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It is demonstrated that the condensation of magnetic charges in the confined phase of SU(2) and SU(3)
gauge theories is independent of the specific Abelian projection used to define the monopoles. Hence the dual
excitations which condense in the vacuum to produce confinement must have a magnetic U(1) charge in all the
Abelian projections. Some physical implications of this result are discussed.
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[. INTRODUCTION magnetic charges are associated with any fielth the ad-
joint representation. We shall do this for SU(2) to simplify
This paper is the third of a series in which we study thenotation; extension to SW) only adds formal complica-
dual superconductivity of the QCD vacuufi—3] as a tions.
mechanism for the confinement of color. In the first two pa- | et d(x) be a field in the adjoint representati¢color
pers[4,5] we detected a condensation of magnetic charges iOectob and IetCiD(x) be its color orientation:
the confining phase by means of a disorder parameter ' ’

which is the vacuum expectation value of a magnetically X $(x)
charged operatop. (u) was determined by simulating the O(X)= ——. (1)
theory on a lattice: it is nonzero in the confining phase, and |P(x)]
tends to zero at the deconfining transition, above which it_ R
vanishes. d(x) is well defined, except at zeros &f(x).
The connection of u) to confinement was proved by a  Define a gauge invariant field strend#,,(x) [6],
guantitative determination of the critical indices and of the L
critical coupling. In Ref[4], SU(2) gauge theory was stud- - 2 2\ &
ied, while Ref.[5] was devoted to SU(3) with similar re- Fun=®-Gy, g(D“(D/\DV(D) o, @

sults.
Magnetic charges in gauge theories are defined by a prawhere G,,=d,A,—d,A,+gA,/\A, is the gauge field

c_edure known as Abelian prqjgcti({ﬂ]: with every local strength and ,®=(d,,+ g,&ﬂ/\)@ is the covariant deriva-
field ® belonging to the adjoint representatiolN (1) rjfive of d

U(1) fields can be associated, and with each of them a co Both he right-hand side of |
served magnetic charge. In fact there exists a functional in- oth terms on the right-hand side of K@) are separately

finity of monopole speciebl,— 1 for each fieldD, which in gauge invariant and colo_r_ singlets: their combination is cho-

principle can condense in the vacuum and confine the corr&EN In such a way th&.lt bilinear terAgA, , A, ®, andA,®

sponding U(1) electric charge by the dual Meissner effect. IFanceI. Actually, by simple algebra,

is not knowna priori if monopole condensations in different A 1 . L

Abelian projections are independent phenomena. FL,=- (%'&v_‘?vﬁw)_ —(9,®/\9,0)- . 3)
The indication obtained in Ref$4,5] by analysis of a 9

number of different choices ab was that all of them show ) A )

the same behavior, so that they are equivalent to each other. If We transform to a gauge in whickb(x)=const in

The possibility that in some way all the Abelian projections SPace-time, the last term cancels and

could be physically equivalent was first advocated in Ref. -~ -~ .

[2]. In this paper we add strong evidence for that equiva- Fu=0u(®-A)—3d,(P-A,) (4)

lence.

In order to explain what we do, let us first recall how is an Abelian field strength. Such a gauge transformation is

called an Abelian projection. It is in general a singular trans-
formation which exposes monopoles at the sites where
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| is zero if Bianchi identities hold, but can be nonzero in

compact formulations in terms of parallel transport, such as O:E \"O%, @)
lattice formulation[7]. In any case it follows from the anti-
symmetry ofF}, that with \® the generators in the fundamental representation.
The Abelian projection techniquig] prescribes fixing the
d*j,=0. (6) gauge by a gauge transformation in such a way that
In the dual superconductor view of color confinement the O4=G'OG=diago,,- - -,0y),
symmetry[Eq. (6)] is expected to be realized in the manner
of Wigner in the deconfined phase, and to be broken by th&ith (8

Higgs mechanism in the confined phase. An operator

which carries magnetic charge can provide a disorder param-

eter to discriminate between the two possibilities. Such an , I L 1

operator was developed and tested in REgs.10,4,5. After Abehgn projection, therg is still a U(Xy ! gauge free-
What was found in Refd.4,5] was that there is indeed dom left, since a transformation of the form

dual superconductivity in a number of Abelian projections.

