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Low fermionic eigenmode dominance in QCD on the lattice
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We demonstrate the utility of a spectral approximation to fermion loop operators using low-lying eigen-
modes of the Hermitian Dirac-Wilson matri= ysM. The investigation is based on a total of 400 full QCD
vacuum configurations, with two degenerate flavors of dynamical Wilson fermig8s-&t6, at two different
sea quark masses. The spectral approach is highly competitive for accessing both topological charge and
disconnected diagrams, on large lattices and small quark masses. We propose suitable partial summation
techniques that provide sufficient saturation for estimatin@ Tt, which is related to the topological charge.

In the effective mass plot of the’ meson we achieved a consistent early plateau formation, by ground state
projecting the connected piece of its propagator.
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[. INTRODUCTION ciently light quark masses, expansion in a basis that contains
these low-lying eigenmodes should cover the essential phys-
The Euclidean approach of lattice gauge theu@T) has  ics associated with observables involving the topological
been established as a viable framework to deal with quanturgharge, flavor singlet disconnected diagrams, and processes
chromodynamics beyond the limitations of perturbationdescribed by the 't Hooft interaction.
theory [1]. Whereas practical algorithms have been devel- It therefore appears worthwhile to launch another attempt
oped to calculate many physical observables, there is a claé@ explore the potential of spectral methods/approximations
of physical quantities that is highly sensitive to fluctuations[18]. The question is, how many low-lying eigenmodes suf-
in the vacuum gauge field that has not been amenable féce to bear out the important features of long range physics
known ab initio numerical methods. Notorious examples of in practical instances?
such computationally intractable problems include mixing There are two ways to proceed, based on the spectral
phenomena between fermionic and glueball Sté&sdis_ representations of the non-normal Wilson-Dirac maivix
connected quark loop diagrams occurring in flavor single@nd the Hermitian matriQ = ysM. The advantage d#l lies
matrix e|ements[3'4], and the infamOUSn’ propagator in its shiftable(with respect tO() structureM =1— D, but
[5-7]. it requires to work with biorthogonal sets of eigenmodes and
In all these instances one would like to take advantage ofomplex eigenvalues. The Hermiticity @, on the other
self-averaging effects by exploiting the translational invari-hand, allows for a simple ordering of the orthogonal eigen-
ance of the QCD ground state. This amounts to probing witinodes and a natural definition of low-lying eigenmodes.
objects shifted across all lattice space-time points and hence We decided to work withQ:=ysM and its eigenmodes
to the computation of light quark propagators on the entird 19-21
vacuum field, i.e., the full inverse of the Dirac operaidr,
which exhibits a high condition number in the regime of Qly)=Nil). @
light quark masses. Unfortunately this is a prohibitively ex- , o
pensive numerical task, withl being of rank>10f on typi- We carl express the quark propagator in terms_of the “eigen-
cal lattice sizes. Therefore the standard approach is to resdiodes” (\i.|#)) from the spectral representation:
to stochastic estimator techniques-14. v
The approach to these previously intractable problems ex- O naampb) -3 1 [hi(n, @) (¢i(m,B.b)|
plored in this work is motivated by the expectation that low- e =1\ (il i) '
lying modes of the Dirac operator should embody the impor- (2)
tant features of fermionic physics in the chiral regifié].!
Physically, topological excitations in the QCD vacuum, cor-wheren, a,a etc. label lattice sites, Dirac and color indices,
responding to instantons in the semiclassical limit, generateespectively.
low-lying fermion modes that play an essential role in light  For our practical benchmarking we use 2095 SESAM
quark physics, ranging from generating the 't Hooft interac-lattices of size 16x 32 with k=0.1575 (0.1560)22]. Thus
tion to producing the chiral condensate. Hence, for suffithe rank ofQ is dim(Q)=1 572864, which bars us from
complete diagonalization @@ and the use of thalentity as
such, Eq.(2). Nevertheless, the low-lying eigenvalues, i.e.,

*Electronic address: neff@theorie.physik.uni-wuppertal.de the ones with the smallest moduli, represent a large weight
LEarly pioneering work in this direction has been done by Barbourand are expected to saturate the sum in the regime of small
et al.[16,17). quark masses.
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In the present paper we wish to investigate to what exten€onstruct a polynomialy that casts the spectral window
the spectral sum allows, under the conditions of the SESAMspecQ),, outside the regiofi—1,1]:
simulations, for a truncation of the propagator at a reason-

able (in the sense of practicalitynumber of lowest-lying {a(M)[\ e spe€Q), ) C[—=, —1[U]1 =], (6)
eigenmodes. As a testbed for our truncated eigenmode ap-
proach(TEA), we will use TrQ ! in addition to the pion and {a(\)|\ e spe¢Q) fC[—1,1]. (7)

n'-correlators. ) )
We found that the simple choice

II. COMPUTING LOW-LYING EIGENMODES

2
— _ N2_
The Hermitian operato® is defined through a(Q)= SzQ (1+0l ®)
Q=1vysM, will accomplish the task, since the smallest eigenmodes of
_ _ _ _ d(Q), i.e., the ones closest 19,;,(q(Q)), correspond to the
whereM is the standard Wilson-Dirac matrix low-lying eigenmodes 0. The polynomial carries two pa-
rameters:

(i) The scale factos is the spectral radius @. It can be
computed in a first Arnoldi run on just a few vacuum con-
figurations, since it fluctuates little with the gauge fi¢ld}.

