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Light quark masses with overlap fermions in quenched QCD

L. Giusti, C. Hoelbling, and C. Rebbi
Department of Physics, Boston University, 590 Commonwealth Avenue, Boston, Massachusetts 02215

~Received 7 August 2001; published 9 November 2001!

We present the results of a computation of the sum of the strange and average up-down quark masses with
overlap fermions in the quenched approximation. Since the overlap regularization preserves chiral symmetry at
finite cutoff and volume, no additive quark mass renormalization is required and the results areO(a) im-
proved. Our simulations are performed atb56.0 and volumeV5163332, which correspond to a lattice cutoff
of ;2 GeV and to an extension of;1.4 fm. The logarithmically divergent renormalization constant has been
computed nonperturbatively in the RI/MOM scheme. By using theK-meson mass as experimental input, we

obtain (ms1m̂)RI(2 GeV)5120(7)(21) MeV,which corresponds toms
MS(2 GeV)5102(6)(18) MeV if

continuum perturbation theory andxPT are used. By using the Gell-Mann–Oakes–Renner relation we also

obtain^c̄c&MS(2 GeV)/Nf 520.0190(11)(33) GeV352@267(5)(15) MeV#3, where the errors are statis-
tical and systematic respectively.

DOI: 10.1103/PhysRevD.64.114508 PACS number~s!: 11.15.Ha, 12.38.Gc, 14.40.Aq
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I. INTRODUCTION

Quark masses are fundamental parameters of the stan
model which cannot be measured directly by experime
since quarks are confined into hadrons. If defined as effec
couplings in the Lagrangian, their values can be determi
by comparing a theoretical calculation of a given physi
quantity ~sensitive to quark masses! with the corresponding
experimental value. As a consequence quark masses de
on the renormalization scheme and scale, as well as on
fundamental action.

At present the most precise values of light-quark m
ratios ~which are scheme and scale independent for m
independent renormalization schemes! are extracted by com
paring K- and p-meson mass ratios with predictions fro
chiral perturbation theory (xPT) @1#. A detailed analysis
gives @2#

mu

md
50.55360.043,

ms

m̂
524.461.5 ~1!

wherem̂5(mu1md)/2. The absolute scale cannot be fix
by xPT. It can be determined by comparing non-perturbat
lattice QCD computations@3–15# or phenomenological esti
mates@16,17# with experimental results.

In the last few years much effort has been devoted wit
the lattice community to obtain a precise determination
the light quark masses in the quenched approximation. M
improvements came with the use of nonperturbative~NP!
renormalization techniques for renormalizing the bare qu
masses and with the implementation ofO(a) improved ac-
tions and operators@7,9,10,14# ~for a recent review see@18#!.
First results from unquenched simulations have also b
reported@8,15,18#.

In this paper we present the results of the first fully no
perturbative computation of (ms1m̂) with overlap fermions.
In this fermionic regularization, flavor and chiral symmetri
are preserved at finite lattice spacing and finite volume. A
consequence no additive quark mass renormalization is
0556-2821/2001/64~11!/114508~9!/$20.00 64 1145
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quired and no parameters have to be fine tuned in orde
computeO(a) improved masses and matrix elements.
avoid uncertainties due to lattice perturbation theory,
compute the logarithmic divergent renormalization const
non-perturbatively in the RI/MOM~momentum subtraction!
scheme@19#. By comparing the experimentalK-meson mass
with the value obtained in our simulations and after a care
analysis of the systematic uncertainties we find as our m
result

~ms1m̂!RI~2 GeV!512067621 MeV. ~2!

This value corresponds to

ms
MS~2 GeV!510266618 MeV ~3!

if next-to-next-to-leading order~NNLO! continuum pertur-
bative results and Eq.~1! are used.