As prlained in detall @n Sec. Il, the full identification_of the_ Q=diage'“1, ... e, > w=0 (9)

projected gauge requires that one go to a gauge in which

®d(x) -\ is diagonal in color indice_s)\( are the generators in  4qag not change the gauge fixing conditj&y. (8)].
the fundamental representatjprwith a fixed order of the After Abelian projection, the gauge variables of $U)(
eigenvalues. L are divided in two sets: thehotons[the N—1 neutral fields
One can diagonaliz&(x)-\ up to the ordering of the ynder the residual U(1) '] and thegluons(charged fields
eigenvalues, choosing it randomly, and still define an operayith respect to the residual symmetnAbelian magnetic
tor u which creates a magnetic charge in that Abelian promonopoles can arise at points where two eigenvalue® of
jection. In this paper we show that the corresponding disorare degeneratg?].
der parameter behaves exactly in the same way as the one Condensation of Abelian monopoles defined by Abelian
with ordered eigenvalues. projection was demonstrated numerically in Rpf] for
We can even define a completely random Abelian projecsy(2) and in Ref[5] for SU(3). This has been done by
tion, in which we do not diagonalize any operaterbut we  constructing an operator magnetically charged in a given
take, e.g., for S(R), ®= o3, the nominal 3 axis used in the Abelian projection and by studying the behavior of the
simulation, and define the corresponding Again we find vacuum expectation value of that operator across the phase
that . defined in this way behaves exactly in the same wayiransition at finite temperature. In the language of statistical
as those defined in Ref§4,5], and scales with the same mechanics we call this operatordésorder operatorand its
critical indices. The above Abelian projections are kind of anvacuum expectation valu¢/EV) a disorder parameterthe
average over a continuous infinity of Abelian projections,terminology being that the weak couplitdeconfined phase
and the result demonstrates, beyond any doubt, the Complei@the ordered phase. The construction can be done in differ-
independence of dual superconductivity from the choice ofnt Abelian projections: in Ref$4,5] a number of Abelian
the Abelian projection. projections were studied, and for all of them it was found
Our results are compatible with R¢fL1], where our dis- that indeed monopoles condense at low temperature, while
order parameter in the random gauge was computed bipe corresponding magnetic symmetry is implemented in the
Schralinger functional techniques. In the literature of the lastmanner ofWignerat high temperature. Moreover, the disor-
years, there has been the idea that monopoles defined bydgr parameter scales with the correct critical indices in the
particular Abelian projectiorithe maximal Abelian projec- critical region, and is independent of the choice of the Abe-
tion) are more relevant than others to confinemdr,13. lian projection. These results suggest that the observed be-
We will discuss this issue in Sec. V, where we draw conclu-havior of the disorder parameter is generally independent of
sions from our results. the Abelian projection and of the Abelian operator chosen.
In Sec. Il the construction of the disorder paraméie)y Let us review the construction of the disorder parameter.
will be recalled, to define the Abelian projection with ran- We introduce a time-independent external field
dom ordering(APRO) and the random Abelian projection . .
(RAP). In Sect. lll the numerical algorithms used will be ®i(n,y) =G INGT, (10
discussed. The results will be described in Sec. IV. Section V
will close the paper with conclusions. where G is the gauge transformation that diagonalizes the
operatorO according to Eq(8), b is the discretised trans-
Il. DISORDER PARAMETER verse field(i.e, V-b=0 on the continuumgenerated at lat-
tice spatial poinﬁ by a magnetic monopole sitting ﬁtand
In this section we recall the definition of the disorder pa-T is a generator of the Cartan subalgebra.
rameter for confinement. L&D be an operator which trans- Let U,, be the Wilson plaguette, defined in the usual
forms in the adjoint representation of the gauge group, i.e.,notations as

