
PHYSICAL REVIEW D, VOLUME 64, 114507
Color confinement and dual superconductivity of the vacuum. III
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It is demonstrated that the condensation of magnetic charges in the confined phase of SU(2) and SU(3)
gauge theories is independent of the specific Abelian projection used to define the monopoles. Hence the dual
excitations which condense in the vacuum to produce confinement must have a magnetic U(1) charge in all the
Abelian projections. Some physical implications of this result are discussed.
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I. INTRODUCTION

This paper is the third of a series in which we study t
dual superconductivity of the QCD vacuum@1–3# as a
mechanism for the confinement of color. In the first two p
pers@4,5# we detected a condensation of magnetic charge
the confining phase by means of a disorder parameter^m&,
which is the vacuum expectation value of a magnetica
charged operatorm. ^m& was determined by simulating th
theory on a lattice: it is nonzero in the confining phase, a
tends to zero at the deconfining transition, above whic
vanishes.

The connection of̂ m& to confinement was proved by
quantitative determination of the critical indices and of t
critical coupling. In Ref.@4#, SU(2) gauge theory was stud
ied, while Ref.@5# was devoted to SU(3) with similar re
sults.

Magnetic charges in gauge theories are defined by a
cedure known as Abelian projection@2#: with every local
field F belonging to the adjoint representation (Nc21)
U(1) fields can be associated, and with each of them a c
served magnetic charge. In fact there exists a functiona
finity of monopole speciesNc21 for each fieldF, which in
principle can condense in the vacuum and confine the co
sponding U(1) electric charge by the dual Meissner effec
is not knowna priori if monopole condensations in differen
Abelian projections are independent phenomena.

The indication obtained in Refs.@4,5# by analysis of a
number of different choices ofF was that all of them show
the same behavior, so that they are equivalent to each o
The possibility that in some way all the Abelian projectio
could be physically equivalent was first advocated in R
@2#. In this paper we add strong evidence for that equi
lence.

In order to explain what we do, let us first recall ho
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magnetic charges are associated with any fieldF in the ad-
joint representation. We shall do this for SU(2) to simpli
notation; extension to SU(N) only adds formal complica-
tions.

Let FW (x) be a field in the adjoint representation~color

vector!, and letF̂(x) be its color orientation:

F̂~x![
FW ~x!

uFW ~x!u
. ~1!

F̂(x) is well defined, except at zeros ofFW (x).
Define a gauge invariant field strengthFmn(x) @6#,

Fmn5F̂•GW mn2
1

g
~DmF̂`DnF̂!•F̂, ~2!

where GW mn5]mAW n2]n AW m1gAW m`AW n is the gauge field

strength andDmF̂5(]m1gAW m`)F̂ is the covariant deriva-

tive of F̂.
Both terms on the right-hand side of Eq.~2! are separately

gauge invariant and color singlets: their combination is c
sen in such a way that bilinear termsAmAn , AmF, andAnF
cancel. Actually, by simple algebra,

Fmn5F̂•~]mAW n2]nAW m!2
1

g
~]mF̂`]nF̂!•F̂. ~3!

If we transform to a gauge in whichF̂(x)5const in
space-time, the last term cancels and

Fmn5]m~F̂•AW n!2]n~F̂•AW m! ~4!

is an Abelian field strength. Such a gauge transformatio
called an Abelian projection. It is in general a singular tran
formation which exposes monopoles at the sites wh
FW (x)50.

If Fmn
! 5 1

2 emnrsFrs is the dual field toFmn , one can de-
fine a magnetic current

j m5]nFmn
! ; ~5!
©2001 The American Physical Society07-1



in
a

-

th
e
th

am
a

d
s
e
hic

r
ro
o
o

ec

e

a
e
a
s

pl
o

s
b

lu

n-
n
e
n

a
-
e

ion.

f

ian

y
en

he
ase

ical

ffer-

nd
hile
the
r-
the
e-
be-

t of
n.
ter.

the
-

al

CARMONA, D’ELIA, Di GIACOMO, LUCINI, AND PAFFUTI PHYSICAL REVIEW D 64 114507
j m is zero if Bianchi identities hold, but can be nonzero
compact formulations in terms of parallel transport, such
lattice formulation@7#. In any case it follows from the anti
symmetry ofFmn

! that

]m j m50. ~6!

