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Light quark masses with overlap fermions in quenched QCD
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We present the results of a computation of the sum of the strange and average up-down quark masses with
overlap fermions in the quenched approximation. Since the overlap regularization preserves chiral symmetry at
finite cutoff and volume, no additive quark mass renormalization is required and the resulf$agrem-
proved. Our simulations are performed@t 6.0 and volumé/=16°x 32, which correspond to a lattice cutoff
of ~2 GeV and to an extension 6f1.4 fm. The logarithmically divergent renormalization constant has been
computed nonperturbatively in the RI/MOM scheme. By usingkhmeson mass as experimental input, we
obtain (m+m)?(2 GeV)=120(7)(21) MeV,which corresponds tanl'>(2 GeV)=102(6)(18) MeV if
continuum perturbation theory ang”T are used. By using the Gell-Mann—Oakes—Renner relation we also
obtain(yy)MS(2 GeV)N; =—0.0190(11)(33) Ge¥= —[267(5)(15) MeM*, where the errors are statis-
tical and systematic respectively.
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[. INTRODUCTION quired and no parameters have to be fine tuned in order to
computeO(a) improved masses and matrix elements. To

Quark masses are fundamental parameters of the standaauoid uncertainties due to lattice perturbation theory, we
model which cannot be measured directly by experimentcompute the logarithmic divergent renormalization constant
since quarks are confined into hadrons. If defined as effectivaon-perturbatively in the RI/MOMmomentum subtraction
couplings in the Lagrangian, their values can be determinedchemd19]. By comparing the experimentmeson mass
by comparing a theoretical calculation of a given physicalwith the value obtained in our simulations and after a careful
guantity (sensitive to quark massewith the corresponding analysis of the systematic uncertainties we find as our main
experimental value. As a consequence quark masses depersult
on the renormalization scheme and scale, as well as on the R
fundamental action. (mg+m)R(2 GeV)=120+7+21 MeV. 2

At present the most precise values of light-quark mass_
ratios (which are scheme and scale independent for mas&his value corresponds to
independent renormalization schemare extracted by com- s
paring K- and 7r-meson mass ratios with predictions from mgﬂs(z GeV)=102-6+18 MeV )

chiral perturbation theory PT) [1]. A detailed analysis if next-to-next-to-leading ordefNNLO) continuum pertur-

gives[2] bative results and Eq1) are used. -
m m We also report results for the chiral condenséie))
—=0.553+0.043, —=24.4+15 (1)  which we compute from the Ggll—Manp—Oakes—Renner
My m (GMOR) relation. Our best determination is

wherem= (m,+my)/2. The absolute scale cannot be fixed i — \RI __
by xPT. It can be determined by comparing non-perturbative N; (b)™(2 Gev) 0.0167:0.0010-0.0029 GeV

lattice QCD computationg3—15] or phenomenological esti- (4)
mates[ 16,17 with experimental results. )

In the last few years much effort has been devoted withifVhich corresponds to
the lattice community to obtain a precise determination of
the light quark masses in the quenched approximation. Major _<J¢>M_S(2 GeV)=—0.0190+0.0011+ 0.0033 GeV
improvements came with the use of nonperturbaiid®) Ny
renormalization techniques for renormalizing the bare quark = _[267+5+15 MeV]°. (5)
masses and with the implementation@fa) improved ac-
tions and operator’,9,10,14 (for a recent review sefl8]).  we have also computed the chiral condensate directly. Even
First results from unquenched simulations have also beefi it requires a severe chiral extrapolation, the direct determi-
reported[8,15,18. nation gives results consistent with E¢4) and (5).

In this paper we present the results of the first fully non-  The first error in Eqs(2)—(5) represents the statistical
perturbative computation ofif;+m) with overlap fermions. error, obtained with the jackknife method. The second error
In this fermionic regularization, flavor and chiral symmetriesrepresents our estimate of systematic effects. It should be
are preserved at finite lattice spacing and finite volume. As aoted that, while the systematic error due to quenching alone
consequence no additive quark mass renormalization is reéeefined as the quenching error in the limit of zero lattice
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spacing and infinite volumeshould be the same in all fer- a
mionic regularizations, discretization errors do depend on the ysD + D75=;D75D, (13)
fermionic lattice action and are likely to be smaller in the

overlap formulation because of its good chirality propertiesyhich implies an exact continuous symmetry of the action in

