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Monopoles, confinement, and deconfinement 2+ 1)D compact lattice QED in external fields
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The compact Abelian model in three space-time dimensions is studied in the presence of external electro-
magnetic fields at finite temperatures. We show that the deconfinement phase transition is independent of the
strength of the external fields. This result is in agreement with our observation that the external fields create
small-size magnetic dipoles from the vacuum which do not influence the confining properties of the model.
Contrary to the deconfinement phase, the internal field in the direction of the applied external field is attenuated
in the confinement phase; this screening becomes stronger with decreasing temperature.
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[. INTRODUCTION vortices exist in the plasma state while in the deconfinement
(high temperatunephase the vortices and antivortices form
Compact Abelian gauge theory in three Euclidean dimenbound states. Both monopol®] and vortex[10] binding
sions is proven to possess the property of permanent confineaechanisms have been studied in the context of the Georgi-
ment[1,2] due to presence of Abelian monopoles: any pair ofGlashow model, too, a limiting case of which is the compact
test electric charge and anticharge are confined by a lineakbelian gauge model.
potential. The monopoles are topological defects which ap- In this paper we continue to consider the deconfining
pear due to the compactness of the gauge group. In thremechanism by monopole pairing which seems to have inter-
dimensions the monopoles are instantonlike. esting counterparts in realistic gauge theories. The formation
The confining property of the model is lost at sufficiently of monopole pairs is qualitatively similar to the binding of
high temperature. The confinement-deconfinement phadastantons in instanton molecules with increasing tempera-
transition—which is expecteB—5] to be of the Kosterlitz- ture in QCD suggested to be responsible for chiral symmetry
Thouless typd 6]—was studied on the lattice both analyti- restoration11]. An external magnetic field affects the phase
cally [5] and numericalljf4]. A thorough numerical analysis diagram of the non-Abelian theory as was shown both ana-
of the phase transition was done in Réfl where it has been lytically [12] and numerically[13]. In the electroweak
demonstrated that the monopoles are sensitive to the trangheory, the formation of Nambu monopole-antimonopole
tion. In the confinement phase the monopoles are observed pairs, a remnant from a dense medium of disordetear-
the plasma state while in the deconfinement phase the montiees and Nambu monopoles which characterizes the high
poles appear in the form of a dilute gas of magnetic dipolestemperature phase, is accompanying the transition towards
Similarly to the monopole plasma the dipole vacuum, al-the low temperature pha$é4]. The effects of the external
though not confining, still has a nonperturbative nafl@e  fields on the phase transition temperature and the elec-
In the confinement phase both monopole density and strinfoweak baryogenesis in the electroweak theory were dis-
tension differ from semiclassical estimafd$ which neglect cussed in Ref[15].
monopole binding. However, an analysis of monopole clus- In three-dimensional gauge theories the inclusion of ex-
ters shows that the relation between the string tension aniérnal fields allows to study the vacuum energy density in the
the density of monopoles imagnetically chargedlustersis SU(2) gauge theory16], vortex dynamics in the Abelian
in reasonable agreement with those predictions. Higgs model[17], and dynamically generated fermion mass
An alternative explanation of the deconfinement phasén the Abelian gauge theory with fermionjd8] fields. Here
transition, based on Svetitsky-Yaffe universality argumentsve study the influence of the external electromagnetic field
[3], was given in Refs[4,5]. The phase transition was dem- on the confining and monopole properties of the compact
onstrated to be accompanied by restructuring of thd) Abelian gauge model in three dimensions.
vortex system in an effective two-dimensiorfdD) Abelian The plan of the paper is as follows. In Sec. Il we describe
spin model. In the confinemeflow temperaturgphase the the basics of the lattice formulation of the compabfl)
model in 2+1 dimensions and how the external field is
implemented. The screening of the external electric and mag-
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fields are stressed. The string tension in the presence of thmplement a magnetic fiel8 as a field directly coupled via
external fields with a flux,, is investigated in Sec. IV and Eg. (2.1) to plaquettes lying in the 12 plane,

the phase diagrams in thg,-3 plane are presented in Sec.
V, separately for magnetic and electric fields. In the case of
an applied electric field we see that the so-called “bulk
Polyakov loop” can no longer play the usual role in localiz- o ] )
ing the deconfining transition. Results for various monopolelhe quantization of the external fiel@@.4) and(2.9) is nec-

properties are collected in Sec. VI. Our conclusions are sungssary to match with the periodic boundary conditions im-
marized in the last section. posed on the latticEL9]. Indeed, these conditions imply that

the rectangular Wilson loop of the sikeXL; in theij plane
must be equal to unity. On the other hand the Wilson loop is
equal to exfi®}, where® is the flux going through thg
plane. Therefore, we get the quantization condition for the
We study (2+1)-dimensional compact lattice electrody- flux, ® =27ng, Nexe Z, which implies in turn the relations
namics in constant external electromagnetic fields. Following2.4) and (2.5 for the constant electric or magnetic field,
Ref.[19] we use the action respectively. We use the notatiog,,, instead ofn,,; where
we want to emphasize the electric/magnetic nature of the
exty_ ext external field.
S6,6°]= _'B% cog 0= 0,7), 2.3 Naturally, from the form of the actio(2.1) the number of
external fluxes is restricted,<Ong,<L;L;/2. In our analysis
whered, is theU(1) field strength tensor represented by thewe restrict that number toOne,<L;L;/4. One should note,
curl of the compact link field, , and 93“ is the field strength however, that the largest considered fluxes correspond to lat-
corresponding to the external fiel@. is the lattice coupling tice artifacts. Indeed, the physical electromagnetic field must

constant related to the lattice spaciagand the continuum have a strength smaller than the scale corresponding to the
coupling constangys of the 3D theory as follows: lattice ultraviolet cutoffa™2. This leads to the restriction of

the lattice field strengthfe, <1, or Ne<nNma=[LiL;/(27)],
1 to avoid too large external fields.

