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Monopoles, confinement, and deconfinement of„2¿1…D compact lattice QED in external fields
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The compact Abelian model in three space-time dimensions is studied in the presence of external electro-
magnetic fields at finite temperatures. We show that the deconfinement phase transition is independent of the
strength of the external fields. This result is in agreement with our observation that the external fields create
small-size magnetic dipoles from the vacuum which do not influence the confining properties of the model.
Contrary to the deconfinement phase, the internal field in the direction of the applied external field is attenuated
in the confinement phase; this screening becomes stronger with decreasing temperature.
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I. INTRODUCTION

Compact Abelian gauge theory in three Euclidean dim
sions is proven to possess the property of permanent con
ment@1,2# due to presence of Abelian monopoles: any pair
test electric charge and anticharge are confined by a lin
potential. The monopoles are topological defects which
pear due to the compactness of the gauge group. In t
dimensions the monopoles are instantonlike.

The confining property of the model is lost at sufficien
high temperature. The confinement-deconfinement ph
transition—which is expected@3–5# to be of the Kosterlitz-
Thouless type@6#—was studied on the lattice both analy
cally @5# and numerically@4#. A thorough numerical analysi
of the phase transition was done in Ref.@7# where it has been
demonstrated that the monopoles are sensitive to the tra
tion. In the confinement phase the monopoles are observe
the plasma state while in the deconfinement phase the m
poles appear in the form of a dilute gas of magnetic dipo
Similarly to the monopole plasma the dipole vacuum,
though not confining, still has a nonperturbative nature@8#.
In the confinement phase both monopole density and st
tension differ from semiclassical estimates@1# which neglect
monopole binding. However, an analysis of monopole cl
ters shows that the relation between the string tension
the density of monopoles inmagnetically chargedclusters is
in reasonable agreement with those predictions.

An alternative explanation of the deconfinement ph
transition, based on Svetitsky-Yaffe universality argume
@3#, was given in Refs.@4,5#. The phase transition was dem
onstrated to be accompanied by restructuring of theU(1)
vortex system in an effective two-dimensional~2D! Abelian
spin model. In the confinement~low temperature! phase the
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vortices exist in the plasma state while in the deconfinem
~high temperature! phase the vortices and antivortices for
bound states. Both monopole@9# and vortex@10# binding
mechanisms have been studied in the context of the Geo
Glashow model, too, a limiting case of which is the comp
Abelian gauge model.

In this paper we continue to consider the deconfin
mechanism by monopole pairing which seems to have in
esting counterparts in realistic gauge theories. The forma
of monopole pairs is qualitatively similar to the binding
instantons in instanton molecules with increasing tempe
ture in QCD suggested to be responsible for chiral symme
restoration@11#. An external magnetic field affects the pha
diagram of the non-Abelian theory as was shown both a
lytically @12# and numerically @13#. In the electroweak
theory, the formation of Nambu monopole-antimonopo
pairs, a remnant from a dense medium of disorderedZ vor-
tices and Nambu monopoles which characterizes the h
temperature phase, is accompanying the transition tow
the low temperature phase@14#. The effects of the externa
fields on the phase transition temperature and the e
troweak baryogenesis in the electroweak theory were
cussed in Ref.@15#.

In three-dimensional gauge theories the inclusion of
ternal fields allows to study the vacuum energy density in
SU(2) gauge theory@16#, vortex dynamics in the Abelian
Higgs model@17#, and dynamically generated fermion ma
in the Abelian gauge theory with fermionic@18# fields. Here
we study the influence of the external electromagnetic fi
on the confining and monopole properties of the comp
Abelian gauge model in three dimensions.

The plan of the paper is as follows. In Sec. II we descr
the basics of the lattice formulation of the compactU(1)
model in 211 dimensions and how the external field
implemented. The screening of the external electric and m
netic fields and the properties of the Polyakov loop corre
tors in the presence of those fields are studied in Sec.
Differences and similarities between magnetic and elec
©2001 The American Physical Society02-1
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fields are stressed. The string tension in the presence o
external fields with a fluxnext is investigated in Sec. IV and
the phase diagrams in thenext-b plane are presented in Se
V, separately for magnetic and electric fields. In the case
an applied electric field we see that the so-called ‘‘bu
Polyakov loop’’ can no longer play the usual role in locali
ing the deconfining transition. Results for various monop
properties are collected in Sec. VI. Our conclusions are s
marized in the last section.

II. THE COMPACT LATTICE MODEL IN EXTERNAL
FIELDS

We study (211)-dimensional compact lattice electrod
namics in constant external electromagnetic fields. Follow
Ref. @19# we use the action

S@u,uext#52b(
p

cos~up2up
ext!, ~2.1!

whereup is theU(1) field strength tensor represented by t
curl of the compact link fieldu l , andup

ext is the field strength
corresponding to the external field.b is the lattice coupling
constant related to the lattice spacinga and the continuum
coupling constantg3 of the 3D theory as follows:

b5
1

a g3
2

. ~2.2!

At finite temperature the lattice is asymmetric,Ls
23Lt ,

Lt,Ls ; L15L25Ls andL35Lt are the spatial and tempora
extensions of the lattice, respectively. In the limitLs→` the
temporal extension of the latticeLt is related to the physica
temperature,Lt51/(Ta). Using Eq.~2.2! the temperature is
given via the lattice parameters as follows:

T

g3
2

5
b

Lt
. ~2.3!

