
PHYSICAL REVIEW D, VOLUME 64, 114509
Low fermionic eigenmode dominance in QCD on the lattice
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We demonstrate the utility of a spectral approximation to fermion loop operators using low-lying eigen-
modes of the Hermitian Dirac-Wilson matrix,Q5g5M . The investigation is based on a total of 400 full QCD
vacuum configurations, with two degenerate flavors of dynamical Wilson fermions atb55.6, at two different
sea quark masses. The spectral approach is highly competitive for accessing both topological charge and
disconnected diagrams, on large lattices and small quark masses. We propose suitable partial summation
techniques that provide sufficient saturation for estimating TrQ21, which is related to the topological charge.
In the effective mass plot of theh8 meson we achieved a consistent early plateau formation, by ground state
projecting the connected piece of its propagator.
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I. INTRODUCTION

The Euclidean approach of lattice gauge theory~LGT! has
been established as a viable framework to deal with quan
chromodynamics beyond the limitations of perturbati
theory @1#. Whereas practical algorithms have been dev
oped to calculate many physical observables, there is a c
of physical quantities that is highly sensitive to fluctuatio
in the vacuum gauge field that has not been amenabl
known ab initio numerical methods. Notorious examples
such computationally intractable problems include mixi
phenomena between fermionic and glueball states@2#, dis-
connected quark loop diagrams occurring in flavor sing
matrix elements@3,4#, and the infamoush8 propagator
@5–7#.

In all these instances one would like to take advantage
self-averaging effects by exploiting the translational inva
ance of the QCD ground state. This amounts to probing w
objects shifted across all lattice space-time points and he
to the computation of light quark propagators on the en
vacuum field, i.e., the full inverse of the Dirac operator,M,
which exhibits a high condition number in the regime
light quark masses. Unfortunately this is a prohibitively e
pensive numerical task, withM being of rank.106 on typi-
cal lattice sizes. Therefore the standard approach is to re
to stochastic estimator techniques@8–14#.

The approach to these previously intractable problems
plored in this work is motivated by the expectation that lo
lying modes of the Dirac operator should embody the imp
tant features of fermionic physics in the chiral regime@15#.1

Physically, topological excitations in the QCD vacuum, c
responding to instantons in the semiclassical limit, gene
low-lying fermion modes that play an essential role in lig
quark physics, ranging from generating the ’t Hooft intera
tion to producing the chiral condensate. Hence, for su

*Electronic address: neff@theorie.physik.uni-wuppertal.de
1Early pioneering work in this direction has been done by Barb

et al. @16,17#.
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ciently light quark masses, expansion in a basis that cont
these low-lying eigenmodes should cover the essential p
ics associated with observables involving the topologi
charge, flavor singlet disconnected diagrams, and proce
described by the ’t Hooft interaction.

It therefore appears worthwhile to launch another attem
to explore the potential of spectral methods/approximati
@18#. The question is, how many low-lying eigenmodes s
fice to bear out the important features of long range phys
in practical instances?

There are two ways to proceed, based on the spec
representations of the non-normal Wilson-Dirac matrixM
and the Hermitian matrixQ5g5M . The advantage ofM lies
in its shiftable~with respect tok) structureM512kD, but
it requires to work with biorthogonal sets of eigenmodes a
complex eigenvalues. The Hermiticity ofQ, on the other
hand, allows for a simple ordering of the orthogonal eige
modes and a natural definition of low-lying eigenmodes.

We decided to work withQªg5M and its eigenmodes
@19–21#

Quc i&5l i uc i&. ~1!

We can express the quark propagator in terms of the ‘‘eig
modes’’ (l i ,uc i&) from the spectral representation:

Q21~n,a,a;m,b,b!5(
i 51

V
1

l i

uc i~n,a,a!&^c i~m,b,b!u
^c i uc i&

,

~2!

wheren,a,a etc. label lattice sites, Dirac and color indice
respectively.