B=—. (2.2 As in the case of zero fielfl7] we restrict ourselves to a

ads finite temperature lattice 3X 8 varying the strength of the
o o constant external electric or magnetic field and considering

At finite temperature the lattice is asymmetrlcﬁx Lt,  the lattice gauge coupling range & B<3. For this particu-
Li<Ls; Ly=Lp=LsandL;=L are the spatial and temporal | |attice size we get the upper bounds for the electric and

extensions of the lattice, respectively. In the libi— the  magnetic fieldsn?®=40 andnl"®=163, respectively. From

temporal extension of the lattidg is related to the physical g, studies at zero external fields W& found the decon-

temperaturel. = 1/(Ta). Using Eq.(2.2) the temperature is  finement phase transition #,=2.346(2) using the Polya-

27TnM
B=6%= L, nueZ, 65=655=0. (2.5

Il. THE COMPACT LATTICE MODEL IN EXTERNAL
FIELDS

given via the lattice parameters as follows: kov loop susceptibility in satisfactory agreement with Ref.
[4].
T B 23 We briefly recall the Monte Carlo algorithm used and de-
92 L ' scribed already in Ref.7]. The algorithm combines a local

Monte Carlo step with a global refreshment step to improve

Note that in 2+1 dimensions there is no symmetry any- ergodicity. The local Monte Carlo algorithm is based on a
more between the three components of the field strength tefive-hit Metropolis update sweep followed by a microcanoni-
sor. The closest relative of the true magnetic fieldFis, ~ cal sweep. Following Ref19], the global refreshment step
distinct from the others, while there is still a symmetry be-consists of an attempt to add an additional unit of flux of
tweenF 5 and F,3. With this distinction in mind one can randomly chosen direction and sidne., adding a gauge
conditionally call them the “magnetic” and “electric” com- field 6; constructed over the whole lattice to the previous one
ponents of the field strength tensor, respectively. As long ag, [ 6, + 6,042 ), Subject to a global Metropolis accep-
one does not introduce external fields, even at finite temperaance check. The acceptance rate for a global update does not
ture there was no need to distinguish between them. depend on the external flux.,, and it is roughly equal for

Without loss of generality we represent an external elecgiobal shifts of the electric or magnetic flux. However, it

tric field E as a field directly coupled via Eq2.1) to  changes withg, reducing from 0.58--0.6 at 8=1.0 to
plaquettes lying in the 31 plane. The value of the field isp 18 .. .0.20 atg=2.9.

guantized 19]:
o ll. POLYAKOV LOOP CORRELATORS AND SCREENING
_ pext_ E 7 ext__ pext_
E=0n= L5’ NeeZ, 01=03=0. (24 Usually, the Polyakov loop
To study the influence of a magnetic fidland to draw par- L(x)=ex iJLtdt Ag(x,) (3.1)
allels to analogous studies in four dimensiof&l]) we 0 '
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is used as the basic quantity to probe the confining proper- The correlator(3.5) is taken over quantum fluctuations
ties. The integration runs along a lobpparallel to the time  only, as indicated by the superscriptNote that by definition
axis and located at the spatial 2D coordinaté&he Polyakov the fieldA? fluctuates near the minimum of the action. Thus

loop operator inserts an infinitely heavy test particle withnegative modes are absent and the potentigR;F &)«
unit electric charge into the vacuum of the theory. The_ |, G(R,E®Y/L, must be real. The dynamics of the mono-
vacuum expectation valug/EV) of this operator expresses poles affects the quantum fluctuations and consequently the

the free energyF of the inserted particle(L(R))=exp ,ytentialv. The external fields disturb the monopole medium

(_F/Tz] and is an or]:jer parame}e]:c.r tlo sr:gnal delco.nfmfemerjt. and therefore we may expect that in general the interparticle
In the absence of an external field the correlation function,ytentialy may get influenced by the external fluxes.

between two Polyakov loops can be expressed via the intef- g, marizing, the quantum average of the Polyakov loop
action potential V(R) between infinitely heavy electric i, the presence of the external constant electromagnetic field
charge and anticharge, is given by the following formula:
*
(L(O)L* (R))xexp{—LV(R)}. (3.2 (L(O)L* (R))excr expli Do(EM)— L V(R: E&Y1

The leading behavior of the potentid{R) in the low tem- (3.7
perature phase corresponds to a linearly rising potential, N
V(R) = R, where is the tension of the string between the Where anonvanishingflux ®(F"™) pierces the surfac,
test electric charges separated by the dist&weéR|. Inthe ~ spanned by the contouf and the trajectories of the test
high temperature phase the potential is of Coulomb tjpe particles are placed along tiieemporal z direction.
rises logarithmically with increasing distance between test The properties of the internal fields inside the system are
particles. important to understand the behavior of the Polyakov loop

Now we discuss the Polyakov loop correlations in bothcorrelators. For external fields given by E¢8.4) and(2.5)
electric and magnetic external fields. We introduce a 3D vecthe total external fluxes through the corresponding planes are

tor combining electric and magnetic components by quantized. Analogously, the internal electric or magnetic
fluxes through any plane in any gauge field configuration are
ﬁ:(FZSaFSLFlZ):(Ex Ey.B,). (3.3 quantized as wellthe considerations similar to those in Sec.