Note that in 211 dimensions there is no symmetry an
more between the three components of the field strength
sor. The closest relative of the true magnetic field isF12
distinct from the others, while there is still a symmetry b
tween F13 and F23. With this distinction in mind one can
conditionally call them the ‘‘magnetic’’ and ‘‘electric’’ com-
ponents of the field strength tensor, respectively. As long
one does not introduce external fields, even at finite temp
ture there was no need to distinguish between them.

Without loss of generality we represent an external el
tric field E as a field directly coupled via Eq.~2.1! to
plaquettes lying in the 31 plane. The value of the field
quantized@19#:

E5u31
ext5

2pnE

L1L3
, nEPZ, u12

ext5u23
ext50. ~2.4!

To study the influence of a magnetic field~and to draw par-
allels to analogous studies in four dimensions@20#! we
11450
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implement a magnetic fieldB as a field directly coupled via
Eq. ~2.1! to plaquettes lying in the 12 plane,

B5u12
ext5

2pnM

L1L2
, nMPZ, u31

ext5u23
ext50. ~2.5!

The quantization of the external fields~2.4! and~2.5! is nec-
essary to match with the periodic boundary conditions i
posed on the lattice@19#. Indeed, these conditions imply tha
the rectangular Wilson loop of the sizeLi3L j in the i j plane
must be equal to unity. On the other hand the Wilson loop
equal to exp$iF%, whereF is the flux going through thei j
plane. Therefore, we get the quantization condition for
flux, F52pnext, nextPZ, which implies in turn the relations
~2.4! and ~2.5! for the constant electric or magnetic field
respectively. We use the notationnE/M instead ofnext where
we want to emphasize the electric/magnetic nature of
external field.

Naturally, from the form of the action~2.1! the number of
external fluxes is restricted, 0,next,LiL j /2. In our analysis
we restrict that number to 0,next,LiL j /4. One should note
however, that the largest considered fluxes correspond to
tice artifacts. Indeed, the physical electromagnetic field m
have a strength smaller than the scale corresponding to
lattice ultraviolet cutoff,a22. This leads to the restriction o
the lattice field strength:uext!1, or next!nmax5@LiLj /(2p)#,
to avoid too large external fields.

As in the case of zero field@7# we restrict ourselves to a
finite temperature lattice 32238 varying the strength of the
constant external electric or magnetic field and consider
the lattice gauge coupling range 0.1<b<3. For this particu-
lar lattice size we get the upper bounds for the electric a
magnetic fields:nE

max540 andnM
max5163, respectively. From

our studies at zero external fields we@7# found the decon-
finement phase transition atbc52.346(2) using the Polya
kov loop susceptibility in satisfactory agreement with R
@4#.

We briefly recall the Monte Carlo algorithm used and d
scribed already in Ref.@7#. The algorithm combines a loca
Monte Carlo step with a global refreshment step to impro
ergodicity. The local Monte Carlo algorithm is based on
five-hit Metropolis update sweep followed by a microcano
cal sweep. Following Ref.@19#, the global refreshment ste
consists of an attempt to add an additional unit of flux
randomly chosen direction and sign~i.e., adding a gauge
field ũ i constructed over the whole lattice to the previous o
u i→@u i1 ũ i #mod2p ), subject to a global Metropolis accep
tance check. The acceptance rate for a global update doe
depend on the external fluxnext and it is roughly equal for
global shifts of the electric or magnetic flux. However,
changes withb, reducing from 0.58•••0.6 at b51.0 to
0.18 . . .0.20 atb52.9.

III. POLYAKOV LOOP CORRELATORS AND SCREENING

Usually, the Polyakov loop

L~x!5expH i E
0

Lt
dt A0~x,t !J ~3.1!
2-2
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is used as the basic quantity to probe the confining pro
ties. The integration runs along a loopl x parallel to the time
axis and located at the spatial 2D coordinatex. The Polyakov
loop operator inserts an infinitely heavy test particle w
unit electric charge into the vacuum of the theory. T
vacuum expectation value~VEV! of this operator expresse
the free energyF of the inserted particle,̂ L(R)&5exp
(2F/T) and is an order parameter to signal deconfineme

In the absence of an external field the correlation funct
between two Polyakov loops can be expressed via the in
action potential V(R) between infinitely heavy electric
charge and anticharge,

^L~0!L* ~R!&}exp$2LtV~R!%. ~3.2!

The leading behavior of the potentialV(R) in the low tem-
perature phase corresponds to a linearly rising poten
V(R)5s R, wheres is the tension of the string between th
test electric charges separated by the distanceR5uRu. In the
high temperature phase the potential is of Coulomb type~it
rises logarithmically with increasing distance between t
particles!.

Now we discuss the Polyakov loop correlations in bo
electric and magnetic external fields. We introduce a 3D v
tor combining electric and magnetic components by

FW 5~F23,F31,F12!5~Ex ,Ey ,Bz!. ~3.3!

As we will immediately see, an external~constant! electric
field substantially modifies the behavior of the Polyak
loop correlator~3.2! alreadyon the tree level.

