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We apply Pauli-Villars regularization and discretized light-cone quantization to the nonperturbative solution
of (3+1)-dimensional Yukawa theory in a single-fermion truncation. Three heavy scalars, including two with
negative norm, are used to regulate the theory. The matrix eigenvalue problem is solved for the lowest-mass
state with use of a new, indefinite-metric Lanczos algorithm. Various observables are extracted from the wave
functions, including average multiplicities and average momenta of constituents, structure functions, and a
form factor slope.
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[. INTRODUCTION hadron phenomenology. Burkhart and Seal have also given
an explicit calculation of the Isgur-Wise function for semi-
Light-cone Hamiltonian diagonalization methods offer aleptonicB decayg17].
number of attractive advantages for solving nonperturbative Another major difficulty in applying DLCQ to quantum
problems in quantum field theory, such as a physicafield theory in 3+1 dimensions is the implementation of a
Minkowski space description, boost invariance of the boundnonperturbative renormalization method. Most methods of
state wave functions, no requirement for fermion doublingregulating nonperturbative calculations in the light-cone rep-
and a consistent Fock-state expansion well matched to physiesentation, such as momentum cutoffs, do not allow a cor-
cal problems. In the discretized light-cone quantizationrect renormalization even of perturbative calculations. The
(DLCQ) method, the light-cone Hamiltonian, - of a quan-  problem can be traced to the fact that any momentum cutoff
tum field theory is diagonalized on a discrete Fock basiwiolates Lorentz invariance as well as gauge invaridi&g
defined by assuming periodic boundary conditions in theSince dimensional regularization is not available in DLCQ,
light-cone coordinatelsl,2]. The eigenvalues dfl, - give the  one needs to introduce new fields or degrees of freedom to
mass spectrum of the theory, and the respective eigenfuncender the ultraviolet behavior of the theory finite. One in-
tions projected on the free Fock basis provide the frametriguing possibility is to analyze ultraviolet-finite supersym-
independent light-cone wave functions needed for phenonmetric theories and then introduce breaking of the theory.
enology [3] including the amplitudes needed to computeThe heavy supersymmetric partners then regulate the ordi-
exclusiveB decayq4—6], deeply virtual Compton scattering nary sector of the theory in a manner analogous to Pauli-
[7,8], and other hard exclusive proces§®. The DLCQ Villars (PV) regulation[19]. String theory also provides
method has been successfully used to solve a large numberechanisms for regulating quantum field theory at short dis-
of one-space and one-time theorj@$, including supersym- tances which are equivalent to an infinite spectrum of PV
metric gauge theoriefl0]. It also has found application in particles/20]. The introduction of PV fields can thus regulate
analyzing confinement mechanisiis], string theory[12], a theory covariantly, after which the discretized momentum
andM-theory[13]. grid of DLCQ acts only as a numerical tool in the manner of
The application of DLCQ to physical, (81)- performing a numerical integral.

dimensional space-time quantum field theories is computa- In our previous worf18,21] we have shown that a model
tionally challenging because of the rapid growth of thefield theory in 3+ 1 dimensions can be solved by combining
number of degrees of freedom as the size of the FoclOoLCQ with PV regulation of the ultraviolet regime. In our
representation grows. A promising alternative is thefirst application18], a model theory was constructed to have
transverse lattice methodl4] which combines light-cone an exact analytic solution by which the DLCQ results could
methods in the longitudinal light-cone direction with a be checked, for both accuracy and rapidity of convergence.
spacetime lattice for the transverse dimensions. Recentlyhe model was regulated in the ultraviolet by a single PV
Dalley [15] and Burkhart and Sedll6] have extended the boson, which was included in the DLCQ Fock basis in the
transverse lattice method to estimate the shape of the valensame way as the “physical” particles of the theory. We then
light-cone wave function of a pion, a key input to much extended this approach to a more realistic model which mim-
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ics many features of a full quantum field the¢Bi]. Unlike In our convention, we define light-cone coordinaf24]
the analytic model which contained a static source, thédoy
light-cone energies of the particles in this model have
the correct longitudinal and transverse momentum
dependence.

An important question is whether the generalized
PV method with a finite number of fields can regulate a
field theory at all orders. Paston and Frank®?] have
studied the relation between perturbation theory in theThe time coordinate is taken to be& . The dot product of
light-cone representation and standard Feynman perturb&wo four-vectors is
tion theory, and they have developed general rules for
testing regularization procedures. For full Yukawa
theory, Paston, Franke and Prokhvatil®3] have shown
that one RV boson and two PV fermions can regulgte p~X=E(p+x’+p*x+)—pl-xi. 1.2
the theory in such a way as to allow a correct perturbative 2
renormalization.

