 axial currentj{)(x) [defined in Eq.(A31)] and a pseudo-

_ scalar densityp(™)(0)=QysT’Q(0),
where w is a constant. Interchangin@ and Q fields, we ¥ (0)=QysT'Q(0)

obtain C M) =500 6T(0)). (20)
Qap=— wapea (16) HereT andT' label generators of the symmetry group. From
) ) Euclidean invariance, its Fourier transform must have the
where we introduce the notation form

o 1 a ?s a quark '|ndex, an CELT,T )(p):ipMF(T,T )(p?), (21)
—1 aisaghostindex.
where F is an unknown function. Next, consider the Ward
The question of whether the axial symmetry is spontaneidentity which follows from applying an infinitesimal axial
ously broken or not depends on the value@f The sea transformation with generatd’rto<¢”')(0)):
sector of PQ theories is equivalent to unquenched QCD with
N quark flavors. An important implication of this fact is that 9,CT T (x)= - 8(x) (88 $T(0)) (22)
the spontaneous breakdown of axial symmetries in QCD, ro
signaled by the non-vanishing ¢6q), is duplicated in the [for the definition of 5 ¢ see Eq.(A32)]. Together, Egs.
sea sector of PQ theories, thus implying that 0. In other  (21) and(22) give
words, given that there is spontaneous chiral symmetry
breaking in QCD, the symmetry breaking pattern of PQ p2FTT)(p?) = — (50 ¢T(0)). (23
QCD is known®
A straightforward calculation of the right hand side, with the
use of the VEV(16), gives
SHere we are assumirlg=2, since there is no chiral symmetry to
break forN=1 QCD. p?F("T)(p?)=2wstr(TT'). (24)
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(Note that the order off and T’ is important for graded ()~

generatorg.Equation(24) relies on the fact that generates A= QyuysQ @7

a true (non-anomaloys symmetry of the theory. For .we conclude that it must be included in the effective La-

guenched and PQ theories the non-anomalous symmetries. “~ "
i - (1T grangian in order to correctly reproduce the low energy be-

satisfystr(T)=0. ConsequentlyC,*" ’(p) has a pole ap  hayior of quenched QCD.

=0 for any T and T’ for which str(T)=0 andstr(TT') Let us summarize why one needs to includg in

#0. guenched, but not PQ, chiral perturbation theory. A field
It is straightforward to show that, for both quenched andshould be included if either the corresponding pseudoscalar

PQ theories, all the flavor off-diagonéicharged”) genera-  density or axial current can be shown to couple to a Gold-

tors give rise to light poles, like in QCD, and that they do notstone boson. In unquenched and PQ theories, the argument

mix with the neutral ones. Subtleties onIy arise in the neutrabiven above shows that the Coup“ng of a density with flavor

sector, and to study them we use a specific choice of diagqyeneratorT implies the coupling of the corresponding cur-

nal generators that is presented in AppendiXB8]. (B7)].  rent [since strT,T,) is diagonal. The peculiarity of the

There we find that, for the PQ theory, quenched theory is that the current with the same quantum
numbers a%b, i.e., the flavor singleﬁﬂ) , is not anomalous
str(T,T,)=diag(1, ...,1,—1,...,—1,—1,1). ¢ o i
ath gLl s L™, LT and thus should couple to a Goldstone boson. This is despite
Ny+N-1 Ny—1 the fact that the corresponding densiyysQ, is invariant
_ under non-anomalous transformations. Conversely, the
Here theT, are diagonal members of the algebra, all 54 0us curren$) , is not a flavor singletand so, as

straceless but the last _OHE?NWNOCI' which generates the shown above, the corresponding density couples to a Gold-
anomalous U(1y. Applying Eq.(B7) to Eq.(24) shows that  stone boson, contrary to naive expectation. Mathematically,
a complete set offlavor neutral fields that give rise to long  thjs peculiarity is due to the fact that sty& 0, which leads

range correlations in two-point functions is both to the key result that s&(T,) is not diagonal, and to
_ the semi-direct product structure of the quenched symmetry
QysTaQ, a=1,... . Ny+N-1. (25 group, Eq.(11). This is the sense in which the symmetry

) o structure of the quenched theory leads to the need to include
Note that forN,, of these fields, the coefficient of the mass- i

less pole has an unphysical sign, corresponding to the entries |, (0: we give an alternative argument for the need to keep
with —1 in Eq. (B7). The symmetries do not imply that @, in quenched, but not in PQ, theories.

»(Tny+N = (V1 {N, has a pole ap=0. Consequently, to ' '
describe the long distance parts of the two-point functions in

the PQ theory we do not need to consider correlators involv- IV. EFFECTIVE LAGRANGIAN
ing the corresponding fieldbo. We now turn to the construction of the low energy effec-
In the quenched case E@7) is replaced by tive Lagrangian for PQ QCD. We first recapitulate the stan-

dard approach, based on the “fake” symmetry group dis-

cussed previously. We point out the problems with this
approach, and spend most of this section discussing the ex-

1 tent to which they can be alleviated. Our conclusion is that
the standard approach is appropriate when doing perturbative

-1 calculations, although the justification for using the effective

' theory is considerably less rigorous than for QCD itself.

1

Str(TaTb):
Some of these points have been discussed previously in the

-1 random matrix literature, e.g., in Rdfl1], although in the
1 context of effective theories includirg,. Our aims here are
1 0 to clarify this work, and to generalize it to the case at hand in

which @, is absent. Parts of our discussion are based on an
Again, the generator of the anomalous U1} the last analysis of the quenched effective Lagrangian given in Ref.

one,TZNVocI_[defined in Eq.(B6)]. All the other generators [17].
are straceless, includin'gz,\,v,1= I. One obtains a new non- o dard o
trivial equation from Eq.(24) by choosingT=1, which is A. The standard approac
non-anomalouga fact unique to quenched Q¢Dand T’ The fields in the effective theory can be limited to those
=1. We thus find that the Fourier transform of describing the pseudo-Goldstone hadrons. These, as we have
seen, are in one-to-one correspondence with the generators
(0. 6" (0)) (26

. + + + .
has a pole ap=0. Since®, has the same quantum numbers [SUNy+NINy)L@ SUNNy+NINy)RI/SUNy -+ NINy)y
as (28
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In the standard approa¢hO] the pseudo Goldstone fields lie +N|Ny), ® SL(Ny+N|Ny)g, in which (using the nomenclature
in this coset space, with the parametrization of Ref.[18]) the “bodies” (non-nilpotent partsof the left-

and right-handed transformations are related by
2i P (x) d(X)  71(X)
U(x)=ex = )

f 72(X)  B(x) L=expi® ), R=expi®pg),

(¢L)gg|gody:((DR)gg|bodya (32

p'=0, ¢'=9¢. (29
[with str(®_g) =0] while (as explained at the end of Appen-
Here the blocks correspond to quarks and ghosts;arahd  dix A) the vector group is the subgroup 8f(Ny+N|Ny) in
772 are independent Grassmann matrix fields. We are free t@hich the body of the ghost-ghost part is unitary:
interpret», as 17{, in which casel is unitary. The absence
of @, implies the constraint std) =tr¢—tr¢=0. The sym- L=R=V=exp(i®y), (Py)gqlhoay=(Pv)gglbody-
metries are implemented as usual: (33

U—LUR', (L,R)eSUNy+N|Ny), (30) The co_set of _these syrpmetries can be parametrized by trans-
formations withL=R™ -, so that

with the VEV (U)=1 breaking the symmetry in the required _ .
(U J Y Y “ L=R 1:A=exp|CI>A, (¢A)gg|gody:_((I)A)gg|body(- )
34

way [note thatU transforms likeQl—see Eqs(13) and(14)].
The invariant effective Lagrangian is

Note that aside from the condition on the body of the ghost-
ghost block® , is an arbitrary, straceless matrix. One would
then expect that the correct Goldstone fields live in this coset
(31 space, i.e.

f2 f2
L(U)= 4 st(oU AUy — Zstr(XUTJr U ) + higher orders,

where y is proportional to the quark mass matriy ' (x) ¢'(x)  7i(x)
=2ByM, andB, andf are unknown parameters. Clearly this U’(x)=ex;{ T) D'(x)=| , ~, ,
development mirrors that for QCD step by stéNote that 72(X) i’ (x)
Eq. (31 differs from the form of the chiral Lagrangian for (39
PQ QCD which is usually quoted: The absencebgfmeans - ~ o~
that arbitrary functions ofb, which might multiply each ~ ®’lboay= @’ lbody,  St(P")=tr(¢") =i tr(¢")=0.
term in the PQ chiral Lagrangian are absgnt. _

A problem with this effective Lagrangian becomes appar{Note the crucial factor of multiplying ¢'.) ¢' is an arbi-
ent when developing perturbation theory by expandihg trary matrix of complex c-number fields, constrained only by

about its VEV. The “str” implies that the fieldg have ki- (e stracelessness condition én. ,
netic and mass terms with the wrong sign, so tha=1 is It turns out that neither Eq29) nor Eq.(35) is correct,
not a minimum of the actiof This is dealt with in the stan- Put before discussing this point it is useful to understand how

dard treatment by simply ignoring the instability. A justifica- the form of the effective Lagrangian would differ were the
tion for the use of “wrong sign” propagators for some of the Goldstone ﬂellds given by E¢35). This field transforms like
mesons is that it implements cancelations which correspon ' —~LU'R"", with L,R given by Eq.(32). The invariant
at the quark level to the desired cancelations between va-29rangian is constructed_frotﬁi U’ the mass ternfa
lence quark and ghost loops. Actually, orbg is excluded, ~SPUrion which t.ra}nsforms like ' ), and other sources. The
the connection between pseudo-Goldstone propagators afidl€s for combining these are in one-to-(_)ne_correspor)dence
underlying quark and ghost flows is less clear, so this qualiith th9§1e for the usual chiral Lagrangidwith U« U",
tative justification is less convincing. Clearly a better-YU <>U’ 7). Thus one finds that the most gen_elral Lagrang-
founded treatment is desirable. ian has the standard form, E®1), except that)’ ~* appears

A related concern with the standard approach is that théather thanU™. We stress that this holds to all orders in the
chiral symmetry group of the PQ QCD functional integral is chiral expansion. The fact that stﬂét:'l implies that there
not SU(Ny+ N|Ny)_ ® SU(Ny+N|Ny)g, and the unbroken @&reé no additionadb -like terms. One might be concerned that

vector subgroup is ndU(Ny+N|Ny). As explained in Ap- the resulting Lagrangian has, in general, an imaginary part.
pendix A, the full group is the subgroup oSL(N,  This will turn out not to be true in the final form we consider

and so we do not discuss it further here.