Indeed, the electromagnetic field inside the medium
be decomposed into two parts,FW int1FW q. Here FW int is the
mean field inside the medium, which is nonzero due to
presence of the external electromagnetic field. The fieldFW q

corresponds to the quantum fluctuations around the m
value FW int. Because of the Abelian nature of the Polyak
loop the correlation function~3.2! can be written as the prod
uct of two contributions,

^L~0!L* ~R!&FW ext5K expH i R
C
dxmAm~x!J L

FW ext

5eiFC(FW int)
•G~R,FW ext!, ~3.4!

G~R,FW ext!5^L~0!L* ~R!&FW ext
q

5^eiFC(FW q)&FW ext
q ,
~3.5!

whereC5 l 02 l R is the contour corresponding to the test p
ticle trajectories, and

FC~FW !5 R
C
dxmAm~x!5E

SC
dsmFm~x! ~3.6!

is the flux of the electromagnetic fieldF which goes through
the surfaceSC spanned on the contourC. The subscriptFW ext

in Eq. ~3.5! indicates that the vacuum expectation value
the quantum part of the Polyakov loop has been taken w
the action Eq.~2.1! corresponding to nonzero external flux
11450
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The correlator~3.5! is taken over quantum fluctuation
only, as indicated by the superscriptq. Note that by definition
the fieldAq fluctuates near the minimum of the action. Th
negative modes are absent and the potentialV(R;FW ext)}
2 ln G(R,FW ext)/Lt must be real. The dynamics of the mon
poles affects the quantum fluctuations and consequently
potentialV. The external fields disturb the monopole mediu
and therefore we may expect that in general the interpart
potentialV may get influenced by the external fluxes.

Summarizing, the quantum average of the Polyakov lo
in the presence of the external constant electromagnetic
is given by the following formula:

^L~0!L* ~R!&FW ext}exp$ iFC~FW int!2LtV~R;FW ext!%,
~3.7!

where anonvanishingflux FC(FW int) pierces the surfaceSC
spanned by the contourC and the trajectories of the tes
particles are placed along the~temporal! z direction.

The properties of the internal fields inside the system
important to understand the behavior of the Polyakov lo
correlators. For external fields given by Eqs.~2.4! and ~2.5!
the total external fluxes through the corresponding planes
quantized. Analogously, the internal electric or magne
fluxes through any plane in any gauge field configuration
quantized as well~the considerations similar to those in Se
II are applicable in this case as well!. Note that the global
update step is consistent with the internal flux quantizat
since the update allows to change the total flux of the sys
by just one unit.

From now on we study only two possibilities for the e
ternal field, an electric field in they direction and a magnetic
field in thez direction,

FW ext5~0,E,0!, or FW ext5~0,0,B!. ~3.8!

It is clear that only the electric component contributes to
flux FC(FW int) in Eq. ~3.7!. In our case the mean interna
electric and magnetic fields which are the actual aver
fields present in the medium are given by^u31& and ^u12&,
respectively, where

^u ik&5K 1

Ls
2Lt

(
x

@ux,ik#mod2pL . ~3.9!

Following Ref.@21# we show in Fig. 1 the normalized ave
age internal electromagnetic fieldŝu31&/E5F2

int/E and
^u12&/B5F3

int/B along the directions of the applied fields a
a function of the gauge couplingb for various external field
fluxes next. One can see that in the confinement phase
internal fields are much weaker than the external fields w
in the deconfinement phase the internal and external fi
almost coincide with each other. The measured average
ternal fields in the directions transverse to the applied ex
nal field remain zero.

The attenuation of the external fields in the confinem
phase resulting in weaker average fields in the medium h
pens due to the monopole plasma@1# and can be called
2-3
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FIG. 1. The normalized inter-
nal ~a! electric and~b! magnetic
fields vsb at fixednext .
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screening: the monopoles produce a finite correlation len
j. If we would apply an external field to the box with th
monopole plasma using frozen boundary conditions then
field would be greatly suppressed inside the media at
tances~from the box boundaries! larger thanj. Thus the
averaged field inside the box with the plasma should
smaller than the external field. The smaller the correlat
length the smaller should be the averaged field inside
media.

As the temperature increases, the monopoles form m
and more magnetic dipole bound states. In the dipole pla
the screening is absent@22# and the correlation length is in
finite. The internal field is expected to be equal to the ex
nal one, which is clearly seen in Fig. 1 for external fields
small strength. Moreover, the screening of the external m
netic and electric fields with the same strength~related to
each other asnE5nM /4 due to a difference in the lattic
extensions in spatial and temporal directions! is very similar
for weak external fields. This happens because the natu
the monopoles is not purely ‘‘magnetic’’ at finite temper
ture. At large magnetic fields the response of the medi
different in magnetic and electric cases. In Sec. VI we sh
that the observed features of the screening are qualitati
related to specific properties of the monopoles and th
bound states.

Let us consider the properties of the correlator~3.7! on a
lattice of finite size for a nonvanishing external electric fie
E using the lattice Polyakov loop at positionx5(x,y),

L~x!5expS i (
z51

Lt

u3~x,z!D . ~3.10!

We put the test charge and anticharge at the points (0,0)
(x,y), respectively. The fluxesFC(u31) going through the
surfaceSC spanned between the test particle trajectories
pend on the internal electric fieldu31; they are quantized an
peaked around an average value. Therefore, they can
equately be described by taking into account only the ‘‘m
probable’’ flux state labeled by the integernint
5nint(next,b,Li) which depends on the strength of the ext
nal field, temperature, and lattice geometry. In that caseFC
52p nintx/Ls and Eint5^u31&52pnint /(LsLt). The Polya-
kov loop correlator reads as follows,
11450
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^L~0,0!L* ~x,y!&E}expH 2p in int

x

Ls
2LtV~x,y;E!J ,

~3.11!

with the oscillating part of the correlator defined by the ele
tric component of the internal field.