For our practical benchmarking we use 200~195! SESAM
lattices of size 163332 with k50.1575 (0.1560)@22#. Thus
the rank ofQ is dim(Q)51 572 864, which bars us from
complete diagonalization ofQ and the use of theidentity as
such, Eq.~2!. Nevertheless, the low-lying eigenvalues, i.
the ones with the smallest moduli, represent a large we
and are expected to saturate the sum in the regime of s
quark masses.
r
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In the present paper we wish to investigate to what ex
the spectral sum allows, under the conditions of the SES
simulations, for a truncation of the propagator at a reas
able ~in the sense of practicality! number of lowest-lying
eigenmodes. As a testbed for our truncated eigenmode
proach~TEA!, we will use TrQ21 in addition to the pion and
h8-correlators.

II. COMPUTING LOW-LYING EIGENMODES

The Hermitian operatorQ is defined through

Q5g5M ,

whereM is the standard Wilson-Dirac matrix

M ~n,a,a;m,b,b!5
1

2k
d~n,a,a;m,b,b!

2
1

2 (
m51

4

$@d~a;b!2gm~a;b!#

3Us1 ,m~a;b!d~n1m̂;m!

1@d~a;b!1gm~a;b!#

3Un2m̂,m
†

~a;b!d~n2m̂;m!%. ~3!

Here thegm are the Dirac matrices,U is the gauge field
~vacuum configuration!, d is the Kronecker delta function
and m̂ denotes a unit vector in a space or time direction.

The eigenmodes are determined by use of the parallel
Arnoldi package2 @23#. We speed up the computations b
application of the polynomial acceleration technique@24#.

The Arnoldi method works efficiently when calculatin
eigenvalues on the surface of the spectrum, here aroundlmin
andlmax. For this reason we first need to execute a pre
ratory step where we map, by means of a suitable polynom
q: Q°q(Q), the low-lying modes from the inside of th
spectrum to the surface. We will contrive the polynom
such that the spectrum is already prepared for the subseq
Chebyshev acceleration step@25#.

~a! First step: Mapping. We apply a very simple polyno
mial transformationq. To be specific we proceed as follow
Target a spectral window ofQ within which all eigenmodes
are to be determined and decompose the spectrum ofQ ac-
cordingly into desired eigenmodes,

W5spec~Q!w , ~4!

and the remainder:

spec~Q!5spec~Q!wøspec~Q!u . ~5!

2We employ the Arnoldi method as provided by the parallel A
noldi packagePARPACK @23# from Rice University. The Arnoldi
method is designed for non-Hermitian matrices, but it reduc
when applied to a Hermitian matrix, to the Lanczos method.
11450
nt

n-

p-

ed

-
al

l
ent

Construct a polynomialq that casts the spectral window
spec(Q)w outside the region@21,1#:

$q~l!ulP spec~Q!w%#@2`,21@ø#1,`#, ~6!

$q~l!ulP spec~Q!u%#@21,1#. ~7!

We found that the simple choice

q~Q!5
2

s2
Q22~11r !I ~8!

will accomplish the task, since the smallest eigenmodes
q(Q), i.e., the ones closest tolmin„q(Q)…, correspond to the
low-lying eigenmodes ofQ. The polynomial carries two pa
rameters:

~i! The scale factors is the spectral radius ofQ. It can be
computed in a first Arnoldi run on just a few vacuum co
figurations, since it fluctuates little with the gauge field$U%.

~ii ! The offset parameterr represents a simple shift opera
tion and controls the actual size of the window of desir
eigenmodes.

Second step: Polynomial acceleration. The Arnoldi
method is sensitive to the level density of eigenvalues,r(l).
For acceleration it is therefore crucial to precondition t
problem by decreasing the level density in the spectral reg
of interest. This can readily be achieved with Chebysh
polynomialsTN of degreeN due to their rapid increase ou
side the interval@21,1# ~within which they are close to
zero!.

The practical procedure is then to find an appropri
Chebyshev polynomialTN and compute the eigenmodes
largest moduli ofTN+q+Q, with q taken from Eq.~8!.

We found the optimal convergence with respect to C
time with a Chebyshev polynomialTN of orderN580 andr
chosen such that approximatelyonly the searched for 300
lowest-lying eigenvalues were contained in the interva
@212r ,21#. With this parameter setting we needed ju
one Arnoldi factorization@26#. Since we chose the size of th
factorization to be 600, the calculation of the eigenmod
takes 23803600596000 matrix-vector multiplications
~where the factor 2 is due to the fact thatQ2 enters the
Chebyshev polynomial!.

We emphasize that without the Chebyshev accelera
step, we observed only very poor convergence.