SStrictly speaking, this comment applies to fields living entirely B. The correct Goldstone manifold

within é. However, the anomaly constraint implies that one neutral Now we return to the issue of the correct Goldstone mani-
meson must have components from bathand $—that corre-  fold to use. Clearly it should be based on the true symme-
sponding to the generatoll,y +n-1 iN Appendix B. Since tries, and thus contained within E@®5). The problem is that
str(T%NV+N,1)= —1, this mixed field also turns out to have a ki- U’ in Eq. (35 has too many degrees of freedom, and we
netic term with the wrong sign. must pick an appropriate sub-manifold. This issue has been
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addressed by Verbaarschot and collaborators, in the conteinost relevant case of non-degenerate masses until later,
of a theory which containsb, (see e.g. Ref[11]). They since to address this we need first to understand the effect of
argue, based on the mathematical results of Zirnbgl@r  the absence ob,,.

that the appropriate integration domain for the effective We now turn to the quark-quark block of the exponents.
theory is the maximal super-Riemannian manifold contained’he full coset spac€35) contains extra fields in this block,

in the coset of the true symmetry group and the unbrokemompared to the standard form of E¢29), since¢’ is not
vector group. This results in a Goldstone field parametrize¢onstrained to be Hermitian. These extra fields correspond to

by’ the generators of the non-compact part of the broken sym-
metry group. The choice of Refll] is to keep only the
., 2id"(x) ., ¢"(x)  7i(x) usual, Hermitian part of’. A technical reason for doing so
U (X)=9XD(7), D" (x)= 70 iB(x)]" is that, if one expands abolt’' =1, the kinetic term in the

(36) action(the sign of which is now fixedis minimized in these
“Hermitian” directions, but not in the “non-compact” direc-
tions. Thus, with this choice, the propagators of béthand

" have the correct signs. For the moment we will accept

This form is then inserted in the effective Lagrangian de_thls as a sufficient reason for making this choice, but return

scribed in the previous paragraph, ie. HG1) with U tc;]_thle point tE)el_ow vr;/hen we discuss the foundations of PQ
—U” and UT—U”""1. This leads to a Lagrangian whose chiral perturbation theory.
body is real.

In the following, we discuss the reasoning leading to the C. Constraints from the absence of®,

form (36), and address a technical difficulty which arises . .
. . The analysis so far has not accounted for the constraints
when extending the argument to the theory withdyt We imposed by the absence dfy, i.e. by the fact that only

then discuss the theoretical founda}tlons of PQ chlral pertu.rhon-anomalous symmetries should be represented by the ef-
bation theory, and along the way give further physical moti-

vation for the choicd36), fective Lagrangian. There is no problem when we consider

: : ... the full coset space of Eq@35. The constraint is that
The important dlﬁergnces between the parametnzatlongtr(q),):0 and this can be satisfied by expanding the diag-
E)zlg)'k(%)]“ aer (36) are |r€13the gt:wost—ggos; and quark-qt;]ark onal or “n’eutral” part of ®’ using the basis for diagonal
ocks of the exponentsWe begin by focusing on the . . o
former. Here the difference between the full coset space O;traceless generators given in Appendix B:
Eg. (35 and the manifold in E¢(36) is only that the soul of 2Ny+N-1

@' is not required to be Hermitian while that gf is. Thus, he= 2 0T, (37)

~ . ~ =1
¢' appears to contain more degrees of freedom than ?

However, since Gaussian integrals over c-numbers are inde- ) ) ]

pendent of the soul, as long as the integrals are convergeAf® important point for us is that while all but one of these
(see Appendix A these extra parameters can be absorbe§enerators are contained entirely within either the quark or

into %'. Thus the two form¢35) and (36) do not differ in € ghost sectors, there is one generamofy(+y-1 in our

(¢)'=¢", (¢")'=9"

this respect. ordering with components in both sectors. Now consider the
They do, however, both differ from the standard param-estricted manifold of Eq(36). Here the constraint st{")
etrization, Eq.(29), by the extra factor of. This factor re- =tr¢”"—itr¢”=0 is made more stringent by the fact thit

solves the stability problem raised above. If we expand eithegng %" are Hermitian. Thusp” and ¢” must be separately
U’ or U” aroundl to quadratic order, then the extra factor of raceless, and there can be no componen®ff,, propor-
i2 cancels the minus sign from the supertrace, and the kinetigonal to Tong+N-1- Thus the restrictions of the manifold

terms forg” or ¢" (which are equivalent parametrizations at remove not onlyd,, but also another neutral generator. This
this ordey have the correct sign for stability. This also fixes jg 4 problem because, as seen in the previous section, there
the overall sign of the kinetic term in the Lagrangian. Thegre |ong range correlations in channels with the quantum
same discussion holds for the mass term, as lonlds  mpers of this generator. In other word¥, is missing one
proportional to the identity. We postpone discussion of they ihe neutral pseudo-Goldstone bosons.
This problem can be solved by a small chang&Jih As

; o _ ) we have seen)” was constructed so that all bosonic fields

For explicit non-perturbative calculations, the authors of Ref.;,5ve correct sign propagators. For the neutral fields, this re-
[11] use a different parametrization. We use the fd86) asitis g ires taking components in the quark sector to be real, but

closer to the standard parametrization of E2f). those in the ghost sector to be imaginary. The generator

8 . .
The anticommuting parts of the exponents have the same form i . . .
all three parametrizations. We note that the constraint 7} im- ?ZNerN*l is problematic because it straddles both sectors.

posed in Eqs(29) does not change the rules for Grassmann inte-However, since it satisfies stif)=—1, and is thus ghost-
gration, in which7, and 7, are treated as matrices composed of like, we propose that the corresponding fiete,?Nv*N=1,
independent Grassmann variables. There are also no issues of c&hiould also be taken imaginary. Explicitly, we propose re-
vergence in the Grassmann integrals. placing®” in Eq. (36) with
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"=l + D], shuffle factors ofi between propagators and verticgsd
possibly external fields For example, all the charged

_ _ propagators now have an overall “wrong” sign, while vertex
, (PrT=9" (L) T=0ln, factors appear to satisfy the grad@t(Ny+ N|N,) symme-
try. Indeed, we can now pretend thidte SU(Ny+ N|Ny),

n 1"
d’ch 7

U S
72 1 ¢ch

”

ch™

(38 and ignore the subtleties of this section, as long as we use the
Ny+N-1 2Ny+N-1 prescription that wrong sign kinetic terms lead to wrong sign
;;eu: 2 0'”aTa+ E io_r/a-l—a ) propagators.

a=1 a=Ny+N
Here “ch” refers to the off-diagonal, or charged, parts of the D. Foundations of PQ chiral perturbation theory
field. In this way we include all the neutral Goldstone fla- As promised, we now return to the foundations of PQ
vors, while maintaining the anomaly constraint, and the conchiral perturbation theory. We first revisit the issue of the
dition that all kinetic terms have the correct sign. extra “non-compact” generators in the quark sector. Since
This is not quite the end of the story. The convergence ofhis sector is a simple generalization of QCD, the construc-
the functional integral depends also on the mass term. Giveion and justification of its effective low energy theory is
the choice of Goldstone fields just described, the Goldston®ell understood(see, e.g. Refs[4,20). In particular, the
boson mass matrix can be calculated, and the functional iissue of extra generators arises also in QCD itself, though it
tegral converges only if its real part is positive definite. AsiS rarely discussed.
one might expect, there is competition between the sea quark It is useful to recall the steps needed to construct the
masses and the valen¢and ghost ones. It turns outthe  effective Lagrangian for QCD-like theories witly flavors.
derivation is somewhat tedious but straightforward, and we-irst, one derives the Ward identities following from the chi-

do not include the details heréhat the quark masses must ral symmetries. Second, given the assumed VEV, Gold-
satisfy stone’s theorem determines that there is one light pion field

for each axial current. Third, one assumes pion dominance of
NVF(NVXV+ Nys)<(Ny+N)2. (399  correlation functions, i.e. that the light fields are the only
relevant degrees of freedom. One then writes down the most

Here—XV and_Xs are the average valence and sea qua”general local Lagrangian incorporating these degrees of free-
To1 dom, which is invariant under the chiral symmetries, and

_1 .
masses, and(y th_e average inverse valg nee qua.rk MasSS,sserts that this will yield the most general amplitudes con-
Restricting lattice simulations to satisfy this constraint is un-

desirable and very likely unnecessary. Although the theoret§|Stent with the Ward identities and the principles of relativ-

ical description of the simulations in terms of the PQ chiraI'StIC quantum mechanicst]. To formalize this, one intro- -
. o : . oo duces sources for currents, scalar and pseudoscalar densities,
effective theory is ill defined when relation E@9) is vio-

lated, there is nothing special about this point in paramete(ratc" and defines the generating functional in the usual way

space as far as the underlying PQ QCD is concerned. Thus,

the simulations will show no special behavior when E2§€) Zocd i fR.S,P, .. .]=1+f (j;(x))ff(x)+ e

is violated. In addition, chiral perturbation theory is insensi- (41)
tive to these global convergence considerations, aridisf

regular at this point, and provides an adequate description ofhe Ward identities of the theory are encapsulated in the
low energy PQ QCD when the quark masses are such th@lyariance ofz under gauge-like transformations,

the inequality is satisfied, it is unlikely that the chiral expres-

sions derived from this theory will suddenly cease to make feLfEL~T—i[ (o L)LY,

sense just when the inequality becomes an equality.