0,<0,<---<0y.
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U, (x)=U, (U (x+ ) (U (x+ ) U0, (11 with any operatorP which is diagonal in that representation.
w0 =U 00U, 0 ) (U, ) (UL 0) (1D For instance in SU(3) the Cartan subalgebra is generated by
wherex=(R,t). We introduce a shift);o(11,0)—U;o(11,0) by ~ [Aa,Xs—(Xa/\3)]. Since, however, what is defined as
inserting the external field,(n+1,y) in the path ordered M3:s in another configuration is independentiof and A
product at time zero, as follows: in the previous one, definitiol8) is equivalent to a sort of
' average ofu over all the possible Abelian projections. We

Dio(ﬁyo):Ui(ﬁ,0)®i(ﬁ+?-)7)Uo(ﬁ+?,0) refer to this case as random Abelian projecti®AP).
As discussed in Ref$4,5], a direct computation of )
X(Ui(ﬁ,l))T(UO(ﬁ,O))T, (12)  with Monte Carlo techniques is problematic, because this
quantity has large fluctuations, being the exponential of a
and we deﬁnd’jw(x)zuw(x) elsewhere. sum over the physical volume. A more convenient quantity
The Wilson action for SU{) gauge theory is to study in numerical simulations [8,4,5]
1 . J
=52 | 1= 5[Uu(0+UL00)1), (13 p=550%m)=(S)s~(Su)s, (19
where the sum extends over all the lattice points and direc? 1S the difference of two average actions, the Wilson action
tions. and the modified actio®y, (the latter being averaged with

By replacing in the previous equation the standardthe modified measur¢(DU)e”*M)/(f(DU)e™*M)). p has

. e ~ . . smaller fluctuations and contains all relevant information.
laquette with the modified plaquette, (i), we obtain the . - .
‘?mc?nopole” action Plag u(1) The value of(u) is related top by the relationship

B
. 1 ~ = "dg' . 20
Su(.0-53 (1— 0,00 +@,,00)1|. 14 (w) eX"( Jo pLA)dp 20
2%
The disorder parameter introduced in R¢#5] is given by I1l. GAUGE FIXING AND SIMULATION ALGORITHMS
J (DU)e~ Sw(¥0:0) We have determined the temperature dependenpefaf
SU(2) and SU(3) pure Yang-Mills theories, for both defini-

V0,0))= , 15 : S
{(yo0) (19 tions (17) and (18) of ® on an asymmetric Iatt|ce\I§>< N,

-s
f (PU)e with N;<N. For both definitions ofb, the simulation of the
Wilson term(S)g has been performed on a lattice with peri-

where the functional integral o ® is taken with periodic  odic boundary conditions by using a standard mixture of
boundary conditions and the integral of Sv with heatbath and overrelaxed algorithms.

C*-periodic boundary conditiond 4,15 As for the APRO case, we have chosen the Polyakov line
R R as the operator to identify the Abelian projection, following
Ui(n,t=Ny)=U{(n,t=0), (16)  the definition in Eq(31) of Ref.[4] and Eq.(19) of Ref.[5],

. ] ) ) with the only difference that at each spatial point the order-
N, being the temporal extension of the lattice &l being  jng of the eigenvalues is selected randomly among the pos-
the complex conjugated df;. To study more in detail the gjple different permutationsn, [n,=2 (6) for SU(2)
dependence on the projecting operator, we will modify theisu(3)) pure gauge theoly This effectively corresponds
definition of & as foIIovys. . : ._ 1o averaging oven!$ different definitions of the Abelian
(1) We choose a projecting operator and we diagonalize 'Lrojection The Abelljian generats® (F8=\8/2, with \' the
but without fixing the order of the eigenvalues, or bEtterWithGell-Manﬁ matrice has been chosen to de,fine the mono-