Il are applicable in this case as welNote that the global
As we will immediately see, an extern@onstant electric  update step is consistent with the internal flux quantization
field substantially modifies the behavior of the Polyakovsince the update allows to change the total flux of the system
loop correlatorn(3.2) alreadyon the tree level by just one unit.

Indeed, the electromagnetic field inside the medium can From now on we study only two possibilities for the ex-
be decomposed into two partg,inq Ed. Here EM ijs the ternal field, an electric field in thg direction and a magnetic
mean field inside the medium, which is nonzero due to thdield in thez direction,
presence of the external electromagnetic field. The fiéld R -
corresponds to the quantum fluctuations around the mean F=(0E,0, or F*'=(0,0B). (3.8
value F™. Because of the Abelian nature of the Polyakov
loop the correlation functiofB.2) can be written as the prod-
uct of two contributions,

It is clear that only the electric component contributes to the

flux ®(F™) in Eq. (3.7). In our case the mean internal
electric and magnetic fields which are the actual average

_ fields present in the medium are given {g§3,) and(6,,),
(L(OL*(R))gex= < eXP[I jgchMAﬂ(X)] > respectively, where
Fext
_ AD(FNY = 1
_é C! G(R,Fexl)y (34) <6Ik>:< L2L g [0X,ik]m0d2ﬂ'> . (39)
st

R,E&Y =(L(0)L* (R))%ue= (& Pc(FN)Y
GRF=)={LOL™ ) pen=(e >Fe(xé'_5) Following Ref.[21] we show in Fig. 1 the normalized aver-
age internal electromagnetic fieldsds)/E=F5Y/E and
whereC=1,—Ix is the contour corresponding to the test par-( 9,,)/B= Fg‘t/B along the directions of the applied fields as
ticle trajectories, and a function of the gauge coupling for various external field
fluxes ng,;. One can see that in the confinement phase the
‘bc(ﬁ) _ 3€ dx, A, (X)= f do,F ,(X) (3.6 ?nternal fields_are much weaker th_an the external fields while
c Se in the deconfinement phase the internal and external fields
almost coincide with each other. The measured average in-
is the flux of the electromagnetic fieflwhich goes through  ternal fields in the directions transverse to the applied exter-
the surface® . spanned on the contodt The subscripf®*  nal field remain zero.
in Eq. (3.9 indicates that the vacuum expectation value of The attenuation of the external fields in the confinement
the quantum part of the Polyakov loop has been taken witlphase resulting in weaker average fields in the medium hap-
the action Eq(2.1) corresponding to nonzero external flux. pens due to the monopole plasitl and can be called
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screening: the monopoles produce a finite correlation length X
&. If we would apply an external field to the box with the <|-(0,0)L*(X,Y)>E°‘9Xp[27Ti”int|___LtV(X,Y:E)],
monopole plasma using frozen boundary conditions then the S (3.11)
field would be greatly suppressed inside the media at dis-
tances(from the box boundarigslarger than§. Thus the  with the oscillating part of the correlator defined by the elec-
averaged field inside the box with the plasma should beric component of the internal field.
smaller than the external field. The smaller the correlation Equation (3.11) simultaneously characterizes both the
length the smaller should be the averaged field inside thecreening of the external fielphase factgrand the potential
media. of the test electric chargdsnodulug. We expect that in the
As the temperature increases, the monopoles form morgeconfinement phase the external field is not screened and
and more magnetic dipole bound states. In the dipole plasm@e correlator is dominated hy,~ng. In the confinement
the screening is absef®2] and the correlation length is in- phase the field must be screened amg becomes smaller
finite. The internal field is expected to be equal to the exteryth decreasing3 (temperaturg
nal one, which is clearly seen in Fig. 1 for external fields of  Thys the Polyakov correlator in the deconfinement phase
small Strength. Moreover, the Screening of the external mags an Osci”ating Sign_changing quantity at a ﬁXﬁdOOfdi'
netic and electric fields with the same stren@thlated t0  nate as a function of the coordinate. The maxima of the
each other asig=ny /4 due to a difference in the lattice oscillations become damped with increasingue to the
extensions in spatial and temporal directipissvery similar  Coulombic interaction between the test particles.
for weak external fields. This happens because the nature of The correlations at fixea and Changinw should be of
the monopoles is not purely “magnetic” at finite tempera- the same sign and decay with increasinghis behavior is
ture. At large magnetic fields the response of the media igjcely illustrated by théreal part of the Polyakov loop cor-
different in magnetic and electric cases. In Sec. VI we showelators(3.11) in the x-y plane shown in Fig. @) for the
that the observed features of the screening are qualitativelyeconfinement phase. The measurement was performed in an
related to specific properties of the monopoles and theigxternal electric field with flung=4.
bound states. In the confinement phase we expect that the sign fluctua-
Let us consider the properties of the correla®f) on a  tions of the correlator should be strongly suppressed due to
lattice of finite size for a nonvanishing external electric field grea-law decay. Thus the correlator must go to zero rapidly
E using the lattice Polyakov loop at positio®=(x,y), with increasing distance between charge and anticharge,
JX?+y2. The corresponding correlator, presented in Fig.
2(b) at B=2.0, shows the expected suppression. In addition,
we observe a small local maximumat8 andy=0 arising
from a flux of valuen;, close to 4 in agreement with the
behavior of the internal fields in Fig. 1 for this relatively
large B value.
We put the test charge and anticharge at the points (0,0) and Finally, let us comment here that an induced internal mag-
(x,y), respectively. The fluxe®(631) going through the netic field (parallel to its parental external fi@ldvhich is
surface; spanned between the test particle trajectories dedirectedalong the Polyakov loop cannot contribute to the
pend on the internal electric fieles, ; they are quantized and “classical” phase®. and, therefore, oscillations cannot ap-
peaked around an average value. Therefore, they can agear. Thus, in an external magnetic field, the correlator is