We also report results for the chiral condensate^c̄c&
which we compute from the Gell-Mann–Oakes–Renn
~GMOR! relation. Our best determination is

1

Nf
^c̄c&RI~2 GeV!520.016760.001060.0029 GeV3

~4!

which corresponds to

1

Nf
^c̄c&MS~2 GeV!520.019060.001160.0033 GeV3

52@26765615 MeV#3. ~5!

We have also computed the chiral condensate directly. E
if it requires a severe chiral extrapolation, the direct deter
nation gives results consistent with Eqs.~4! and ~5!.

The first error in Eqs.~2!–~5! represents the statistica
error, obtained with the jackknife method. The second er
represents our estimate of systematic effects. It should
noted that, while the systematic error due to quenching al
~defined as the quenching error in the limit of zero latti
©2001 The American Physical Society08-1
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spacing and infinite volume! should be the same in all fer
mionic regularizations, discretization errors do depend on
fermionic lattice action and are likely to be smaller in t
overlap formulation because of its good chirality properti
The very good agreement of our results with the current
tice world averages@18# provides further confirmation tha
the overlap formulation is a suitable regularization for larg
scale phenomenological computations.

This paper is organized as follows: in Sec. II we set o
notation and define the renormalized quark masses and c
condensate in the overlap regularization; in Sec. III we g
details about the simulation and some of the results for
meson masses and matrix elements; in Sec. IV we pre
our main results and discuss their systematic errors; Sec.
devoted to our concluding remarks.

II. QUARK MASSES AND CHIRAL CONDENSATE WITH
THE OVERLAP ACTION

The QCD lattice action in the overlap regularization rea
@20#

S5
6

g0
2 (

P
F12

1

6
Tr@UP1UP

† #G1c̄F S 12
1

2r
aM DD1M Gc

~6!

where, in standard notation,UP is the Wilson plaquette,g0

5A6/b is the bare coupling constant,c andc̄ carry implicit
color, spin and flavor indices, andM is a diagonal matrix of
bare masses (m1 ,m2 , . . . ) in flavor space. D is the
Neuberger-Dirac operator defined as

D5
r

a
~11V!5

r

a S 11X
1

AX†X
D

X5DW2
1

a
r ~7!

where

DW5
1

2
gm~¹m1¹m* !2

r

2
a¹m* ¹m ~8!

is the Wilson-Dirac operator, 0,r<1 and 0,r,2r . In our
calculations we usedr 51. ¹m and ¹m* in Eq. ~8! are the
forward and backward lattice covariant derivatives, defin
by

¹mc~x!5
1

a
@Um~x!c~x1am̂ !2c~x!#, ~9!

¹m* c~x!5
1

a
@c~x!2Um

† ~x2am̂ !c~x2am̂ !#

~10!

whereUm(x) are the lattice gauge links. The fermionic o
erator of the overlap action satisfies the Ginsparg-Wilson
lation @21#
11450
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g5D1Dg55
a

r
Dg5D, ~11!

which implies an exact continuous symmetry of the action
the massless limit@22#. This symmetry may be interpreted a
a lattice form of chiral invariance at finite cutoff

dc5ĝ5c, dc̄5c̄g5 ~12!

whereĝ5 is defined as

ĝ55g5S 12
a

r
D D ~13!

and satisfies

ĝ5
†5ĝ5 , ĝ5

251. ~14!

The anomaly is recovered from the variation of the meas
under the rotations in Eq.~12! @22,23#.

The invariance of the action under non-singlet chi
transformations, defined including a flavor group genera
in Eq. ~12!, forbids mixing among operators of differen
chirality @24# and therefore:

No additive quark mass renormalization is required. T
quark mass which enters the vector and axial Ward identi
is the bare parameterm(a) in the action of Eq.~6!.

Masses and matrix elements are affected only byO(a2)
discretization errors. No fine tuned parameters are requ
to removeO(a) effects.

The chiral condensate does not require subtractions
power divergent terms~in the chiral limit!.