In the dual superconductor view of color confinement
symmetry@Eq. ~6!# is expected to be realized in the mann
of Wigner in the deconfined phase, and to be broken by
Higgs mechanism in the confined phase. An operatorm
which carries magnetic charge can provide a disorder par
eter to discriminate between the two possibilities. Such
operator was developed and tested in Refs.@8–10,4,5#.

What was found in Refs.@4,5# was that there is indee
dual superconductivity in a number of Abelian projection
As explained in detail in Sec. II, the full identification of th
projected gauge requires that one go to a gauge in w
FW (x)•lW is diagonal in color indices (lW are the generators in
the fundamental representation!, with a fixed order of the
eigenvalues.

One can diagonalizeFW (x)•lW up to the ordering of the
eigenvalues, choosing it randomly, and still define an ope
tor m which creates a magnetic charge in that Abelian p
jection. In this paper we show that the corresponding dis
der parameter behaves exactly in the same way as the
with ordered eigenvalues.

We can even define a completely random Abelian proj
tion, in which we do not diagonalize any operatorF, but we

take, e.g., for SU(2), F̂5s3, the nominal 3 axis used in th
simulation, and define the correspondingm. Again we find
that m defined in this way behaves exactly in the same w
as those defined in Refs.@4,5#, and scales with the sam
critical indices. The above Abelian projections are kind of
average over a continuous infinity of Abelian projection
and the result demonstrates, beyond any doubt, the com
independence of dual superconductivity from the choice
the Abelian projection.

Our results are compatible with Ref.@11#, where our dis-
order parameter in the random gauge was computed
Schrödinger functional techniques. In the literature of the la
years, there has been the idea that monopoles defined
particular Abelian projection~the maximal Abelian projec-
tion! are more relevant than others to confinement@12,13#.
We will discuss this issue in Sec. V, where we draw conc
sions from our results.

In Sec. II the construction of the disorder parameter^m&
will be recalled, to define the Abelian projection with ra
dom ordering~APRO! and the random Abelian projectio
~RAP!. In Sect. III the numerical algorithms used will b
discussed. The results will be described in Sec. IV. Sectio
will close the paper with conclusions.

II. DISORDER PARAMETER

In this section we recall the definition of the disorder p
rameter for confinement. LetO be an operator which trans
forms in the adjoint representation of the gauge group, i.
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O5( laOa, ~7!

with la the generators in the fundamental representat
The Abelian projection technique@2# prescribes fixing the
gauge by a gauge transformation in such a way that

Og f5G†OG5diag~o1 ,•••,oN!,

with ~8!

o1,o2,•••,oN .

After Abelian projection, there is still a U(1)N21 gauge free-
dom left, since a transformation of the form

V5diag~eiv1, . . . ,eivn!, ( v i50 ~9!

does not change the gauge fixing condition@Eq. ~8!#.
After Abelian projection, the gauge variables of SU(N)

are divided in two sets: thephotons@the N21 neutral fields
under the residual U(1)N21# and thegluons~charged fields
with respect to the residual symmetry!. Abelian magnetic
monopoles can arise at points where two eigenvalues oO
are degenerate@2#.

Condensation of Abelian monopoles defined by Abel
projection was demonstrated numerically in Ref.@4# for
SU(2) and in Ref.@5# for SU(3). This has been done b
constructing an operator magnetically charged in a giv
Abelian projection and by studying the behavior of t
vacuum expectation value of that operator across the ph
transition at finite temperature. In the language of statist
mechanics we call this operator adisorder operatorand its
vacuum expectation value~VEV! a disorder parameter, the
terminology being that the weak coupling~deconfined! phase
is the ordered phase. The construction can be done in di
ent Abelian projections: in Refs.@4,5# a number of Abelian
projections were studied, and for all of them it was fou
that indeed monopoles condense at low temperature, w
the corresponding magnetic symmetry is implemented in
manner ofWignerat high temperature. Moreover, the diso
der parameter scales with the correct critical indices in
critical region, and is independent of the choice of the Ab
lian projection. These results suggest that the observed
havior of the disorder parameter is generally independen
the Abelian projection and of the Abelian operator chose

Let us review the construction of the disorder parame
We introduce a time-independent external field

F i~nW ,yW !5GeiTbi (n
W 2 î ,yW )G†, ~10!

where G is the gauge transformation that diagonalizes
operatorO according to Eq.~8!, bW is the discretised trans
verse field~i.e, ¹W •bW 50 on the continuum! generated at lat-
tice spatial pointnW by a magnetic monopole sitting atyW and
T is a generator of the Cartan subalgebra.