equately be described by taking into account only the “mostapidly approaching zero with increasing spatial distance.
probable” flux state labeled by the integem;,

=nNini(Next» B,Li) Which depends on the strength of the exter-
nal field, temperature, and lattice geometry. In that chge
=2mnyX/Lg and E;=(6031)=2mn;, /(LsLy). The Polya-
kov loop correlator reads as follows,

Lt
L(x)=ex i21 03(x,z)). (3.10

IV. STRING TENSION IN THE PRESENCE OF FIELDS

According to Ref.[23] the point-point correlation of the
two Polyakov loops in the absence of an external field can be
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FIG. 2. Real part of the Polya-
kov loop correlator in thex-y
plane (3.11) for an external elec-
tric flux ng=4 in (a) deconfine-
ment, =2.6 and (b) confine-
ment, 3=2.0 phases. Half of the
lattice 3%x 8 is shown.

(b)

parametrized as follows: (L(X1,YDL* (X2,Y2)) = (L(X1,Y1)L* (X2,Y2))e
Xq1—X
(L(X1,Y1)L*(X2,Y2)) = ex;{ - 27Tinim1|_—sz> (L(x1,y1)L* (X2 ,YZ)>2E-

dP1(X1—x2) +ipa(y1—Vy2)

(4.5

The subscriphg indicates that the Polyakov loops are cal-
(4. culated in the state with an external electric fluxin they
direction. The internal electric fluw;,; depends implicitly on

where the sum runs over all possible momenfm,, thatexternal flux. Combining Eq#4.1) and (4.5 with Egs.
=0,...,2n(Ls—1)/Ls ando denotes the “temporal” string (4.3 and (4.4) and taking the sums over the momemig,
tension. explicitly, we get

To evaluate the string tension, we use two Polyakov L
“plane” o_p_erators which are define_d as a sum over Polya_kov (LH(O)LW(X))n = consiX éwinintx/LSCOSy{U Lt( X— _S) ,
loop positions along and perpendicular to the external field. E 2
As an example we take the electric field in thelirection. (4.9
Then

]

=cons,

+ ..
pr, 1—COSp;—cosp,+coshiol,)

(L1 ()L (y))n = consix cosv{ aeﬁw.nim)Lt( y- L;) }
L L

S S
Li0=3 Loy, Liy)=3 Lxy). (42 @7
g where formally a string tension coefficienty(o,n;y) for
the plane-plane correlator perpendicular to the field has been
The correlator of the plane-plane correlators may be writterdefined:
as a sum over the corresponding positions of the point-point
correlation functions, 1
Oeif( 0, Niny) = L—arccoshcosi(a L) —cog2mn;,/Lg)+1].
t
(4.9

LS
* —
(LyOIL] (X)>_y§;1 (LOYIL*(xy2), (4.3 Thus in the presence of an external electric field the plane-
' plane Polyakov loop correlator parallel to the electric field
oscillates with a decreasing amplitude.
The plane-plane correlator perpendicular to the field de-
. (L(x1,0L*(X2,Y))- creases exponentiallvithout oscillation$ as a function of
(4.4) the distance between the planes. The decrease of this cor-
relator is controlled by aeffectivestring tension(4.8) which
is a function of the external electric fiel@ia n;,) and the
In the presence of an electric fiel along they axis this  actual string tension. The essential message here is that this
correlator must be modified in accordance with our discuseffective string tension does not tell anything about confine-
sion in Sec. Il ment properties, since the confinement is described by the
real string tensiono. Note that the effect of the external
electric field is absent if the internal flux is equal to quan-
'Here and below we take into account only the lowest “masstized values,
state” corresponding to the actual string tension, unless specified
otherwise. nn=N-Ls, NeZ. 4.9

>

1,27

(LL(O)LI(V»ZX
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The origin of theo . dependence on the external electric V. PHASE STRUCTURE

field strength is related to the oscillatory behavior of the The confinement-deconfinement phase transition is usu-

Polyakov loop correlato(3.11). Indeed, the bulk correlator ally detected using the Polyakov loop vacuum expectation

(IL[*)e [defined below in Eq(5.1)] comprises all possible e |t is convenient to study VEV's of the powers of the
Polyakov loop correlators. At small and increasimg the  «p 1k Polyakov loop” defined as follows:

sum of the oscillating quantities leads to a suppression of

(|L|?)g while atn;, satisfying the special conditio@.9) the 1 1 2
oscillations disappear and as a result the effective string ten- (|L|)= —2< ‘ > L(x) > (IL1A= —2< ’E L(x) >
sion (4.8) coincides with the string tension in the absence of Lo\l x Lo\ x
the external electric field. 1

To get rid of the direct influence of the electric field on the :_< > L(x)L*(y)> _ (5.1)
string tension(4.8) we use only the real part of the Polyakov L§ Xy

plane-plane correlator which is parallel to the external field.