The renormalized quark mass is defined as

m̄~m!5 lim
a→0

Zm~am!m~a! ~15!

where Zm(am) is a logarithmically divergent renormaliza
tion constant which has to be fixed, for a given scalem, in a
given renormalization scheme. It is worth noting that even
m(a) is the bare parameter which enters the fundame
action in Eq.~6!, its relation to a given experimental result
fixed by a non-perturbative lattice QCD calculation a
therefore its value is determined up toO(a2) terms only.

The bare chiral condensate is defined as

x~a![ lim
m→0

1

Nf
K c̄~0!F S 12

a

2r
D DcG~0!L ~16!

where m is a common mass given to the light quarks.
satisfies the integrated non-singlet chiral Ward identity

1

Nf
K c̄~0!F S 12

a

2r
D Dc G~0!L 5m(

x
^P~x!Pc~0!&

~17!

where

P~x!5c̄1~x!g5F S 12
a

2r
D Dc2G~x! ~18!
8-2
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Pc~x!5c̄2~x!g5F S 12
a

2r
D Dc1G~x! ~19!

correspond to the non-singlet pseudoscalar density with
generate quarks (m15m2) and its conjugate. For non-zer
mass the chiral condensate is still divergent and it behave

1

Nf
K c̄~0!F S 12

a

2r
D DcG~0!L 5x~a!1bx

m~a!

a2
,

~20!

where we have taken into account that chiral symme
forces the coefficient of the linear divergence to be zero.

By writing the correlation function̂ P(x)Pc(0)& as a
time-ordered product and by inserting a complete set
states in standard fashion we can also write

x~a!52 lim
m→0

m

M P
2

u^0uPuP&u2, ~21!

whereM P is the mass of the pseudoscalar stateuP&. If we
use

2mu^0uPup&u5 f PM P
2 ~22!

where f P is the corresponding pseudoscalar decay const
we arrive to the familiar GMOR relation

x~a!52 lim
m→0

f P
2 M P

2

4m
. ~23!

The renormalized chiral condensate is defined as

1

Nf
^c̄c&~m!5 lim

a→0
ZS~am!x~a! ~24!

whereZS(ma) can be chosen to be the renormalization co
stant of the corresponding non-singlet scalar density wh
thanks to the flavor symmetry, satisfiesZS(ma)51/Zm(ma).
In principle ZS(ma) can be computed in perturbation theo
@25,26#, but uncertainties due to higher order terms can
avoided using non-perturbative renormalization procedu
@19,27,12#. The implementation of the RI/MOM techniqu
@19# is straightforward in the overlap regularization, and
allows one to computeO(a) improved renormalization con
stants for generic composite operators. In the following
will use the numerical value ofZS

RI(ma) we have obtained in
Ref. @28# ~for an alternative approach see Ref.@29#!.

III. NUMERICAL DETAILS

We performed our simulation in quenched QCD withb
56.0 andV5163332. We used a sample of 54 gauge co
figurations, generated with the standard Wilson gluonic
tion of Eq.~6!, which we retrieved from the repository at th
‘‘Gauge Connection’’@30#. We computed overlap propaga
tors from a local source for bare quark massesma
50.040,0.055,0.070,0.085,0.100 andr51.4 ~and, as already
mentioned,r 51.0). For the calculation of the propagator
11450
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we used an optimal rational approximation to the sign of
Hermitian Wilson operator, as proposed in Refs.@31,32#, af-
ter explicit evaluation of the contributions from the lowe
eigenvectors ofX†X, and nested multi-conjugate gradient i
versions. Details of the numerical implementation will b
presented in Ref.@28#. From the propagators, we compute
in the standard manner the two-points correlation functio1

GSS~ t !5(
x

^S~x,t !Sc~0,0!& ~25!

GPP~ t !5(
x

^P~x,t !Pc~0,0!& ~26!

G¹AP~ t !5(
x

^¹̄0A0~x,t !Pc~0,0!& ~27!

where P(x,t) and Pc(x,t) have been defined in Eqs.~18!
and ~19!,

S~x!5c̄1~x!F S 12
a

2r
D Dc2G~x! ~28!