1
M(n,a,a;m,B,b)= Zé(n,a,a;m,ﬁ,b)

1 (ii) The offset parametarrepresents a simple shift opera-
"2 ;::1 {[o(e: )= vl )] tion and controls the actual size of the window of desired
eigenmodes.
xUslyﬂ(a;b)é(nJr,&;m) Second step: Polynomial acceleratiorThe Arnoldi
method is sensitive to the level density of eigenvalpés).
+[6(e;8)+yu(e;B)] For acceleration it is therefore crucial to precondition the
+ . problem by decreasing the level density in the spectral region
XU, _. (&b)s(n—pu;m)}. (3 of interest. This can readily be achieved with Chebyshev

polynomialsTy of degreeN due to their rapid increase out-

Here they, are the Dirac matriced) is the gauge field side the intervall —1,1] (within which they are close to
(vacuum configuration & is the Kronecker delta function zero.
and . denotes a unit vector in a space or time direction. The practical procedure is then to find an appropriate

The eigenmodes are determined by use of the parallelizéghebyshev polynomial'y and compute the eigenmodes of
Arnoldi packagé [23]. We speed up the computations by largest moduli ofT\°g°Q, with g taken from Eq.(8).
application of the polynomial acceleration technidad]. We found the optimal convergence with respect to CPU

The Arnoldi method works efficiently when calculating time with a Chebyshev polynomidly of orderN=80 andr
eigenvalues on the surface of the spectrum, here araypd ~ chosen such that approximatedyly the searched for 300
and\ . For this reason we first need to execute a prepalowest-lying eigenvalues were contained in the interval
ratory step where we map, by means of a suitable polynomidl—1—r,—1]. With this parameter setting we needed just
q: Q—q(Q), the low-lying modes from the inside of the one Arnoldi factorizatiori26]. Since we chose the size of the
spectrum to the surface. We will contrive the polynomialfactorization to be 600, the calculation of the eigenmodes
such that the spectrum is already prepared for the subsequdakes 2<80x600=96000 matrix-vector multiplications
Chebyshev acceleration StEpb]. (where the factor 2 is due to the fact th@f enters the

(a) First step: Mapping We apply a very simple polyno- Chebyshev polynomigal
mial transformatiorg. To be specific we proceed as follows: ~ We emphasize that without the Chebyshev acceleration
Target a spectral window @@ within which all eigenmodes  step, we observed only very poor convergence.

are to be determined and decompose the spectru@ ax- Once we have the eigenfunctior|gj;), of the operator
cordingly into desired eigenmodes, TrnegeQ, it is straightforward to retrieve the eigenvalues

of the original operato. By appealing to the relation

W=speeQ)y, 4
N Qlyn)=Nilyn) e Th@ Q)¢ =Tn@NDlw), (9

and the remainder: . . .

we determine\; through the Rayleigh quotient

spe¢Q)=spe¢Q),,UspecQ),. 5) _<‘[’||Q|¢|>

N (i) (10

2Ne employ the Arnoldi method as provided by the parallel Ar- Leét us comment that—for our present purposes—we
noldi packagerarpPack [23] from Rice University. The Arnoldi  found the above procedure to be much superior to the shift
method is designed for non-Hermitian matrices, but it reducesand invert strategy26] which is frequently used to find the

when applied to a Hermitian matrix, to the Lanczos method. low-lying eigenvalues.
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0.07 - ' — is related via the index theoref27] to the net topological
k=0.156 —— il charge of the gauge field. Although the breaking of chiral
0.06 K=0.1575 seeseeeeer . . . .
° symmetry by the standard Wilson lattice action blurs this
2 005 connection somewhat at finite lattice spacingspne would
E still expect remnants of the index theorem to hp2d]. In
> 004 previous works,Q has been estimated by use of stochastic
E 0.03 estimator techniqueéSET) which basically compute quark
2 propagators on stochastic sources, and indeed, a close corre-
B 002/ lation between gauge field topology andQr! has been
= / observed29,30. Hence, it is a quantity of significant inter-
L 4 1 est. This will be all the more the case in future applications
0 . . . . . of the overlap fermion lattice formulatior81].
0 50 100 150 200 250 300 Q is given by the sum of the inverse eigenvalues:
Index of Eigenvalue
1|y 1 (¢l 1
FIG. 1. Distribution of moduli of the eigenvalues Of averaged TrQ =TrY, — M = il > =

=~ N (o) N (el SN

over the configurations. The upper line corresponds $00.156, (13)

the lower tok=0.1575.

) . Physically, it is the low-lying modes that encapsulate the
In Fig. 1 we illustrate the spectrum Qfaveraged over the  interesting information within the full sum of E¢13) while
SESAM configurations, at lightest and heaviest sea quarkhe large modes are a nuisance because they add background
mass respectively, for which we plot the dependenci\@f  noise to the infrared signal. In order to turn this qualitative

oni. The ordering is chosen according to proposition into a quantitative statement we would need to
know the transition point between infrared and ultraviolet
IN|<|No|sN\g|l= ... . (11)  physics. For an approximate use of the spectral relation, Eq.