We fit the numerical data by the real part of £4.6) using ~ The Polyakov loop susceptibility is expressed via these
(besides trivial prefactoyso and n,,e 7 as fitting param- quantities:
eters. At the considered values g&1.6 we find that the 9 2
best fit is given byn;;= ey in accordance with our discus- xe=(ILD*=(IL%. (5.2

sion in Sec. Ill. : . .
. According to the free energy arguments in the deconfinement
In the apsence of external f|eIQS, the depe_nplence of th8hase the quantitjL| should be nonvanishing while in the

.Smn.g tension oig has been'fou.nd In Reﬁ7] anditis shown confinement phase this quantity becomes sntdll ap-

in Fig. _3(a). The string tension is a rapidly decreasing func'proaches zero in the infinite volume limit

'gon: It Is nonzero in ghe 'OWIEGT“Pefat“feﬁphi@Nhﬁ) ﬁnﬂ In the following we show that the expectation value of the
ecomes veryhsma[IFue toF.mge size € ?Césm; N .'gr’]_ Polyakov loop, similar to the correlator discussed above, also

temperature phase. From Figh3we conclude that within 4atq 5 |arge classical contribution due to the external electric

errors the string tension does not depend on the external fluse, |4 Therefore it should not be used in general as an order

ne. This observation allows us to conclude that an extemnal,rameter to probe the restoration of confinentertcept for
electric field in the compact (21)D Abelian gauge theory ¢,me special values of the electric field
does not change the confinement behavior compared to the

zero-field case.

For an external magnetic fielth the “temporal” z direc-
tion) the oscillating factor in the Polyakov loop correlator is  The behavior of the Polyakov loop y&at various values
absent. Therefore, we have used E6) with n;,;=0 to fit  of the external electric field is shown in Figiak The plot of
the plane-plane correlation functions of the Polyakov linesthe Polyakov loop at zero field agrees with general expecta-
The numerical results for the string tensionare similar to  tions. However, as the electric field is turned on, the vacuum
those in the case of the electric field shown in Figh)3 expectation value of the Polyakov loop is decreasing. One
within errors of the fit values we do not observe a depenimight conclude that the external electric field restores the
dence of the string tension on the strength of the externatonfinement phaséwhile being in deconfinement atg
field. Therefore we do not show the plot of the string tension=0) which is in clear contradiction with the results for the
vs the external magnetic flux. string tension shown in the previous section. We remind the

Summarizing, both magnetic and electric fields do notreader that the external electric field modifies the properties
influence the string tension. This fact is analyzed in terms obf the Polyakov loop correlator classically. In particular, for
the monopole properties in Sec. VI. Before doing so we dishot too largeng, it enhances what we called tledfective
cuss the phase structure of the model using the Polyakostring tension measured from the Polyakov plane-plane cor-
loop expectation value and the corresponding susceptibilityrelators perpendicular to the electric fi¢ld. Eq.(4.8)]. But,

A. Electric field
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FIG. 4. (a) The absolute value
of the bulk Polyakov loop(5.1)
and(b) the Polyakov loop suscep-
tibility (5.2) vs B for various val-
ues of the external electric field,
Ne.
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*****i—*% B S P P
0 : 0
! 2 3 1 15

@

as we noted above, this effective string tension does not deension isoy= . From Fig. 4 it follows thaty, <{|L|)? for

scribe the confining properties of the system.

all B andng values. Thus the square root of E§.4) can

Thus we may conclude that the rapid decrease of theerve as a good estimator for the Polyakov loop quantum

Polyakov loop as a function aig also does not mean that

averagg(|L|).

confinement is restored. Note that at large special values of We use only the first two terms of the expansiéi) to

the internal fluxn;,., Eq. (4.9), the module of the Polyakov
loop and the susceptibilitifFig. 4b)] as a function of3 do
not differ from the zero-field case.

Let us estimate the classical correction to the Polyako
loop expectation value due to the external electric field
For this purpose we consider the squared modulus of th
Polyakov line, Eq(5.1). In the presence dt it can be writ-
ten as follows:

<||_|2>E=consXQy & Min¥/Ls(L(0,0L* (x,y)). (5.3

Taking into account Eq(4.1) for the point-point Polyakov
loop correlator and summing over all momergain this
equation we gét

Cm
coq 27N /Lg) —cosioly)

<|L|2>E: E

m=0

(5.9

Here the expansion over the excited mass stateis written

fit the behavior of thaneasured?olyakov loop vs the exter-
nal electric flux number. The corresponding fits for the con-
finement and deconfinement phases are shown in Figs. 5

\@nd 8b), respectively. The best fits for the string tension in

the confinement phasat 3=1.6) giveo(=0.167(13) and
g120.836). The value of oy can be compared with the
string tension without external fieldy=0.1704). These
values agree with each other within statistical errors. In the
deconfinement phaseBE2.5) the same picture is found:
00=0.0096(5) ando,=0.1§1), while the independent
measurements at zero field leadote-0.010X1). Therefore,

the behavior of the Polyakov loop approximated via &)

in the external electric field is consistent with the string ten-
sion measurements at zero field.