Let Umn be the Wilson plaquette, defined in the usu
notations as
7-2
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Umn~x!5Um~x!Un~x1m̂ !„Um~x1 n̂ !…†„Un~x!…†, ~11!

wherex[(nW ,t). We introduce a shiftUi0(nW ,0)→Ũ i0(nW ,0) by
inserting the external fieldF i(nW 1 î ,yW ) in the path ordered
product at time zero, as follows:

Ũ i0~nW ,0!5Ui~nW ,0!F i~nW 1 î ,yW !U0~nW 1 î ,0!

3„Ui~nW ,1!…†„U0~nW ,0!…†, ~12!

and we defineŨmn(x)[Umn(x) elsewhere.
The Wilson action for SU(N) gauge theory is

S5b(
mnx

S 12
1

2N
@Umn~x!1„Umn~x!…†# D , ~13!

where the sum extends over all the lattice points and di
tions.

By replacing in the previous equation the standa
plaquette with the modified plaquetteŨmn( i ), we obtain the
‘‘monopole’’ action

SM~yW ,0!5b(
mnx

S 12
1

2N
@Ũmn~x!1„Ũmn~x!…†# D . ~14!

The disorder parameter introduced in Refs.@4,5# is given by

^m~yW 0,0!&5

E ~DU !e2SM(yW0,0)

E ~DU !e2S

, ~15!

where the functional integral ofe2S is taken with periodic
boundary conditions and the integral ofe2SM with
C!-periodic boundary conditions@14,15#

Ui~nW ,t5Nt!5Ui* ~nW ,t50!, ~16!

Nt being the temporal extension of the lattice andUi* being
the complex conjugated ofUi . To study more in detail the
dependence on the projecting operator, we will modify
definition of F as follows.

~1! We choose a projecting operator and we diagonaliz
but without fixing the order of the eigenvalues, or better w
the order of the eigenvalues randomly chosen,

F i~nW ,yW !5GPeiTbi (n
W 2 î ,yW )PG†, ~17!

whereP is a randomN3N permutation matrix. This corre
sponds to a sort of average ofm over the class of operator
differing from O on each point by the order of the eigenva
ues. We refer to this case as Abelian projection with rand
ordering~APRO!.

~2! We do not perform the Abelian projection, i.e., we ta

F i~nW ,yW !5eiTbi (n
W 2 î ,yW ), ~18!

with T a generator in the Cartan subalgebra. In a given c
figuration this amounts to making the Abelian projecti
11450
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with any operatorF which is diagonal in that representatio
For instance in SU(3) the Cartan subalgebra is generate
@l3 ,l32(l8 /A3)#. Since, however, what is defined a
l3 ,l8 in another configuration is independent ofl3 andl8
in the previous one, definition~18! is equivalent to a sort of
average ofm over all the possible Abelian projections. W
refer to this case as random Abelian projection~RAP!.

As discussed in Refs.@4,5#, a direct computation of̂m&
with Monte Carlo techniques is problematic, because t
quantity has large fluctuations, being the exponential o
sum over the physical volume. A more convenient quan
to study in numerical simulations is@8,4,5#

r5
]

]b
log^m&5^S&S2^SM&SM

. ~19!

r is the difference of two average actions, the Wilson act
and the modified actionSM ~the latter being averaged wit
the modified measure„(DU)e2SM

…/„*(DU)e2SM)…. r has
smaller fluctuations and contains all relevant informatio
The value of̂ m& is related tor by the relationship

^m&5expS E
0

b

r~b8!db8D . ~20!