the order of the eigenvalues randomly chosen, pole field for the SU(3) case. We u§¥ boundary condi-
tions in time to computéSWSM in Eq. (19). In this case, as

explained in Ref[4], it is not possible to use a standard
whereP is a randomN X N permutation matrix. This corre- heatbath or overrelaxed algorithm to simulate the modified
sponds to a sort of average afover the class of operators action, since, e.g., in the case of Polyakov projection, the
differing from O on each point by the order of the eigenval- change of any temporal link induces a nonlinear change in
ues. We refer to this case as Abelian projection with randonihe modified action. So we have performed simulations by
ordering(APRO). using a mixedheatbath plus overrelaxgdlgorithm for the
(2) We do not perform the Abelian projection, i.e., we take update of spatial links, and a Metropolis algorithm for the
o update of the temporal links.
qpi(ﬁj) =giThi(n=iy) (18 In the case of the random Abelian projection, as it appears
in Eq. (18), one does not need any gauge fixing to define the
with T a generator in the Cartan subalgebra. In a given conmonopole field. As a consequence, the change of any link
figuration this amounts to making the Abelian projectionalways induces a linear change in the modified action. There-

®,(n,y)=GPd™i-INpGH (17)
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fore we have used a standatdeatbath plus overrelaxgd o
algorithm in this case. In the SU(3) case, the Abelian gen- UV:f[Né’V(,BC—B)]. (24
eratorF® has been used again to define the monopole field. Ns

The ratiop/NZ" is a universal function of the scaling vari-
able:

The phase transition is known to be second order for "
SU(2), andweak first order for SU(3]17]. As usual we X=Ng"(Bc—B). (29
shall speak of critical indices in both cases, meaning, for .
SU(3), efective critical indices at small values of (1 _ e will use the known values g8c and» of SU(2) and
—T/T,), but not too small. SU(3) pure gauge theories to see that.s'cahng holds with the

In Refs.[4,5] it was shown that the critical indices of the Présent data. In order to obtain the critical exponéntve
confinement transitions for SU(2) and SU(3) did not depend'S€ an expression equivalent to EZ3):
on the particular type of Abelian projection used to define the ()= (Be— B)°F(X)
monopole condensation. Here we will show numerically that K € '
th_e critical exponents, and also the value of th_e criticz_il COUErom this we obtain
pling, are the same even for the random Abelian projection
and the Abelian projection with random ordering, both for o 5 F(x
SU(2) and SU(3). ——

The critical behavior of the disorder parametgr) is

governed by an exponent. For finite lattice sizes ) N )
(N3XN,), finite size scaling states that To obtain § we need additional assumptions about the un-

known scaling functionF(x). We will see that fits of good
& aN quality are obtained with the simple parametrization
(u)=Ng "l - 20 (21)
S Nsa g! NS ’

IV. NUMERICAL RESULTS

(26)

@:_x F(x) - @

S
. . _ ——=---C, (28)
where a and ¢ are the lattice spacing and the correlation N X

length of the system, respectively.
Near the critical point, foB<fc, whereC is a constant term. This form is suggested by the
fact that wherx— 0, both F(x) and its derivative should go
Ex(Be—B) 7, (22)  to a constant.

wherev is the corresponding critical exponent. In the limit A. SU(2) gauge theory
Ng>N; and fora/¢<1, i.e., sufficiently close to the critical
point, 1. Random Abelian projection
The quality of the scalindEq. (24)] for SU(2) in the
(m)y=Ng TFINY"(Bc—B)], (23)  RAP case can be seen in Fig. 1. Here we used the known
values of 8-=2.2986 andv=0.63[16]. The curve in the
or equivalently figure corresponds to the best fit to E@8). We obtainé$
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3 -
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N " (BB
=0.195), with a y?/d.o.f~1.5, in good agreement with the o u
value obtained in the plaquette and Polyakov gauges in Ref. NI fINs"(Bc—B)]+W¥(Ny), (29
[4]: 6=0.2Q08). s
2. Abelian projection with random ordering vyhere\If(NS) parametrizes these effects. A simple assump-
tion is
Results obtained in the APRO case are shown in Fig. 2,
where again known values @ and» have been used. The a
curve in the figure corresponds to the best fit to E2f), W(Ng) = —, (30)
which gives §=0.206), with a y?/d.o.f~1.1. The agree- Ng
ment with the results obtained in the RAP case and in the
plaquette and Polyakov gauges in Ref] is very good. valid up toO(l/NS).
B. SU(3) gauge theory 1. Random Abelian projection