In this paper we shall apply generalized PV regularization

and discrete light-cone quantization to the nonperturbativerp, s the momentum component conjugatectois p*, and

solution of (3+1)-dimensional Yukawa theory in a e |ight-cone energy ip~. We use underscores to identify
single-fermion truncation. We allow any number of bosonslight-cone three-vectors. such as

in the Yukawa theory but only one fermion in the Fock
representation; fermion pair terms and any other terms
that involve anti-fermions are neglected. We shall thus
consider a field-theoretic model where one particle, p=(p".p.). (1.3
which we take to be a fermion of madd, acts as a
dynamical source and sink for bosons of mas$n addition,
three heavy PV scalars, including two with negative . . :
norm, will be used to regulate the theory so that the chiraf:.or additional details, see Appendix A of R¢LE] or a re-
: ; L view paper{2].

properties of the renormalized theory are maintained, at least L . .

. . . The following is an outline of the remainder of the
to one loop in perturbation theory. In particular, the mass of

. . : . . aper. In Sec. Il we discuss the regularization and
the renormalized fermion constituent vanishes as its bar p 9

mass vanishes. A distinct advantage of our approach is thg?normallzatlon of the Yukawa Hamlltpman. Our numgncal

the counterterms are generated automatically by the P\methqu and results. are presented in Sec. lll. Sectlon.IV
particles and their negative-metric couplings. We emphasiz&0ntains our conclusions and plans for future work. Details
that the PV fields are added from the beginning, at theof the numerlcal diagonalization method are given in the
Lagrangian level, to facilitate our nonperturbative APPendix.

calculations, rather than being invoked for subtractions at

a diagrammatic level, which would limit the implementation

to perturbation theory. Note that the PV fields enter singly, Il. YUKAWA THEORY

doubly or triply at all three-point vertices. This contrasts

with use of generalized Pauli-Villars spectral integrals over
mass to regulate divergences.

The extra degrees of freedom of the PV scalars and
their negative-metric couplings introduce new computational
challenges. However, the matrix eigenvalue problem can 1 1 i
be solved for the lowest-mass state by the use of a - 2T 242 L owa o \ap
new, indefinite-metric Lanczos algorithm which we describe £=300ud) = qu d™+ 5Ly o, = (0,0 Y 1Y
in an Appendix. We also calculate the light-cone wave — —
function of each Fock-sector component and the —Myp—gdii. 2.
values for various physical quantities, such as average
multiplicites and average momenta of constituents,
bosonic and fermionic structure functions, and a formThe corresponding light-cone Hamiltonian has been given
factor slope. We also verify that with our choice of PV by McCartor and Robertsof25]. Here we consider a
conditions, the DLCQ calculations of the nonperturbativesingle-fermion truncation and therefore neglect pair
theory at weak coupling coincide with the covariantterms and any other terms that involve anti-fermions.
perturbation theory through one loop, although numericaWe also neglect longitudinal zero modes. To regulate
resolution does start to become a problem even on the theory, we include three PV bosons. The resulting
supercomputer. Hamiltonian is

xF=x%4x3  x, =(x}x?). (1.1

A. Light-cone Hamiltonian

We write the Lagrangian for Yukawa theory as
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M2+ M2+ (n, /L, )? w2+ (m wlL,)? .
HLC:nES /K b;,sbﬂ,s+% IT(_l)IaiTmaim
g\/; &i etZS‘nJ_ € (N +my) t
+ ZLi nz_m ; \/—a( n/K (n+m)/K bﬂ+m,—sbﬂ,5aim+H'C‘
Mg & ([ 1 (R
+ _87TLL nZ_m ES; \/_E( n/—K+ (n+m)/K bﬂerYSbﬂ’Saim‘F H.c.

2 &
+ g . 2 glé]
87LT nmm’ ST ymm'

1
t
( n+m+m’ ,sbﬂ,saim/ajmm + H.C.)
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|
whereM is the fermion massyu =, is the physical boson 3 _ 3 _
mass,u; and (—1)' are the mass and norm of the i-th PV 1+ (-1)'&2=0, w?+> (-1)'&u?=0,
boson, ande,s=—(1/y/2)(2s,i). The nonzero commutators =1 =1
are
3
: . ; 2, (—1)'&ulin(ufiu?)=0. 2.5
[aim,ajm,]:(_l)lé\ijé\mym/, {bﬂ,S’bﬂ’,s’}:éﬂ,ﬂ’és,S" i=1

(2.3
In addition, the norm of the i-th PV field must be chosen as

_1)\i
The different boson couplings are denoted &g, where (-1

_ . i The third constraint in Eqg2.5) is peculiar to the one-
§o=1 corresponds to the physical boson; the otieare . loop calculation. For higher-order or nonperturbative calcu-

chosen to arrange cancellations discussed below. Fermlqntions it must be replaced by a more general renormaliza-

self-induced inertia terms cancel in a sum over bosons an o ST ;
.fion condition. However, to simplify the numerical work, we
therefore do not appear. The bare parameters are the couplmg . .
and the mass shitM?2 use the _onel—loop constraint a.nd. then check for failure of
9 ' cancellation in the zero-mass limit.