III. GAUGE FIXING AND SIMULATION ALGORITHMS

We have determined the temperature dependence ofr for
SU(2) and SU(3) pure Yang-Mills theories, for both defin
tions ~17! and ~18! of F on an asymmetric latticeNs

33Nt

with Nt!Ns . For both definitions ofF, the simulation of the
Wilson term^S&S has been performed on a lattice with pe
odic boundary conditions by using a standard mixture
heatbath and overrelaxed algorithms.

As for the APRO case, we have chosen the Polyakov
as the operator to identify the Abelian projection, followin
the definition in Eq.~31! of Ref. @4# and Eq.~19! of Ref. @5#,
with the only difference that at each spatial point the ord
ing of the eigenvalues is selected randomly among the p
sible different permutationsnp @np52 ~6! for SU(2)
„SU(3)… pure gauge theory#. This effectively corresponds

to averaging overnp
Ns

3
different definitions of the Abelian

projection. The Abelian generatorF8 (F85l8/2, with l i the
Gell-Mann matrices!, has been chosen to define the mon
pole field for the SU(3) case. We useC! boundary condi-
tions in time to computêSM&SM

in Eq. ~19!. In this case, as
explained in Ref.@4#, it is not possible to use a standa
heatbath or overrelaxed algorithm to simulate the modifi
action, since, e.g., in the case of Polyakov projection,
change of any temporal link induces a nonlinear change
the modified action. So we have performed simulations
using a mixed~heatbath plus overrelaxed! algorithm for the
update of spatial links, and a Metropolis algorithm for t
update of the temporal links.

In the case of the random Abelian projection, as it appe
in Eq. ~18!, one does not need any gauge fixing to define
monopole field. As a consequence, the change of any
always induces a linear change in the modified action. The
7-3
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FIG. 1. Quality of scaling in the RAP case fo
SU(2).
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fore we have used a standard~heatbath plus overrelaxed!
algorithm in this case. In the SU(3) case, the Abelian g
eratorF8 has been used again to define the monopole fie

IV. NUMERICAL RESULTS

The phase transition is known to be second order
SU(2), andweak first order for SU(3)@17#. As usual we
shall speak of critical indices in both cases, meaning,
SU(3), effective critical indices at small values of (
2T/Tc), but not too small.

In Refs.@4,5# it was shown that the critical indices of th
confinement transitions for SU(2) and SU(3) did not depe
on the particular type of Abelian projection used to define
monopole condensation. Here we will show numerically t
the critical exponents, and also the value of the critical c
pling, are the same even for the random Abelian project
and the Abelian projection with random ordering, both f
SU(2) and SU(3).

The critical behavior of the disorder parameter^m& is
governed by an exponentd. For finite lattice sizes
(Ns

33Nt), finite size scaling states that

^m&5Ns
2d/nFS j

Ns
,
a

j
,
Nt

Ns
D , ~21!

where a and j are the lattice spacing and the correlati
length of the system, respectively.

Near the critical point, forb,bC ,

j}~bC2b!2n, ~22!

wheren is the corresponding critical exponent. In the lim
Ns@Nt and fora/j!1, i.e., sufficiently close to the critica
point,

^m&5Ns
2d/nF̃@Ns

1/n~bC2b!#, ~23!

or equivalently
11450
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Ns
1/n

5 f @Ns
1/n~bC2b!#. ~24!

The ratior/Ns
1/n is a universal function of the scaling var

able:

x5Ns
1/n~bC2b!. ~25!

We will use the known values ofbC andn of SU(2) and
SU(3) pure gauge theories to see that scaling holds with
present data. In order to obtain the critical exponentd, we
use an expression equivalent to Eq.~23!:

^m&5~bc2b!dF~x!. ~26!

From this we obtain

r

Ns
1/n

52
d

x
2

F8~x!

F~x!
. ~27!

To obtaind we need additional assumptions about the u
known scaling functionF(x). We will see that fits of good
quality are obtained with the simple parametrization

r

Ns
1/n

52
d

x
2C, ~28!

whereC is a constant term. This form is suggested by t
fact that whenx→0, bothF(x) and its derivative should go
to a constant.