The very good agreement of our results with the current latthe massless lim{22]. This symmetry may be interpreted as
tice world average$18] provides further confirmation that g |attice form of chiral invariance at finite cutoff

the overlap formulation is a suitable regularization for large-

scale phenomenological computations. Syp= 3,5¢,, 5@:@75 (12)
This paper is organized as follows: in Sec. Il we set our

notation and define the renormalized quark masses and chirghere y5 is defined as

condensate in the overlap regularization; in Sec. Ill we give

details about the simulation and some of the results for the ~
meson masses and matrix elements; in Sec. IV we present 7’5:7’5(1_ ;D) (13
our main results and discuss their systematic errors; Sec. V is
devoted to our concluding remarks. and satisfies
St_n 22
Il. QUARK MASSES AND CHIRAL CONDENSATE WITH ¥Y5=7s,  Y¥s=1. (14

THE OVERLAP ACTION The anomaly is recovered from the variation of the measure

The QCD lattice action in the overlap regularization readsunder the rotations in Eq12) [22,23.
[20] The invariance of the action under non-singlet chiral
transformations, defined including a flavor group generator

6 1 ; 1 in Eq. (12), forbids mixing among operators of different
S=— > [1-=Tr{Up+UL]|+ ¢ |1~ ——aM|D+M|¢  chirality [24] and therefore:
TR 2

5 No additive quark mass renormalization is required. The
©) quark mass which enters the vector and axial Ward identities

where, in standard notatioklp is the Wilson plaquetteg, 'S the bare parameten(a) in the action of Eq(6).

=5 . — L Masses and matrix elements are affected only(lfn?)
NG IS the bare couplmg constam,anqw carry |mpl'|C|t discretization errors. No fine tuned parameters are required
color, spin and flavor indices, ard is a diagonal matrix of

b - D is th to removeO(a) effects.
aré  masses nf.mg, ...) In tlavor space.D 1S the The chiral condensate does not require subtractions of
Neuberger-Dirac operator defined as

power divergent termén the chiral limif.

1 The renormalized quark mass is defined as
p p
D=—(1+V)=—| 1+ X—= — .
a a YXTX m(u)=limZ,(ap)m(a) (15
a—0
X=Dy— Ep (7) vyhere Zn(auw) is a Iogarithmiqally divergent renormaliza—
a tion constant which has to be fixed, for a given sgalén a

given renormalization scheme. It is worth noting that even if
m(a) is the bare parameter which enters the fundamental
1 " action in Eq.(6), its relation to a given experimental result is
Dw=5u(V,+V)—5aviv, (8 fixed by a non-perturbative lattice QCD calculation and
2 2 therefore its value is determined up @(a2) terms only.
The bare chiral condensate is defined as

( a
1‘5“))'”

1 wherem is a common mass given to the light quarks. It
V,(x)= g[UM(X) p(x+apm)—p(x)], (9)  satisfies the integrated non-singlet chiral Ward identity

50
1-5.0 v

where

is the Wilson-Dirac operator,9r<1 and 0<p<2r. In our

calculations we used=1. V, and V; in Eq. (8) are the 1/ —
forward and backward lattice covariant derivatives, defined x(@)= “mo N_f ¥(0)
by m—

(0)> (16)

1/
N, #(0)

(0>>=m§ (P(x)P%(0))

1 R -

* _ = 1ty — _
Vi) =Z[d()—U,(x—au)g(x—au)] an
(10)

where
whereU ,(x) are the lattice gauge links. The fermionic op-

erator of the overlap action satisfies the Ginsparg-Wilson re-

lation [21] P(X)= ¢1(X) 5 (x) (18)

5,0
1-5.D v
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a we used an optimal rational approximation to the sign of the
(1— ZD) #1|(X) (19 Hermitian Wilson operator, as proposed in R¢&i,37, af-
ter explicit evaluation of the contributions from the lowest
correspond to the non-singlet pseudoscalar density with detigenvectors oK'X, and nested multi-conjugate gradient in-
generate quarksmlzmz) and its Conjugate. For non-zero versions. Details of the numerical implementation will be

mass the chiral condensate is still divergent and it behaves #sesented in Ref.28]. From the propagators, we computed
in the standard manner the two-points correlation functions