Once we have the eigenfunctions,uc i&, of the operator
TN+q+Q, it is straightforward to retrieve the eigenvaluesl i
of the original operatorQ. By appealing to the relation

Quc i&5l i uc i&⇔TN„q~Q!…uc i&5TN„q~l i !…uc i&, ~9!

we determinel i through the Rayleigh quotient

l i5
^c i uQuc i&

^c i uc i&
. ~10!

Let us comment that—for our present purposes—
found the above procedure to be much superior to the s
and invert strategy@26# which is frequently used to find the
low-lying eigenvalues.

s,
9-2
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In Fig. 1 we illustrate the spectrum ofQ averaged over the
SESAM configurations, at lightest and heaviest sea qu
mass respectively, for which we plot the dependence oful i u
on i. The ordering is chosen according to

ul1u<ul2u<ul3u< . . . . ~11!

The upper~lower! line corresponds to the heaviest~lightest!
sea quark mass of the SESAM sample. Their ra
ul i(lightest)/l i(heaviest)u is plotted in Fig. 2 as a function o
i. It shows a rather steep rise fori<100, which illustrates the
growing importance of the lowest-lying modes in the sp
tral representation ofQ21, Eq. ~2!, when decreasing the se
quark mass. This feature should become even more
nounced for the imminent QCD simulations in the yet dee
chiral regime,mPS/mV,0.5.

III. DETERMINATION OF Tr QÀ1

In the continuum limit, the complete trace

Q5Tr Q21 ~12!

FIG. 1. Distribution of moduli of the eigenvalues ofQ, averaged
over the configurations. The upper line corresponds tok50.156,
the lower tok50.1575.

FIG. 2. Same as Fig. 1, but plotted in terms of eigenvalue rat
ul i(0.1575)/l i(0.1560)u, both ordered according to Eq.~11!.
11450
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is related via the index theorem@27# to the net topological
charge of the gauge field. Although the breaking of chi
symmetry by the standard Wilson lattice action blurs t
connection somewhat at finite lattice spacings,a, one would
still expect remnants of the index theorem to hold@28#. In
previous works,Q has been estimated by use of stochas
estimator techniques~SET! which basically compute quark
propagators on stochastic sources, and indeed, a close c
lation between gauge field topology and TrQ21 has been
observed@29,30#. Hence, it is a quantity of significant inter
est. This will be all the more the case in future applicatio
of the overlap fermion lattice formulation@31#.

Q is given by the sum of the inverse eigenvalues:

Tr Q215Tr (
i

1

l i

uc i&^c i u
^c i uc i&

5(
i

1

l i

^c i uc i&

^c i uc i&
5(

i

1

l i
.

~13!

Physically, it is the low-lying modes that encapsulate t
interesting information within the full sum of Eq.~13! while
the large modes are a nuisance because they add backg
noise to the infrared signal. In order to turn this qualitati
proposition into a quantitative statement we would need
know the transition point between infrared and ultravio
physics. For an approximate use of the spectral relation,
~13!, we need a cunning technique to deplete the unwie
background.

With this in mind let us take a heuristic approach a
study the pattern of eigenvalue distributions as obtained fr
the SESAM ensemble of vacuum configurations. To rea
our goal, it is useful to order the spectrum and perform c
tain partial summations in Eq.~13!:

Let pi denote the positive andni the negative eigenvalues

$l i%5$pi%ø$ni%, ~14!

and let them be ordered such that:

p1<p2<p3< . . . ~15!

un1u<un2u<un3u< . . . . ~16!

In order to study convergence properties let us define
following partial series:

t j~ l !5(
i 51

j 1k
1

pi
1(

i 51

k
1

ni
, j >0 ~17!

t j~ l !5(
i 51

j 1k
1

ni
1(

i 51

k
1

pi
, j ,0 ~18!

l 5u j u12k, ~19!

where, in obvious notation, the parameterj labels the excess
number of entries with positive~negative! over the ones with
negative~positive! eigenvalues. In Figs. 3 and 4 the values
t j are plotted for the index range25< j <5, as obtained
from one particular SESAM configuration at our lightes
available quark mass,k50.1575. The partial sums appear

s,
9-3
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NEFF, EICKER, LIPPERT, NEGELE, AND SCHILLING PHYSICAL REVIEW D64 114509
exhibit a certain convergence pattern which is displayed
Fig. 4, where we connected the points to givenj-values.