Aside from this point, our construction has yielded an
effective Lagrangian with the correct number of Goldstone
fields (i.e. the same number as there are independent Ward
identitieg, and which one can consistently expand about
(U"y=1. While in principle one can work with this Lagrang- _ )
ian, it is more convenient for perturbative calculations to S+HIP—R(X)[S+IPIL™}(x).
change variables as follows:

fESRER I-i[(*R)IR7E, (42)

S—iP—L(X)[S—iP]R (x),

A similar definition is used foiZgq f{*,fR.S,P, ...]. The
<~Z5Zh=—i:ﬁch, o"=—ig? a=Ny+N,2Ny+N-1, claim is that, by adjusting the coefficients in the effective
(40) Lagrangian, including contact terms, one can match the gen-
erating functional between QCD and the effective theory,
No=M12 Pep=dcn, 0"*=0? a=INy+N-1.
Z T fR.S,P, ... 1=Zocd 1 TR.S,P, ... ], (49
The effect of this change is that” now appears to have the
form of U in Eq. (29). Since the underlying integrations are to any desired accuracy in a momentum and quark mass
unaltered, the only effect of this change of variables is toexpansior{20].
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The issue at hand is what group the transformatloasd standard one by requiring a vector space with indefinite met-
R belong to. This depends on wheth&scp, is defined using ric (e.g. single anti-ghost states having negative npms
the operator formulation or with a functional integral. In the well as bosonic ghost creation and annihilation operators.
former case, the transformations ¢f and 4" are related, The Hamiltonian would still be physical—having real eigen-
sincer= i/ yo. Thus only unitary chiral transformations are Values bounded from below—and ghost operator commuta-

; ; : tors would be causal. In this way Lorentz invariance is main-
symmetriegas in Eq.(7)], andL(x) and R(x) in (42) are : . o -
elements ofSU(N,). On the other hand, in the functional tained, while unitarity is lost because of transitions between

. } — ] positive and negative norm statel.is perhaps plausible in
integral formulation, the fact thay and ¢ are independent gych a set-up that a generalization of standard “pologogy”
variables leads to a larger symmettgee Appendix A  could be derived, in turn leading to an effective Lagrangian,
L,Re SL(N;). Which of these symmetries shoultl; re-  and that the requirement of Lorentz invariance would force
spect? The answer is the smaller, unitary symmetry. This cathis Lagrangian to be local.

be seen in two ways. First, the “extra” transformations con-

tained inSL(N¢)/SU(Ns) lead to non-Hermitian sources V. INTEGRATING OUT THE @,

andP [see Eq(42)], and so to a non-Hermitian Hamiltonian. _ _

Thus they move us out of the space of physical theories. The work of the previous section has shown that we can
Second, as shown in Appendix A, the extra transformationd/rite the effective chiral Lagrangian for the PQ theory in
do not lead to additional Ward identities, and thus do not lead€"™ms of anSU(Ny+ N|Ny) field U, transforming as in Eq.

to additional Goldstone bosons. Since the effective Lagrang30)- In this section we need only write the form of this
ian should certainly respect the symmetries of the operatdrddrangian schematically:

formulation of the theory, and this leads to all the desired

Goldstone bosons, one should not extend the effective theory L£(U)=2, 1:0:(U), (44)

to include non-compact symmetries. We conclude that the i

“normal” choice of pion fields in the quark block of the

Goldstone matrix, E(36), is correct. The only exception is where thel; are unknown parameters, a@y are operators
for the part of¢” proportional to the identity in this block constructed fromJ,U", their derivatives, the rescaled mass
(i.e. the fieldo”?Nv*N~1) The argument just given does not matrix x, and sources for external operators. We note that the
apply to this field since it is a flavor singlet in the quark operators allowed by the graded chiral symmetry are identi-

block. cal in form to those allowed by the usual chiral symmetry in
Finally, we address the extent to which one can derive th€@CD. In particular, there are no additional operators.
effective Lagrangian in the graded sector of the thdasy. An important property of PQ chiral perturbation theory is

the parts involving ghosts The first two steps followed in that correlation functions involving external sources re-
the quark sector go through in this sector as well: the Wardgtricted to lie within the sea-quark sector are identical to
identities of PQ QCD are the graded generalizations of thosthose obtained using the effective chiral Lagrangian for un-
in QCD, and the symmetry breaking pattern in PQ QCDquenched QCDwith N¢=N, and without they"). This iden-
follows from that in QCD. From these results, we have esdity, which is trivial at the quark level, can be seen diagram-
tablished the presence of massless poles in two-point fungnatically in chiral perturbation theory, due to cancellations
tions of broken symmetry generators. In the standard apbetween diagrams in which a valence quark is replaced with
proach, the next step is to interpret each pole as being due ® ghost quark. A compelling general argument in support
a physical single particle state created by the correspondingf this fact, though not a proof, is the following. La# be
operator, from which follows the result that any correlationthe mass matrix for a specific valence quark and the corre-
function including these operators will have poles at thesponding ghost,M=diag(my,,my). Let A be an operator
same positions. This deduction is key in justifying the effec-which does not depend on this valence-ghost pair. We write
tive chiral Lagrangian for QCD, but its extension to PQ QCDits expectation value agA)=a(M), making only theM
is not obvious. Furthermore, when one includes quarkdependence explicit. The flavor symmetry group includes
masses as small perturbations in QCD, one concludes fro8U(1|1) transformations that mix the valence and ghost
similar arguments that this results in a small shift in thequark fields. These transformations are equivalent to a
position of the poles. In PQ QCD, on the other hand, quarlchange of variables in the functional integral, in addition to a
masses have a substantially different effect—they can lead @roup transformatioitby conjugation of M. SinceA is un-
the appearance of a double polepdt=0 with a coefficient changed by the change of variables, it follows th&i\)
proportional to the quark masses, as will be seen explicitly ircan depend only on SU(1) invariants constructed frooi.
Sec. VI. These, however, can only be supertraces of powers of the
What is lacking in the PQ case is a positive-norm Hilbertmass matrix st ") =0, soa is independent of the valence
space interpretation, since the theory contains ghosts. This {and ghost quark mass. To show independenceaadn the
not to say that a derivation of the effective Lagrangian is not
possible for PQ theories, but rather that a generalization of ———
the standard methods is needed. Since quark and ghost cofThis is indeed the structure observed in explicit calculations of
relation functions differ simply by signs, we speculate thatscattering amplitudes in quenched chiral perturbation theory: the
the appropriate theoretical framework only differs from theresults are Lorentz invariant but not unitdi&a].
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existenceof the valence-ghost fields in the theory one still

2idy(x
needs to show that any effect from these fields introdueks S(x)= U(x)exp( ﬁ , 47
dependence. f\yN
It follows that, with external sea-sector sources, one can o ) _
restrict the internalU field to take the following block- @and considering a theory with Lagrangian
diagonal form -
L(2)=midg+ L() (48
UQCD: (le,SU(N),INV)- (45)
— 22
Since the terms inC(U) are in one-to-one correspondence —moq)o“in liOi(2). (49)

with those in the QCD effective Lagrangian, and the restric-
tion (45 does not change the form of the operattrs
follows that both PQ and unquenched Lagrangians share t
parameters; . As we emphasized i, 3], this means that the
parameterd;, which describe the chiral expansion for the
unphysical PQ theory, are in fact physical. For example, at %

NLO, |; are the GL coefficients which encode our current LE)=LU)+ D R,-(U,a)(cbo)i, (50)
experimental knowledgénd ignoranceof QCD at low en- =1

ergies for the light mesons. We stress thatl{tdn depend on

N, i.e. the GL parameters that one obtains depend on th&here we allowR;(U,d) to contain derivatives acting on the

In other words, we simply repladg with 3 in all the terms
he L(U) and add a mass term fdr,. It is useful to make the
®, dependence explicit by expandiig

number of light sea quarks. ®,, field. The enlarged theory is then
From a theoretical point of view, this completes the con-
struction of the PQ chiral effective Lagrangian, and the dem- _ f F{ _ f ,
onstration that it contains only physical parameters. When Z= | DX ex L£'(%) (5D)

doing perturbative calculations with this Lagrangian one

must, however, implement the constraint that &dletl, or, -

if we write U=exp(2d/f), that str@)=0. A standard way :J DUD®, exp[ —f (ﬁ(U)ero‘I’o

of achieving this is using straceless generators. For the real-

istic case ofN;=3 and considering only mesonkl,=2, :

calculations involve the generators 8fJ(5/2), and can be +E Rj(U)((bo)J) } (52)
quite tedious. In this section we point out that a simple al- :

ternative is to reintroduce th@, field—as a calculational ~ \ve assume that the theory is regulated with a chirally invari-
device and not as a physical field—and then to integrate it fixed cut-off. such as the latti¢a3].

out. This allows one to work in the “quark basis,” rather — \va now take the limitma—o. and argue that we then
than with the actual pseudo-Goldstone fields. Calculations iRa¢ i to the original theor; Wit|§,,~>U i.e. the theory that

the quark basis are more transparent since one can trage, \yant to do calculations with. The argument goes as fol-

quark flow through each diagram, and see th_e cancelatioqaws_ We expect the fluctuations @y to be ofO(1/my), and
between valence quarks and ghosts very sinfi.23. thus that all theR; terms, which are independent of,, are

Keeping @, also allows us to reinterpret previous calcula- g\, eqsed compared to the mass term. Similarly, correlation

he th ith his fiel e di d at th dgfunctions calculated in this theory should become indepen-
to the theory without this fielda point discussed at the en dent of R; at my—oo. Furthermore, the expectation value of

of this sectio. any operatolO(2)=0(U) +=;r;(U)(®,)' satisfies

A. Functional integral approach
We reintroduce ®, by enlarging U to X eU(Ny (O(X))p= Z

)f DUD@OO(E)ex;J(—j E’(E))