P¢(x) :Jz(x) Vs

1_0(1 & blulo))= +m(a)
(20) g
where we have taken into account that chiral symmetry _ c
forces the coefficient of the linear divergence to be zero. Gpp(t)_g (P(x,)P%(0,0) (26)
By writing the correlation function(P(x)P°(0)) as a
time-ordered product and by inserting a complete set of — .
states in standard fashion we can also write GVAP(t):; (VoAo(x,1)P¢(0,0) (27)
m c i .
T 2 where P(x,t) and P°(x,t) have been defined in Eq&L8)
x(@)= = lim 75 (OIPIP)I? @) e

whereMp is the mass of the pseudoscalar st&g. If we _ _a

s S0 =a(x)|| 1= 5D 2| (0 (29
2m[(0|P|m)|=fpM5 (22)

— a
AL(X)= 1 (X) Y, ys| | 1— ZD) lﬂz} (X),

wherefp is the corresponding pseudoscalar decay constant,

we arrive to the familiar GMOR relation (29)
ZM3 S°(x) is defined analogously to E¢L9) andﬂ denotes the
x(@a)=—lim am (23)  symmetric lattice derivative in the time direction. To improve
m—0 statisticsGgqt) andGpp(t) have been symmetrized around

t=T/2 (T=N;=32). We estimated the errors by a jackknife

procedure, blocking the data in groups of three configura-

1 tions, and we checked that blocking in groups of different

N—<¢fl//>(,u)= limZg(au)x(a) (24 size did not produce relevant changes in the error estimates.
f a-0 In the first plot of Fig. 1 we show the ratio

The renormalized chiral condensate is defined as

whereZg(ua) can be chosen to be the renormalization con- Guap(t)
stant of the corresponding non-singlet scalar density which, p(t)= G
thanks to the flavor symmetry, satisfigg(ua)=1/Z,(ua). pp(t)

In principle Zs(1a) can be computed in perturbation theory 5q 5 function ot for all simulated masses. Ongehas been

[25,26), but uncertainties due to higher order terms can P8itted to a constant in the time intervl—t,=5-27, a qua-
avoided using non-perturbative renormalization procedureg,sic fit of the results

[19,27,13. The implementation of the RI/MOM technique
[19] is straightforward in the overlap regularization, and it (ap)=A,+ Bp(am)+Cp(am)2 (31)
allows one to computé&(a) improved renormalization con-

stants for generic composite operators. In the following wegives (see the second plot in Fig),1

will use the numerical value &%'(ua) we have obtained in
Ref.[28] (for an alternative approach see RgZ9]).

(30

A,=-0.000027) B,=1.28§3) C(,=0.27112
(32)

lil. NUMERICAL DETAILS where the quoted errors are statistical only. Note that the

intercept is compatible with zero. This should not come as a
We performed our simulation in quenched QCD wjigh

=6.0 andV=16°x32. We used a sample of 54 gauge con-————

figurations, generated with the standard Wilson gluonic ac- 1analogous correlation functions have been computed by the au-
tion of Eq.(6), which we retrieved from the repository at the thors of Ref[33]. A direct comparison with our results is not pos-
“Gauge Connection”[30]. We computed overlap propaga- sible because we used different simulations parameters.

tors from a local source for bare quark masses “From the coefficienB, one can derive the value of the renormal-
=0.040,0.055,0.070,0.085,0.100 gie 1.4 (and, as already ization constan?, of the “local” axial current. A detailed analysis
mentioned,r =1.0). For the calculation of the propagators, will be presented in Re{.28].
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FIG. 1. Left: Gyap/Gpp vs. t for all masses which have been simulated. Righp)( obtained by fitting the data in the plot at left, as
a function of the bare quark mass. The dashed line represents the result of a quadsste thixt

surprise since, even A& ,(x) is not the conserved current, it to be long enough to permit a meaningful fit. We fitted
has the correct behavior under global non-singlet chiralGg p(t) to a single particle propagator with a cosh depen-
transformations. dence ort,