The number of PV flavors is determined by the cancella- . L . .
. e . As it standsH, ¢ contains infrared divergences associated
tions needed to regulate the theory and restore chiral invari-

: DN . ; with the instantaneous fermion interaction, which is singular
er?}"n;hdx_to i;)mslagzu?c’ili?s.;fhgud;;ﬁ;iC;I;?rsysrz?ﬁgssat the point where the instantaneous fermion has zero longi-
5% - - . .
in this limit, if not for the fact that the symmetry is typically tudinal momentum. The divergences are partly cancelled by

broken by a cutoff. The one-loon self-enerav of the fermioncrossed-boson contributions. To cancel the remainder we
is [18] y ' P 9y need to add an effective interaction, modeled on the missing

fermion Z graph. The effective interaction is constructed
from the pair creation and annihilation terms in the Yukawa
2 4 light-cone energy operat¢25|

22 a2 (A 2n A2 20 2
[(ws,M“,A )Nﬂ 5 K INn A+ usln u—

2A?

b _ O € 2P € (A P) ]
5 =
+M? 3|nA2—3|nM2—§+5i 2L L dwsi| ptaT (at—pT)Va T
A2
Mg
x&b!h dl A ———
2 1 1 i¥p,s”g-psigd
+M4 (M) — - —||, 2L, V2L
MZ 31“'2 2A2
1 1 Tt
o “Elara e e
with A2 a cutoff such that\?> u?>M?2. In order that the +H.c. (2.6
self-energy be finite and proportional k&2, the relative cou-
pling strengthst; must satisfy the constraints The denominator for the intermediate state is
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M2 M2+pi2 M2+ (q. —p,)? M2+pf o ® Kt
p* Pspectators p/+ q' +_ p+ p+ ’ 0.6 1 : E::g (]
(2 7) @ K=17 L
" 0.5 4 ] )
°
To guarantee the cancellation of the singularity in the nu- o 047 gy e ® M
merical calculation, the instantaneous interaction is kept only = . Y lz A"
if the corresponding crossed-boson graph is permitted by the 031 ¢ ¢n 3 e o4
numerical cutoffs. 0.2 ]
The Fock-state expansion for the single-fermion eigen- %
state of the Hamiltonian is 011 Jv.
0.0 # . . : . .

& — 167" i dptd?p, 0.0 02 0.4 0.6 0.8 10

= 7T —

7 ng,Nq,Np,n3=0 \/167T3p+ y
n 2 n FIG. 1. The boson structure functidg at various low to mod-

tot dq d q . tot . . 3 - L2 N 2
x | z slp— _E _ (ni)( D) erate numerical resolutions, witM=pu, (:¢“(0):)=1.0, A
s M6n%q" S [ J. i | $ps (9P =50u?, u2=10u? u3=20u? andu3=30u>. To compare with a
! structure function computed at higher resolutions, see Ki). 2

Ntot

1
x———=bT[] aiquj|0>, (2.8)  with (—1)™) being the norm of the state with boson flavor
ps L1 %ija

/Hi n;! partitioning (;).

wheren, is the number of physical bosong, the number of lll. RESULTS
PV bosons of flavoi, ng=32 gn;, andi; is the flavor of A. Numerical methods
the j-th constituent boson. It solves the eigenvalue problem

H,c®,=M2D . The normalization is The principal tools for the solution of the Hamiltonian

eigenvalue problem are DLC{2] and the Lanczos diago-
nalization algorithn{27]. The first converts the problem to a
matrix form, and the second quickly generates one or more
eigenvectors. The use of negatively-normed states makes the
B. Renormalization conditions ordinary Lanczos algorithm inapplicable; however, an effi-
Mass renormalization is carried out by rearranging theCient generalﬁzation has be_en developed _for this situation. It
eigenvalue problem into one f@iM 2 at fixed M2 is d|scus_sed.|n the Appenc_hx. T.he constraint for the coupling
renormalization is solved iteratively.

/" ®,=167°P"5(P'—P). (2.9

M2+ p? wlra?]- The discretization is based on the standard DLCQ ap-
x| M2— —E #(q;) proach where longitudinal and transverse momenta are as-
X ! Yi a signed discrete valuegs' =ma/L andq, =n, /L, , with L
_ and L, chosen length scales. Momentum conservation re-
—J H dyj’dzqij\/WIC(gi 9i)¢'(q)) quires the individuam to sum to a fixed constamt, where
! P =K/L is the total longitudinal momentum. The integer
— 5M 2»(;5(%)_ (2.10 K is called the harmonic resolutiqd], because longitudinal

momentum fractiong=q*/P*=m/K are resolved to order
1/K. The positivity of longitudinal momenta forces a natural
cutoff such tham=K. Also, the eigenvalue problem f&a?

is independent of ; the length scale cancels betweeh and

Here x=p*/P* is the fermion momentum fractior is

shorthand for the interaction kernel, and tihe= ¢/ \/x are
new wave functions. p—
~ The coupl|2ng IS f|xe(3 byzsettlng a value for the expecta- e poundary conditions in the longitudinal direction are
tion value(: ¢=(0):)=®,: $(0):®,, for the boson field op-  chosen to be periodic for the boson fields but antiperiodic for
erator¢. This quantity is useful because it can be computedhe fermion field. This means that the integerare even for
fairly efficiently in a sum similar to a normalization sum  posons, and the corresponding fermion momentum index is
e o_dd. The h_armonic resol_utiol( is then also odd for the
I1 dod?q, .S (—1)™ single-fermion state considered here.
J- | L4 The transverse direction requires an explicit cutaff,
which we impose on individual light-cone energies