Am~x!5c̄1~x!gmg5F S 12
a

2r
D Dc2G~x!,

~29!

Sc(x) is defined analogously to Eq.~19! and¹̄0 denotes the
symmetric lattice derivative in the time direction. To improv
statisticsGSS(t) andGPP(t) have been symmetrized aroun
t5T/2 (T5Nt532). We estimated the errors by a jackkni
procedure, blocking the data in groups of three configu
tions, and we checked that blocking in groups of differe
size did not produce relevant changes in the error estima
In the first plot of Fig. 1 we show the ratio

r~ t ![
G¹AP~ t !

GPP~ t !
~30!

as a function oft for all simulated masses. Oncer has been
fitted to a constant in the time intervalt1–t255 –27, a qua-
dratic fit of the results

~ar!5Ar1Br~am!1Cr~am!2 ~31!

gives2 ~see the second plot in Fig. 1!,

Ar520.00002~7! Br51.286~3! Cr50.277~12!
~32!

where the quoted errors are statistical only. Note that
intercept is compatible with zero. This should not come a

1Analogous correlation functions have been computed by the
thors of Ref.@33#. A direct comparison with our results is not po
sible because we used different simulations parameters.

2From the coefficientBr one can derive the value of the renorma
ization constantZA of the ‘‘local’’ axial current. A detailed analysis
will be presented in Ref.@28#.
8-3
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FIG. 1. Left: G¹AP /GPP vs. t for all masses which have been simulated. Right: (ar), obtained by fitting the data in the plot at left, a
a function of the bare quark mass. The dashed line represents the result of a quadratic fit~see text!.
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surprise since, even ifAm(x) is not the conserved current,
has the correct behavior under global non-singlet ch
transformations.

In the quenched approximation the contribution of ex
chiral zero modes of the Neuberger-Dirac operator is
suppressed by the fermionic determinant. In some correla
functions, this can give rise to large quenched artifacts
small masses. For example it is easy to show thatGPP(t)
receives from the unsuppressed zero modes contribut
proportional to 1/m2 and 1/m, which should vanish in the
infinite volume limit, but can be quite sizable for finite vo
ume. A clever way to avoid such artifacts has been propo
by the authors of Ref.@34#, who noticed that the zero mode
because of their chirality properties, contribute equally to
GPP and GSS correlation functions, so that their contribu
tions cancel in the difference

GS2P~ t !5GPP~ t !2GSS~ t ! ~33!

which can also be used to extract the pseudoscalar m
mass and decay constant, since the contributions from
heavier scalar mesons fall off faster. The drawback is,
course, that the plateau in the effective mass and, co
spondingly, the range that can be used for the cosh fit
come shorter. Nevertheless we found the plateau in theGS2P
11450
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to be long enough to permit a meaningful fit. We fitte
GS2P(t) to a single particle propagator with a cosh depe
dence ont,

GS2P~ t !5
ZS2P

aMP
expS 2

1

2
aMPTD coshFaMPS T

2
2t D G

~34!

in the time intervalt1–t2512–16. The lower limit was fixed
at the point where we found stabilization of the effecti
meson masses. The results of the fits are also given in T
I and an example of the effective meson mass fromGS2P(t)
is shown in first plot of Fig. 2. We also performed a two co
fit of GS2P(t) finding consistent results.

We have also fitted the correlation functionsGPP(t) to a
single particle propagator with a cosh dependence ont, as in
Eq. ~34!, in the time intervalt1–t2510–16. As before the
lower limit is fixed as the point at which the values of th
effective meson masses become stable. We report our re
in Table I and in the second plot of Fig. 2 we give an e
ample of the effective meson mass as extracted fromGPP(t).