£'(Mg

+NJ|Ny), (53
Owith Eq. (45), x, U anddU are proportional to matrices of the R f DUD®,0(U)
general form mo—e Zpr (%)
A 0 O
0 B 0] (46) Xex;){—f [L(U)+m§cb§]] (54)
0 0 A
where the three entries correspond to valence, sea, and ghosts, and 1
A,B stand for anyN,xXN,, and NXN blocks, respectively. Any =_— | DU O(U)exr< _J L(U)) (55)
product of such matrices still has this structure, which causes each Zc

supertrace in the Lagrangian to reduce to a simple trace over the
sea-sea block. =(0(V)),. (56)
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So we obtain correlation functions in the theory we want,where the generators satisfy

with any ® contribution to the external operators being pro-

jected out. St(TaTp) =dab- (6)
It is crucial for this argument that the theory be regulated

) _ a i
in such a way that loop momenta are limitédlhis allows gh‘?df'rSt 2\f|.VLN 1h'|corrr1]po|nents o . arﬁ t;g(eldpsggdg b
®, to be integrated out in a trivial way. Without a fixed COldstone fields, while the last entry Is the field added by

o ) . hand,®,.
cut-off, the @®)? term [implicitly contained inR,(U)®2 0 . . .
c:n dominaie oo\zer thmz[Ler[r)nl i:1 ?/oo intla ralls Tzrfis)in tol}rn We consider all the quadratic terms in the action that con-
0 P grais. 1 : tribute to the leading order propagator. At this point we do
leads to a non-decoupling df,. For example, using dimen-

ona reqarzton?, adpoledagrams gve contruions 12, SPECY uhal hese lrms ave ol recuve tatdne
proportional to (no_/f )_In(rr_b/,uDR). With a fixed cut-off, by propagator will have the following form:
contrast, the contribution is of the form*/(f2m3), and van-
ishes whemmg— oo,

There is a second subtlety which could invalidate the ar- G(_U%=<
gument just presented. In physical theories heavy particles

“decouple,” meaning that physics at energies much lowerye e \ve have separated off the last row and column of the

t_han the(ijr(;nass i.S i”dT‘;PeF‘ge”F of thﬁ details ?f ?eir.int?ral matrix, corresponding to entries involving,. Thus A [a
tions and dynamics. This idea is at the core of effective fie Ny +N—1)X (2Ny+ N— 1) matrix] is the inverse propa-

theorie_ss in which only light particles are included.as explicit ator in the theory withoub,. The important point is tha,
dynamical degrees of freedom. In this sense, taking the ma * C andd are independent afy, and finite(because of the

of a particle to infinity in physical theories is well defined. omentum cut-off Using this, one can easily shaéppen-

chort ;Jhinys_ltcgl theontes,_ hto:_vr?vtetrh_or?e mllgh_tt_ bet concernegy;, D) that the only requirement needed for the propagator to
that this fimit does not exist. That this 1S a legiimate Concerty, ,q 5 |imit agng—oe is thatA be non-singular. The limit is
is shown by the fact, explained below, that the limit canno

be taken in quenched QCD. We will see, however, that this is
not a problem for the PQ theory. - Al 0
B. @, in the flavor-neutral propagator Mo—

To understand this point, and also to gain insight into theThis propagator has the two properties needed so that one is
nature of themy—cc limit, we consider the form of the effectively doing the calculation using only the physical
propagator of “neutral” mesons, i.e. those created by thesu(NV+ N|Ny) degrees of freedonti) its projective form
diagonal elements ofb. It is sufficient to consider this removesd, from the theory—factors o, in vertices and
propagator since this is the only place that mhﬁeterm enters  external fields simply do not propagat@) the propagator in
when one develops perturbation theory. We begin with somenhe physical subspaced™ !, is the correct propagator for
notation. We usél(x) to denote the pion field including : these degrees of freedom alofe.

Thus the only remaining question is whethfer! exists.

A B

C mg+d) (62)

(63

2i11 | To study this we first consider only the kinetiem? terms in
= i = — o
2 exr{ f ) OO =)+ Po(x) IN &7 the Lagrangian Eq49). A can be easily read off, using
The set of meson fieldsr;;} that make up the quark basis is
defined through 120ne might be concerned that the fact that some of the fields
2Ny+N have the wrong metric might lead to a basis dependence in the
T(x)= E TijTr"(X), (Tij)k|:5ik5j| ' (58) [ejsults"of C?I(.::JIatlons. ;ndeed,a thsb t.ransformatlon be.tween the
ij=1 sigma” and “pi” bases, o*=3,A%,7"", is not unitary, but instead
is a generalized Lorentz rotation. This follows from the results
and the flavor neutral part is therefore ) . =
2Ny+N Str(Hneu)zzb 0Gap0 :Eb TGapm (64)
. a, a,
e x)= ;1 Tiim" (). (59) where g, (defined in Appendix B plays the role of the metric

tensor, andj,;, has the same signature but with elements permuted.
The neutral part ofll can also be decomposed using theSince Lorentz-like rotations do not preserve Euclidean inner prod-

basis of generators df (Ny+N|Ny) given in Appendix B:  Ucts, projections onto subspaces are not in general invariant under
these rotations. This turns out, however, not to be relevant in our

2Ny+N calculations. All that we need in order to show the basis indepen-
e x)= 2 T,0%(x), (60) dence of our calculations is that the propagator of the matrix field,
a=1 (IMeu(X)1,,64(0)), which is the building block of perturbation
theory, is the same in either basis. It is straightforward to show that
for this to hold, it is sufficient forA to be invertible, which is
We thank David B. Kaplan for emphasizing this point to us.  clearly the case.
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St e, new) € Gapdo2da®, (65) C. Reinterpreting previous calculations
We have argued above that tHg, field need not be in-
and the explicit form ofy,, from Appendix B: cluded in PQ chiral perturbation theory because, in the mass-
less limit, its propagator does not have a massless Goldstone
PQ: A=pidiagl,...,1-1,...,-1,-1) pole, but instead has a pole at thé mass(if N=3). Since
(66) chiral perturbation theory does not convergelfor~1 GeV,
Q. A=p?iagl,...,1-1,...,—-1,0). it will not, in general, be useful fop|~m,, . Thus the natu-

ral choice is leavebd, out of the effective Lagrangian de-
Clearly A is invertible only in the PQ case, and the limit scribing partially quenched simulations of QCD, perhaps
my— < can be taken only in that theory, but not in quenchedadding it back as a mathematical device to simplify calcula-
QCD. tions, as described previously in this section.

The usual mass term in the Lagrangian, which is of the Previous calculations in PQ chiral perturbation theory,

same order in chiral perturbation theory as the kinetic terme.g. Refs.[10,7,9,3,24, have, however, included®, as a
can be treated as a vertex. This leads to a geometric series pifiysical field, rather than as a mathematical device. The rea-
tree diagrams, all contributing to the leading order. Thesons for this are partly historicaPQ chiral perturbation
propagator in these diagrams, when it exists in e oo theory is an extension of quenched chiral perturbation theory,
limit, removes any®, contributions. This means that the in which ®, must be kept and partly motivated by physics
conclusions derived above from E@6) still hold. There is, (there are regimes, e.g. larjg or possiblyN=2, in which
however, a potential loophole in this argument: the infinited, is lighter thanA , , and should be treated differently from
sum over tree level diagrams and ting— < limit might not  other non-Goldstone hadrons—see also the discussion in
commute. That this is not a problem can be seen directlyRef. [9]). Our purpose here is to show that these previous
from previous calculations of the LO propagator in chiral calculations can be used to obtain the results in the theory
perturbation theory in which the quark mass term was inwithout ®,.
cluded before taking theny—co limit. In the case of PQ We recall that includingb, as a physical field introduces
QCD with 3 sea quarks, we hay&0,3] several problems. First, chiral power counting is lost—

adding a loop does not lead to an extra small factor of size

2 2 H 2 2 H
i m:2/A*, but rather to a factor of sizeg/A: . If this latter
neu_— 4y, A—ip-X al fhx 0"} x
GAA_I d*xe™ P man(X) man(0)) factor is not small, diagrams with any number ®f, loops
must be included. Second, because of the anomaly, one can
1 multiply terms in the effective Lagrangian by arbitrary func-
== tions of & consistent with parity invariance. This introduces
P+ XA many new and poorly known parameters. Finally, the param-

2 2 2 2 etersl; are those of unquenched chiral perturbation theory

(P Xx) (P X2) (P xs) (MG/3) (67)  including the ', which are related non-perturbatively, in a

(p%+ xa)2(p?+ M2 )(p2+Mfi)(p2+Mf7,) poorly known way, to those of the usual QCD chiral La-

° grangian without theyp’. It is possible that one can mitigate
2 9 2 some of these problems by assuming that the additional cou-

N o 1 (P™+ x1)(P™+ X2) (P"+ X3) pling constants are smaince they are N, suppressed-

mo—=P?+xa 3 (p2+XA)2(p2+M,270)(p2+ M?) Such an analysis, however, inevitably involves assumptions

which go beyond the systematic application of chiral pertur-

where A is a valence quark labely; normalized quark Pation theory.

i What we note here is that if one takes the limig— c in
massesiwith i=1,2,3 for sea quarksandM.,M, .M., the results of these calculations, one recovers ?r; results in