(¢%(0))= 2

n 2 2
X
k=1 qg /P

: (u2+m?m2/L?)Im=A?IK. (3.2

(ny) .
e (9115—; 91)

(2.1) The total transverse momentum is taken to be zero. The in-
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TABLE I. Fock sector probabilitie$|¢f:si)|2degj , where @;)={ng,n,,n,,n3}, n=ng is the number of
physical bosons and; the number of Pauli-Villars bosons of typeThe helicitieso and s refer to the
physical and bare fermion, respectively. The numerical and physical parametefs=drg, N, =5, M?
=u?, A?=50u2, ui=10u? us=20u? u3=30u? and(:$?(0):)=0.5. Probabilities smaller tharn 10~°

are not resolved with any accuracy.

Number of bosons Probability No. of
total n n, n, ng o=S o=—5 total states
0 0 0 0 0 0.9461 0.9461 1
1 1 0 0 0 0.0593 0.0444 0.1037 332
1 0 1 0 0 0.0340 0.0571 0.0911 219
1 0 0 1 0 0.0182 0.0300 0.0481 117
1 0 0 0 1 0.0036 0.0044 0.0080 55
2 2 0 0 0 0.0014 0.0021 0.0036 12414
2 1 1 0 0 0.0021 0.0022 0.0043 9969
2 0 2 0 0 0.0006 0.0003 0.0009 1499
2 1 0 1 0 0.0007 0.0007 0.0014 2998
2 0 1 1 0 0.0002 0.0001 0.0003 598
2 0 0 2 0 0.5¢10°5 0.4x10°° 0.9x10°° 25
2 1 0 0 1 0.%x10°4 0.7x10°4 0.0001 655
2 0 1 0 1 0.%10°5 0.6x10°° 0.1x10 4 45
3 3 0 0 0 0.0001 0.x10* 0.0001 136568
3 2 1 0 0 0.0002 0.%x10* 0.0002 102490
3 1 2 0 0 0.6<10°4 0.1x10™* 0.7x10°* 18021
3 0 3 0 0 0.410°5 0.1x10°° 0.5xX10°° 748
3 2 0 1 0 0.410°4 0.6x10°° 0.5x 104 16631
3 1 1 1 0 0.x10°4 0.3x10°° 0.2x10°* 2992
3 0 2 1 0 ~10°° ~10°© ~10°° 79
4 4 0 0 0 ~10°° ~10°© ~10°° 624372
4 3 1 0 0 ~10°° ~10°© ~10°° 381016
4 2 2 0 0 ~10°6 ~10°6 ~10°6 57132
4 1 3 0 0 ~10°7 ~1077 ~1077 2577
4 0 4 0 0 ~10°° ~10°° ~10°° 30
4 3 0 1 0 ~1077 ~10°6 ~10°6 28613
4 2 1 1 0 ~1077 ~1077 ~1077 2647

tegersn, andn, are limited to a rangé—N, ,N, ], which,  these characteristics can be computed without constructing
along with the cutoff, determines the transverse stale the full eigenvector, provided one saves a few components of

Given this discretization, the eigenvalue problem is con-each Lanczos vectay; (see the Appendjx
verted to a matrix problem by a trapezoidal approximation to As a check on the calculation, we took advantage of an
any momentum integrals. We have found useful modifica-exact solution that exists for the unphysical situation of
tions [18,21] which include non-constant weighting factors equal-mass PV boson&8]. In a particular(null) basis the
near the integral boundaries. These weights are adjusted toatrix representation is purely triangular. Each wave func-
compensate for the DLCQ grid being incommensurate wittion of the dressed fermion is then directly computable in a
the boundaries. In the present calculation, these weights afite number of steps.
kept only in the two-body sector where maximal symmetry For comparison, we also solved the problem using
can be maintained. For higher Fock sectors, sensitivity tdrillouin-Wigner perturbation theory, for which
cancellations is of greater concern than boundary effects, and
the weights disrupt the cancellations.