We illustrate in Fig. 3 the values for (aMP)2, obtained
from GS2P(t) and GPP(t), as a function of the bare quar
massam. In both cases a linear behavior
simula-
TABLE I. Mesons masses and matrix elements for all the bare quark masses considered in the
tions, as obtained fromGPP(t) andGS2P(t).

am GS2P GPP

ZS2P aMP a fP ZPP aMP a fP

0.100 0.0040~4! 0.379~6! 0.089~2! 0.0042~3! 0.382~3! 0.089~2!

0.085 0.0036~4! 0.348~6! 0.085~2! 0.0039~3! 0.352~4! 0.085~2!

0.070 0.0033~4! 0.315~7! 0.081~2! 0.0036~3! 0.321~4! 0.081~2!

0.055 0.0030~5! 0.280~9! 0.076~2! 0.0034~3! 0.287~5! 0.077~2!

0.040 0.0026~5! 0.239~11! 0.071~2! 0.0032~4! 0.250~7! 0.073~2!
8-4
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FIG. 2. Left: A representative example (am50.070) of the effective mass fromGS2P(t). Right: as at left but fromGPP(t).
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~aMP!25AM P
1BM P

~am!, ~35!

fits very well the data with

AM P
520.0005~68! BM P

51.43~7! ~36!

for the masses obtained fromGS2P(t) and

AM P
50.006~4! BM P

51.39~3! ~37!

for those obtained fromGPP(t). We see that the paramete
of the two fits are compatible and that both intercepts van
within statistical errors. In particular, one does not notice a
sign of the singular contributions from zero modes in t
masses obtained from the pseudoscalar correlation funct
These are expected to show up at some point, but one w
probably need much higher statistical accuracy and lo
values ofm to bring them into evidence.

Contrary to the pseudoscalar masses, the results for
matrix elements, parametrized as in Eq.~34! by the factors
ZS2P andZPP for GS2P(t) andGPP(t), respectively, show
more significant differences. In Fig. 4 we reproduce the
11450
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sults we obtained forZS2P and ZPP respectively. We see
that, while ZS2P exhibits a linear behavior as function o
am, the graph forZPP shows a clear indication of curvature
Linear fits of the form

Zi5Ai1Bi~am! ~38!

give

AS2P50.0016~7! BS2P50.024~6! ~39!

APP50.0025~4! BPP50.016~3!. ~40!

Within the quite large statistical errors, the intercept and
slope obtained fromGS2P(t) are still compatible with those
derived fromGPP(t). However the central values are qui
different. If we interpret the curvature in the graph ofZPP as
due to pole terms from the zero modes and try a simple fi
the form

ZPP5APP1BPP~am!1
DPP

am
, ~41!
FIG. 3. (aMP)2 vs. am as obtained fromGS2P(t) ~left! andGPP(t) ~right!. The dashed lines represent the results of a linear fit.
8-5
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FIG. 4. Left:ZS2P vs. (am); the dashed line represents the result of a linear fit. Right:ZPP vs. (am); the dashed line represents a fit
the form of Eq.~41!.
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we obtain

APP50.0014~3! BPP50.024~2! DPP50.000035~16!.
~42!

Now thex2/d.o.f. of the fit turns out to be much smaller an
the central values of intercepts and slope parameters fo
fits of ZS2P andZPP are much closer. The fact that the cu
vature shows up only in the results forZPP points to the fact
that what we are seeing is the effect of the unsuppressed
modes, and not of chiral logarithms which would affect bo
sets of results~and would most likely become noticeable
much smaller values ofam). On account of the above, w
will use GS2P(t) to derive our further results. It must also b
said that some of the observables will be calculated dire
at m.ms/2 ~see below!, and for these observables the diffe
ence betweenZPP andZS2P is irrelevant within our statisti-
cal error.

FIG. 5. The procedure used to derivea fK and aMK . The
dashed and dashed-dotted lines represent fits to our numerica
sults. The solid line represents the curve (a fP)5Csl(aMP), where
the coefficientCsl5 f K

exp/MK
exp.
11450
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The pseudoscalar decay constant is defined through
~22! and we calculated its value directly from the paramet
extracted from a cosh fit toGS2P(t):

a fP52~am!
AZS2P

~aMP!2
. ~43!