: — 2
masses 02f neutral mesons in the sea se@Mfy,—mo the theory withoutb, in which the parameters are those of
+O(xi/mg)]. Clearly the limitmy— o exists, so the poten- the QCD chiral Lagrangian without thg'. The argument is

tial problem does not arise. - _ a simple extension of that given in the previous section. If
The corresponding result in the quenched theory is we expand in powers ob,, the total Lagrangian is
1 m5/3 ) S 4
o, (69) £/(3)=mE@G+ L(U)+ 3 RI(U,0)(®g). (69
P*txa (PtXxa) I=

which shows that theng— o limit cannot be taken, irrespec- This differs from EQq.(49) only in the replacement of the
tive of the quark mass. The fact that orennotintegrate out ~ R;(U, ) terms by new function®/(U,d) which include the

d, in the quenched theory is consistent with the result, dis-

cussed in Sec. lll, thab, should notbe projected out of the

theory, as it contributes to long range correlations. We ob- 3ndeed, there has been significant success in applying quenched
serve again the central role played by the structure othiral perturbation theory to lattice data, despite the presence of the
str(T,Ty,) in the analysis. same problemssee, for example, Ref25)).
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additional® couplings. For example, a term proportional to tion properties. Ifi=] and k=1, we call the correlators
a(ddy)? is usually included. However, since tlmé do not  “neutral,” while if i+j andk#| we call them chargetf.
depend orm,, the discussion of the previous section shows We first focus on the neutral propagator in a particularly
that they are irrelevant asy— . The remainder of the ar- simple theory, that with a single valence quaik,ts ghost,

gument continues as before. _ A, and one sea quarig In Appendix E we derive the con-
~What happens to the previous calculations whgp~=?  giraints onG that follow from the graded vector symmetry
First, the neutral propagator goes to am independent (gether with Euclidian translation and rotation invariance.

limit—the same limit discussed in the previous section—W : ;
: S ) . e find that the neutral propagat@r;,, takes the followin
including, in general, light single and double poles. Second, Propagaiiji. g

“ 7' loops—those involving propagators with poles mt, form in the (AA,SSAA) basis:

~my—give vanishing contributions. Third, all addition&l,

couplings, such a&, do not contribute—as argued on gen-

eral principles above. Thus the results of the calculations res t r

simplify considerably. G=| t u t . (72)
In fact, this simplification has been noted and used previ-

ously, though not fully justified7-9,24. It has been argued

that, becauseny,~A ,, terms proportional tam%/mj are

higher order in chiral perturbation theory and contribute only_l_h ; hold I . dth Iso i
at the two-loop level. They can thus be dropped in NLO ' "€ '0rm hoids at all separations and thus also in momentum

calculations. Contributions fromy’ loops are not higher or- SPace. By following quark propagators, we can interpret the
der (as noted above they can grow asrpin dimensional glements ofG as follows.(We use the language of pertgrba-
regularizatio, but have been dropped by hand because the{/on theory, although the results hold non-perturbatively.
would not be present in QCD chiral perturbation theory cal-The off-diagonal termG,: receives contributions only
culations without they’. Together, this amounts to integrat- from disconnected diagrams, because the quark lines carry-
ing out ®, perturbatively, whereas a non-perturbative treat-ing the A flavor cannot be contracted with ti& flavors.
ment is required. Our results effectively provide such aGasaa, On the other hand, can get contributions from both
treatment, and justify thad hocprocedures adopted previ- connectedand disconnected diagrams. All the disconnected

ously. graphs contributing to either of these term&mave exactly
the same structure, except for the interchangé gfopaga-
VI. STRUCTURE OF THE FLAVOR-SINGLET tors with A ones. Since these propagators are equal, and there
PROPAGATOR are no relative signs from Wick contractions, it follows that

) o ) ] in Eq. (71) is the sum of all disconnected diagrams, and
A signature prediction of PQ chiral perturbation theory atine sum of all connected on&Similarly, t is the sum of all

LO and NLO concerns the peculiar features of the pole strucgisconnected diagrams but with the quark line coupled to one

ture of correlation functiong‘polology” for short). The ef- ¢ the external operators replaced by a sea qusokthatt

fective theory predicts that propagators of flavor diagonal . _ . .
. » . d =r if my=mg). Finally, u is the completeSS propagator,
(‘neutral”) mesons have both single and double pole SN cluding both connected and disconnected contributions
larities. In this section we show that, with some plausible 9 '

Note that the relative signs of the various contributions can

assumptions about “normal” aspects of PQ polology, the Oc'b]e determined simply by considering Wick contractions.

currence of the unphysical double poles is a consequence 0 Turning now to the more interesting caseNib 1 degen-

the symmetry strucwre of the theory. It follows that theerate sea quarks, it is straightforward to show that the same

double poles really are a feature of PQ QCD, and th : g
grounds for this important prediction of PQ chiral perturba—%Orm of G holds for the neutral propagator in the basis in

tion theory are better established and understood. We fird¢hich SSis replaced by’ «>;_,\S;S;. The quanEitiesj, r,
present the argument in terms of quark fields, so that it ap$ andt are of course different, witln being thes’ propa-
plies directly to PQ QCD, and then point out how the argu-9ator. In this theory, there afé—1 additional neutral bilin-

ment extends to the effective theory. ears, but their correlators withA, AA and 7z’ vanish since
the latter are invariants under any symmetry transformation
A. PQ QCD that involves only sea quarks, while none of the former is.

L : Thus G is block-diagonal and we can consistently consider
For simplicity, we discuss only the case of degenerate Se@nly the 3x 3 block Eq.(71).

quarks.
Consider the two-point correlator of pseudoscalar quark—

bilinears, N the latter case, the unbroken vector symmetries require that

— i=1 andj=k. This can also be seen by evaluating the correlator in
Gijia (0 =(I1;;(00I(0)), 1L =tr(QiQ¥s)- (7O o of quark propagators.

. . L 150ne can also show, using the graded symmetries, sligtre-
The trace is over Dirac and color indices, and the orde@ of |4ted to correlators which are clearly charged: Giaxa and s

anda in the bilinears is chosen to simplify the transforma- =Gpgg, if ma=mg (see Appendix E
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For future use, we separate out fr@gthe quantity known, or assumed, behavi@imple light poles irs, around
which u, R, andT are regular®

s—R&+T?us® —Tus Tus’— RS
We do this because we expect these quantities to have stan- 5 — —Tus u —Tus
dard pole structure. The' propagatow is physical, and so 2 2
has only single poles, with none of them being light. As for T?us’~Rs*  —Tus —s-Rs+Tus’
the connected propagatsrour key assumption in this sec-

tion is that it has a light single-pole. This is what is predlcted.l.huS we see that there are light double pdtes s? terms,

by PQ chiral perturbation theory at LO and NL@], and but no higher order poles. A more detailed analysis shows

ﬁlesso what is observed in numerical simulations of PQ theo;[hat the residues of the double poles vanish wirgp ms.

. This completes the argument for a single valence quark.
In arder to hetter understand the properties of the eleWhat if there are two or more valence quarks? At the quark
ments ofG, it is useful to study the form of its inverse: | "
evel, the addition of extra valence quarks does not change
R+S T -R any of the elements of the block & we consider. Thus the
final form of G, Eq.(79), is unchanged, and the same double
Gl=| T u -7 (73)  poles are present. The argument holds separately for each
-R -T R-S valence quark, and thiBgggg has double poles of the same
form asGpaaa, €tc., althoughR ands depend on the mass of
the valence quark. The argument can be generalized to study
the structure ofGaagg (Which has a double pole whan,
=mg), but we do not give details here.

Gc=diag(s,u,—s). (72

(79

with

B. PQ chiral effective theory

The previous argument concerned two-point functions of
T 1 quark bilinearsIl;; . In the derivation of the structure @&

' [Eqg. (71)], however, the Lagrangian of PQ QCD played no
role, and the only properties df;; that were used were the
transformation properties under vector symmetries. These
properties are shared by the meson fields of PQ chiral per-
turbation theory, and therefore the propagators of these fields
must also have the structure E@.1). Moreover, the state-
ments about the analytic structure were based on the inter-
where pretation of the different components & (the distinction

between “connected” and “disconnected,” “charged” and
R T -R “neutral”) which in turn used the language of Feynman dia-

s=| T 0o -T|. 77) grams anq the tracing of quark lines. As di_scus_sed in. Sec. V,
the effective theory can be formulated with,, in which
case the use of this language is still justified.
. . ] It follows that in PQ chiral perturbation theory, with
The form of Eq.(76) is the same as that in perturbation jnclyded, if the propagators for the charged mesons have
theory, withG¢ corresponding to the free propagator, ahd  only single poles, and the self-energy function is analytic at
>, as the self-energy contributions arising from disconnecte%ropagators, and no higher singularities. Since the lmjt
diagrams involving at least some valence quarks or ghosts, . js well defined for these theories, and the low energy
(disconnected contributions involving sea quarks having a'analytic structure is independent of it, we conclude that the

ready been included . above discussion also applies when fhg field is removed
We can now state our second assumption: that the elgrom the effective theory.

ments of%, (R andT) are regular in momentum space atthe  gome of the assumptions and their implications are tested

position of the light pole irs. Our reasoning here is thatis  py the NLO calculation described [i8]. There we found
one-particle irreducible with respect to the connected propa-

gator, and thus does not have simple light poles. The only——
source for non-analyticity at the position of the light pole 16y, note thatG-* can be simply inverted because the usual
would be a deeply bound state of pseudo Goldstone bosongeometric series truncates after three terms:
but this should not be present because the interactions are
weak.