Alternatively, one might organize the summation in t
order of increasing moduli of the eigenvalues@Eq. ~11!#, in-
dependent of their signs, and define the truncated sums

s~ l !5(
i 51

l
1

l i
. ~20!

The family of curves,F5$t j ( l )% provides a suitable frame
work to disclose the asymptotic behavior of this inverse
genvalue summation,s( l ). This is illustrated, again for the
particular gauge configuration, in Fig. 5, where we disp
the data points fors( l ) in the range 1< l<300. For reference
we also show the~slowly narrowing! band of the partial
sums,t j ( l ). Note that froms'150 onward,s( l ) in this par-
ticular configuration jumps3 mostly between the two level
t23 and t24. Moreover t23 appears to be distinguished a
lying between the asymptotically falling set of curves w
j >22 and the rising ones,j <24.

We found this scenario to apply to all configurations
the sense that for each gauge field$U%, F contracts around
a particular partial sumtp( l ) that levels to a plateau valu
beyondl'150, withp depending on the choice of the gau
field @U#.

Let us next quantify our observations and denote
height of this supposed plateau witht, setting

tªtp~300!. ~21!

Note thatt varies with the underlying gauge configuratio
@U#. The question then arises how accurately we can ext
the actual plateau height. In order to appreciate the nume
flatness of the plateau curve we pushed the eigenvalue c
putation to a number of 600 modeson a singleSESAM
configuration. In Fig. 6 we display the resulting plateau o
magnified scale. Assuming that the apparent remaining w

3To put it differently: the asymptotic distribution of eigenvalues
characterized by alternating signs when proceeding according to
order given by Eq.~11!.

FIG. 3. Partial sums, according to Eqs.~17! and ~18!, from a
particular SESAM configuration atk50.1575.
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oscillation for l .150 is a common feature for the entir
SESAM sample and that with 300 eigenvalues one has
ready passed the first extremum on the entire sample
gauge fieldsU, we estimate that from the lowest-lying 30
eigenvaluest can be determined with an accuracy of 1%.

Next let us argue that the plateau value,t@U#, provides us
with an approximant for the complete trace, Eq.~12!:

Q@U#'t@U#. ~22!

What is the deviation from the complete trace in our situ
tion? In our range of quark masses, we can exclude z
level crossings of eigenmodes. Therefore the matrixQ pos-
sesses an equal number of positive and negative eigenva
Hence, when adding up alln eigenvalues,s(n) will lie on the
curve with superscript 0

Q5s~n!5t0~n!,

with

n5dim~Q!. ~23!

he

FIG. 4. Same as in Fig. 3. The full lines connect the entries,t j ,
with equal values ofj. The horizontal line corresponds to the valu
t as defined in Eq.~21!.

FIG. 5. Partial sum, showing for eachs( l ) the associatedj such
that s( l )5t j ( l ).
9-4
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Thus TrQ21 is related to the plateau heightt in the follow-
ing way:

Q5t1
p

ulnu
. ~24!

The second term on the right-hand side measures the
tance betweent0 and tp at l 5n. It can be neglected with
respect to the error ont itself, sinceu1/ln'.15u is approxi-
mately equal to the error oft.

Another justification for the validity of our approxima
tion, Eq.~22!, comes from our observation that different fie
configurations@Ur # yield equal results when plotted wit
appropriate offsetst@Ur #, namely „t j ( l )@Ur #2t@Ur #…. This
is illustrated in Figs. 7 and 8 where we superimpose 10 s
series for Ur(r 51, . . . 10): it strikes the eye that, forl
.150, the partial sums to the 10 gauge fields allcollapse
onto a single, universalfamily of curves:

t j 1pr~ l !@Ur #2t@Ur #5t j 1ps~ l !@Us#2t@Us#. ~25!

Hence there exists a set ofU-independent functionst̂ j ( l )
such that the following identity with respect toU applies:

t j 1p[U]~ l !@U#2t@U#5 t̂ j~ l !. ~26!

FIG. 6. High resolution plot oftp with 600 eigenvalues.