Unlike an ordinary eigenvalue problem, the presence of ® ~\/ZE
negatively normed states allows unphysical states to be o VE &y
lower in mass than the physical one-fermion state. Criteria
must be employed to select the correct state in a numerical
calculation. We used the following: a positive norm, a realThe integrals were computed numerically with the same dis-
eigenvalue, a minimum number of nodgseferably zerpin cretization as the nonperturbative DLCQ calculation. The
the parallel-helicity boson-fermion wave function, and themain effort in the perturbative expansion is then matrix mul-
largest bare-fermion probability between 0 and 1. Each ofiplication, just as for the Lanczos algorithm.

n

1-by|0)(0]by
_—_Koﬁ-diag b£|0>- (3-2)

M? = Kiag
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TABLE II. Bare parameters and observables. The input parameter valuddZare.?, A%=50u?, u?
=10u?, u3=20u? andu3=30u>

(y1y2)— <y>2)n22

K N (6%(0)) g SMZu?  lg>  —100u%F'(0) vy

11 4 0.100 1.279 0.062 0.988 0.090 3653.
11 5 0.100 1.339 0.060 0.989 0.092 3938.
11 6 0.100 1.366 0.066 0.989 0.095 3150.
13 4 0.100 1.274 0.035 0.988 0.092 4117.
13 5 0.100 1.335 0.037 0.989 0.093 3426.
15 4 0.100 1.306 0.084 0.988 0.086 3671.
15 5 0.100 1.361 0.087 0.988 0.091 3108.
17 4 0.100 1.292 0.055 0.988 0.088 3331.
17 5 0.100 1.342 0.055 0.989 0.097 2868.
19 4 0.100 1.287 0.054 0.988 0.091 3324,
19 5 0.100 1.349 0.056 0.988 0.096 3375.
21 4 0.100 1.281 0.055 0.988 0.088 4075.
21 5 0.100 1.350 0.057 0.988 0.095 3257.
21 6 0.100 1.378 0.058 0.989 0.099 2788.
21 7 0.100 1.392 0.058 0.989 0.101 2977.
21 8 0.100 1.400 0.059 0.989 0.104 2920.
29 4 0.100 1.302 0.062 0.987 0.091 3572.
29 5 0.100 1.353 0.063 0.988 0.096 3441.
29 6 0.100 1.386 0.065 0.989 0.099 2920.
29 7 0.100 1.400 0.066 0.989 0.103 2983.

B. Computed quantities 1
Various quantities can be computed from the wave func- (N9 = Jo fas(y)dy, 3.5

tions ¢(") for the different Fock sectors. We compute the

slope of the no-flip form factor of the fermion, structure and have
functions for bosons and the fermion, average momenta, av-

erage multiplicities, and a quantity sensitive to boson corre-
lations. The form factor slopE’(0) is given by[18]

F/(O):—nzo f H dqj+ dqujES (—1)m

X

Ntot Vi (
N
2 |5 Vi

)<E:E—§ gj)

i

(3.3

The physical boson structure function for bare helictis

defined as

st(Y)EnZO f H dag;

x|t

(%:E—Ei %)

No

dzqijk; S(y—aqy /P (—1)™

2

(3.9

(ng)=(ng)+(ng_). (3.6

The average boson momentum is treated analogously, with

1
<YBS>:f0nys(Y)dy and (yg)=(Ys+)*(Ye-)-
(3.7)

As a measure of the correlations in the multiple-boson Fock
sectors, we computeY;Y,)—(Y)?)n=2/{y)? where

"o gy, G,
(y1y2dn=2 nOZEZ,ni fH % qLJZS kgkz Pt P*
2

X (—1)M) (3.9

¢fﬁ‘!(% P2 gj)

and(y),=» is the same agy) except that only states with
two or more bosons are included.

Calculations at low resolutions tend to have difficulty for
stronger coupling. This can be seen already at third order in

The normalization is such that the integral yields the averageerturbation theory, where loop integrals are poorly approxi-
multiplicity (ng). We separate two pieces, for parallel andmated and subtractions between loops with different boson

antiparallel bare

helicity

flavors magnify the errors. Fully averaged quantities such as
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TABLE lll. Additional observables. The input parameter values are the same as for Table Il. The blank
entries represent values not extracted from preliminary, lower-resolution calculations.

K Ny (:¢%(0):) (Ng,¢) (N, — o) (ng) (Ys,0) (Y8,~ o) (Ys)

11 4 0.100 0.021 0.01191

11 5 0.100 0.021 0.01209

11 6 0.100 0.021 0.01213

13 4 0.100 0.021 0.01170

13 5 0.100 0.022 0.01219

15 4 0.100 0.021 0.01198

15 5 0.100 0.022 0.01225

17 4 0.100 0.022 0.01220

17 5 0.100 0.022 0.01234

19 4 0.100 0.022 0.01231

19 5 0.100 0.022 0.01238

21 4 0.100 0.0147 0.0072 0.0219 0.00836 0.00417 0.01253
21 5 0.100 0.0133 0.0086 0.0218 0.00735 0.00506 0.01241
21 6 0.100 0.0128 0.0091 0.0220 0.00712 0.00540 0.01252
21 7 0.100 0.0125 0.0094 0.0219 0.00695 0.00556 0.01251
21 8 0.100 0.0125 0.0096 0.0220 0.00691 0.00566 0.01257
29 4 0.100 0.0145 0.0076 0.0221 0.00808 0.00444 0.01252
29 5 0.100 0.0135 0.0086 0.0221 0.00753 0.00508 0.01260
29 6 0.100 0.0129 0.0092 0.0221 0.00711 0.00546 0.01257
29 7 0.100 0.0126 0.0095 0.0221 0.00697 0.00564 0.01261

(ng) are less affected by this, but the structure functign ber of constituents. Luckily, even at the strongest coupling
can be quite poorly represented. An example is given in Figthat we consider, states with large numbers of constituents
1. are unimportant, and yet the results differ significantly from
Clearly one cure is to work at higher resolution. Limita- lowest-order perturbation theory. The relative importance of
tions on computer storage then require truncation in the nundifferent numbers of constituents can be seen in Table I,

TABLE IV. Same as Table Il, but for stronger coupling.