A. SU„2… gauge theory

1. Random Abelian projection

The quality of the scaling@Eq. ~24!# for SU(2) in the
RAP case can be seen in Fig. 1. Here we used the kn
values ofbC52.2986 andn50.63 @16#. The curve in the
figure corresponds to the best fit to Eq.~28!. We obtaind
7-4
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FIG. 2. Quality of scaling in the APRO cas
for SU(2).
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Eq.

to
50.19(5), with a x2/d.o.f.;1.5, in good agreement with th
value obtained in the plaquette and Polyakov gauges in
@4#: d50.20(8).

2. Abelian projection with random ordering

Results obtained in the APRO case are shown in Fig
where again known values ofbC andn have been used. Th
curve in the figure corresponds to the best fit to Eq.~28!,
which givesd50.20(6), with a x2/d.o.f.;1.1. The agree-
ment with the results obtained in the RAP case and in
plaquette and Polyakov gauges in Ref.@4# is very good.

B. SU„3… gauge theory

The confinement transition in pure SU(3) gauge theor
a first order transition@17#. One therefore expects a pseu
ocritical behavior, withn51/3, that is, the inverse of th
number of spatial dimensions. As remarked upon in Ref.@5#,
the scaling relation@Eq. ~24!# has to be modified in this cas
to include finite size violations to scaling,
11450
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Ns
1/n

5 f @Ns
1/n~bC2b!#1C~Ns!, ~29!

whereC(Ns) parametrizes these effects. A simple assum
tion is

C~Ns!5
a

Ns
3

, ~30!

valid up toO(1/Ns
6).

1. Random Abelian projection

Figure 3 shows the scaling behavior expressed by
~29!, where forC(Ns) we have taken the form of Eq.~30!.
As an input we used the valuesbC(Nt54)55.6925 andn
51/3 @18#. The curve in the figure corresponds to a best fit
Eq. ~28!, modified by including the termC(Ns), which gives
the valued50.50(3), with a x2/d.o.f.53.2.
r
FIG. 3. Quality of scaling in the RAP case fo
SU(3).
7-5
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FIG. 4. The same as in Fig. 3, using Eq.~31!
for C(Ns).
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The quality of the fit improves considerably if one in
cludes a second term in the expression forC(Ns):

C~Ns!5
a

Ns
3

1
b

Ns
6

. ~31!

Then the value ofd remains the same, whilex2/d.o.f.50.7.
This demonstrates the importance of the finite size effect
SU(3) gauge theory. The fit is shown in Fig. 4.

2. Abelian projection with random ordering

In the APRO case we have obtained a good scaling
havior as well, as shown in Fig. 5. However in this case a
to Eq. ~29! with function ~30! has a very badx2/d.o.f. ~of
order 16!.

Also in this case the use of expression~31! is essential:
the best fit, shown in the figure, givesd50.43(3) with
x2/d.o.f.;1.4. The value ofd is nearly compatible with the
11450
in

e-
t

one obtained in the RAP case:d50.50(3). The result ob-
tained in Ref.@5# is d50.54(4).

V. CONCLUSIONS

We have produced further and compelling evidence t
monopole condensation is independent of the Abelian pro
tion used to define the monopoles. If the idea of duality
correct, the nonlocal excitations which are expected to be
fields of the dual description of QCD and weakly interacti
in the confined phase, should have nonzero magnetic ch
in all the Abelian projections. This is a very important sym
metry property, which can help in identifying them.

There have been a number of papers in the literature
the past years, claiming that the fundamental fields of
dual description are the monopoles defined by the maxi
Abelian projection. The claim that monopoles defined by
maximal Abelian projection could be dual excitations do
not appear to be in good shape after the quantitative attem
to construct the dual theory, which go beyond the initial e
e
FIG. 5. Quality of scaling in the APRO cas
for SU(3), using Eq.~31! for C(Ns).
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pirical observation of Abelian dominance@19#. If this were
true, maximal Abelian monopoles should be magnetica
charged in all Abelian projections. This does not seem to
plausible, since one single Abelian projection does not c
fine the U(1) neutral particles belonging to the adjoint re
resentation, which would instead be confined in other A
lian projections.

An analysis of theZN vortices could give some hints, an
.

.

B

s.
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investigation has been started in this direction@20#. We think
that the problem is still open.
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