So, in the case of nonvanishing external electric field, the
bulk Polyakov loop expectation value may vanish regardless
of the value of the actual string tension. Indeed, even at
=0 (which is not accessible on the finite lattice due to finite
volume effectsthe squared Polyakov loop expectation value
(5.4) is decreasing when turning on the external electric flux.
As we have mentioned in Sec. IV the influence of the exter-

explicitly and the lowest state corresponding to the stringhal field on the Polyakov loop correlations is absent provided

FIG. 5. The absolute value of
the bulk Polyakov loop(5.1) vs
the external electric flurg and its
fit by formula(5.4) in (a) the con-
finement phase £4=1.6) and(b)
the deconfinement phase B(

IL| L]
0.33
0.035
0.2
003
0.1
0.025 > . . . . . 0 . . L > . .
[1] 10 20 30 40 50 60 0 10 20 30 40 50 60

(a)

2According to our considerations above, the dominating internal f
thus we can safely put;,,=ng.

=25).

lux is equal to the external flux in the vicinity of the phase transition and
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FIG. 6. Phase diagrams in the
24t i 24+ 1 ngm-B plane derived from the
________________________ E
T = —@§§ ‘‘‘‘‘‘ Fo-——m T =3 module of the Polyakov loop for
(@) electric and (b) magnetic

22 1 22 1 fields, respectively.

2 : : : 2 : : : : :

0 20 40 60 0 50 100 150 200 250
() ng (b) My

the condition(4.9) for the internal fluxn, is fulfilled. Now, fit the Polyakov loop susceptibility by Ed5.5 to get the
a similar effect is observed for the Polyakov loops them-(pseudgcritical couplings. The corresponding phase diagram
selves: the corresponding values fr=n;,,= 32, 64 clearly is shown in Fig. @) in the ny-B plane. One sees that the
coincide withng=0 data. Thus we conclude that the observ-phase transition points are insensitive to the strength of the
ables based on the Polyakov loops may have a usual physicakternal magnetic field.
sense only in the cases of the quantized internal fi¢lg). It is interesting to note that in non-Abelian gauge theories
Analogously, Figs. @) and 4b) show that the depen- in 3+ 1 dimensions the situation is quite differéaB]. Here
dence of the Polyakov loop and its susceptibility on the couthe position of the deconfining phase transition depends
pling constantg are the same(within errorg for ng  strongly on the strength of the applied magnetic field. The
=0,32,64. The peaks in susceptibility may serve as goodjmplest, somewhat naive explanation of this fact could be as
indicators of the(pseudgcritical coupling constant. At these fgllows. In the non-Abelian gauge theory the coupling be-
distinguished values of the external electric field we haVQWeen gauge fields is stronger than in the Abelian theory_ In
fitted the susceptibility near its maximum by the following particular, there is a correlation between spatial and temporal
function: components of the fields which may imply that the external
5 magnetic field(encoded in the spatial componénisduces
C1 internal electric fluxes on the quantum level. As we have
2 2 .5 the electric fluxes strongly infl the Polyakov |
2+ (B—Bo) seen the electric fluxes strongly influence the Polyakov loop
correlators generating the effective string tengii®). Con-
wherec; and; are fitting parameters. The results are showrtrary to the Abelian case this influence is not merely a clas-
in Fig. 6a) in theng-B plane. One can see that the influencesical (or, just inherent to the way of introducing the external

of the external field on the critical temperature is negligible.field) but a real quantum effect.
In the next section we study the effects of the external

B. Magnetic field fields on the agents of confinement, the Abelian monopoles,
to explain the observed behavior of the system. A similar

The tree level contribution to the Polyakov loop observ—study for the non-Abelian gauge theory is undenfiag].
ables is absent in the case of the external magnetic field. This

is confirmed by Figs. () and qb) where the Polyakov loop
and its susceptibility are shown as functions &f respec-
tively. The data points for all considered values of the exter- The basic quantity to describe the behavior of the mono-
nal magnetic flux coincide with each other within errors. Wepoles is the monopole density,

x(B)=

VI. MONOPOLE PROPERTIES

=
|L| = 0008 | © n,=0
u] nM=0 Eﬁ XL <o nM=]6
03} on,=l6 = ] o n,=128 %%
on=128 F %
E i% FIG. 7. (a) The Polyakov loop
021 1 o004 f %% 1 and(b) its susceptibility at various
E i § E 3 values of the external magnetic
o1l ‘ﬁ ] = field ny, vs B.
-
P hl ee® = = ‘ . .
01,4 2:4 15 2 25 3