The values we obtained fora fP in correspondence to eac
simulated mass are reproduced in Table I@where we also
reproduce the values derived fromGPP(t)# and are shown in
Fig. 5. The dashed and the dot-dashed lines show the re
of a linear and a quadratic fit in (aMP)2, respectively. The
data slightly favors a quadratic fit, but our statistical acc
racy is insufficient to rule out a linear fit as inconsistent w
the data. It is interesting to observe, though, that we ob
f K / f p.1.14 and.1.23 from the linear and quadratic fits
respectively, with the results from the quadratic fit in mu
better agreement with the experimental value.

Starting from our values forM P and f P , we fix the lattice
spacinga21 and the physical meson masses by using
method of ‘‘lattice physical planes’’@5#. This avoids recourse
to a chiral extrapolation for observables where it is not rea
needed. In the plane@a fP ,(aMP)2#, we plot our lattice data
as well as the curve (a fP)5Csl(aMP) ~the solid line in Fig.
5!, where the coefficient of proportionalityCsl (sl for
strange-light! is fixed by the experimental value for the rat
f K

exp/MK
exp.3 The point where the two lines meet determin

a fK as well asaMK . Since our statistical accuracy does n
allow us to discriminate between a linear and quadratic fi
the data fora fP vs. (aMP)2, we just use the linear fit for the
tiny extrapolation to the ‘‘kaon’’ point~see Fig. 5!. Our re-
sults are

aMK50.216~8!, a fK50.0698~26!. ~44!

3Throughout the paper we use the following experimental nu
bers: MK

exp5495 MeV, f K
exp5160 MeV. We neglect the experi

mental errors which are well below our statistical and system
errors.

re-
8-6
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~A quadratic fit produces a result which differs from th
above by far less than the statistical errors.! To set the lattice
spacing we compare the value ofa fK with its experimental
value and we get

af K

2152.29~9!. ~45!

This is the value of the lattice spacing we will use through
the paper. Again we stress that up to this stage we did
have to perform any chiral extrapolation, but derived
physical information, staying close to the region of qua
masses used in the actual calculations.

From our data, we can also compute the chiral conden
by using the GMOR relation of Eq.~21!. In Fig. 6 we show
the quantity

a3xm52~am!
ZS2P

~aMP!2
, ~46!

as a function of the bare quark mass. The data exhibit v
good linear behavior and a linear fit leads to

a3x520.00117~27!. ~47!

We performed also a quadratic fit to the data, obtainin
result consistent with zero for the coefficient of the quadra
term, but with an error twice as large in the intercept beca
of the additional degree of freedom. Therefore we conclu
that we see no indication for a quadratic term in the fit with
our statistical error.

The chiral condensate can also be computed directly f
Eq. ~16!. However, away from the chiral limit, the r.h.s. o
that equation contains power divergent terms@in a21, see
Eq. ~20!# and, in the quenched approximation, infrared div
gent contributions~in m) due to the unsuppressed ze
modes. Therefore quite a severe extrapolation from
simulated data is needed to determine its chiral value. O
can take advantage, though, of a computational stra
similar to that used in Eq.~33!. To remove the contribution
due to unsuppressed zero modes, we subtract the sc

FIG. 6. The data used to derive the chiral condensate from
GMOR relation.
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scalar correlation function from the r.h.s. of Eq.~17!. From a
quadratic fit in the quark mass we obtain

a3x~a!520.00117~42! ~48!

which is in remarkable agreement with Eq.~47!. Of course,
the larger error is an indication of the difficulty of the e
trapolation. Larger statistics and a careful treatment of
zero mode contributions would be needed to obtain m
reliable and precise results by the direct method.