A <y>2)n>2

K N, (:4%(0):) g oM?/u? | ol? —100u?F’(0) v)?

11 4 1.000 5.417 0.863 0.891 1.340 21.42
11 5 1.001 5.325 0.699 0.899 1.073 27.77
11 6 1.000 5.105 0.819 0.883 2.849 22.06
13 4 1.000 4.520 0.362 0.886 0.929 36.62
13 5 0.998 4.746 0.362 0.893 1.244 28.91
15 4 1.000 5.783 1.161 0.918 0.457 22.85
15 5 1.000 5.589 1.124 0.913 0.641 23.52
17 4 1.000 5.045 0.619 0.909 0.683 25.69
17 5 0.998 4.806 0.562 0.899 1.032 26.31
19 4 1.000 4.804 0.576 0.895 0.853 28.82
19 5 1.000 4.973 0.597 0.902 0.868 29.83
21 4 1.000 4.925 0.615 0.896 0.774 32.23
21 5 1.000 5.082 0.616 0.903 0.876 28.27
21 6 1.000 4.978 0.619 0.900 1.266 25.64
21 7 0.999 5.046 0.612 0.903 1.140 27.78
21 8 1.000 5.009 0.622 0.901 1.248 27.68
29 4 1.000 5.089 0.713 0.902 0.659 29.23
29 5 1.000 5.072 0.695 0.901 0.837 29.11
29 6 1.000 5.173 0.708 0.907 0.867 26.29
29 7 0.999 5.152 0.712 0.905 0.933 27.62
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TABLE V. Same as Table Ill, but for stronger coupling.

K No (9%0))  (ne,) (N (ng) (Ye,0) (Ye,-o) (Ye)

11 4 1.000 0.237 0.1425

11 5 1.001 0.231 0.1342

11 6 1.000 0.233 0.1383

13 4 1.000 0.217 0.1205

13 5 0.998 0.222 0.1280

15 4 1.000 0.210 0.1167

15 5 1.000 0.212 0.1181

17 4 1.000 0.211 0.1192

17 5 0.998 0.214 0.1212

19 4 1.000 0.216 0.1220

19 5 1.000 0.216 0.1217

21 4 1.000 0.1179 0.0994 0.2173 0.06625 0.05649 0.12275
21 5 1.000 0.1044 0.1129 0.2174 0.05788 0.06580 0.12368
21 6 1.000 0.1031 0.1154 0.2185 0.05770 0.06759 0.12529
21 7 1.000 0.1008 0.1162 0.2170 0.05575 0.06751 0.12326
21 8 1.000 0.1016 0.1153 0.2169 0.05608 0.06655 0.12263
29 4 1.000 0.1088 0.1057 0.2145 0.05894 0.06072 0.11966
29 5 1.000 0.1048 0.1122 0.2170 0.05738 0.06452 0.12190
29 6 1.000 0.0982 0.1178 0.2160 0.05363 0.06824 0.12187
29 7 1.000 0.0985 0.1180 0.2165 0.05360 0.06803 0.12163

where we list probabilities for the various Fock sector con-29, or even 39. FOK=11 and 13 there is no explicit trun-

tributions to a calculation with moderate resolution. Trunca-cation and the maximum number of bosons is 5 and 6, re-

tion to a maximum of two bosons is seen to offer a very goodspectively. Folk =15, 17, and 19, the maximum number of

approximation. For weaker couplings, lower resolution isbosons used is 4, and f&r=21 the maximum used is 2. Two

sufficient. different sets of cutoff and PV masses were considefed:
Given these considerations for resolution and truncation=50u?, ,u§=10,u2, ,u§=20,u2, and ,u§=30,u2; and A?

we have done two sets of calculations withetween 11 and  =100u?, uf=20u?, us=40u?, andu3=60u>. The trans-

TABLE VI. Same as Table IV, but foA?=100u?, u?=20u?, u3=40u? andus=60u’.

(YY) = (V) )n=2

K N, (:4%(0):) g M2/ p? | ol? —1004%F'(0) v?