@ B (b B
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corner® The increase of the coupling constant leads not only
Prmon= > Mg, (6.)  to an increase of the temperature, E2.3), but also to a
¢ decreasing lattice spacirg Eq.(2.2). Thus at differenj3 the
. . - same characteristic distand®,,,, corresponds to different
g?;éi rgéf'ii;gem'rl:]eeggtra\ﬂ;fddwrgggpo'e charge inside thephysical scales. Therefore our results presented here are of a
' qualitative nature.
In our study without external field we have found that the
=5 (—1)P[dO]mog 20 - (6.2 dipoles are oriented dominant_ly in the temporal direct_ion. At
T Pedc the confinement phase transition mostly clusters with two
constituents or single monopoles and antimonopoles were
In our previous study{7] we have demonstrated that the observed. Decreasing further the temperat(oe 8), the
monopoles are sensitive to the phase transition in the conmonopoles become dense and start to form connected clus-
pact Abelian gauge model at finite temperature. Although irters (on a coarser and coarser latficeontaining various
(2+1)D we have magnetic and electric fields among thenumbers of monopoles and antimonopoles. The largest clus-
three components of the field strength tensor, the sources tdrs have been found to be more and more spherical. Finally
the respective fluxes will be simply called “monopoles” or we observed that only charged monopole clusters in the
“magnetic charges” in the following. plasma(mainly individual monopolesare needed to explain
The mechanism which drives the finite temperature dethe measured string tension and, therefore, are responsible
confinement phase transition is monopole binding. In thdor confinement.
zero temperature case the plasma of monopoles and anti-
monopoles can explain the permanent confinement of oppo- o
sitely charged electric test chargeld in bound states, kept A. Electric field
together by a linear potential. Confinement appears due to To begin, we plot in Fig. &) the total monopole density
the screening of the magnetic field induced by the electri; as function of the couplingd for various values of the
current circulating along the Wilson loop. Monopoles andexternal electric fluxg . The monopole density is a decreas-
antimonopoles form a polarized sheet of finite thicknessng function of 8 at any value of the external field. However,
(“string” ) along the minimal surfac¢A| spanned by the , increases as the function of the strength of the applied
Wilson loop. The formation of the string leads, for nonvan-external field, Fig. &). The effect of the external field is
ishing electric current, to an excess of the free energy equalery essential: the monopole density is increased up to al-
to aA|. most two orders of magnitud@lepending on the tempera-
At finite temperature, dipoles are formed both in the con-ture) for the largest external flux valugsompared to the
finement and deconfinement phases. In the deconfinemegystem at zero external figld
phase tightly bound dipoles dominate in the vacuum. The However, an increased total monopole density does not
dipole plasma is inefficient to completely screen the fieldmean in general that the confining properties of the system
created by the electric currents running along the pair ore enhanced. Only charged monopole clusters in the plasma
Polyakov loops. This explains the absence of confinement igtate contribute to the string tension between electrically
this phase. charged test particles. Tightly bound monopole pairs are not
Besides measuring the density of monopoles, we havexpected to contribute to the string tension. Therefore, we
studied the properties of the monopole ensembles by invesise our cluster labeling algorithm to look into the structure

tigating the structure of monopole clusters. Clusters are corpf the monopole ensemble. In Figgafand 9b) we show
nected groups of monopoles and antimonopoles, where each

object is separated from at least one neighbor belonging to———

the same _cluster by a distance Iess_ then or equBl{Q. In %In Ref. [26] a similar definition has been used to investigate
the following we useR.,=+3a which means that neigh- tightly packed clusters witlR,,,=a. In our case the condition for
boring monopole cubes should share at least one singl@e cluster is more relaxed.

me
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how the densities of single monopoletusters made of just “temperature” directiong, is influenced by compactification.
one (antimonopold and of dipoles(clusters made of two Therefore, we have to expect that the average sizes of the
oppositely charged objedtsrespectively, depend on the dipoles in different directions are not the same. At zero or
strength of the external electric field. small external field the dipoles are mainly directed along the

One clearly sees that the plasma component of the singliemporal axig7].
monopole ensemble does not feel the electric field at all. Increasing the external field, the dipoles are expected to
Thus the confining properties of the system should not debecome elongated along the direction of the applied field.
pend on the external electric field in agreement with the conMoreover, we have observed in Sec. Ill that the strength of
clusions made in the previous sections. the internal field inside the medium relative to the external

On the other hand, the dipole density changes drasticallfield increases as a function of the coupligg Thus the
with increasing external field: the field creates the magnetie€longation of the dipoles in the field direction should in-
dipoles from the vacuum. Note that the larger the temperacrease withg.
ture (or, equivalentlyB), the larger the increase of the dipole  All these effects are demonstrated in Fig. 10 using ellip-
density. This fact is connected with the screening of the exsoids, the axes of which are equal to the average dipole sizes
ternal fields inside the medium discussed in Sec. lll. Than thex,y, andz directions. In Fig. 108 we show how the
larger the temperature, the larger the fields inside the memean dipole anisotropy changes with increasing external
dium. As a result, the effect of the external field becomeslectric flux at fixed3= 1.8 (in the confinement phaseFig-
stronger with increasing temperature. ure 10b) demonstrates the dependence of the ellipsoid8 on

In a nonzero electric field the system is anisotropic in allat fixed fluxng . For convenience the projections of the el-
directions. The electric field is directed along theaxis; the lipsoids onto thex-y andx-z planes are also shown.