In the quenched approximation the contribution of exact
chiral zero modes of the Neuberger-Dirac operator is not
suppressed by the fermionic determinant. In some correlation I —t
functions, this can give rise to large quenched artifacts for 2
small masses. For example it is easy to show Bap(t) (34
receives from the unsuppressed zero modes contributions
proportional to Ith?> and 1M, which should vanish in the o o ]
infinite volume limit, but can be quite sizable for finite vol- in the time intervak,—t,=12-16. The lower limit was fixed
ume. A clever way to avoid such artifacts has been propose@t the point where we found stabilization of the effective
by the authors of Ref34], who noticed that the zero modes, MesON masses. The results of the fits are also given in Table
because of their chirality properties, contribute equally to thd and an example of the effective meson mass f(eg ()
Gpp and Gg correlation functions, so that their contribu- S shown in first plot of Fig. 2. We also performed a two cosh

tions cancel in the difference fit of Gs_p(t) finding consistent results.
We have also fitted the correlation functioBsp(t) to a

single particle propagator with a cosh dependencg as in

Eqg. (34), in the time intervalt;—t,=10-16. As before the
lower limit is fixed as the point at which the values of the
which can also be used to extract the pseudoscalar mes@ffective meson masses become stable. We report our results
mass and decay constant, since the contributions from thia Table | and in the second plot of Fig. 2 we give an ex-
heavier scalar mesons fall off faster. The drawback is, ofimple of the effective meson mass as extracted fByp(t).
course, that the plateau in the effective mass and, corre- We illustrate in Fig. 3 the values foraMp)?, obtained
spondingly, the range that can be used for the cosh fit befrom Gg_p(t) and Gpp(t), as a function of the bare quark
come shorter. Nevertheless we found the plateau isthes ~ massam. In both cases a linear behavior

Zs_ p 1
Gs_p(t)za—MPex —EaMPT coshaMp

Gs-p(t)=Gpp(t) = Gsdt) (33

TABLE I. Mesons masses and matrix elements for all the bare quark masses considered in the simula-
tions, as obtained fro®pp(t) andGg p(t).

am Gs-p Gpp

Zs p aMp afp Zpp aMp afp
0.100 0.004() 0.3796) 0.0892) 0.00423) 0.3823) 0.0892)
0.085 0.003&4) 0.3486) 0.0852) 0.00393) 0.3524) 0.0852)
0.070 0.00383) 0.3157) 0.0812) 0.00363) 0.321(4) 0.0812)
0.055 0.003(5) 0.2809) 0.0762) 0.00343) 0.2875) 0.0772)
0.040 0.00265) 0.23911) 0.0712) 0.00324) 0.25Q7) 0.0732)
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FIG. 2. Left: A representative examplar=0.070) of the effective mass fro@s_p(t). Right: as at left but fronGpp(t).

sults we obtained foZg_ p and Zpp respectively. We see
that, while Zg_p exhibits a linear behavior as function of
am, the graph foiZ,p shows a clear indication of curvature.
Linear fits of the form

(aMp)?= Ay + By (am), (39
fits very well the data with

Ap.=—0.000568) By, =1.437) (36)
i i Z;= A+ Bj(am) (38)

for the masses obtained fro®g_p(t) and

give
Ay .=0.0064) By.=1.393) (37)
Me Me As p=0.00167) Bs p=0.0246) (39)
for those obtained fronGpp(t). We see that the parameters
of the two fits are compatible and that both intercepts vanish App=0.002%4) Bpp=0.0163). (40)

within statistical errors. In particular, one does not notice any ] o _

sign of the singular contributions from zero modes in theWithin the quite large statistical errors, the intercept and the

masses obtained from the pseudoscalar correlation function§lope obtained frons_p(t) are still compatible with those

These are expected to show up at some point, but one woulerived fromGpp(t). However the central values are quite

probably need much higher statistical accuracy and loweflifferent. If we interpret the curvature in the graphzfp as

values ofm to bring them into evidence. due to pole terms from the zero modes and try a simple fit of
Contrary to the pseudoscalar masses, the results for ttge form

matrix elements, parametrized as in E84) by the factors

Zs p andZpp for Gg_p(t) andGpp(t), respectively, show Dpp

Lo ) ! Zpp=App+ Bpp(am)+ —, 41
more significant differences. In Fig. 4 we reproduce the re- pp=Appt Bep(am)+ - (41)
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FIG. 3. (@Mp)? vs. am as obtained fronGs_p(t) (left) andGpp(t) (right). The dashed lines represent the results of a linear fit.
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FIG. 4. Left: Zg_p vs. (am); the dashed line represents the result of a linear fit. Righg:vs. (am); the dashed line represents a fit of

the form of Eq.(41).
we obtain

App=0.00143) Bpp=0.0242)

Now the y?/d.o.f. of the fit turns out to be much smaller and

Dpp=0.00003516).