Equation ~3.11! simultaneously characterizes both th
screening of the external field~phase factor! and the potential
of the test electric charges~modulus!. We expect that in the
deconfinement phase the external field is not screened
the correlator is dominated bynint'nE . In the confinement
phase the field must be screened andnint becomes smaller
with decreasingb ~temperature!.

Thus the Polyakov correlator in the deconfinement ph
is an oscillating sign–changing quantity at a fixedy coordi-
nate as a function of thex coordinate. The maxima of the
oscillations become damped with increasingx due to the
Coulombic interaction between the test particles.

The correlations at fixedx and changingy should be of
the same sign and decay with increasingy. This behavior is
nicely illustrated by the~real part of! the Polyakov loop cor-
relators~3.11! in the x-y plane shown in Fig. 2~a! for the
deconfinement phase. The measurement was performed
external electric field with fluxnE54.

In the confinement phase we expect that the sign fluc
tions of the correlator should be strongly suppressed du
area-law decay. Thus the correlator must go to zero rap
with increasing distance between charge and anticha
Ax21y2. The corresponding correlator, presented in F
2~b! at b52.0, shows the expected suppression. In additi
we observe a small local maximum atx'8 andy50 arising
from a flux of valuenint close to 4 in agreement with th
behavior of the internal fields in Fig. 1 for this relative
largeb value.

Finally, let us comment here that an induced internal m
netic field ~parallel to its parental external field! which is
directedalong the Polyakov loop cannot contribute to th
‘‘classical’’ phaseFC and, therefore, oscillations cannot a
pear. Thus, in an external magnetic field, the correlato
rapidly approaching zero with increasing spatial distance

IV. STRING TENSION IN THE PRESENCE OF FIELDS

According to Ref.@23# the point-point correlation of the
two Polyakov loops in the absence of an external field can
2-4



-

MONOPOLES, CONFINEMENT, AND DECONFINEMENT OF . . . PHYSICAL REVIEW D 64 114502
FIG. 2. Real part of the Polya
kov loop correlator in thex-y
plane ~3.11! for an external elec-
tric flux nE54 in ~a! deconfine-
ment, b52.6 and ~b! confine-
ment, b52.0 phases. Half of the
lattice 32238 is shown.
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parametrized as follows:1

^L~x1 ,y1!L* ~x2 ,y2!&

5const(
p1,2

eip1(x12x2)1 ip2(y12y2)

12cosp12cosp21cosh~sLt!
1•••,

~4.1!

where the sum runs over all possible momenta,p1,2
50, . . . ,2p(Ls21)/Ls ands denotes the ‘‘temporal’’ string
tension.

To evaluate the string tension, we use two Polyak
‘‘plane’’ operators which are defined as a sum over Polyak
loop positions along and perpendicular to the external fie
As an example we take the electric field in they direction.
Then

L i~x!5 (
y51

Ls

L~x,y!, L'~y!5 (
x51

Ls

L~x,y!. ~4.2!

The correlator of the plane-plane correlators may be writ
as a sum over the corresponding positions of the point-p
correlation functions,

^L i~0!L i* ~x!&5 (
y1,251

Ls

^L~0,y1!L* ~x,y2!&, ~4.3!

^L'~0!L'
* ~y!&5 (

x1,251

Ls

^L~x1,0!L* ~x2 ,y!&.

~4.4!

In the presence of an electric fieldE along they axis this
correlator must be modified in accordance with our disc
sion in Sec. III,

1Here and below we take into account only the lowest ‘‘ma
state’’ corresponding to the actual string tension, unless spec
otherwise.
11450
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^L~x1 ,y1!L* ~x2 ,y2!&→^L~x1 ,y1!L* ~x2 ,y2!&E

5expS 22p in int

x12x2

Ls
D ^L~x1 ,y1!L* ~x2 ,y2!&nE

q .

~4.5!

The subscriptnE indicates that the Polyakov loops are ca
culated in the state with an external electric fluxnE in the y
direction. The internal electric fluxnint depends implicitly on
that external flux. Combining Eqs.~4.1! and ~4.5! with Eqs.
~4.3! and ~4.4! and taking the sums over the momentap1,2
explicitly, we get

^L i~0!L i* ~x!&nE
5const3e2p in intx/LscoshFs LtS x2

Ls

2 D G ,
~4.6!

^L'~0!L'
* ~y!&nE

5const3coshFseff~s,nint!LtS y2
Ls

2 D G ,
~4.7!

where formally a string tension coefficientseff(s,nint) for
the plane-plane correlator perpendicular to the field has b
defined:

seff~s,nint!5
1

Lt
arccosh@cosh~s Lt!2cos~2pnint /Ls!11#.

~4.8!

Thus in the presence of an external electric field the pla
plane Polyakov loop correlator parallel to the electric fie
oscillates with a decreasing amplitude.