FIG. 7. Functions as in Fig. 4 for 10 gauge fields such that th
t-values are all equal to 0.
11450
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This pattern strongly supports the picture that on our c
figurations the interesting physics with respect to the to
logical charge is indeed contained in the subset of the
smallest eigenvalues, while the remaining ones carry no
formation onQ.

We corroborate this result by considering a 44 lattice
where we determined all 3072 eigenvalues ofQ in quenched
QCD atb55.0. In Fig. 9 we plotted the corresponding pa
tial sumst j . Notice thattp ~herep happens to be 0! remains
absolutely flat after reaching its plateau value at arounl
.500.

A comparison of theQ values as produced by TEA with
the ones obtained in Ref.@30# from SET on the entirek
50.1575 sample is shown in Fig. 10. The data points se
to scatter rather nicely around the bisecting line. While
accuracy of the TEA results on individual configurations
about 1%, the uncertainty of the SET estimates turns ou
be DQ'650.

In Fig. 11 we present TEA~normalized! Q values along
the Monte Carlo history of our SESAM sample atk
50.1575 and compare them to the result of the gluonic
termination after cooling@30#. We reconfirm our previous
finding @29# that there is a close correlation between the g
onic and fermionic definitions of the net topological charg

ir

FIG. 8. Functions as in Fig. 7, but for a heavier quark mass

FIG. 9. Pattern of partial seriest j on a quenched 44 lattice at
b55.0, which allows for a calculation of the entire spectrum.
9-5
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IV. HADRONIC TWO-POINT FUNCTIONS

In this section we wish to investigate the potential
spectral methods in the computation of two-point hadro
correlators@32#. The question here is to what extent we c
verify low-lying eigenmode dominance for infrared physic
specifically the ground states in particular hadronic chann

In order to set the stage we shall first consider the o
pseudoscalar channel as we can easily compare to stan
pion correlator computations. We shall then elaborate on
spectral approach to the singlet pseudoscalar propag
which differs from the octet one by the two-loop correlat
The latter involves the computation of incomplete trace
pressionŝ Q(t)Q(t1Dt)& and thus represents a quantity
increased complexity.

A. Basics for mass determinations

Masses are extracted from the large time behavior of c
relation functionsC(t) that carry the quantum numbers
the particles in question. The correlation functions of thep
and theh8 have the following form

FIG. 10. Scatterplot comparing the results from TEA and S
on all configurations atk50.1575. The errorband is chosen su
that 67% of the data points lie within.

FIG. 11. Comparison of TEA’s estimates of the topologic
charge with the gluonic determination after cooling, on all SESA
configurations at lightest quark massk50.1575.
11450
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Cp~Dt !5K (
si ,a i ,ai ,t

@Q21~s1 ,t,a1 ,a1 ;s2 ,t1Dt,a2 ,a2!

3Q21~s2 ,t1Dt,a2 ,a2 ;s1 ,t,a1 ,a1!#L
U

~27!

Ch8~Dt !5Cp~Dt !2Nf K (
t

Q~ t !Q~ t1Dt !L
U

,

with Q(t)5(s,a,aQ21(s,t,a,a;s,t,a,a) andNf52 flavors.
The coordinaten is subdivided into a spatials and a temporal
part t. By introducing energy eigenfunctions one can sh
that these correlation functions decay exponentially in tim
with the particle mass being the decay constantC(Dt)
;exp(2mDt). On a toroidal lattice however with tempora
extent T this exponential decay appears as a cosh,C(Dt)
;exp(2mDt)1exp„m(Dt2T)…. Local massesm can be re-
trieved for every value ofDt by solving the implicit equa-
tions

C~Dt11!

C~Dt !
5

exp„2m~Dt11!…1exp„m~Dt112T!…

exp~2mDt !1exp„m~Dt2T!…
,

~28!

with respect tom. Plateaus in the time dependence of t
local massesm(Dt) exhibit the masses of the particles.

B. Smearing

The extension of the local mass plateaus can be incre
by enhancing the overlap with the ground state correlat
function. We follow Ref.@33# and apply the smearing matri
S5(F)k, with

F~n,a,a;m,b,b!5
1

116l S d~n,a,a;m,b,b!

1 l (
m51

3

@Un,m~a;b!d~n1m;m!