Given our assumptions, we can now read off the pole
stucture ofG, by expressing it in terms of quantities with

UR-T? 1
ug TS

We now decompos& ! as

G '=Gl+3, (76)

-R -T R

(G +3) 1=Gc— G2 G+ GGG . (79
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Za 1 2 or 3 light flavorg and in PQ QCD(with the corresponding
== > U=— 5 5, (80)  number of sea quarksre the same. In the presenceday,
P*+Maa (p*+Ms59/Zst dsst My however, the PQ chiral Lagrangian matches the unquenched
2 5 chiral Lagrangian in which they’ field is present. The latter
R=mg+San,  T=Mo+ Sas. 81 theory does not have a low energy expansion the physi-

cal valuesN=2,3 andN.y,,=3), and its relation to low
energy hadron phenomenology cannot be calculated pertur-
rt‘_'>atively. What we have shown is that this problem does not
arise because the PQ chiral effective theory can and should
be formulated withoutb,,.
In seeming contradiction to what has just been stated,
there are technical benefits from keepibg in the effective
16 1 1 . -
5ab:_2L7XaXb+7(p2_Xa_Xb)§(Xa+Xb) theory. In 'Fr.ns paper we have shown hzdwzcan be_ included
f 487“f as an auxiliary field with a mass termg®g, and its effects
can be then removed by taking, to infinity. This also es-
. (82)  tablishes the status of previous results in PQ chiral perturba-
tion theory in which®, was kept. By takingmy—oe, all
effects of®, are removed from these results, irrespective of
Qhhether othed, couplings were included.
The role of®,, is tied in with the more general theme of

Z, and Zg are wave function renormalization factors and
M s @andM ggmeson masses, the expressions for which ca
be found in[3]. Relevant here is the fact that they are all
independent of momentum and afy, and thatM g5 and
Man are light. dss, San, Sas are defined through

XIn

1
E(Xa+Xb)

We see that the connected contribution to the propagat
for the valence quarks) has only a simple light pole, while
th2e polezof the full sea quark’ propagatoi(u) is heavy(at the foundation and justification of PQ chiral perturbation
p*=—my+ ...). Also, the self-energy component&T)  theory. We have addressed this issue by attempting to repeat
are clearly analytic in momentum. Finally, we collect all the the |ine of reasoning that leads to the standard chiral La-
terms intoG, and take the limimg— to get grangian. As a first step, we have identified the full symme-
tries of PQ QCD. We then argued that the symmetry break-

2
sts'¢ s st ing pattern in this theory can be derived from the symmetry
G=| —s 0 —-Ss , (83)  breaking pattern of QCD. Goldstone’s theorem, with the use
26 —s —s+5% of the appropriately generalized Ward identities, then leads to
the conclusion that two-point correlation functions of opera-
with tors associated with generators of broken symmetries have
low-lying poles. We discussed at some length the construc-
p2+ M%S tion of the effective theory for the fields that have the same
£=— Sppt28ps— 555—2—5- (84 guantum numbers as these operators. This theory is guaran-

teed to recover the low energy behavior of two-point func-
In summary, the argument presented above serves both &igns of the chiral currents and densities. In the absence of a
a confirmation thafgiven the validity of the assumptions Hilbert space, however, we do not know how to show that
the pole structure of two-point functions predicted by LOthe long range behavior gfeneral npoint functions can be
and NLO PQ chiral perturbation theory is indeed that of PQattributed to the singularities of the two-point functions. This
QCD, and an extension of that prediction to all orders inis a crucial implicit assumption that is made when one uses

chiral perturbation theory. the PQ chiral effective theory.
Lacking a general argument to justify PQ chiral effective
VII. CONCLUSIONS theory, we have focused instead on one of the strikingly un-

physical aspects of PQ chiral perturbation theory, the exis-

The role of®, in quenched and PQ chiral perturbation tence of light double poles in propagators of flavor-neutral
theory has been the main focus of this paper. We have showmnesons. We have demonstrated that the existence of these
that in order to reproduce the low momentum behavior ofdouble poles(and the absence of higher singularijiésl-
two-point correlation functions of quenched QCDy must  lows from the assumption that the propagators of charged
be kept in the theory. On the other hand, in PQ QCD it doesnesons have only simple pol¥The proof involves only
not give rise to long range correlations, in closer analogy td¢he symmetries of the theory, symmetries that are shared by
the »" in QCD, and should not be included. This point is key the underlying microscopic theory and the low energy effec-
in carrying out the program outlined ji—3,2§ of using PQ tive theory. We learn two things from this result. First, that
simulations together with PQ chiral perturbation theory tothis unphysical feature of the effective theory is correctly
determine the unknown constants that govern the low energsepresenting the properties of the underlying PQ theory. And,
behavior of real QCB! The central fact used in this program second, that the pole structure seen in LO and NLO chiral
is that the parameters of the chiral Lagrangian in Q@Rh

8This assumption can itself be derived in the massless theasry
YFirst results from this program have recently been presenteih Sec. Ill), but not in the interesting case of massive quarks with
[27]. my# Ms.

114510-15



STEPHEN SHARPE AND NOAM SHORESH PHYSICAL REVIEW b4 114510

perturbation theory will hold also at higher orders—thereln the massless limit it is invariant under transformations of
will only be single and double poles. the form
Finally, we note that an interesting consistency check of _ _

our results can be obtained by taking the valence quark UL r— GLRYL RS l//L,R—M//L,RGL_,%e, (A2)
masses to be much smaller than the sea quark masses, though )
not so small that enhanced chiral logarithi@} proportional Where G, and Gg need only be non-singularG g
to mgnmy, invalidate chiral perturbation theofy.In this € GL(Ny+N). Requiring that the functional measure be in-
regime the PQ theory has a “light” sector, with correlators vVariant reduces the symmetry to
having poles aM ﬁghtoc my, and a “heavy” sector with poles

. SL(Ny+N) ® SL(Ny+N)g@U(1). A3
atMZ,.,<Ms. We expect the relevant degrees of freedom in (Ny+N) @ SLINv+N)r@ U(1) (A3)
the light sector to be the valence quarks and ghosts along; the following we focus on the flavor symmetries, and do
and thus that it should be described by an effeatiyenched ot show the overalU(1) phase symmetry.
SU(Ny|Ny) chiral Lagrangian. In particular, this Lagrangian  The group(A3) is larger than the symmetry group of the
should _contaln the qu_enchdiq‘)Q f!eld, despne_the absence of Hamiltonian, SU(Ny+N),® SU(Ny+N)g, because i
the @, in the underlying PQ chiral Lagéa?glan. We also ex- -+ T in the functional integral formulation. To understand
pect that additional terms, such a¢d®g)“, should appear the physical significance of the enlarged symmetry, we con-
in the quenched effective Lagrangian. This issue can be insider the resulting Ward identities. The infinitesimal transfor-

vestigated analytically, since both valence and sea quarks afgations take the fornichoosingG, for illustration):
in the chiral regime. We have checked that our expectations

are indeed borne out, by matching pole positions at one-loop G =expaT)=1+aT (A4)
obtained from the underlying PQ theory and the effective
guenched theory. We find, for example, that a PQ theory Sy =aTy, S =—ayT, (A5)

having N degenerate sea quarks matches with a quenched
theory havingnS=ZBOmS= xsanda=1 (as well as small, whereT is an arbitrary traceless, HermitiamN{+ N)2 ma-
mg and N dependent, shifts iB, and f between the two trix, and the small paramete#, is complex. The usual, uni-
theories. tary, symmetry transformations correspondatdeing pure
imaginary, and thus have half as many parameters. Choosing
a to be space-time dependent, we has@l in the massless
theory)
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Martin Savage. where( is a local operatof® Such a transformation can be

seen as a change of variables in the functional integral, with

unit Jacobian, and therefore lea@s the example of a single
APPENDIX A: REAL AND FAKE SYMMETRIES operatof to

In this appendix we discuss the symmetry group of the PQ 0=8(0(y))
theory defined in Eq(l), and the resulting Ward identities.
We show that, although the flavor symmetry group differs (T T
from the naive expectationSU(Ny+N|Ny), ® SU(Ny :f a(x)3,(i{))0(y)ydx+ a(y)(s0(y)).
+NJ|Ny)r, the Ward identities coincide with those derived
assuming this “fake” symmetry to hold. This appendix is (A10)

based in part on thg analogous development for the quenchc?\gote that Eq(A10) containsa but nota* . Thus, although it
theory worked out in Refl17]. appears that two equations can be obtained for each indepen-

dent matrixT (for real and imaginary), in fact only one
Quark sector symmetries Ward identity results:

Consider first only the quark part of the action, E4),

_ _ _ - 20t is convenient to use a somewhat inconsistent notation in
f (WD g+ ¢rD iyt pmiprtpgmip ). (Al)  which the variations of fundamental fields and generic operators are
defined differently. Thus, in the case of left-handed transformations

of the quark fields

1This is analogous to studying the chifU(2) theory as a limit Y—ytay, (A8)
of chiral SU(3). Wethank Larry Yaffe for suggesting this regime to 0—0+ad 0, (A9)
us. so that, in fact,5, O is not an infinitesimal quantity.
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M(J(T)(X)O(y)>=—5(x—y)<5(LT)O(y)). (A11)  Wwhere the Hermitian part oA must be positive definite.
SinceD is anti-Hermitian, this constraint applies to the mass
Thus the unitary subgroufimaginary«) is sufficient to gen-  term. Thus in the ghost part of the action,
erate all the Ward identities implied by the full symmetry o o o .
group. , f (P D+ D i+ M+ hpmiy ), (AL3)
When the masses are not zero, another term is added to
Eq. (A10), corresponding to the variation in the action be-

cause of the mass terms. These terms, however, like the o /e must |dent|fy¢|_— wR andwR ‘ﬂL The ghost part o8

erator O, do not involve complex conjugates of the quark S then:
fields, and therefore their variation under the transformation e i
involves only . As in the massless case, this implies that f P Dt YD Y+ i + Ypmyp.  (Al4)
there is only one Ward identifya modification of Eq(A11)]
corresponding to each generafor The symmetries of the kinetic terms alone are thus
Clearly the same analysis holds for the right-handed trans- ~ ~ ~ o~
formations. We conclude that the unitary subgroSpy(Ny, =Gy, dr—(GTH g, (A15)
+N)_ ®SU(Ny+N)g, is sufficient to generate all the Ward where Ge GL(N,). The anomaly reduces thi§L(Ny)
identities implied by the full symmetry group. symmetry group to a product dBL(Ny,) and an overall
phase rotation.
Ghost sector symmetries Ward identities are derived from infinitesimal local trans-

formations,G=exp(@T)=1+aT, with T a traceless, Hermit-

In the PQ QCD partition function, Eql), one integrates ian, Ny X Ny, matrix, ande complex, leading to

independently over the Grassmann fiefdsind . The inte-

gral over the commuting ghost variables, however, converges Sh=aTy,, Sr=—a*Tyg,
only if it has a Gaussian structure: _ ~ - - (Al6)
SYL=a* YT,  Sdk=—aPkT.
1 iyt ~ ~p o~ o~
J' DxDx" exp(—x AXx), (AL2) | oeal operatorsO(, ¥, Yr, ¥), transform like
80(y)= aow URT - )()<’0T¢ lﬂTO a*(y)
y = ey P Wl y). Al7
T e ALD
=50 =50