The plane-plane correlator perpendicular to the field
creases exponentially~without oscillations! as a function of
the distance between the planes. The decrease of this
relator is controlled by aneffectivestring tension~4.8! which
is a function of the external electric field~via nint) and the
actual string tension. The essential message here is tha
effective string tension does not tell anything about confi
ment properties, since the confinement is described by
real string tensions. Note that the effect of the externa
electric field is absent if the internal flux is equal to qua
tized values,

nint5N•Ls , NPZ. ~4.9!

s
d

2-5
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FIG. 3. ~a! The string tension
vs b without external field taken
from Ref.@7#. ~b! Fitted string ten-
sion for variousb values as func-
tion of the external electric flux
nE .
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The origin of theseff dependence on the external elect
field strength is related to the oscillatory behavior of t
Polyakov loop correlator~3.11!. Indeed, the bulk correlato
^uLu2&E @defined below in Eq.~5.1!# comprises all possible
Polyakov loop correlators. At small and increasingnint the
sum of the oscillating quantities leads to a suppression
^uLu2&E while atnint satisfying the special condition~4.9! the
oscillations disappear and as a result the effective string
sion ~4.8! coincides with the string tension in the absence
the external electric field.

To get rid of the direct influence of the electric field on t
string tension~4.8! we use only the real part of the Polyako
plane-plane correlator which is parallel to the external fie
We fit the numerical data by the real part of Eq.~4.6! using
~besides trivial prefactors! s and nintPZ as fitting param-
eters. At the considered values ofb>1.6 we find that the
best fit is given bynint5next in accordance with our discus
sion in Sec. III.

In the absence of external fields, the dependence of
string tension onb has been found in Ref.@7# and it is shown
in Fig. 3~a!. The string tension is a rapidly decreasing fun
tion: it is nonzero in the low temperature phase~low b) and
becomes very small~due to finite size effects! in the high
temperature phase. From Fig. 3~b! we conclude that within
errors the string tension does not depend on the external
nE . This observation allows us to conclude that an exter
electric field in the compact (211)D Abelian gauge theory
does not change the confinement behavior compared to
zero-field case.

For an external magnetic field~in the ‘‘temporal’’ z direc-
tion! the oscillating factor in the Polyakov loop correlator
absent. Therefore, we have used Eq.~4.6! with nint50 to fit
the plane-plane correlation functions of the Polyakov lin
The numerical results for the string tensions are similar to
those in the case of the electric field shown in Fig. 3~b!:
within errors of the fit values we do not observe a dep
dence of the string tension on the strength of the exte
field. Therefore we do not show the plot of the string tens
vs the external magnetic flux.

Summarizing, both magnetic and electric fields do n
influence the string tension. This fact is analyzed in terms
the monopole properties in Sec. VI. Before doing so we d
cuss the phase structure of the model using the Polya
loop expectation value and the corresponding susceptibi
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V. PHASE STRUCTURE

The confinement-deconfinement phase transition is u
ally detected using the Polyakov loop vacuum expectat
value. It is convenient to study VEV’s of the powers of th
‘‘bulk Polyakov loop’’ defined as follows:

^uLu&5
1

Ls
2 K U(x

L~x!U L , ^uLu2&5
1

Ls
2 K U(x

L~x!U2L
5

1

Ls
2 K (x,y

L~x!L1~y!L . ~5.1!

The Polyakov loop susceptibility is expressed via the
quantities:

xL5^uLu&22^uLu2&. ~5.2!

According to the free energy arguments in the deconfinem
phase the quantityuLu should be nonvanishing while in th
confinement phase this quantity becomes small~it ap-
proaches zero in the infinite volume limit!.

In the following we show that the expectation value of t
Polyakov loop, similar to the correlator discussed above, a
gets a large classical contribution due to the external elec
field. Therefore it should not be used in general as an or
parameter to probe the restoration of confinement~except for
some special values of the electric field!.

A. Electric field

The behavior of the Polyakov loop vsb at various values
of the external electric field is shown in Fig. 4~a!. The plot of
the Polyakov loop at zero field agrees with general expe
tions. However, as the electric field is turned on, the vacu
expectation value of the Polyakov loop is decreasing. O
might conclude that the external electric field restores
confinement phase~while being in deconfinement atnE
50) which is in clear contradiction with the results for th
string tension shown in the previous section. We remind
reader that the external electric field modifies the proper
of the Polyakov loop correlator classically. In particular, f
not too largenE , it enhances what we called theeffective
string tension measured from the Polyakov plane-plane
relators perpendicular to the electric field@cf. Eq. ~4.8!#. But,
2-6
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FIG. 4. ~a! The absolute value
of the bulk Polyakov loop~5.1!
and~b! the Polyakov loop suscep
tibility ~5.2! vs b for various val-
ues of the external electric field
nE .
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as we noted above, this effective string tension does not
scribe the confining properties of the system.

Thus we may conclude that the rapid decrease of
Polyakov loop as a function ofnE also does not mean tha
confinement is restored. Note that at large special value
the internal fluxnint , Eq. ~4.9!, the module of the Polyakov
loop and the susceptibility@Fig. 4~b!# as a function ofb do
not differ from the zero-field case.

Let us estimate the classical correction to the Polya
loop expectation value due to the external electric fieldE.
For this purpose we consider the squared modulus of
Polyakov line, Eq.~5.1!. In the presence ofE it can be writ-
ten as follows:

^uLu2&E5const(
x,y

e2p i n intx/Ls^L~0,0!L* ~x,y!&. ~5.3!