IV. PHYSICAL RESULTS

In this section we will use our lattice results to infer th
renormalized values of the sum of the strange and ave
up-down quark masses and of the chiral condensate. To
tain our final values, we still need the value of the sca
renormalization constantZS(ma), which we have computed
non-perturbatively in the RI/MOM scheme following the a
proach proposed in@19#. The details of these calculation
will be presented in a separate paper@28#. The result we
obtained in the RI scheme is

ZS
RI~2 GeV!51.24~5!, ~49!

where the error is mainly systematics due to the chiral
trapolation and to the uncertainty in the value of the ren
malization scale.4 Judging from the comparison of the data
different renormalization scales with the logarithmic evo
tion predicted by the renormalization group equations
NNLO, the discretization errors appear to be well below t
error in Eq.~49!. The result in Eq.~49! differs by about 10%
from the bare perturbation theory determination at one lo
@ZS

RI(2 GeV)#PT51.11 @25,26#. However if we useas
MS as

an expansion parameter we obtain a result consistent w
errors with Eq.~49!. By using N2LO continuum perturbation
theory @35# with Nf50 andLQCD50.238(19)@12# to con-
vert the result in Eq.~49! into theMS scheme, we obtain

ZS
MS~2 GeV!51.41~6!. ~50!

Had we used the experimental NNLO results fromas(MZ)
50.118, we would have obtained a value of the scalar ren
malization constant;10% higher than the one given abov
The difference can be taken as an indication of the syst
atic error introduced by the quenched approximation. The
fore we will add this uncertainty in quadrature to our fin
estimate of the systematic error. Next-to-next-to-next-
leading order NNNLO perturbative computations are ava
able for the RI/MS ~modified minimal subtraction scheme!
matching of the scalar renormalization constant@36#, but the
difference with the NNLO results is way below the err
induced by the quenching ambiguity discussed above. If
had used the procedure proposed recently in Ref.@29# on our
data, we would have obtained a value forZS

MS(2 GeV)

4We stress again that this number is obtained atb56.0 for r
51.4 andr 51.0.

e
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which agrees within the errors with the one in Eq.~50!, but
with a central value.5 –10 % higher.

We finally combine this last result with the numbers p
sented in the previous section to obtain our main phys
results. From the value ofaMK in Eq. ~44! and from the
lattice spacing in Eq.~45!, we obtain, for the combination o
bare quark masses,

ms~a!1m̂~a!5149~9! MeV, ~51!

where the error is only statistical. Since our volume is fai
large, we expect our main sources of systematic error
come from discretization effects and from the quenched
proximation. For a rough estimate of the systematic error
to quenching approximation5 we can use the results in Re
@38#. From these one sees that, within the quenched appr
mation, the use of different observables to calculate the
tice spacing can produce differences in the results of;10%.
Had we usedr 0 @39# to fix our lattice spacing we would hav
obtained a number;7% higher than the one in Eq.~51!.
Combining this fact with the results in@14#, we would infer
that discretization uncertainties are below 10%. In orde
be conservative, we will take 15% as the estimate of
overall systematic error in the renormalized quark mas
due to quenching and discretization effects. A more prec
estimate of the systematic errors will need much more ex
sive simulations, which at present would be beyond our
pability and the exploratory scope of this work. Combini
the results in Eqs.~50! and ~51! we obtain

~ms1m̂!RI~2 GeV!512067621 MeV ~52!

which represents one of the major results of this paper.
using Eqs.~1! and ~50! the above translates to

ms
MS~2 GeV!510266618 MeV . ~53!

This result agrees very well with the current lattice wo
average@18#.