1Un2m,m
† ~a;b!d~n2m;m!# D ,

~29!

choosingk550 andl 54.
Source and sink smearing are readily accomplished by

replacements

c i→c i
s5Sc i ~30!

in the spectral propagator representation

Qsm
21~n,a,a;m,b,b!5(

i

1

l i

uc i
s~n,a,a!&^c i

s~m,b,b!u
^c i uc i&

.

~31!
Throughout this section we will assume the eigenmo

to be enumerated according to Eq.~11!.

l

9-6
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C. Pion correlator

The spectral representation ofCp(Dt) reads

Cp~Dt !5(
i , j ,t

1

l il j

^c i~ t !uc j~ t !&^c j~ t1Dt !uc i~ t1Dt !&

^c i uc i&^c j uc j&

[(
i , j

C~ i , j ,Dt !, ~32!

where we suppressed the brackets that represents the av
over the gauge fields.

For Cp no early saturation over the entireDt-range can be
expected, as one can see by integrating Eq.~32!

(
Dt

Cp~Dt !5(
i

1

l i
2

. ~33!

Since all the contributions on the right-hand side of Eq.~33!
are positive the series is monotonically increasin
Therefore—contrary to the case of the topological charg
neither cancellation effects nor early saturation can be
pected in this global quantity. But what about the regime
infrared physics described by the correlator, i.e.,
asymptotic behavior int?

Let us consider the truncated spectral correlator

Cp
l ~Dt !5 (

i , j 51

l

C~ i , j ,Dt !. ~34!

In order to demonstrate the low-lying eigenmode domina
at large time separations we present in Fig. 12 a family
curves, Cp

l (Dt), for the various time slicesDt, plotted
against the spectral cutoff,l, at the lightest SESAM quark
mass. It is gratifying to find thatCp

l (Dt) for Dt>7 shows a
flat behavior in the regimel .100. On the other hand fo
small time separations higher eigenmodes continue
add—in accordance with the idea of excited state conta
nations.

FIG. 12. Set ofp correlation functionCl(Dt) from TEA on
local sinks and sources, plotted against the spectral cutoff,l. Dt
increases as one steps down from the top curve which refer
Dt50.
11450
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It is interesting to carry out a direct comparison of TE
with the standard propagator as computed by linear solv
on a local source, in order to see saturation occur in
region of interest, see Fig. 13. We find good agreement in
asymptotic regime, 7<Dt<25. We also show the fit~fit
range@8,15#) to the data from the inverter to the usual co
parametrization:

Cp
g ~Dt !5A cosh@mp~Dt2T/2!#. ~35!

A much more sensitive test of TEA is to look at loc
effective masses. In Fig. 14 we compare, at the cutoff va
l 5300, the TEA results with the ones from standard pro
gator analysis, for the lightest SESAM quark mass. The
fects of smearing and varying quark masses are displaye
Fig. 15, again forl 5300. As anticipated, we do observe
clear tendency for improvement in the spectral appro
with decreasing quark mass. Yet there remains a marked
cillatory behavior over the entire SESAM range of qua
masses. Moreover we notice that smearing slightly impro
the signal.

A synopsis on the cutoff dependence ofm(Dt) is pre-
sented in Fig. 16, as obtained on a particular configuratio
the lightest quark mass. To avoid cluttering of the data

to

FIG. 13. Comparison of thep correlation function as provided
by TEA with l 5300, with the one obtained from the standa
method~solving linear systems! on local sinks and sources.

FIG. 14. Localp masses from TEA and the standard metho
9-7
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have spread out the different curves by means of the vari
l Dt5600Dt1 l . This survey plot is meant to convey an ide
how the oscillation will dampen out with increasing cutoffl.

Thus we have demonstrated that in the sea quark m
regime of the SESAM configurations, there is insufficie
dominance of the low-lying eigenmodes to utilize TEA for
sensible calculation of thep mass.

D. h8-correlator

Let us consider next the flavor singlet pseudoscalar ch
nel with the ground state particleh8. As described in Eq.
~27! Ch8 differs from Cp by the two-loop correlatorT:

Ch8~Dt !5Cp~Dt !2NfT~Dt !, ~36!

the spectral representation of which reads

FIG. 15. Local masses of thep from TEA. LL are the un-
smeared results, whereas SS stands for smearing the sinks
sources. The horizontal lines show the errorbands of thep as ob-
tained from the standard method~solving linear systems!.