Taking into account Eq.~4.1! for the point-point Polyakov
loop correlator and summing over all momentapi in this
equation we get2

^uLu2&E5 (
m>0

Cm

cos~2pnint /Ls!2cosh~smLt!
. ~5.4!

Here the expansion over the excited mass statessm is written
explicitly and the lowest state corresponding to the str
11450
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tension iss05s. From Fig. 4 it follows thatxL!^uLu&2 for
all b and nE values. Thus the square root of Eq.~5.4! can
serve as a good estimator for the Polyakov loop quan
averagê uLu&.

We use only the first two terms of the expansion~5.4! to
fit the behavior of themeasuredPolyakov loop vs the exter
nal electric flux number. The corresponding fits for the co
finement and deconfinement phases are shown in Figs.~a!
and 5~b!, respectively. The best fits for the string tension
the confinement phase~at b51.6) gives050.167(13) and
s150.85(6). The value of s0 can be compared with the
string tension without external field,s50.170(4). These
values agree with each other within statistical errors. In
deconfinement phase (b52.5) the same picture is found
s050.0096(5) ands150.18(1), while the independen
measurements at zero field lead tos50.0101(1). Therefore,
the behavior of the Polyakov loop approximated via Eq.~5.4!
in the external electric field is consistent with the string te
sion measurements at zero field.

So, in the case of nonvanishing external electric field,
bulk Polyakov loop expectation value may vanish regardl
of the value of the actual string tension. Indeed, even as
50 ~which is not accessible on the finite lattice due to fin
volume effects! the squared Polyakov loop expectation val
~5.4! is decreasing when turning on the external electric fl
As we have mentioned in Sec. IV the influence of the ext
nal field on the Polyakov loop correlations is absent provid
f

tion and
FIG. 5. The absolute value o
the bulk Polyakov loop~5.1! vs
the external electric fluxnE and its
fit by formula ~5.4! in ~a! the con-
finement phase (b51.6) and~b!
the deconfinement phase (b
52.5).

2According to our considerations above, the dominating internal flux is equal to the external flux in the vicinity of the phase transi
thus we can safely putnint5nE .
2-7



e

M. N. CHERNODUB, E.-M. ILGENFRITZ, AND A. SCHILLER PHYSICAL REVIEW D64 114502
FIG. 6. Phase diagrams in th
nE/M-b plane derived from the
module of the Polyakov loop for
~a! electric and ~b! magnetic
fields, respectively.
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the condition~4.9! for the internal fluxnint is fulfilled. Now,
a similar effect is observed for the Polyakov loops the
selves: the corresponding values fornE5nint532, 64 clearly
coincide withnE50 data. Thus we conclude that the obse
ables based on the Polyakov loops may have a usual phy
sense only in the cases of the quantized internal field~4.9!.

Analogously, Figs. 4~a! and 4~b! show that the depen
dence of the Polyakov loop and its susceptibility on the c
pling constant b are the same~within errors! for nE
50,32,64. The peaks in susceptibility may serve as g
indicators of the~pseudo!critical coupling constant. At thes
distinguished values of the external electric field we ha
fitted the susceptibility near its maximum by the followin
function:

xL
fit~b!5

c1
2

c2
21~b2bc!

2
, ~5.5!

whereci andbc are fitting parameters. The results are sho
in Fig. 6~a! in thenE-b plane. One can see that the influen
of the external field on the critical temperature is negligib

B. Magnetic field

The tree level contribution to the Polyakov loop obse
ables is absent in the case of the external magnetic field.
is confirmed by Figs. 7~a! and 7~b! where the Polyakov loop
and its susceptibility are shown as functions ofb, respec-
tively. The data points for all considered values of the ex
nal magnetic flux coincide with each other within errors. W
11450
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fit the Polyakov loop susceptibility by Eq.~5.5! to get the
~pseudo!critical couplings. The corresponding phase diagr
is shown in Fig. 6~b! in the nM-b plane. One sees that th
phase transition points are insensitive to the strength of
external magnetic field.

It is interesting to note that in non-Abelian gauge theor
in 311 dimensions the situation is quite different@13#. Here
the position of the deconfining phase transition depe
strongly on the strength of the applied magnetic field. T
simplest, somewhat naive explanation of this fact could be
follows. In the non-Abelian gauge theory the coupling b
tween gauge fields is stronger than in the Abelian theory
particular, there is a correlation between spatial and temp
components of the fields which may imply that the exter
magnetic field~encoded in the spatial components! induces
internal electric fluxes on the quantum level. As we ha
seen the electric fluxes strongly influence the Polyakov lo
correlators generating the effective string tension~4.8!. Con-
trary to the Abelian case this influence is not merely a cl
sical ~or, just inherent to the way of introducing the extern
field! but a real quantum effect.

In the next section we study the effects of the exter
fields on the agents of confinement, the Abelian monopo
to explain the observed behavior of the system. A sim
study for the non-Abelian gauge theory is underway@24#.

VI. MONOPOLE PROPERTIES

The basic quantity to describe the behavior of the mo
poles is the monopole density,
c

FIG. 7. ~a! The Polyakov loop
and~b! its susceptibility at various
values of the external magneti
field nM vs b.
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FIG. 8. Monopole densityrmon

~a! vs b for various external elec-
tric fluxes,nE , and ~b! vs nE for
variousb values.
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umcu, ~6.1!

wheremc is the integer valued monopole charge inside
cubec defined in the standard way@25#:

mc5
1

2p (
PP]c

~21!P@du#mod 2p . ~6.2!