(13), we need a cunning technique to deplete the unwieldy

The upper(lowen line corresponds to the heavigtightesy ~ background.

sea quark mass of the SESAM sample. Their ratio, With this in mind let us take a heuristic approach and
I\i(lightest)/\;(heaviest) is plotted in Fig. 2 as a function of study the pattern of eigenvalue distributions as obtained from
i. It shows a rather steep rise fioe 100, which illustrates the the SESAM ensemble of vacuum configurations. To reach
growing importance of the lowest-lying modes in the spec-our goal, it is useful to order the spectrum and perform cer-
tral representation o %, Eq. (2), when decreasing the sea tain partial summations in Eq13):

quark mass. This feature should become even more pro- Letp; denote the positive antj the negative eigenvalues,
nounced for the imminent QCD simulations in the yet deeper

chiral regime,mps/my<0.5. N ={pitu{ni}, (14)

and let them be ordered such that:
lll. DETERMINATION OF Tr Q7!
) o P1SP,<ps<... (15
In the continuum limit, the complete trace Lo
[ni|<|n,|<|ngl< ... . (16)
Q=TrQ™* (12
In order to study convergence properties let us define the
following partial series:

i+k 1 k 1
th=> —+2> —, j=0 1
§ ()z’ﬂh ;ﬂh : 0
|
>
g,’ ' i+k 1 k 1
i tHh=> —+> —, j<0 (18
G i=1 Ny i=1P
2
©
o I=1j|+ 2k, (19
where, in obvious notation, the parameitdaibels the excess

04 1 1 1 1 1 . . e . .
0 50 100 150 200 250 300 numb_er of entries Wlth p03|t|vénega_t|ve) over the ones with
| : negative(positive eigenvalues. In Figs. 3 and 4 the values of
ndex of Eigenvalues ; . . .
t! are plotted for the index range 5<j<5, as obtained
FIG. 2. Same as Fig. 1, but plotted in terms of eigenvalue ratiosfrom one particular SESAM configuration at our lightest
[\i(0.1575)A;(0.1560), both ordered according to E(L1). available quark masg=0.1575. The partial sums appear to
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Yoo e s Ty - K
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G o . . + + < ——
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-150 1 L ! L ! N 1 1 ' ' !
2 4 6 8 10 12 0 50 100 150 200 250 300
# of Eigenvalues # of Eigenvalues
FIG. 3. Partial sums, according to Eq47) and (18), from a FIG. 4. Same as in Fig. 3. The full lines connect the enttigs,
particular SESAM configuration a¢=0.1575. with equal values of. The horizontal line corresponds to the value

t as defined in Eq(21).
exhibit a certain convergence pattern which is displayed in
Fig. 4, where we connected the points to giyeralues. oscillation for1>150 is a common feature for the entire
Alternatively, one might organize the summation in the SESAM sample and that with 300 eigenvalues one has al-
order of increasing moduli of the eigenvaly&sy. (11)], in-  ready passed the first extremum on the entire sample of
dependent of their signs, and define the truncated sums gauge fieldsU, we estimate that from the lowest-lying 300
eigenvalueg can be determined with an accuracy of 1%.

1 Next let us argue that the plateau valtj&)], provides us
S(I):Zl N 20 with an approximant for the complete trace, EtR):
The family of curves,F={t/(l)} provides a suitable frame- Q[U]~t[U]. (22

work to disclose the asymptotic behavior of this inverse ei-

genyalue summatiors_(l). This is. iIIu.strated, again for.the What is the deviation from the complete trace in our situa-
particular gauge configuration, in Fig. 5, where we displa

. . Ytion? In our range of quark masses, we can exclude zero-
the data points fos(1) in the range_isl<300. For referen_ce level crossings of eigenmodes. Therefore the ma@rigos-
we also show thegslowly narrowing band of the partial

. . . sesses an equal number of positive and negative eigenvalues.
sums,t!(1). Note that froms~ 150 onwards(l) in this par- q b g g

. , e Hence, when adding up alleigenvaluess(n) will lie on the
ticular configuration jumpsmostly between the two levels curve with superscript 0
t~3 andt~ 4. Moreovert 3 appears to be distinguished as
lying between the asymptotically falling set of curves with 0
j=—2 and the rising oneg=<—4. Q=s(n)=t'(n),
We found this scenario to apply to all configurations in
the sense that for each gauge figldl}, F contracts around Wwith
a particular partial suniP(l) that levels to a plateau value
beyondl ~ 150, withp depending on the choice of the gauge n=dim(Q). (23)
field [U].
Let us next quantify our observations and denote the
height of this supposed plateau withsetting

t:=tP(300). (21

Note thatt varies with the underlying gauge configuration
[U]. The question then arises how accurately we can extract ©
the actual plateau height. In order to appreciate the numerical ™~ -20
flatness of the plateau curve we pushed the eigenvalue com- (
putation to a number of 600 modes a single SESAM

configuration. In Fig. 6 we display the resulting plateau on a
magnified scale. Assuming that the apparent remaining weak

0 50 100 150 200 250 300

# of Eigenvalues
3To put it differently: the asymptotic distribution of eigenvalues is

characterized by alternating signs when proceeding according to the FIG. 5. Partial sum, showing for easll) the associatefisuch
order given by Eq(11). thats(l)=t!(l).
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150

o x=0.156
27 ] 100 |
-28 N
20 50 [
O .30 4 i o 0
= =
-31
8 -50
-32
3 -100 | 7¢
-34 L L ) s L -150 L L L ' L
0 100 200 300 400 500 600 0 50 100 150 200 250 300

# of Eigenvalues

FIG. 6. High resolution plot of? with 600 eigenvalues.