FIG. 16. The dependence of the local massesm(Dt) on the
spectral cutoff,l< l max5600, on a single configuration. Thex-axis
carries the parameterl Dt5600Dt1 l with Dt51,2, . . . ,15. The
horizontal line shows the errorband of thep mass as obtained from
the standard method~solving linear systems!.
11450
le

ss
t

n-

T~Dt !5(
t

(
i

1

l i

^c i~ t !uc i~ t !&

^c i uc i&

3(
j

1

l j

^c j~ t1Dt !uc j~ t1Dt !&

^c j uc j&
, ~37!

where we suppressed again the brackets indicating the a
age over the gauge fields.

Again we sumT(Dt) over Dt in order to learn about
TEA’s potential in the two-loop situation

(
Dt

T~Dt !5S (
i

1

l i
D 2

. ~38!

This is just the square of the ‘‘topological charge,’’ see E
~13!. Therefore we might expect TEA to work as well as
Sec. III.

We define the truncated two-loop correlatorTl through

and
FIG. 17. Set of two-loop functionsTl(Dt) on smeared source

and sinks plotted versus the cutoffl. As in Fig. 12,Dt increases as
one steps down from the top curve.

FIG. 18. Two-loop correlator@Eq. ~37!#, estimated with TEA
and SET, for the lightest quark mass and local sources and sin
9-8
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Tl~Dt !5(
t

(
i

l
1

l i

^c i~ t !uc i~ t !&

^c i uc i&

3(
j

l
1

l j

^c j~ t1Dt !uc j~ t1Dt !&

^c j uc j&
, ~39!

and plot in Fig. 17 the dependence ofTl(Dt) on the cutoffl.
Contrary to the pion propagator~see Fig. 12!, Fig. 17 indeed
reveals good saturation of the spectral representation by
low-lying eigenmodes over the entireDt-range.

As a check for consistency we compare the local two-lo
correlators from TEA and standard SET at our lightest qu
mass in Fig. 18. They are seen to agree very well within th
errors. Note that the TEA data show a much smoother
havior in Dt. Additional smearing for SET diminishes thos
fluctuations. We notice that TEA and SET data bear error
equal size. We view this as an independent confirmation
previous claims that the errors on theh8 mass from state o
the art SET analyses are dominated by gauge field n
@6,7#.

Next we come to the more stringent test: local effect
h8-masses. According to Eq.~36!, the h8-propagator is the

FIG. 19. Localh8 masses from TEA on local~LL ! and smeared
~SS! sources and sinks with ground state projection of its conne
piece ~OLGA!. For comparison thep mass as obtained from th
standard method is plotted.

FIG. 20. Comparison of the local OLGAh8 masses from TEA
and from stochastic estimations on smeared sources and sinks
11450
he

p
k
ir
e-

of
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se

difference of one- and two-loop corrrelators,Cp andT. The
ground state contribution to the former,Cp

g , can be deter-
mined very accurately by the standard methods~by iterative
solvers! known from the octet spectrum@22#. Hence, it ap-
pears very natural to replace the one-loop correlator by
ground state component,Cp

g (Dt), see Eq.~35!. In the fol-
lowing, we perform a ‘‘one-loop ground-state analysi
~OLGA! by the extraction of local masses,mh8(Dt), from
the combination

C̃h8~Dt !5Cp
g ~Dt !2NfT~Dt !. ~40!

The results are presented in Fig. 19, both for the light

d

FIG. 21. Dependence of the localh8 massesm(Dt) for Dt
51,2, . . . 5 on thespectral cutoff.
9-9
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and heaviest sea quark masses of SESAM, with and with
smearing. We find striking plateau formation from the ve
first time slice onwards.

As a consistency check and first test of the synthetic d
approach, Eq.~40!, we compare the local effective mass
from TEA and SET in Fig. 20. The data points are seen
agree very well with each other, the TEA points bei
slightly less fluctuating. The horizontal lines in Fig. 19 a
20 refer to the fitted plateau values for theh8 masses.

FIG. 22. Dependence of the local OLGAh8 mass on the topo-
logical charge works similarly well for the lightest and heaviest s
quark mass of SESAM.