(42

The pseudoscalar decay constant is defined through Eq.
(22) and we calculated its value directly from the parameters
extracted from a cosh fit t&g_p(t):

VZs p
(aMp)?’

afp=2(am) (43

the central values of intercepts and slope parameters for the _ .
fits of Zg_p andZpp are much closer. The fact that the cur- The values we obtained fafp in correspondence to each

vature shows up only in the results fpp points to the fact

simulated mass are reproduced in Tablpvhere we also

that what we are seeing is the effect of the unsuppressed zefeproduce the values derived fra@pp(t) ] and are shown in
modes, and not of chiral logarithms which would affect bothFig. 5. The dashed and the dot-dashed lines show the results
sets of result§and would most likely become noticeable at of a linear and a quadratic fit inraMp)?, respectively. The
much smaller values aim). On account of the above, we data slightly favors a quadratic fit, but our statistical accu-
will use Gs_p(t) to derive our further results. It must also be racy is insufficient to rule out a linear fit as inconsistent with
said that some of the observables will be calculated directlyhe data. It is interesting to observe, though, that we obtain
atm=mg/2 (see below, and for these observables the differ- fx /f,=1.14 and=1.23 from the linear and quadratic fits,

ence betweedpp andZg p is irrelevant within our statisti-

cal error.

0.1

0.09

0.08 -

af

0.07

0.06 F

0.05

009, 012
(aM,)

1 Il
0 0.03 0.06

1
0.15

0.18

FIG. 5. The procedure used to deriefy and aMy. The
dashed and dashed-dotted lines represent fits to our numerical reers: Mg*P=495 MeV, fg*P=160 MeV. We neglect the experi-
sults. The solid line represents the cured{) = C4(aMp), where

the coefficientCq = fR*M*P.

respectively, with the results from the quadratic fit in much
better agreement with the experimental value.

Starting from our values favl, andfp, we fix the lattice
spacinga™! and the physical meson masses by using the
method of “lattice physical planeq’5]. This avoids recourse
to a chiral extrapolation for observables where it is not really
needed. In the planafp,(aMp)?], we plot our lattice data
as well as the curvea(fp) = Cg (aMp) (the solid line in Fig.

5), where the coefficient of proportionalitC, (sl for
strange-lightis fixed by the experimental value for the ratio
fEXPIMEXP 2 The point where the two lines meet determines
afy as well asaM . Since our statistical accuracy does not
allow us to discriminate between a linear and quadratic fit to
the data forafp vs. (@aMp)?, we just use the linear fit for the
tiny extrapolation to the “kaon” poin{see Fig. 5. Our re-
sults are

aM=0.2168), afx=0.069826). (44)

3Throughout the paper we use the following experimental num-

mental errors which are well below our statistical and systematic
errors.
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0.004 ' ' . . scalar correlation function from the r.h.s. of Etj7). From a

quadratic fit in the quark mass we obtain

0.003 - E/// a®y(a)=—0.0011742) (49)
/%/ which is in remarkable agreement with E¢.7). Of course,

. E/% the larger error is an indication of the difficulty of the ex-

&= 0.002 - E/ 1 trapolation. Larger statistics and a careful treatment of the
T zero mode contributions would be needed to obtain more

e reliable and precise results by the direct method.

0.001

IV. PHYSICAL RESULTS

. In this section we will use our lattice results to infer the
0 0.03 0.06 0.09 0.12 0.15 renormalized values of the sum of the strange and average
am up-down quark masses and of the chiral condensate. To ob-
FIG. 6. The data used to derive the chiral condensate from théaln our flna_l values, we still need_ the value of the scalar
GMOR relation. renormalization constar®g(ua), which we have computed
non-perturbatively in the RI/MOM scheme following the ap-
(A quadratic fit produces a result which differs from the Proach proposed ifi19]. The details of these calculations
above by far less than the statistical erfpa set the lattice Will be presented in a separate pajes]. The result we
spacing we compare the value af, with its experimental ObPtained in the Rl scheme is
value and we get