Thus TrQ ! is related to the plateau heighin the follow-

ing way:

p
o=t+ —.
Nl

The second term on the right-hand side measures the di§\;
tance betweer® andtP at|=n. It can be neglected with
respect to the error onitself, since|1/\,~.15 is approxi-

mately equal to the error df

Another justification for the validity of our approxima-
tion, Eq.(22), comes from our observation that different field
configurations[U,] yield equal results when plotted with
appropriate offset${U,], namely (t/(I)[U,]—t[U,]). This
is illustrated in Figs. 7 and 8 where we superimpose 10 sucn)
series forU,(r=1,...10): it strikes the eye that, fof
>150, the partial sums to the 10 gauge fieldscalllapse

onto a single, universalamily of curves:

tPr([U,]—t[U,]=t"Ps(1)[Ug] —t[Ug].

Hence there exists a set tf-independent functions!(l)
such that the following identity with respect tb applies:

# of Eigenvalues

FIG. 8. Functions as in Fig. 7, but for a heavier quark mass.

This pattern strongly supports the picture that on our con-
figurations the interesting physics with respect to the topo-
logical charge is indeed contained in the subset of the 150
smallest eigenvalues, while the remaining ones carry no in-
formation onQ.

We corroborate this result by considering 4 lattice
here we determined all 3072 eigenvalue€h quenched
QCD atpB=5.0. In Fig. 9 we plotted the corresponding par-
tial sumst’. Notice thattP (herep happens to be)dremains
absolutely flat after reaching its plateau value at around
=500.

A comparison of the values as produced by TEA with
the ones obtained in Ref30] from SET on the entirec
=0.1575 sample is shown in Fig. 10. The data points seem
scatter rather nicely around the bisecting line. While the
accuracy of the TEA results on individual configurations is
about 1%, the uncertainty of the SET estimates turns out to
be A 9~ *+50.

In Fig. 11 we present TEAnormalized Q values along
the Monte Carlo history of our SESAM sample at
=0.1575 and compare them to the result of the gluonic de-
termination after coolind30]. We reconfirm our previous
finding [29] that there is a close correlation between the glu-
onic and fermionic definitions of the net topological charge.

(29)

(29

tHPI(HIUT-t[u=t(1). (26)
200 Y 2 T T : r . ~
¥=0.1575
150 | | 15|
100 ‘ 1
50 _ 0.5 R i
9 o o of
[ / =
-50 72 05 f
-100 | At
-150 15t /
_200 2 ! L ! ) -2 L 1 L 1 /
0 50 100 150 200 250 300 0 500 1000 1500 2000 2500 3000

# of Eigenvalues

FIG. 7. Functions as in Fig. 4 for 10 gauge fields such that their

t-values are all equal to O.

# of Eigenvalues

FIG. 9. Pattern of partial serie on a quenched 4lattice at
B=5.0, which allows for a calculation of the entire spectrum.
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200
150 | Cw(At):<s_ aza_ t [Q X(sy,t,aq,81:S;, t+ A az,8,)
100 |
I('ITJ) 50 r XQ_l(szit+Atva25a2;Slit5alral)]>
E oOf U
= s} (27
o
= -100 | C,,,(At):C,T(At)—Nf<E Q(t)Q(t+At)> ,
-150 | ‘ u
-200 | with O(t) ==, .Q !(s,t,a,a;s,t,a,a) andN;=2 flavors.
-250 The coordinate is subdivided into a spatialand a temporal
-200 -150 -100 -50 O 50 100 150

partt. By introducing energy eigenfunctions one can show

that these correlation functions decay exponentially in time,
twith the particle mass being the decay consta{it)
~exp(—mAt). On a toroidal lattice however with temporal
extent T this exponential decay appears as a cdsft)
~exp(—mAt) +exp(m(At—T)). Local masses can be re-
trieved for every value ofAt by solving the implicit equa-
tions

In this section we wish to investigate the potential of
spectral methods in the computation of two-point hadronic
correlatord 32]. The question here is to what extent we can
verify low-lying eigenmode dominance for infrared physics,
specifically the ground states in particular hadronic channels.
In order to set the stage we shall first consider the octewith respect tom. Plateaus in the time dependence of the

pseudoscalar channel as we can easily compare to standdodal massesn(At) exhibit the masses of the particles.

pion correlator computations. We shall then elaborate on the
spectral approach to the singlet pseudoscalar propagator
which differs from the octet one by the two-loop correlator. ) )
The latter involves the computation of incomplete trace ex- 1N€ extension of the local mass plateaus can be increased
pressiong O(t) O(t+At)) and thus represents a quantity of by enhancing the overlap with the ground state correlation

Tr Q" from TEA

FIG. 10. Scatterplot comparing the results from TEA and SE
on all configurations ak=0.1575. The errorband is chosen such
that 67% of the data points lie within.

IV. HADRONIC TWO-POINT FUNCTIONS

C(At+1) _exp(— m(At+1))+expim(At+1-T))
C(At)  exp(—mAt)+exp(m(At—T))

(28)

B. Smearing

increased complexity.

A. Basics for mass determinations

Masses are extracted from the large time behavior of cor-

relation functionsC(t) that carry the quantum numbers of
the particles in question. The correlation functions of the
and then’ have the following form

5 Cooling ——
g { Fermionic

-2

Top. Charge

-4

-6

2000

3000 4000 5000
Monte Carlo History

6000

FIG. 11. Comparison of TEAs estimates of the topological

function. We follow Ref[33] and apply the smearing matrix
S=(F)¥, with

1+6l

3
+1 21 [Up (a;b) 8(n+ p;m)
=

F(n,a,a;m,B,b)= o(n,a,a;m,B,b)

+
+Unu

(a;b)o(n—pu;m)] |,
(29

choosingk=50 andl =4.
Source and sink smearing are readily accomplished by the
replacements

di— Y7 =Sy,

in the spectral propagator representation

(30

1 10, @,2) (g2, 8.0)
A (il )