FIG. 23. Pion correlation function from TEA with 600 eigen
modes ofM on one configuration fork50.1575. One observe
strong deviations from the standard propagator~from linear solvers!
determined on the entire gauge field ensemble.
11450
ut

ta

o

As yet another test on systematic errors we plot in F
21—again for local and smeared wave functions and
lightest and heaviest quark masses—the dependence o
local massesmh8(Dt) from TEA on the spectral cutoffl. It
appears that the systematic errors from this cutoff are w
under control, once we truncate the spectral representa
with l .150 and higher. Furthermore the data appear to s
port the idea that TEA improves when decreasing the qu
mass.

Finally we address the question of to what extent theh8
mass is influenced by the topological content of the confi
rations. By applying the cuts inQ, we subdivide the gauge
field ensemble for the twok-values into two subsets each
with Q determined as described in Sec. III. The cuts
chosen such that each subset consists of about 100 con
rations. The results from OLGA can be seen in Fig. 22. Th
clearly confirm the previous finding@6,30#, that topologically
nontrivial gauge configurations are the origin for the largeh8
mass@34,35#.

V. DISCUSSION AND SUMMARY

We have presented and validated a method to comp
fermion loops from the low-lying eigenmodes of the Herm
ian form,Q5g5M , of the standard Dirac-Wilson matrix,M,
in accordance with the expectation that these modes con
the essential physics associated with topological fluctuatio
Our truncated spectral approach~TEA! to Q21 is viable in
the sense that it renders satisfying results in the quark m
regime of state-of-the art full QCD simulations like SESA
on the basis ofO(100) modes only. TEA has been verifie
both with respect to the topological charge and the two-lo
correlator entering theh8 propagator.

a

FIG. 24. The 600 calculated eigenvalues ofM that enter Fig. 23.
The curve represents a circle around the origin.
9-10
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The early onset of saturation for TrQ21 could be at-
tained by proper ordering and subsequent partial sum
tions, configurationwise adapted to achieve cancellati
from positive and negative eigenvalues. In this way the b
of the higher mode contributions were shown to vanish.
the case of theh8 an early plateau formation of the loca
masses could be obtained by ground state projecting the
nected piece of its propagator.

We confirm previous results in the intermediate qua
mass regime that the actual bottleneck in increasing accu
of loop estimates is given by the gauge field noise, i.e.,
the present limitation in ensemble sizes of QCD vacu
configurations.

We found that the amount of work, i.e., the number
matrix vector multiplies,Nmvm, needed per configuration i
TEA compared to SET@6# for the lightest SESAM quark
mass is roughly in the same ballpark.4 This looks promising
for the upcoming era of Teracomputing, where we shall d
with larger lattices and smaller quark masses. The reaso
that the Arnoldi method does not lose efficiency when en
ing deeper into the critical chiral regime, in contrast to Kr

4Actually the ratioNTEA
mvm/NSET

mvm.1.5 when using 300 stochasti
source vectors and 300 eigenmodes.

FIG. 25. Pion correlation function from TEA forM andQ on a
quenched 44 lattice atb55.0. The plot is analogous to Fig. 12.
s.
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lov solvers used within stochastic estimator algorith
which will suffer in convergence rate.

Let us finally comment on the viability of the spectr
approach applied toM instead ofQ. To this end we compare
in Fig. 23 the pion correlation function as determined fro
600 low-lying eigenmodes ofM, see Fig. 24, with the one
obtained from the standard method~solving linear systems!.
Obviously, for the case ofk50.1575 which corresponds to
pion mass of the order of 730 MeV, the chosen low-lyi
modes ofM contain less information about this function tha
the eigenmodes ofQ. In order to trace down this discrepanc
betweenM andQ we also carried out a full diagonalizatio
on a quenched 44 lattice atb55.0 for the two cases. In Fig
25, we plotted the resultingCp(Dt) versus the cutoff. While
Q again shows a quite stable behavior similar to Fig. 12,
spectral approximation forM yields a very ragged cutof
dependence that requires all 3072 eigenmodes for a sati
tory representation of the correlator. We conclude that
eigenmodes ofM, being nonorthogonal, suffer interferenc
among each other. Thus, for the 44 test case and for the se
quark masses used in the SESAM configurations, we h
not been able to identify a limited number of dominatin
eigenmodes.

A detailed analysis of theh8 mass, based on OLGA an
additional SET data, will be presented in a forthcoming p
per @36#.
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