In our previous study@7# we have demonstrated that th
monopoles are sensitive to the phase transition in the c
pact Abelian gauge model at finite temperature. Although
(211)D we have magnetic and electric fields among
three components of the field strength tensor, the source
the respective fluxes will be simply called ‘‘monopoles’’ o
‘‘magnetic charges’’ in the following.

The mechanism which drives the finite temperature
confinement phase transition is monopole binding. In
zero temperature case the plasma of monopoles and
monopoles can explain the permanent confinement of op
sitely charged electric test charges@1# in bound states, kep
together by a linear potential. Confinement appears du
the screening of the magnetic field induced by the elec
current circulating along the Wilson loop. Monopoles a
antimonopoles form a polarized sheet of finite thickne
~‘‘string’’ ! along the minimal surfaceuAu spanned by the
Wilson loop. The formation of the string leads, for nonva
ishing electric current, to an excess of the free energy eq
to suAu.

At finite temperature, dipoles are formed both in the co
finement and deconfinement phases. In the deconfinem
phase tightly bound dipoles dominate in the vacuum. T
dipole plasma is inefficient to completely screen the fi
created by the electric currents running along the pair
Polyakov loops. This explains the absence of confinemen
this phase.

Besides measuring the density of monopoles, we h
studied the properties of the monopole ensembles by in
tigating the structure of monopole clusters. Clusters are c
nected groups of monopoles and antimonopoles, where
object is separated from at least one neighbor belongin
the same cluster by a distance less then or equal toRmax. In
the following we useRmax5A3 a which means that neigh
boring monopole cubes should share at least one si
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corner.3 The increase of the coupling constant leads not o
to an increase of the temperature, Eq.~2.3!, but also to a
decreasing lattice spacinga, Eq.~2.2!. Thus at differentb the
same characteristic distanceRmax corresponds to differen
physical scales. Therefore our results presented here are
qualitative nature.

In our study without external field we have found that t
dipoles are oriented dominantly in the temporal direction.
the confinement phase transition mostly clusters with t
constituents or single monopoles and antimonopoles w
observed. Decreasing further the temperature~or b), the
monopoles become dense and start to form connected
ters ~on a coarser and coarser lattice! containing various
numbers of monopoles and antimonopoles. The largest c
ters have been found to be more and more spherical. Fin
we observed that only charged monopole clusters in
plasma~mainly individual monopoles! are needed to explain
the measured string tension and, therefore, are respon
for confinement.

A. Electric field

To begin, we plot in Fig. 8~a! the total monopole density
r as function of the couplingb for various values of the
external electric fluxnE . The monopole density is a decrea
ing function ofb at any value of the external field. Howeve
r increases as the function of the strength of the app
external field, Fig. 8~b!. The effect of the external field is
very essential: the monopole density is increased up to
most two orders of magnitude~depending on the tempera
ture! for the largest external flux values~compared to the
system at zero external field!.

However, an increased total monopole density does
mean in general that the confining properties of the sys
are enhanced. Only charged monopole clusters in the pla
state contribute to the string tension between electric
charged test particles. Tightly bound monopole pairs are
expected to contribute to the string tension. Therefore,
use our cluster labeling algorithm to look into the structu
of the monopole ensemble. In Figs. 9~a! and 9~b! we show

3In Ref. @26# a similar definition has been used to investiga
tightly packed clusters withRmax5a. In our case the condition for
the cluster is more relaxed.
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FIG. 9. The density of clusters
of size ~a! N51 ~single mono-
poles and antimonopoles! and ~b!
N52 ~dipoles! vs external electric
flux nE at various values ofb.
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how the densities of single monopoles@clusters made of jus
one ~anti!monopole# and of dipoles~clusters made of two
oppositely charged objects!, respectively, depend on th
strength of the external electric field.

One clearly sees that the plasma component of the si
monopole ensemble does not feel the electric field at
Thus the confining properties of the system should not
pend on the external electric field in agreement with the c
clusions made in the previous sections.

On the other hand, the dipole density changes drastic
with increasing external field: the field creates the magn
dipoles from the vacuum. Note that the larger the tempe
ture~or, equivalently,b), the larger the increase of the dipo
density. This fact is connected with the screening of the
ternal fields inside the medium discussed in Sec. III. T
larger the temperature, the larger the fields inside the
dium. As a result, the effect of the external field becom
stronger with increasing temperature.

In a nonzero electric field the system is anisotropic in
directions. The electric field is directed along they axis; the
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‘‘temperature’’ direction,z, is influenced by compactification
Therefore, we have to expect that the average sizes of
dipoles in different directions are not the same. At zero
small external field the dipoles are mainly directed along
temporal axis@7#.

Increasing the external field, the dipoles are expected
become elongated along the direction of the applied fie
Moreover, we have observed in Sec. III that the strength
the internal field inside the medium relative to the exter
field increases as a function of the couplingb. Thus the
elongation of the dipoles in the field direction should i
crease withb.