Q;n%(n,a,a;m,ﬁ,b)=§i)
(31)

charge with the gluonic determination after cooling, on all SESAM  Throughout this section we will assume the eigenmodes

configurations at lightest quark mags=0.1575.

to be enumerated according to Edl).
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0.016 T 0.1 T T T T
¥=0.1575 standard method +--©--:
0.014 © TEA +-4-@
Fit
§ o012 5 k=0.1575
£ 2 =300
S 0.01 | £
c 2 001}
_5 0.008 .S
3 0.006 | 3
O 0.004  / o
0.002 | 0.001 |
0 L 1 1 - 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 0 5 10 15 20 25 30
# of Eigenpairs At
FIG. 12. Set ofm correlation functionC'(At) from TEA on FIG. 13. Comparison of ther correlation function as provided

local sinks and sources, plotted against the spectral cutoft by TEA with =300, with the one obtained from the standard
increases as one steps down from the top curve which refers t#ethod(solving linear systemson local sinks and sources.
At=0.
It is interesting to carry out a direct comparison of TEA

C. Pion correlator with the standard propagator as computed by linear solvers
on a local source, in order to see saturation occur in the
region of interest, see Fig. 13. We find good agreement in the
1 (¢i(t)|iﬂj(t))(tﬂj(HAt)llﬂi(t+At)> asymptotic regime, ¥At<25. We also show the fifit

The spectral representation ©f,(At) reads

C_(At)= i
~(At) IEJ:t By il l/ji><¢j|¢j> chg(is{rlifja)tig%:the data from the inverter to the usual cosh
E%)WUJAU, (32) CI(At)=Acostim, (At—T/2)]. (35)

where we suppressed the brackets that represents the averagd® Much more sensitive test of TEA is to look at local
over the gauge fields. effective masses. In Fig. 14 we compare, at the cutoff value

ForC,. no early saturation over the entitet-range can be =300, the TEA results. with the ones from standard propa-
expected, as one can see by integrating (88) gator anaIyS|s,. for the Ilght.est SESAM quark mass. The ef.-
fects of smearing and varying quark masses are displayed in
1 Fig. 15, again fol =300. As anticipated, we do observe a
> Cc.(At=, . (33)  clear tendency for improvement in the spectral approach
At TN with decreasing quark mass. Yet there remains a marked os-
cillatory behavior over the entire SESAM range of quark
Since all the contributions on the right-hand side of &) masses. Moreover we notice that smearing slightly improves
are positive the series is monotonically increasing.the signal.
Therefore—contrary to the case of the topological charge— A synopsis on the cutoff dependence mf{At) is pre-
neither cancellation effects nor early saturation can be exsented in Fig. 16, as obtained on a particular configuration at
pected in this global quantity. But what about the regime ofthe lightest quark mass. To avoid cluttering of the data we
infrared physics described by the correlator, i.e., its

asymptotic behavior in? 0.5 . e method o
Let us consider the truncated spectral correlator 0.45 o standan meTé’A bt
| 0.4
Co(Ah= 2 W(i,j,Ab). CUE ot I RPN ,
ij= 3 i
| £ ol R ERRREE §
In order to demonstrate the low-lying eigenmode dominance § 4, | a
at large time separations we present in Fig. 12 a family of S 045 | &
curves, CLT(At), for the various time slices\t, plotted ) 4
against the spectral cutoff, at the lightest SESAM quark 01T o “?_’é%s
mass. It is gratifying to find tha®' (At) for At=7 shows a 0.05 1 & -
. . . 0 1 1 1 L 1 1 1 1
flat behavior in the regimé>100. On the other hand for o 2 4 6 8 10 12 14 16

small time separations higher eigenmodes continue to
add—in accordance with the idea of excited state contami-
nations. FIG. 14. Local7 masses from TEA and the standard method.

At
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06 [ «0.156[L —a— oo ] 55x 10— - - : :
SS =300 5x 107 x=0.15758S |
0.5 | ¥=0.1575 LL »--¥- | |
B 88 x X ): x 45x 104 i
2 “a S 4x 10‘“‘ ]
[0)] 04 x '8 Iy
g “ S 35x10™ ]
] X A LE . I
> 03¢ VI g 3x10™ i
— g
3 02 | X a | 2 25x10™ ’\ |
Tl 8 % & 2x10““ MRS
* 1 Y ~
o1tp % 1 1.5x 107 gy o 1
% 1x101 M\!ﬂ!wvws, oo/ vy —
0 N N N N N L . . 15 ' ‘ . W. ‘ et
5x10
2 4 6 8 10 12 14 16 0 50 100 150 200 250 300

At # of Eigenvalues

FIG. 15. Local masses of the from TEA. LL are the un- FIG. 17. Set of two-loop function$'(At) on smeared sources

smeared _Ifﬁsukl]ts,. whterle?s SShStant(:]S for quead”ngf;t?:s S'Eks aQHd sinks plotted versus the cutbffAs in Fig. 12,At increases as
sources. The horizontal lines show the errorbands o ob-  he steps down from the top curve.

tained from the standard methgsblving linear systems

have spread out the different curves by means of the variable T(At) = 2 E i (BOlHM)
| ,;=60QAt+1. This survey plot is meant to convey an idea T TN (il
how the oscillation will dampen out with increasing cutbff

Thus we have demonstrated that in the sea quark mass XE i <‘/’J(t+At)|‘ﬂi(t+AU> 37)
regime of the SESAM configurations, there is insufficient T\ (Wil '
dominance of the low-lying eigenmodes to utilize TEA for a
sensible calculation of the mass.