z8(2 Gew=1.245), (49)
a; '=2.299). (45) o _ _
K where the error is mainly systematics due to the chiral ex-
ttrapolation and to the uncertainty in the value of the renor-
alization scalé.Judging from the comparison of the data at
ifferent renormalization scales with the logarithmic evolu-
tion predicted by the renormalization group equations at
NNLO, the discretization errors appear to be well below the
From our data, we can also compute the chiral condensa [ror in Eq.(49). The res_ult in Eq(49) differ_s by_ about 10%
by using the GMOR relation of Eq21). In Fig. 6 we show roF£r|1 the barepgerturbatlon theory determlnatlon atM_c;ne loop
the quantity [Z5'(2 Ge_\/)] =1.11[25,26|. Hoyvever if we users” as
an expansion parameter we obtain a result consistent within
errors with Eq(49). By using NLO continuum perturbation

This is the value of the lattice spacing we will use throughou
the paper. Again we stress that up to this stage we did n
have to perform any chiral extrapolation, but derived all
physical information, staying close to the region of quark
masses used in the actual calculations.

Zs
aSym= —(am)s—Pz, (46)  theory[35] with Ny=0 and A ocp=0.238(19)[12] to con-
(aMp) vert the result in Eq(49) into the MS scheme, we obtain
as a function of the bare quark mass. The data exhibit very S _
good linear behavior and a linear fit leads to Zs7(2 GeV)=1.41(6). (50
ady=—0.0011727). (47) Had we used the experimental NNLO results frag{M )

=0.118, we would have obtained a value of the scalar renor-

We performed also a quadratic fit to the data, obtaining dnalization constant-10% higher than the one given above.
result consistent with zero for the coefficient of the quadraticlhe difference can be taken as an indication of the system-
term, but with an error twice as large in the intercept becausatic error introduced by the quenched approximation. There-
of the additional degree of freedom. Therefore we concluddore we will add this uncertainty in quadrature to our final
that we see no indication for a quadratic term in the fit within€stimate of the systematic error. Next-to-next-to-next-to-
our statistical error. leading order NNNLO perturbative computations are avail-
The chiral condensate can also be computed directly fronable for the RIMS (modified minimal subtraction scheme
Eq. (16). However, away from the chiral limit, the r.h.s. of matching of the scalar renormalization conste], but the
that equation contains power divergent terfits a !, see  difference with the NNLO results is way below the error
Eq.(20)] and, in the quenched approximation, infrared diver-induced by the quenching ambiguity discussed above. If we
gent contributions(in m) due to the unsuppressed zero had used the procedure proposed recently in [R8f.on our
modes. Therefore quite a severe extrapolation from oudata, we would have obtained a value B¥>(2 GeV)
simulated data is needed to determine its chiral value. One
can take advantage, though, of a computational strategy —
similar to that used in Eq(33). To remove the contribution  “We stress again that this number is obtained3at6.0 for p
due to unsuppressed zero modes, we subtract the scala#1.4 andr=1.0.
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which agrees within the errors with the one in E§0), but  additional element of experimental information, it has sev-
with a central value=5-10% higher. eral advantages. The most important is that, by expressing
We finally combine this last result with the numbers pre-the condensate in terms éf , we are left with only one
sented in the previous section to obtain our main physicapower of the UV cutoffa™ 1. Another advantage is that, if we
results. From the value My in Eq. (44) and from the assume that the relation betwebh, and m stays substan-
lattice spacing in Eq45), we obtain, for the combination of tially linear for a range of quark masses extending-tm,

bare quark masses, (and our numerical results validate this, see Fiy. tBen
R there is no need for an extrapolation to the chiral limit to
mg(a)+m(a)=1499) MeV, (5)  evaluateBy . With this method we obtain

where the error is only statistical. Since our volume is fairly — \RI

large, we expect our main sources of systematic errors to (Yh)™(2 GeV)=-0.0167+0.0010+0.0029 GeV
come from discretization effects and from the quenched ap- (59
proximation. For a rough estimate of the systematic error due : .
to quenching approximatiGrwe can use the results in Ref. wh_ere the estimate O.f the systematic error has been que
[38]. From these one sees that, within the quenched approx{S'N9 the same criteria we used for estimate of the error in

mation, the use of different observables to calculate the Iatér;eql:f‘irskinmt:f;&h'stésn%l:é ?ﬁ:tt ﬁax:gggtgse‘éht';‘ael g& r;sg;d
tice spacing can produce differences in the results 80%. : 9 ’