All these effects are demonstrated in Fig. 10 using ell
soids, the axes of which are equal to the average dipole s
in the x,y, andz directions. In Fig. 10~a! we show how the
mean dipole anisotropy changes with increasing exte
electric flux at fixedb51.8 ~in the confinement phase!. Fig-
ure 10~b! demonstrates the dependence of the ellipsoids ob
at fixed fluxnE . For convenience the projections of the e
lipsoids onto thex-y andx-z planes are also shown.
FIG. 10. The mean dipole anisotropy for increasing values of~a! the external electric fluxnE at fixedb51.8, and~b! b at fixednE .
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FIG. 11. ~a! Total monopole
densityrmon vs b for various ex-
ternal flux valuesnext . ~b! Density
of dipole clusters vsnext5nE

5nM/4 for someb values.
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B. Magnetic field

The influence of the magnetic field on the monopole d
sities is very similar to that of the electric field. In Fig
11~a!and 11~b! we present the measured total monopole d
sity and the dipole density, as functions ofb and the externa
fluxes, respectively. To compare the measurements for m
netic fluxes with those at nonzero external electric field,
note that for our lattice geometry the strengths of the m
netic and electric fields are equal to each other provi
nM54nE . According to those figures both total monopo
density and dipole density do not depend on the type of
external fields if the field strengths are the same. We h
checked that the single monopole density coincides for m
netic and electric fields of the same strength as well. Thus
cluster structure does not depend on whether the exte
field is of electric or magnetic kind.

The mean dipole anisotropy depends on thetype ~direc-
tion! of the external field. We show the behavior of th
quantity in Figs. 12~a! and 12~b! for increasing external mag
netic field andb, respectively. In the external magnetic fie
the system is symmetric in thex andy directions. The dipoles
become more elongated in the~temporal! z direction for
11450
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stronger external magnetic fields. Increasing the couplinb
leads to a larger anisotropy since the medium does not sc
the external field in the deconfinement~largeb).

The orientation properties of the dipoles influence the
sulting electromagnetic fields in the medium, Fig. 1. Acco
ing to Figs. 10~a! and 12~a! the stronger the external field
the larger the elongation of the dipoles in the direction of
field. In turn this increases the dipole momenta in the dir
tion of the applied field and, as a result, leads to an enhan
screening of the external fields by the media. This effec
clearly observed in Fig. 1.

Another interesting effect due to the dipole orientation
the clear difference in screening for strong magnetic a
electric fields of equal strength in the deconfinement pha
Fig. 1. According to Fig. 11~b!, the dipole densities for both
cases are the same. SinceLt,Ls , the dipole magnetic mo-
ment density projected to the magnetic field direction
larger than the corresponding quantity for the electric fi
direction. On the other hand, the larger the dipole mom
density inside the medium, the stronger the field attenuat
Thus at strong external fields the screening must be m
effective for magnetic fields compared to electric fields. T
-
f

FIG. 12. The mean dipole an
isotropy for increasing values o
~a! the external magnetic fluxnM

at fixedb51.8 and~b! b at fixed
nM .
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mechanism works at high temperatures~large b! where the
dipole fraction is dominant@cf. Figs. 9~a! and 9~b!#.

VII. CONCLUSIONS

We have investigated the properties of the 3D comp
electrodynamics at finite temperature in external cons
electric and magnetic fields. The main result is that the
confinement temperature is insensitive to both electric
magnetic external fields. We have found the reason for
behavior in terms of the monopole degrees of freedom:
external fields create tightly bound magnetic dipo
~monopole-antimonopole bound states! from the vacuum
while the density of unpaired monopoles~which are respon-
sible for the confinement of electric charges! stays un-
changed. This result is not obvious from the beginning si
another option is possible: the external fields could des
the monopole bound states enforcing confining propertie
the medium. This is not the case.

At zero external fields the magnetic dipole states are m
elongated in the temperature direction. The external m
netic field which is parallel to the temperature directi
makes this elongation stronger. However, an external ele
field turns the dipoles to the corresponding spatial directi
The effects of the external field on the medium are stron
in the deconfinement phase in which both electric and m
netic external fields are not screened.

We have also shown that the external electric field infl
ences the Polyakov loop classically~or, in other words, on
tree level!. This leads to a vanishing Polyakov loop and,
certain cases, to a nonvanishing ‘‘effective string tensio
~4.8! depending on the external field~being in deconfinemen
at zero field!. However, this behavior of the Polyakov loo
v.

.

gy

ev
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does not indicate a restoration of confinement for cert
external field fluxes. At special flux values@for which the
internal electric field is quantized according to Eq.~4.9!#
both the Polyakov loop expectation value andseff coincide
with the values at zero external field.

The string tension~correctly defined from the correlatio
function of Polyakov plane-plane correlators parallel to t
external electric field in the spatial direction! is not influ-
enced by the external electric field and coincides with
zero-field value. The tree level effects on Polyakov loops a
Polyakov loop correlation functions are absent for exter
magnetic fields pointing in the timelike direction.

The dynamics of the Abelian system is different from t
behavior of the (311)D non-Abelian gauge theory. The au
thors of Ref.@13# have found that the external magnetic fie
increases the deconfinement temperature contrary to ou
sults in (211)D compact Abelian gauge theory. The reas
for this difference may lie in the different behavior of th
monopoles in the Abelian and non-Abelian gauge theor
The investigation of the monopole properties in the no
Abelian gauge theory is underway@24#.
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