where we suppressed again the brackets indicating the aver-
) age over the gauge fields.
D. »’-correlator Again we sumT(At) over At in order to learn about

Let us consider next the flavor singlet pseudoscalar chan-[EAS potential in the two-loop situation

nel with the ground state particle’. As described in Eq.
(27) C,, differs from C, by the two-loop correlator:

1 2
> T(At>:<2 ) : (39)
C,(At)=C,(At) —=N(T(At), (36) At TN
the spectral representation of which reads This is just the square of the “topological charge,” see Eq.
(13). Therefore we might expect TEA to work as well as in
04 Sec. lll.
| x=0.1575 We define the truncated two-loop correla®@rthrough
035 | . ///f ]
03t / P\ 1 0.004 . : : . ; .
" —F—F ' T T v “‘ -‘* -“ SET [ ]
2 025t ! 0.0035 | TEA vt
] m(3) 3 5
= 02 . . —
< n(2) 5 0.003 k50,1875 LL
g 015} 1 ‘g 0.0025
0.1 ( 1 ‘% 0.002
8
0.05 ] é 0.0015
0 e F 0.001
0 1000 2000 3000 4000 5000 6000 7000 8000 9000
# of Eigenmodes-+At *600 0.0005 s Bile
FIG. 16. The dependence of t_he local r_nasm@t) on the 0 6 5 1'0 1'5 2'0 2'5 3'0
spectral cutoff]<I,,,,=600, on a single configuration. Theaxis At
carries the parametdr,,=600At+1 with At=1,2,...,15. The
horizontal line shows the errorband of themass as obtained from FIG. 18. Two-loop correlatofEq. (37)], estimated with TEA
the standard metho@olving linear systems and SET, for the lightest quark mass and local sources and sinks.
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%=0.1575 LL —#=300 Local Masses
¥=0.1575 88 > 0.54
05 ¢ £=0.156 SS - k=016 88 —
v % ¥ 7L MASS -t | 7 oo |
, 045fa b % ¢ 1 0.52
@ hA i H
é 05 -
S 04}
3 0.48
S 035G
. 0.48
03 f 4
0.44 1
0.25 | . .
0.42
2 4 6 8 10 12
At
038 =0.1575 LL
FIG. 19. Localyp’ masses from TEA on locdLL) and smeared = T Mass ——A-—
(SS9 sources and sinks with ground state projection of its connected  0.36
piece (OLGA). For comparison ther mass as obtained from the
standard method is plotted. 034
0.32
(O ¢i(1)
Hao-3 5 L O1no)
TN (il 0.3
[
3 Lt alytaY) 0.28
T A (Wil ) ’
0.26
and plot in Fig. 17 the dependence®{At) on the cutoffl.
Contrary to the pion propagaté¢see Fig. 12, Fig. 17 indeed 0.38 . . : 575 5s
reveals good saturation of the spectral representation by the k=0 irﬁass o
low-lying eigenmodes over the enting-range. 0.36 r T
As a check for consistency we compare the local two-loop 0.34

correlators from TEA and standard SET at our lightest quark .
mass in Fig. 18. They are seen to agree very well within their s> [k
errors. Note that the TEA data show a much smoother be-
havior in At. Additional smearing for SET diminishes those 03
fluctuations. We notice that TEA and SET data bear errors of

equal size. We view this as an independent confirmation of 0.28 1 4

previous claims that the errors on th¢ mass from state of

the art SET analyses are dominated by gauge field noise . . s s s

[6,7]. 0 50 100 150 200 250 300
Next we come to the more stringent test: local effective # of eigenpairs

n'-masses. According to E@36), the »'-propagator is the

055 | SETxk=0.156SS >~  |300
SET x=0.1575 SS &
05 | TEASS -6
’ T Mass e
@ >o—o—p 1
@ 045|a S % XP . -
g I
04|
g ? b
b 1
3 o035 ® o
03 F .
025 (9 | , ) ) . ‘
2 4 6 8 10 12

FIG. 21. Dependence of the local’ massesm(At) for At
=1,2,...5 on thespectral cutoff.

difference of one- and two-loop corrrelatofs, andT. The

ground state contribution to the formeZ? , can be deter-
mined very accurately by the standard meth@asiterative
solvers known from the octet spectrufi22]. Hence, it ap-
pears very natural to replace the one-loop correlator by its
ground state componen§d(At), see Eq.(35). In the fol-
lowing, we perform a “one-loop ground-state analysis”
(OLGA) by the extraction of local massesy, (At), from

the combination

C,/(At)=CI(At)—NT(AL). (40)

FIG. 20. Comparison of the local OLGA' masses from TEA
and from stochastic estimations on smeared sources and sinks. The results are presented in Fig. 19, both for the lightest
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Local Masses 0.15 T T T T T T
052 f
1 x=0.156
05| 1 =300
N 0.1 .
0.48 _\.ﬁ— * -1- »
046 [ ¥ ~. ¥ X X -
s ® Pk i
0.44 | ¥ i
¥ i 0.05 .
042 . X
* |
04 ¢ Q>2.8 —— ) ;
L all Q > ; : i
038 I Qe2.0 ¥ X 0 .
036 | T MAass - d-
05 . . . T . :
Q>|?'c5) — -0.05 .
a s.....)(. -t
045 § Q<15 [
T MASS + bt .
04| 1
J[ o -0.1 .
0.35 | o4 1
TEEEEE
08 [EE R R ggpp]
E x X X x ‘ : : : -0.16 1 1 1 1 1 1 1
025 | * | 0 0.020.040.060.08 0.1 0.120.14
. x .
k=0.1575 x4 - Iox . .
02 | 1=300 X % x 7| FIG. 24. The 600 calculated eigenvaluesvthat enter Fig. 23.
' . . . . . . The curve represents a circle around the origin.
2 4 6 8 10 12
At As yet another test on systematic errors we plot in Fig.