11 4 0.989 4.661 1.220 0.858 1.195 22.07
11 5 0.998 4.326 0.991 0.868 1.114 26.07
11 6 0.904 4.181 1.063 0.882 1.442 28.64
13 4 1.002 3.378 0.487 0.836 1.122 32.87
13 5 1.000 4.182 0.537 0.863 1.245 27.45
15 4 1.000 5.332 1.849 0.912 0.337 19.69
15 5 1.000 5.142 1.804 0.908 0.458 21.64
17 4 0.998 4.448 1131 0.896 0.448 28.27
17 5 1.000 4.527 1.094 0.889 0.758 24.09
19 4 1.000 4.317 0.915 0.873 0.759 27.20
19 5 0.999 4412 0.970 0.880 0.960 24.52
21 4 1.000 4.300 0.966 0.876 0.752 25.75
29 4 1.000 4.795 1.160 0.886 0.565 234
29 5 0.999 4.683 1.132 0.893 0.699 225
29 6 1.000 4.772 1.164 0.897 0.757 21.9
29 7 0.999 4.706 1.160 0.893 1.079 20.9
39 4 0.998 4.562 1.006 0.884 0.660 23.6
39 5 1.000 4.678 1.026 0.892 0.729 22.3
39 6 1.000 4.656 1.020 0.894 0.833 21.8
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TABLE VII. Same as Table V, but foA?=100u?, u?=20u?, u5=40u? andus=60u’.

K N, (:0%(0):) (Ng.o) (Ng,— ) (ng) (YB,0) (YB,~ o) (Ye)

11 4 0.989 0.245 0.1524
11 5 0.998 0.227 0.1310
11 6 0.904 0.206 0.1207
13 4 1.002 0.228 0.1297
13 5 1.000 0.230 0.1370
15 4 1.000 0.205 0.1149
15 5 1.000 0.204 0.1140
17 4 0.998 0.198 0.1078
17 5 1.000 0.212 0.1203
19 4 1.000 0.218 0.1261
19 5 0.999 0.218 0.1271
21 4 1.000 0.215 0.1245
29 4 1.000 0.1051 0.1152 0.2203 0.06028 0.06653 0.12680
29 5 1.000 0.0894 0.1231 0.2125 0.04925 0.07260 0.12185
29 6 1.000 0.0798 0.1317 0.2115 0.04334 0.07794 0.12128
29 7 1.000 0.0787 0.1350 0.2137 0.04357 0.08055 0.12412
39 4 1.000 0.1069 0.1090 0.2159 0.06156 0.06396 0.12552
39 5 1.000 0.0907 0.1232 0.2139 0.05109 0.07272 0.12381
39 6 1.000 0.0836 0.1297 0.2133 0.04611 0.07694 0.12305

verse resolutiomN, was at least 4 and was increased beyond g in Figs. 2 and 3. Typical contributions ti; from one-
that to the extent allowed by the available storage on a 1®oson and two-boson states are shown in Fig. 4. The two-
GB node of an IBM SP. The four processors of the nodeboson contribution to the structure function is further ana-
were used in parallel. lyzed in terms of its dependence on both longitudinal
A sampling of explored parameter values can be seen imomentum fractions in Fig. 5, where
Tables 11-VII. For each choice of input parameter values,
these tables present the results for the bare parameters of the ~
Hamiltonian,g and 5M?, and for various expectation values. va(yl’y2)Ef d?q,1d%q,2] ¢ %Nap* (3.9
For higher resolution =21 and 29 forA?=50u? and
K =29 and 39 forA>=100u?) we plot the structure function is plotted. We also show typical two-body wave functions in
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Fig. 6; the agreement with the necesshgy1 symmetry in  plays features which significantly deviated from first-order
the antiparallel helicity case is an important checklp€on-  perturbation theory. Numerical resolution in this domain of
servation in the calculation. strong coupling was not a limiting factor in this analysis.

As a check on the logarithmic PV coupling constraint in  The regularization procedure which we have chosen, with
Eq. (2.5, we compute the bare mass shifl> whenM? is  three PV scalars, functioned well. However, better conver-
much less thap?. Figure 7 shows its behavior as a function gence of the DLCQ method at strong coupling could be ob-
of the longitudinal resolution for various bare couplings. If tained by constraining the PV couplings non-perturbatively,
the logarithmic constraint was sufficient for nonperturbativerather than using the one-loop perturbative constraints in
calculation,8M? should go to zero ad? approaches zero Egs.(2.5).
and the resolution approaches the continuum limit. This ap- A number of properties of the Yukawa-theory eigensolu-
pears to work well only for weak coupling. tion could be extracted from its light-cone Fock-state wave
function. This illustrates the power of the DLCQ method in
making the Fock-state wave functions of the eigenstates ex-
plicitly available. It is also possible to use the derived wave
functions to compute the Pauli and Dirac form factors of the

We have used the discretized light-cone quantizatiordressed fermion state at general momentum trans28is
method to successfully solve for the mass and light-cone There are additional calculations which might be done
wave functions of a dressed fermionic state in a Yukawawithin the context of the zero fermion pair approximation.
theory in 3+ 1 spacetime dimensions. Nopriori constraint We could consider two-fermion states and study true bound
on the number of bosonic constituents was necessary; hovgtates and scattering solutions. We could also consider
ever, since the fermion constituent was treated as heavyressed spin-3/2 states and the analog @f<NA transitions.
states containing fermion—anti-fermion pairs were truncatedextension of these methods to pseudo-scalar Yukawa theory
We have found that the eigensolution at strong coupling diswould make the Nr< A connection stronger.