One obtaingfor the case of the expectation value of a singlethe true symmetry grouSL(Ny) does not contain the

operatoy “fake” symmetry group SU(Ny), ® SU(Ny)r. While they
do share a common vect&U(Ny) subgroup, and have the

fa(X)WJ (T)(X)O(y)> a(x)* (4 (T)(X)O(y)> same number of g_enerators,_ the aX|aI_ trapsformat(dnrfs

and right handed fields rotating oppositeliffer. We also

note that the use of complexis crucial for obtaining all the
= —a(y)(8.0(y)+a(y)"(5rO(y).  (Al8) independent Ward identi?ies. °

with
Graded symmetries

(=t L v T - (A19)

To complete the symmetries we need to consider graded

By taking « real and imaginary the full set of Ward identities transformations which rotate Grassmann and ghost fields into
are seen to be equivalent to the equations each other. Once we do this, we are necessarily considering
the ghost fields to be commuting elements of a Grassmann

(9i{TR(¥)0(y)) == 8(x—y)(8.gO(Y)).  (A20)  algebra, with(in the notation of Ref[18]) both a “body” or
~ “base”—the usual complex scalar field—and a “soul™—
The generalization ton+# 0 is straightforward. composed of products of an even number of Grassmann
The resulting identities are exactly those that one wouldields, and thus nilpotent. The following question thus arises:

obtain were one to pretend th'&tandjwere independent What constraint does the requirement of a convergent func-

and that the symmetry group w&J(Ny), ® SU(N\)gr. We tional integral impose o andi? We argue at the end of
note, however, that, unlike the situation in the quark sectorthis appendix that the answer is
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E looa= D] i o= 0] (A21) follows the same steps as in the quark sector, except that one
LIbody™ ¥Rlbody: Rlbody™ ¥L|body> must keep track of the anticommuting naturexofThe result

i.e. the relations discussed above hold for the bodies of thedé @ single independent identity of the form of E411) for

quantities, but not for the souls. In this subsection we discusgach “off-diagonal” generatoll. As in the quark sector, the
the consequences of this constraint on the symmetries.  identities are the same as those that follow from the unitary

To do this, we return to the notation subgroup in which®,  are constrained to be Hermitian.
The extra freedom of complex parameters does not lead to
T _ /T 5T N additional identities.
Qur=(Lr i) Qur=Wrir)- (A22) Combining the results from all infinitesimal transforma-
The most general anomaly-free flavor transformation whicHions, we see that all the Ward identities could have been
leaves the kinetic term obtained if one had assumed the fake symmetry group
SU(Ny+N|Ny) @ SU(Ny+N|Ny)g.

f QDQL+ QrDQxr, (A23) Vector and axial transformations and currents
invariant is The VEV of Eq.(15) (and also the mass term witk
«|) breaks the chiral symmetry of EgA24) down to its
QL—LQL Qr—RQr vector subgroup:
_ _ (A24) it
Q —Q L ' Qp—QrR™ L L=R=Ve SLINy+N[Ny), Vgglbody=(Vgg)lboay-
(A29)

HereL andR are independerL(Ny+ N|N,) matrices, ex-
cept that they must maintain the constrdi21). If we write The corresponding “fake” group, sufficient for deriving vec-
tor Ward identities, is the subgroupe SU(N,,+N|N,/), for
L= ( Lag qu) (A25) which the constraint in EA29) is automatically satisfied.
L Loo/ ' The axial transformations, the generators of which are

broken by the VEV, are given by
(and similarly forL™1, R and R™!) to denote the quark-

quark block, quark-ghost block, etc., of the different matri- | =R"!=AeSL(N,+ N|N), Agg|body:(Agg)|gody-
ces, then the constraint is

99 99

(A30)
_(p-4yt
Lgglboay= (Rgg)boay- (A26)  ere the fake transformations hages SU(Ny+N|N), and
In deriving this, we have used are not contained in the transformations of E430) be-
’ cause the constraint is not satisfied.
(L™ Ygglboay=(Lgglboay) *=Lgglooay ~ (A27) By combining infinitesimal left- and right-handed trans-

formations in the appropriate way, we can derive vector and
and related results, which follow from the fact that only the axial Ward identities. They take the same form as @d.1),
product of “bodies” contribute to the body of a product. The with L—V,A, and contain
matricesL andR satisfying the constraint E§A26) form a
subgroup oSL(Ny+ NJ|Ny), ® SL(Ny+ N|Ny)r. The expo- iM (x)=0,7,TO(X) = Qry,TQr(X)  (A31)
nential parametrization of elements of this subgroup is ViAu a a

L=exp(i®,), R=expi®p), and

(A28) o= sM Q)
Str(q)L,R):Ov (¢L)gg|gody:(q)R)gg|body- &'AO_&- 0= d,°0. (A32)

To derive Ward identities we consider infinitesimal trans-The only subtlety here is that, when deriving Ward identities
formations of the form in Eq(A28). Transformations in the for graded transformations, the factor of(y) which is
quark-quark and ghost-ghost blocks lead only to the identipulled out of Eqgs.(A6)—(A10) should be accompanied by
ties described in the previous subsections. In particulathe sign which results when movirgpastQ. This is needed

while the full symmetry group has axial transformations inig pe consistent with the definition q-,LT), and impacts the
the ghost-ghost block which were not considered al@ave yefinition of 8.

which (® g)qq are both pure solilthese do not lead to
independent Ward identities.

Additional Ward identities do arise from purely graded
transformations. These are derived by considerifg g First recall that integrals over real c-numbers lead to re-
= ay T, with T Hermitian matrices contained entirely in the sults of the same form as over ordinary numkes]
quark-ghost and ghost-quark blocks, amdg anticommut- N
ing parameters. Note that there are no constraintsyoR j dq f(q)=F(b)—F(a), F'=f. (A33)
from Eg. (A28), and so the derivation of Ward identities a

Convergence considerations
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Here functions of c-numbers are defined by Taylor expan- = ~ . L o
sions, y lay PaNss long a8y’ |poa=9" |gody. This relation is maintained by the

unitary transformation back to the unprimed fields. The ar-
”q gument goes through i has an arbitrary soul, since the
f(a)="F(qlpoay + >, —(qlsou)"f™(alpoay), (A34)  integrand can be expanded in powers of this soul, and each
n=1 M term is convergent. Note that the general symmetry transfor-

where the sum actually truncates becaghg, is nilpotent. mation, Eq.(A24), maintains the Hermiticity of the body of

In our case we are interested in Gaussian integrals:

f(q)=exp—mq?), a=-—o+alsgy, b=+%+b|su APPENDIX B: THE DIAGONAL GENERATORS
(A35) OF U(Ny+NI|Ny)
with Re(m) positive. Since (" (+%)=0 for all n, it follows Here we collect some useful results concerning the gen-

that Eq.(A33) is actually independent of the souls@find  erators of graded symmetry groups. These are represented by
b. Similarly, if we change variables by a quantity which is the Hermitian (2, + N)? matrices labeled in the forego-
pure soulq’=q+ 4q, 5q|b0dy:0, we do not have to change ing. Note that the same generators serve for both the true and

the limits of integratiorf™ This is true for an arbitrary change fake symmetry groups. We consider here the properties of

in soul—in particular, it does not need to be real. the diagonal generators.
Now consider a two-dimensional Gaussian integral Let A, be theNy+N—1 diagonal generators &U(Ny
) +N), chosen to satisfy thz\p) = 54 Similarly, let\, be
da.da- exd — m(a2+a2)1. A36 theN,—1 Qiagonal gen.erators &U(N,,), normalized in the
f—oo Guddp exel —m(ai+ ;)] (A36)  came fashion. We defin€,, a=1,... N+2Ny—2 to be

the set of matrices:
As we have just seen, the bodies gf, are real, but their

souls can be arbitrary without changing the value of the in- No+ . xlo olo
tegral. Thus if we change to “complex” variables v+ quark indices{ ( i I ), ( | ),

Ny ghost indices{ 0 I 0 0 | 5,
q=01+id;, q=0q;—iq,, dodg=dag,dqy, (BY)
(A37) where we use a schematic notation. They satisfy
then the integral takes on the usual complex Gaussian form v
o _ str(Ta)z[ N J = (B2)
j dadgexp(—maq), (A38) —tr(\a)
— and

except thafg=qg* holds only for the bodies, and not for the
souls(since the souls odj; , are not regl The integral itself tr(Nakp)
has the value given by EgA36), i.e. w/m. Note thatm can Y Y _
also have an arbitrary soul—what matters for convergence is St(TaTy) tr(Xako) ab®a- B3
that the real part of its body is positive. 0

The generalization to many complex variables is straight- i
Two more generators need to be defined to complete the

forward. Letq anda_ now represent a vector and transposedyasis for the diagonal part &f (Ny+N|Ny).
vector, respectively. Then the integral