FIG. 22. Dependence of the local OLGK mass on the topo- 2_1—again for Ioc_al and smeared wave functions and the
logical charge works similarly well for the lightest and heaviest sea‘“ghtest and heaviest quark masses—the dependence of the
quark mass of SESAM. ocal massesn,(At) from '_I'EA on the spec_tral cutoff It
appears that the systematic errors from this cutoff are well
and heaviest sea quark masses of SESAM, with and withoutnder control, once we truncate the spectral representation
smearing. We find striking plateau formation from the verywith =150 and higher. Furthermore the data appear to sup-
first time slice onwards. port the idea that TEA improves when decreasing the quark
As a consistency check and first test of the synthetic dataass.
approach, Eq(40), we compare the local effective masses Finally we address the question of to what extent #fie
from TEA and SET in Fig. 20. The data points are seen tanass is influenced by the topological content of the configu-
agree very well with each other, the TEA points beingrations. By applying the cuts iQ, we subdivide the gauge
slightly less fluctuating. The horizontal lines in Fig. 19 andfield ensemble for the twa-values into two subsets each,

20 refer to the fitted plateau values for thé masses. with Q determined as described in Sec. Ill. The cuts are
chosen such that each subset consists of about 100 configu-
0.1 = ' ' " T M 2 rations. The results from OLGA can be seen in Fig. 22. They
) standard method ---©-@ clearly confirm the previous finding,30], that topologically
sa, D nontrivial gauge configurations are the origin for the large
s ®a, x=0.1575 2® mass[34,35.
2 a =600 a2
c ®© AA AA ©
c 00y ° tessansnsssst® © V. DISCUSSION AND SUMMARY
o
";g' ° o We have presented and validated a method to compute
5 ® o2 fermion loops from the low-lying eigenmodes of the Hermit-
© ® ® ian form, Q= ysM, of the standard Dirac-Wilson matri¥/,
0.001 | ®o © ®®® 1 in accordance with the expectation that these modes contain
%02 the essential physics associated with topological fluctuations.

Our truncated spectral approa€iEA) to Q1 is viable in

the sense that it renders satisfying results in the quark mass
FIG. 23. Pion correlation function from TEA with 600 eigen- '€gime of state-of-the art full QCD simulations like SESAM

modes ofM on one configuration fo=0.1575. One observes OnN the basis of)(100) modes only. TEA has been verified

strong deviations from the standard propagéimm linear solvers  both with respect to the topological charge and the two-loop

determined on the entire gauge field ensemble. correlator entering the’ propagator.

0 5 10 15 20 25 30
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FIG. 25. Pion correlation function from TEA fovl andQ on a
quenched 4 lattice at3=5.0. The plot is analogous to Fig. 12.

The early onset of saturation for T ! could be at-

PHYSICAL REVIEW D64 114509

lov solvers used within stochastic estimator algorithms
which will suffer in convergence rate.

Let us finally comment on the viability of the spectral
approach applied tM instead ofQ. To this end we compare
in Fig. 23 the pion correlation function as determined from
600 low-lying eigenmodes dfl, see Fig. 24, with the one
obtained from the standard meth@blving linear systems
Obviously, for the case of=0.1575 which corresponds to a
pion mass of the order of 730 MeV, the chosen low-lying
modes ofM contain less information about this function than
the eigenmodes d@. In order to trace down this discrepancy
betweenM and Q we also carried out a full diagonalization
on a quenched“4lattice at3=>5.0 for the two cases. In Fig.
25, we plotted the resulting ,(At) versus the cutoff. While
Q again shows a quite stable behavior similar to Fig. 12, the
spectral approximation foM yields a very ragged cutoff
dependence that requires all 3072 eigenmodes for a satisfac-
tory representation of the correlator. We conclude that the

tained by proper ordering and subsequent partial summdigenmodes oM, being nonorthogonal, suffer interferences
tions, configurationwise adapted to achieve cancellationdmong each other. Thus, for thé test case and for the sea
from positive and negative eigenvalues. In this way the bulkjuark masses used in the SESAM configurations, we have
of the higher mode contributions were shown to vanish. Fof'ot been able to identify a limited number of dominating
the case of they’ an early plateau formation of the local elgenmod_es. _
masses could be obtained by ground state projecting the con- A detailed analysis of the;” mass, based on OLGA and
nected piece of its propagator. additional SET data, will be presented in a forthcoming pa-
We confirm previous results in the intermediate quarkier [36].
mass regime that the actual bottleneck in increasing accuracy
of loop estimates is given by the gauge field noise, i.e., by
the present limitation in ensemble sizes of QCD vacuum
configurations. The bulk of computations for this project was carried out
We found that the amount of work, i.e., the number ofat NIC/Jilich and NERSC/Livermore. We thank the staff of
matrix vector multipliesN™™, needed per configuration in both centers for their support. Complementary analysis was
TEA compared to SET6] for the lightest SESAM quark carried out on the 128 node cluster ALICE with the support
mass is roughly in the same ballp&rKhis looks promising of the DFG project Li701/3-1. H.N. thanks G. Bali, I. Hip, B.
for the upcoming era of Teracomputing, where we shall deaDrth, W. Schroers, T. Struckmann, and P. Ueberholz for dis-
with larger lattices and smaller quark masses. The reason isussions and support. The hybrid Monte C&ittMC) pro-
that the Arnoldi method does not lose efficiency when enterductions were run on the APE100 systems at INFN Roma
ing deeper into the critical chiral regime, in contrast to Kry- and NIC Zeuthen. We are grateful to our colleagues G. Mar-