Insofar as the value of the condensate is concerned, i
used the standard two-step approach, i.e., first measure
dimensionless condensate, see Eqs.~47! or ~48!, and then
multiply it by the cubic power of the lattice spacing, th
result would be affected by a very large systematic error
to the uncertainty in the determination of the lattice spac
in quenched simulations. Instead, we will use an alterna
method@7#. We write the GMOR relation~23! for the renor-
malized condensate as follows

x~a!52 1
4 f x

2BM P
a21 ~54!

whereBM P
is defined in Eq.~36! and f x50.1282 GeV is the

‘‘experimental’’ value, in physical units, of the pseudosca
decay constant extrapolated to the chiral limit. While co
puting the condensate from the above formula relies on

5First unquenched light quark mass computations~see Ref.@18#
for details! give results;10% lower with respect to the corre
sponding quenched determinations.
11450
-
al

to
p-
e

xi-
t-

o
r
s
e

n-
-

y

e
the

e
g
e

r
-
n

additional element of experimental information, it has se
eral advantages. The most important is that, by expres
the condensate in terms off x , we are left with only one
power of the UV cutoffa21. Another advantage is that, if w
assume that the relation betweenM P and m stays substan-
tially linear for a range of quark masses extending to;ms
~and our numerical results validate this, see Fig. 3!, then
there is no need for an extrapolation to the chiral limit
evaluateBM P

. With this method we obtain

^c̄c&RI~2 GeV!520.016760.001060.0029 GeV3

~55!

where the estimate of the systematic error has been m
using the same criteria we used for estimate of the erro
the quark mass. This is our best value for the chiral cond
sate. It is interesting to note that, if we had used the stand
technique, starting from Eq.~47! and with the lattice spacing
of Eq. ~45!, we would have obtained a result with a centr
value very close to the value in Eq.~55!, but with a much
higher systematic error.

Finally, from Eq.~55! and NLO matching, we get

^c̄c&MS~2 GeV!520.019060.001160.0033 GeV3

52@26765615 MeV#3. ~56!

This result is in very good agreement with the result obtain
by the authors of Refs.@37,29#, while it is smaller than the
result in Ref.@40#, even if still compatible within errors. Ou
result is also compatible within errors with the number o
tained few years ago in Ref.@7# with Wilson-type fermions.
We expect, though, the systematics due to the discretiza
effects to be smaller„O(a2)… in the result reported in Eq
~56! than the error„O(a)… which affects the determination in
Ref. @7#.

V. CONCLUSIONS

In the overlap regularization chiral symmetry is preserv
at finite lattice spacing and finite volume, therefore there
no mixing among operators of different chirality. As a co
sequence no additive quark mass renormalization is requ
and no fine-tuned parameters are needed to computeO(a)
improved masses and matrix elements. Our results have
deed produced a remarkable verification of ‘‘good chiral b
havior’’ both in the axial Ward identity and in the pseud
scalar masses.

In this paper we presented the results of the first com
tation of (ms1m̂) with overlap fermions in the quenche
approximation. To avoid uncertainties due to lattice pert
bation theory, we computed the multiplicative renormaliz
tion constantZS(ma) non-perturbatively in the RI/MOM
scheme. Our main results have been summarized in the
troduction. While the systematics errors due to quenching
common to previous calculations, the other systematic er
~mostly discretization effects! are different than with other
lattice regularizations and likely to be smaller, because
chiral symmetry. We also computed the chiral condens
8-8
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^c̄c& from the GMOR relation and directly. Even if, give
our statistical and systematic errors, the former method
more reliable, it is rewarding to notice that the two determ
nations are in good agreement.

The calculation of light quark masses uses many of
ingredients needed for a lattice calculation of weak ma
elements, although the latter is computationally more
manding. From this point of view, the very good agreem
between our results for the quark masses and the cur
lattice world average bodes well for the use of the over
formalism for matrix element calculations. Our investigati
has been mostly of an exploratory nature. One would nee
extend it to larger volumes and better statistics. One sho
also find a more direct way to isolate and account for
effects of the zero modes. Nevertheless, we believe tha
gave a strong indication that the overlap formalism can
used effectively, with known algorithms and the present g
eration of computers, for large scale QCD
l.

s

l

.
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calculations, at least in the quenched approximation. Th
we would conclude that it represents a very promising no
perturbative regularization for solving long standing pro
lems, such as the proof of theDI 51/2 rule and the calcula-
tion of e8/e, which would be hard to address with
conventional regularizations.
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