IV. CONCLUSIONS AND PROSPECTS FOR THE
APPLICATION OF DLCQ (3+1) TO GAUGE THEORY
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supersymmetry as an effective ultraviolet regulator of the
light-cone Hamiltonians of gauge theories.

The PV method also has applicability to the renormaliza-
tion of non-Abelian Hamiltonian gauge theories on the light-
cone. Paston, Franke and Prokhvatil8i,32 have recently
extended their analysis to the nonperturbative regulation of
light-cone QCD, including the regularization of the infrared
singularities introduced by using light-cone gauge. They find
that a combination of light-cone gauge, PV fields, higher
derivative regulation, and carefully chosen momentum cut-
offs can regulate the theory in such a way as to provide
agreement with Feynman calculations using the
Mandelstam-Leibbrandt prescriptidi83] for the spurious
singularity in the gauge propagator. The resulting dynamical
operator is rather complex and several regulating fields are
needed, but the regulation procedures appear suitable for nu-
merical calculations. We plan to test these methods in Abe-

lian theory, including the calculation of positronium bound
Although the approach used in this paper to solve (3 4 g P

) . i states [34,35 and the non-perturbative calculation of
+1)-dimensional Yukawa theory at strong coupling has b_ee he anomalous magnetic moments of leptons at strong
successful, future progress for solving other quantum fiel oupling[36].
theories will require more efficient analytic methods and nu-
merical algorithms. An alternative ultraviolet regularization
procedure, using only one PV scalar and one PV fermion ACKNOWLEDGMENTS
[30,28 may potentially provide a more efficient approach for _ i )
solving Yukawa theories. Not only is the constraint on the This work was supported in part by the Minnesota Super-
couplings trivial, but the light-cone Hamiltonian is also much Computing Institute through grants of computing time and by
simpler. The simplifications occur because the instantaneoyf® U.S. Department of Energy, contracts DE-ACO3-
fermion interactiongthe terms in Eq(2.2) of orderg?] can-  /6SF00515(S.J.B), DE-FG02-98ER41087(J.R.H), and
cel. Moreover, the DLCQ matrix for the remaining three- DE-FG03-95ER40908G.M.).
point interactions is much more sparse, allowing calculations
at higher resolutions. Our next step will be to test this alter-
native regularization.

One can consider two other possibilities for PV regular-
ization [30] of full Yukawa theory. One is to use two heavy = The ordinary Lanczos algorithi27] was designed for
fermions and one heavy scal@3]; the other is to use one diagonalization of real symmetric or Hermitian matrices. A
less heavy fermion but make the transverse momentum cutnore general form, the biorthogonal Lanczos algorifi3T,
off part of the regularization rather than just a numericalcan be applied to non-symmetric cases but is quite cumber-
procedure. In each casefd term must be added. We plan to some. In the case of a complex symmetric matrix, the bior-
explore both of these methods. thogonal algorithm can be reduced to a form nearly as simple

Quantum electrodynamics and quantum chromodynamicas the real symmetric ca$88]; this approach was used in
in physical spacetime, including the phenomenon of chiraprevious work[18,21] where imaginary couplings made
symmetry breaking remain the central challenge to DLCOnegative norms unnecessary. The complex-symmetric ap-
methods. One attractive possible approach is to use brokgmoach is not easy to implement for Yukawa theory because

FIG. 5. The two-boson structure functidi, for K=29 and
N, =7, with M=, (:¢?(0):)=1, A?=50u?, ui=10u? u3
=20u?, and pu3=30u>.

APPENDIX: LANCZOS ALGORITHM FOR INDEFINITE
METRIC

FIG. 6. The one-boson amplitude ¢1°%%  with (@ parallel E=0) and (b) antiparallel 6
=—o) bare helicity, as a function of longitudinal momentum fractioand one transverse momentum comporggnin the g,=0 plane.
The parameter values ake=29, N, =7, M=y, A?=50u?, u5=10u? us=20u?, n3=30u? and(:$?(0):)=0.25.
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the Hamiltonian is fully Hermitian. Instead, negative norms H-T= T (A2
are assigned, and the eigenvalue problem becomes one with
indefinite metric. 0 0 ©

For this case the biorthogonal algorithm can still be re-
duced to a simpler form. Lef represent the metric signa- _ _
ture, so that numerical dot products are writtés’| ) By construction, the elements @fare real. The new matrix
— &% . The Hamiltonian matrix is constructed to be is also self-adjoint, but with respect to an induced metric

i ; . ; . ={v4,v,, ...}. The eigenvalues of approximate some of
self-adjoint with respect to this metric, which means thatthe eigenvalues ofl, even after only a few iterations. Ap-

[39] H=7""H"7=H. The Lanczos algorithm for the diago- proximate eigenvectors df are constructed from the right
nalization ofH then takes the form eigenvectors; of T as ¢ = 3,(Ci) 0k -
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