ACKNOWLEDGMENTS

tinelli and F. Rapuano for the fruitful ¥ L-collaboration.
This work was supported in part by the U.S. Department of

“4Actually the ratioNT2T/NTuT=1.5 when using 300 stochastic Energy (DOE) under cooperative research agreement #DE-

SET ™
source vectors and 300 eigenmodes.

FC02-94ER 40818.

[1] F. Jegerlehneet al., ECFA/99/200, 1999.

[2] UKQCD Collaboration, C. McNeile and C. Michael, Phys.

Rev. D63, 114503(2001).

[3] M. Okawa, Nucl. Phys. BProc. Supp). 47, 160(1996.

[4] SESAM Collaboration, S. Gken et al, Phys. Rev. D59,
114502(1999.

[5] CP-PACS Collaboration, A. A. Khamt al, Nucl. Phys. B
(Proc. Supp). 83, 162 (2000.

[6] SESAM Collaboration, T. Struckmaret al., Phys. Rev. D63,
074503(2002).

[7] UKQCD Collaboration, C. McNeile and C. Michael, Phys.

Lett. B 491, 123(2000.
[8] K. Bitar et al, Nucl. Phys.B313 348(1989.

[9] S. J. Dong, J. F. Lagae, and K. F. Liu, Phys. Rev. L&8.
2096(1995.

[10] SESAM Collaboration, N. Eickest al, Phys. Lett. B389, 720
(1996.

[11] UKQCD Collaboration, C. Michael and J. Peisa, Nucl. Phys. B
(Proc. Supp). 60A, 55 (1998.

[12] W. Wilcox, in Frommeret al. [37], Proceedings of the Inter-
national Workshop, University of Wuppertal, 1999,
hep-lat/9911013.

[13] SESAM Collaboration, J. Viehofét al, in Lattice '97, edited
by C. T. H. Davieset al, Proceedings of the XVth Interna-
tional Symposium on Lattice Field Theoiigdinburgh, Scot-
land, 1997[Nucl. Phys. B(Proc. Supp). 63, 269 (1998 ].

114509-11



NEFF, EICKER, LIPPERT, NEGELE, AND SCHILLING PHYSICAL REVIEW B4 114509

[14] UKQCD Collaboration, C. Michael and P. Pennanen, Phys. problems, 1996, http://www.caam.rice.edu/software/ARPACK.

Rev. D60, 054012(1999. [26] G. H. Golub and C. F. V. LoarMatrix Computations3rd ed.
[15] T. L. Ivanenko and J. W. Negele, Nucl. Phys(Broc. Supp). (Johns Hopkins University Press, Baltimore, 1996
63, 504 (1998. [27] M. F. Atiyah and I. M. Singer, Ann. MatH3, 119(1972.

[16] I. M. Barbouret al, The Recursion Method and its Applica- [28] J. Smit and J. C. Vink, Nucl. Phy&286, 485 (1987).
tions Solid State Sciences Vol. 5&pringer, Berlin, 1985 p. [29] B. Allés et al, Phys. Rev. 058, 071503(1998.

149. [30] SESAM Collaboration, G. S. Baléet al, Phys. Rev. D64,
[17] R. Setoodeh, C. T. H. Davies, and I. M. Barbour, Phys. Lett. B 054502(2001).

213 195(1988. [31] H. Neuberger, in Frommest al. [37], Proceedings of the In-
[18] L. Venkataraman and G. Kilcup, hep-lat/9711006. ternational Workshop, University of Wuppertal, 1999,
[19] K. Janseret al, Nucl. Phys. B(Proc. Supp). 53, 262 (1997). hep-lat/9910040.

[20] R. Narayanan, Nucl. PhygProc. Supp). 73, 86 (1999. [32] T. DeGrand and A. Hasenfratz, Phys. Rev. @3, 034512
[21] A. Duncan, E. Eichten, and H. Thacker, Nucl. Phys(FBoc. (2001).
Suppl) 83, 449 (2000. [33] S. Gisken, Nucl. Phys. BProc. Supp). 17, 361 (1990.
[22] SESAM Collaboration, N. Eickeet al, Phys. Rev. D59, [34] E. Witten, Nucl. PhysB156, 269 (1979.
014509(1999. [35] G. Veneziano, Nucl. Phy®159, 213(1979.
[23] K.  Maschhoff, Parallel Arnoldi method, http:// [36] H. Neff et al. (unpublishegl

www.caam.rice.eduf kristyn/parpack_home.html [37] Numerical Challenges in Lattice Quantum Chromodynamics
[24] C. Gattringer and I. Hip, Nucl. Phys. @roc. Supp). 73, 871 edited by A. Frommeet al,, Lecture Notes in Computational

(1999. Science and Engineerin@pringer Verlag, Heidelberg, 2000
[25] R. J. Radke, avaTLAB implementation of the implicitly re- Proceedings of the International Workshop, University of

started Arnoldi method for solving large-scale eigenvalue Wuppertal, 1999.

114509-12