! : : technique, starting from E¢47) and with the lattice spacing
Had we used [39] to fix our lattice spacing we would have . :
obtained a number-7% higher than the one in E451). of Eq. (45), we would have obtained a result with a central

Combining this fact with the results iri4], we would infer V‘f’"”e very close_ to the value in E(pS), but with a much
. o S higher systematic error.

that discretization uncertainties are below 10%. In order to Finally, from Eq.(55) and NLO matching, we get

be conservative, we will take 15% as the estimate of our Y. q: 9 9

overall systematic error in the renormalized quark masses — s _ " v

due to quenching and discretization effects. A more precise (¢g)"(2 GeV)=-0.0190+0.0011£0.0033 Ge

estimate of the systematic errors will need much more exten- =—[267+5+15 MeV]3. (56)

sive simulations, which at present would be beyond our ca- -

pability and the exploratory scope of this work. Combining Thjs result is in very good agreement with the result obtained
the results in Eqs50) and (51) we obtain by the authors of Refd37,29, while it is smaller than the
result in Ref[40], even if still compatible within errors. Our
result is also compatible within errors with the number ob-

ined few years ago in Rdf7] with Wilson-type fermions.

e expect, though, the systematics due to the discretization
effects to be smallefO(a?)) in the result reported in Eq.

mg/l_s(z GeV)=102+6+18 MeV. (53) Seﬁg t[f;?n the errofO(a)) which affects the determination in

This result agrees very well with the current lattice world
averagg18]. V. CONCLUSIONS

Insofar as the value of the condensate is concerned, if we
used the standard two-step approach, i.e., first measure the In the overlap regularization chiral symmetry is preserved
dimensionless condensate, see Eg3) or (48), and then at finite lattice spacing and finite volume, therefore there is
multiply it by the cubic power of the lattice spacing, the N0 mixing among operators of different chirality. As a con-
result would be affected by a very large systematic error duéequence no additive quark mass renormalization is required
to the uncertainty in the determination of the lattice spacingtnd no fine-tuned parameters are needed to comp(g
in quenched simulations. Instead, we will use an alternativémproved masses and matrix elements. Our results have in-
method[7]. We write the GMOR relatiori23) for the renor- deed produced a remarkable verification of “good chiral be-

(mg+mR(2 GeV=120x7+21 MeV (52

which represents one of the major results of this paper. B
using Egs(1) and(50) the above translates to

malized condensate as follows havior” both in the axial Ward identity and in the pseudo-
scalar masses.
x(@)=— %fiBM Pa*l (549) In this paper we presented the results of the first compu-

tation of (mg+ rAn) with overlap fermions in the quenched
whereBy, , is defined in Eq(36) andf,=0.1282 GeVisthe approximation. To avoid uncertainties due to lattice pertur-
“experimental” value, in physical units, of the pseudoscalarbation theory, we computed the multiplicative renormaliza-
decay constant extrapolated to the chiral limit. While com-tion constantZg(ua) non-perturbatively in the RI/MOM
puting the condensate from the above formula relies on ascheme. Our main results have been summarized in the In-

troduction. While the systematics errors due to quenching are

common to previous calculations, the other systematic errors

SFirst unquenched light quark mass computati¢sse Ref[18]  (mostly discretization effectsare different than with other

for detail§ give results~10% lower with respect to the corre- lattice regularizations and likely to be smaller, because of
sponding quenched determinations. chiral symmetry. We also computed the chiral condensate
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() from the GMOR relation and directly. Even if, given calculations, at least in the quenched approximation. Thus

our statistical and systematic errors, the former method i¥ve would conclude that it represents a very promising non-

more reliable, it is rewarding to notice that the two determi-perturbative regularization for solving long standing prob-

nations are in good agreement. lems, such as the proof of thel =1/2 rule and the calcula-
The calculation of light quark masses uses many of theéion of €'/e, which would be hard to address with

ingredients needed for a lattice calculation of weak matrixconventional regularizations.

elements, although the latter is computationally more de-

manding. From this point of view, the very good agreement
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