The confinement transition in pure SU(3) gauge theory is Figure 3 shows the scaling behavior expressed by Eqg.
a first order transition17]. One therefore expects a pseud- (29), where for¥ (Ng) we have taken the form of E¢30).
ocritical behavior, withv=1/3, that is, the inverse of the As an input we used the valugk(N;=4)=5.6925 andv

number of spatial dimensions. As remarked upon in Rgf.  =1/3[18]. The curve in the figure corresponds to a best fit to
the scaling relatiofEq. (24)] has to be modified in this case Eq.(28), modified by including the terrd”(N,), which gives
to include finite size violations to scaling, the values=0.50(3), with a y?/d.0.f=3.2.

-0.02 -

-0.03—

)
«

0041~ 8=0.50(3 N
g o |
2. FIG. 3. Quality of scaling in the RAP case for
%_ -0.05 — SU(3).
' e N-16 |
-0.06 — o Ng=24 —
| N=32 |
007 .
| . | . | . | . | i
0 100 200 300 400 500

N"¥B.-B)
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-

FIG. 4. The same as in Fig. 3, using E§1)

i 1 for W(Ny).
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The quality of the fit improves considerably if one in- one obtained in the RAP casé=0.50(3). Theresult ob-

cludes a second term in the expression¥giNy): tained in Ref[5] is 6=0.544).
a b V. CONCLUSIONS
P (Ng)=—+ —. 31

We have produced further and compelling evidence that
monopole condensation is independent of the Abelian projec-

Then the value of remains the same, whilg?/d.o.f=0.7. tion used to define the monopoles. If the idea of duality is

This demonstrates the importance of the finite size effects i§OI™eCt the nonlocal excitations which are expected to be the
SU(3) gauge theory. The fit is shown in Fig. 4. fields of the dual description of QCD and weakly interacting
in the confined phase, should have nonzero magnetic charge

in all the Abelian projections. This is a very important sym-
metry property, which can help in identifying them.

In the APRO case we have obtained a good scaling be- There have been a number of papers in the literature of
havior as well, as shown in Fig. 5. However in this case a fithe past years, claiming that the fundamental fields of the
to Eq. (29 with function (30) has a very bag?/d.o.f. (of  dual description are the monopoles defined by the maximal
order 16. Abelian projection. The claim that monopoles defined by the

Also in this case the use of expressi(81) is essential: maximal Abelian projection could be dual excitations does
the best fit, shown in the figure, give$=0.43(3) with  not appear to be in good shape after the quantitative attempts
x%/d.0.f~1.4. The value of5 is nearly compatible with the to construct the dual theory, which go beyond the initial em-

2. Abelian projection with random ordering

T I T T I T I T T I T
-0.02} —
i Py $ .
-0.03 |- —
g omt b -
%; -0.05 - — FIG. 5. Quality of scaling in the APRO case
SEV, | ] for SU(3), using Eq.(31) for W (N,).
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. o Nz=24 i
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-0.07 - d —
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pirical observation of Abelian dominan¢&9]. If this were investigation has been started in this direc{iaf]. We think

true, maximal Abelian monopoles should be magneticallythat the problem is still open.

charged in all Abelian projections. This does not seem to be

plausible, since one single Abelian projection does not con- ACKNOWLEDGMENTS
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