(b)

FIG. 10. The mean dipole anisotropy for increasing value&pthe external electric fluxg at fixed 3=1.8, and(b) 8 at fixedng.
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The influence of the magnetic field on the monopole denléads to a Iarger qnisotropy singe the medium does not screen
sities is very similar to that of the electric field. In Figs. the external field in the deconfinemeiarge 3).
11(a)and 11b) we present the measured total monopole den- The orientation properties of the dipoles influence the re-
sity and the dipole density, as functions@®find the external sulting electromagnetic fields in the medium, Fig. 1. Accord-
fluxes, respectively. To compare the measurements for madPrg to Figs. 10a) and 12a) the stronger the external field,
netic fluxes with those at nonzero external electric field, wethe larger the elongation of the dipoles in the direction of the
note that for our lattice geometry the strengths of the magfield. In turn this increases the dipole momenta in the direc-
netic and electric fields are equal to each other providedion of the applied field and, as a result, leads to an enhanced
ny=4ng. According to those figures both total monopole screening of the external fields by the media. This effect is
density and dipole density do not depend on the type of thelearly observed in Fig. 1.
external fields if the field strengths are the same. We have Another interesting effect due to the dipole orientation is
checked that the single monopole density coincides for maghe clear difference in screening for strong magnetic and
netic and electric fields of the same strength as well. Thus thelectric fields of equal strength in the deconfinement phase,
cluster structure does not depend on whether the extern&lig. 1. According to Fig. 1(b), the dipole densities for both
field is of electric or magnetic kind. cases are the same. Sincg<Lg, the dipole magnetic mo-

The mean dipole anisotropy depends on tyyee (direc- ment density projected to the magnetic field direction is
tion) of the external field. We show the behavior of this larger than the corresponding quantity for the electric field
quantity in Figs. 12a) and 12b) for increasing external mag- direction. On the other hand, the larger the dipole moment
netic field andB, respectively. In the external magnetic field density inside the medium, the stronger the field attenuation.
the system is symmetric in theandy directions. The dipoles Thus at strong external fields the screening must be more
become more elongated in tHéemporal z direction for  effective for magnetic fields compared to electric fields. This

FIG. 12. The mean dipole an-
isotropy for increasing values of
(a) the external magnetic flury,
at fixed 3= 1.8 and(b) B at fixed
Ny -

(b)
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mechanism works at high temperatul&zge 8) where the does not indicate a restoration of confinement for certain

dipole fraction is dominanftcf. Figs. 9a) and 9b)]. external field fluxes. At special flux valugfor which the
internal electric field is quantized according to Hdg.9)]
VIl. CONCLUSIONS both the Polyakov loop expectation value amg; coincide

) _ ) with the values at zero external field.

We have investigated the properties of the 3D compact The string tensioricorrectly defined from the correlation
electrodynamics at finite temperature in external constanfnction of Polyakov plane-plane correlators parallel to the
electric and magnetic fields. The main result is that the deayxternal electric field in the spatial directjois not influ-
confinement temperature is insensitive to both electric angnced by the external electric field and coincides with the
magnetic external fields. We have found the reason for thigero-field value. The tree level effects on Polyakov loops and
behavior in terms of the monopole degrees of freedom: theg|yakov loop correlation functions are absent for external
external field; create tightly bound magnetic dip0|esmagnetic fields pointing in the timelike direction.
(monopole-antimonopole bound statefsom the vacuum The dynamics of the Abelian system is different from the
while the density of unpaired monopol@shich are respon-  pehavior of the (3 1)D non-Abelian gauge theory. The au-
sible for the confinement of electric chargestays un-  thors of Ref[13] have found that the external magnetic field
changed. This result is not obvious from the beginning sincgcreases the deconfinement temperature contrary to our re-
another option is possible: the external fields could destroy s in (2+1)D compact Abelian gauge theory. The reason
the monopole bound states enforcing confining properties ofy this difference may lie in the different behavior of the
the medium. This is not the case. monopoles in the Abelian and non-Abelian gauge theories.

At zero external fields the magnetic dipole states are morghe investigation of the monopole properties in the non-
elongated in the temperature direction. The external magapelian gauge theory is underw$94].

netic field which is parallel to the temperature direction
makes this elongation stronger. However, an external electric
field turns the dipoles to the corresponding spatial direction.
The effects of the external field on the medium are stronger M.N.Ch. acknowledges support from “@sisches
in the deconfinement phase in which both electric and magStaatsministerium “fuKunst und Wissenschaft, Grant No.
netic external fields are not screened. 4-7531.50-04-0361-01/16 and the kind hospitality of NTZ
We have also shown that the external electric field influ-and the Institute of Theoretical Physics of Leipzig Univer-
ences the Polyakov loop classicallgr, in other words, on sity. The work of M.N.Ch. was partially supported by Grant
tree level. This leads to a vanishing Polyakov loop and, in Nos. RFBR 99-01230a, RFBR 01-02-17456, and INTAS 00-
certain cases, to a nonvanishing “effective string tension’00111, and the CRDF Award No. RP1-2103. E.-M.Il. ac-
(4.8) depending on the external fie{Heing in deconfinement knowledges support from the Graduiertenkolleg Quanten-
at zero field. However, this behavior of the Polyakov loop feldtheorie for a working visit to Leipzig.
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