= — Partially quenched (N#0)
J dgdgexp(—gMQq) (A39) We choose

is convergent if\M (taken_to have no soul for ngws Her-

mitian and positive, and §i=q" holds for the bodies. To see Tonyen-1= 2 JNNy(Ny+ N)
this we diagonalizeM: M=UTDU, with D being diagonal

and positive, andJ unitary. Thus if we use the variables and

[NI—(2Ny+N)I] (B4)

q’'=Uq and gq’=qU’ (which leaves the measure un-
changed, then the integral factorizes into a product of inte- 1

grals of the form of Eq(A38), each of which is convergent Tony+n= \/_ﬁl’ (B5)
where
2INote that this is not true for general integrals: one must take care _ 110
when making changes of variables involving nilpotent parts, since I=(8,,e,)= 0 I)' (B6)

they can lead to so-called anomalld4,19.
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The last elemenﬂ'ZNVH\,, has non-vanishing supertrace, and Consider first the PQ theory. As long &s=2, some of

generates the anomaloUg 1) factor of U(Ny+N|Ny). the generators lie entirely in the sea-quark sector. Chodsing
Considering now all Ry, +N generators, it is straightfor- andT’ .of this fo_rm, we can use chiral per;urbation theory for
ward to check that QCD-like theories to infer that the resulting correlator has a
pseudo-Goldstone bosdRGB) pole if T=T', while flavor
(str(T,T)=(g ) =diag(1, ... ,1,—1,...,—1,—1,1). symmetry implies that it vanishes #T'. Thus we know
N N — that
Ny+N-1 Ny—1
(B7) GTT)(x)=6r1.Gpeg(X), T.T €Tge (C2
Quenched(N=0) We note for future reference th@pgg(x) is “connected” in
. the sense that the only contractions which contribute are
In this case we choose those in which the two bilinears are connected by quark
T 1= (BS) propagators.
-

We can extend this result to all the straceless generators
using the graded vector symmetfyhich, as argued in the

1 text, is not spontaneously broKemvith the result
TZNV: N/I . (Bg)
GTT)(x)=st(TT)Gpga(X)  St(T)=st(T')=0.
While the identity is straceless,is not, and is taken as (€3
the generator of the anomalolg1) factor. EquationB7)

This can be shown either directly using the symmetry, along

the lines of Appendix E, or by a direct comparison of the

(ST T0))=(gur) contributing contractions. In the latter case, the overall factor
a’b Yab str(TT’), which can be of either sig(see Appendix B ac-

1 counts for the signs arising from fermionic Wick contrac-
tions. The resul{C3) shows that there are PGB poles in the
correlation functions for each of the generatorsSdfi(N,,

1 +N|Ny). This agrees with the result obtained in Sec. Il B
-1 and implies that the corresponding fields should be included
= ) in the effective Lagrangian.
A Now consider the correlation functions involving the in-
-1 terpolating field corresponding tb,, which are obtained by
settingT and/orT’ to the identity. Flavor symmetry implies

becomes

1 that if T=1 and str{T’)=0, or vica-versa, then the correlator
vanishes. IfT=T'=1, then, by inspecting contractions, one
(B10) can show that the correlator is proportional to that for #fie
[10]:
APPENDIX C: ANOTHER ARGUMENT CONCERNING @, GID(X)=(Do(x)Do(0))x (7' (X)5'(0))  (C4)

_Inthis appendix we give an alternative argument ConCerny hare they' is the flavor singlet mesoim the sea sector
ing the status ofP, in quenched and PQ chiral perturbation yj5jence quark and ghost contributions completely cancel.
theory. We consider two-point functions of pseudoscalar denNOW due to the axial anomaly, we know that thé cor-

sities, relator does not have a light pole. Thus none of the two-point
, , functions involving®, have PGB poles. Conversely, to de-
G () =(¢M(x)6(0)), (C)  scribe the long distance parts of the two-point functions in
the PQ theory we do not need to consider correlators involv-
where T,T’ run over all the generators df(Ny—+N|Ny) ing ®,,.
(and thus include the identityFor the diagonal generators, ~ We now contrast this analysis with that for the quenched
we use the basis given in Appendix B. We assume that allheory. By examining contractions, or using the graded flavor
quark and ghost masses are equal, although they do not haggmmetries, one can show that
to vanish??
G T (3)=SU(TT')Geond X) +SU(T)SU(T') Ggisd X),
(CH
22Note that the PQ theory differs from the unquenched theory
(with N flavorg even if all masses are equal. This is because thavhere “conn” and “disc” refer to connected and discon-
extra fields in the PQ theory allow one to separately determindiected contractions, andand T’ run over the generators of
certain Wick contractions which always arise in certain linear com-U(Ny|Ny). Since there is no sea sector in the quenched
binations in the unquenched theory. theory, we cannot rely on experience with QCD to imply that

114510-20



PARTIALLY QUENCHED CHIRAL PERTURBATION . .. PHYSICAL REVIEW D64 114510

there are PGB poles in some channels. Instead, based &inced’ andC’ scale the same, only the second term on the
numerical data, we assume that there is such a pole in tHeft hand side of Eq(D5) is important whemnmy—cc, and we
connected correlatdB ,n{x). Then we see from EqC5  conclude that

that, if we use the basis explained in Appendix B, there is a

PGB pole in correlators corresponding to all the generators 1

of SU(Ny|Ny) exceptT=I. This if because, for such gen- d',C'~—. (D6)

erators, str{?)#0 [so the first term in Eq(C5) is present Mo
but str(T)=0 (so the second term is absgntowever, for o
T=T'=I, both str) and str{T’) vanish, and so Similarly, from
GUD(x)=0. On the other hand, iT=1 and T'=1 (the
Q ’ ’ I 2 —
anomalous generatgror vica-versa, then sff(T’) #0, and A'B+B'my=0 (D7)
S0 we get
G Goond X). (C6) .
Thus thi_s cross-correlator also has a PGB pole. Finally, if B Nm_gA ' (08
T=T'=1, then
. which is then used in
Gh" < Gisd X), (C7)
A'A+B'C=1 — A'A=1. (D9)
about which the present analysis says nothing, although mo—
guenched chiral perturbation theory predicts a double PGB
pole. In the last equation we see tnag,ﬁ cannot be inverted when
The important conclusion is that, to include all channelsmy— 2 unlessA is a non-singular matrix.
which have PGB poles in them one must include bath Putting everything together, in the large, limit
and =P,
1
r_ a1 | =
APPENDIX D: G™Y IN THE LIMIT mg— Al=AT+0 mS) o), (D10
In this section we calculate the propagat®y,, in the
large my limit, where the inverse propagator is given b 1
9emo Propag gren by B’,C’,d’=(9(—2>, (D11)
(A B Mo
Gy = , (D1)
@-1c mi+d and therefore
with A, B, C, andd independent ofm,. Note thatA is a A1l o
square matrixB and C a column and row vectors, respec- lim G((,)z( ) (D12
tively, andd a number. Sincel appears only in the combi- mo— 0 0
nationm3+d it can be dropped in the large, limit.
We write APPENDIX E: THE STRUCTURE OF THE PROPAGATOR
A B FROM GRADED SYMMETRIES
Gn= ( c o ) (D2) In this appendix we derive the constraints on the structure

of the pion propagator that imply the form E(/1). The
following symmetries are used:

(i) Independent phase rotations of individual flavors.
These form a subgroup of the vector transformations, Egs.

To learn about then, dependence of the blocks &) we
consider the equation

G )G(ﬂ: . (D3) (A24)—(A29), where one takes
One of the equations contained in E®3) is V=diag expia,expbs,expbx), (ED)
C'A+d’'C=0, (D4) andé,, Osand oy are independent. Under a phase rotation

of only the flavorm,
which impliesd’~C’, where the tilde refers to the scaling
with mg. Gijki = Gijki €XP(Om( Sim— Sjm+ Skm— Oim))-  (E2)
Another equation in EqD3) is

, . (i) SU(1|1) transformations that involve onlx andA.
C'B+d'mg=1. (D5 These too are vector transformations, this time with
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a ob 0 > U0 Ut (E7)
N _ ’
V= 0 1 0 , (E3) ik m,nzAﬁ im~mn* nk
c 0d or, using the X2 notation again,
where
o—uou' (E9
a
U= ( c d) eSU(1[1). (E49  SinceSU(1|1) is a symmetry, each of the combinations are
invariant under these transformations. Direct examination
(iii ) Gijiu=(—)Gyij - This symmetry follows from shows that this implies that ea€h must be proportional to
the identity. From this argument we obtain the following set
(IL;; 00 (0)) = (1L (= x) [ (0)) of equations:
=(IL;; (0) I (x)) > Ganant Garin=r
Giiik=r o= E9
= (=)L (0} (0)), (ES (AT Graaat GaarA=T E9
where the first equation is obtained by rotation, the second G CGraaa—
by translation, and the—{) sign .in t_he.third is only needed 2 stjjik235ik:>r AAAA— GAAAATS (E10
when bothIl;; andlIIy, are fermionic fields. i=AA Ganri— GAaZA=S
The invariance ofG under transformations of the form
Eqg. (E2) implies that the indices must be paired (quark Gssiict6k=Gssas=Gssa=t (E1D

lines must be followed, corresponding to legal contraction of
quark field$. The non-vanishing elements @ therefore
take the form G;;; or Gjj; . The implications of the

SU(1|1) symmetries are slightly less straightforward. We  Finally, with the use of Eq(E5), these equations can be
first form the following 2-indexed objects out of the elementsgglyed to yield:

Gissi= v 6ik=Gassi= Gassa=v.- (E12

of G:
GAAAA=r+S (E13)
2 G0 =([TIO)TI(0) ]
j=AA Gaaaa=r—S (E19
> &Gjjik(x)=(str(TT(x))ITj,(0)) Gania=GRRAA=T (E15
i=AA

(E6) Gaapa= — Gpraa=S5 (E16)

GssiX) =(Ilsdx)1L;(0)) AARA AAAA
GissX) =(ILis(x) 15 0)). Gssai=Ganss=Gssin=Grass=t (E17)
The matrix notation I with no indices, matrix multiplica- Gassi=Gsapns Gassy — Gsms=v. (E18

tion, and the strace symbotefers to 2<2 matrices in the

A—A subspace. In a consistent manrigke {A,A}. All of ~ The last independent element & is Gssss The form
the combinations above transform similarly undy(1]1) shown in Eq.(72) follows (what appears~t£1ere is the restric-
transformations: tion of G to the subspace dkA, SSandAA).
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