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Application of Pauli-Villars regularization and discretized light-cone quantization
to a single-fermion truncation of Yukawa theory
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We apply Pauli-Villars regularization and discretized light-cone quantization to the nonperturbative solution
of (311)-dimensional Yukawa theory in a single-fermion truncation. Three heavy scalars, including two with
negative norm, are used to regulate the theory. The matrix eigenvalue problem is solved for the lowest-mass
state with use of a new, indefinite-metric Lanczos algorithm. Various observables are extracted from the wave
functions, including average multiplicities and average momenta of constituents, structure functions, and a
form factor slope.
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I. INTRODUCTION

Light-cone Hamiltonian diagonalization methods offer
number of attractive advantages for solving nonperturba
problems in quantum field theory, such as a physi
Minkowski space description, boost invariance of the bou
state wave functions, no requirement for fermion doubli
and a consistent Fock-state expansion well matched to ph
cal problems. In the discretized light-cone quantizat
~DLCQ! method, the light-cone HamiltonianHLC of a quan-
tum field theory is diagonalized on a discrete Fock ba
defined by assuming periodic boundary conditions in
light-cone coordinates@1,2#. The eigenvalues ofHLC give the
mass spectrum of the theory, and the respective eigenf
tions projected on the free Fock basis provide the fram
independent light-cone wave functions needed for phen
enology @3# including the amplitudes needed to compu
exclusiveB decays@4–6#, deeply virtual Compton scatterin
@7,8#, and other hard exclusive processes@9#. The DLCQ
method has been successfully used to solve a large num
of one-space and one-time theories@2#, including supersym-
metric gauge theories@10#. It also has found application in
analyzing confinement mechanisms@11#, string theory@12#,
andM-theory @13#.

The application of DLCQ to physical, (311)-
dimensional space-time quantum field theories is comp
tionally challenging because of the rapid growth of t
number of degrees of freedom as the size of the F
representation grows. A promising alternative is t
transverse lattice method@14# which combines light-cone
methods in the longitudinal light-cone direction with
spacetime lattice for the transverse dimensions. Rece
Dalley @15# and Burkhart and Seal@16# have extended the
transverse lattice method to estimate the shape of the val
light-cone wave function of a pion, a key input to muc
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hadron phenomenology. Burkhart and Seal have also g
an explicit calculation of the Isgur-Wise function for sem
leptonicB decays@17#.

Another major difficulty in applying DLCQ to quantum
field theory in 311 dimensions is the implementation of
nonperturbative renormalization method. Most methods
regulating nonperturbative calculations in the light-cone r
resentation, such as momentum cutoffs, do not allow a c
rect renormalization even of perturbative calculations. T
problem can be traced to the fact that any momentum cu
violates Lorentz invariance as well as gauge invariance@18#.
Since dimensional regularization is not available in DLC
one needs to introduce new fields or degrees of freedom
render the ultraviolet behavior of the theory finite. One
triguing possibility is to analyze ultraviolet-finite supersym
metric theories and then introduce breaking of the theo
The heavy supersymmetric partners then regulate the o
nary sector of the theory in a manner analogous to Pa
Villars ~PV! regulation @19#. String theory also provides
mechanisms for regulating quantum field theory at short d
tances which are equivalent to an infinite spectrum of
particles@20#. The introduction of PV fields can thus regula
a theory covariantly, after which the discretized moment
grid of DLCQ acts only as a numerical tool in the manner
performing a numerical integral.

In our previous work@18,21# we have shown that a mode
field theory in 311 dimensions can be solved by combinin
DLCQ with PV regulation of the ultraviolet regime. In ou
first application@18#, a model theory was constructed to ha
an exact analytic solution by which the DLCQ results cou
be checked, for both accuracy and rapidity of convergen
The model was regulated in the ultraviolet by a single P
boson, which was included in the DLCQ Fock basis in t
same way as the ‘‘physical’’ particles of the theory. We th
extended this approach to a more realistic model which m
©2001 The American Physical Society23-1
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ics many features of a full quantum field theory@21#. Unlike
the analytic model which contained a static source,
light-cone energies of the particles in this model ha
the correct longitudinal and transverse moment
dependence.

An important question is whether the generaliz
PV method with a finite number of fields can regulate
field theory at all orders. Paston and Franke@22# have
studied the relation between perturbation theory in
light-cone representation and standard Feynman pertu
tion theory, and they have developed general rules
testing regularization procedures. For full Yukaw
theory, Paston, Franke and Prokhvatilov@23# have shown
that one PV boson and two PV fermions can regul
the theory in such a way as to allow a correct perturba
renormalization.

In this paper we shall apply generalized PV regularizat
and discrete light-cone quantization to the nonperturba
solution of (311)-dimensional Yukawa theory in
single-fermion truncation. We allow any number of boso
in the Yukawa theory but only one fermion in the Fo
representation; fermion pair terms and any other te
that involve anti-fermions are neglected. We shall th
consider a field-theoretic model where one partic
which we take to be a fermion of massM, acts as a
dynamical source and sink for bosons of massm. In addition,
three heavy PV scalars, including two with negati
norm, will be used to regulate the theory so that the ch
properties of the renormalized theory are maintained, at l
to one loop in perturbation theory. In particular, the mass
the renormalized fermion constituent vanishes as its b
mass vanishes. A distinct advantage of our approach is
the counterterms are generated automatically by the
particles and their negative-metric couplings. We empha
that the PV fields are added from the beginning, at
Lagrangian level, to facilitate our nonperturbativ
calculations, rather than being invoked for subtractions
a diagrammatic level, which would limit the implementatio
to perturbation theory. Note that the PV fields enter sing
doubly or triply at all three-point vertices. This contras
with use of generalized Pauli-Villars spectral integrals o
mass to regulate divergences.

The extra degrees of freedom of the PV scalars
their negative-metric couplings introduce new computatio
challenges. However, the matrix eigenvalue problem
be solved for the lowest-mass state by the use o
new, indefinite-metric Lanczos algorithm which we descr
in an Appendix. We also calculate the light-cone wa
function of each Fock-sector component and
values for various physical quantities, such as aver
multiplicities and average momenta of constituen
bosonic and fermionic structure functions, and a fo
factor slope. We also verify that with our choice of P
conditions, the DLCQ calculations of the nonperturbat
theory at weak coupling coincide with the covaria
perturbation theory through one loop, although numeri
resolution does start to become a problem even o
supercomputer.
11402
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In our convention, we define light-cone coordinates@24#
by

x65x01x3, x'5~x1,x2!. ~1.1!

The time coordinate is taken to bex1. The dot product of
two four-vectors is

p•x5
1

2
~p1x21p2x1!2p'•x' . ~1.2!

Thus the momentum component conjugate tox2 is p1, and
the light-cone energy isp2. We use underscores to identif
light-cone three-vectors, such as

p5~p1,p'!. ~1.3!

For additional details, see Appendix A of Ref.@18# or a re-
view paper@2#.

The following is an outline of the remainder of th
paper. In Sec. II we discuss the regularization a
renormalization of the Yukawa Hamiltonian. Our numeric
methods and results are presented in Sec. III. Section
contains our conclusions and plans for future work. Deta
of the numerical diagonalization method are given in t
Appendix.

II. YUKAWA THEORY

A. Light-cone Hamiltonian

We write the Lagrangian for Yukawa theory as

L5
1

2
~]mf!22

1

2
m2f21

i

2
@c̄gm]m2~]mc̄!gm#c

2M c̄c2gfc̄c. ~2.1!

The corresponding light-cone Hamiltonian has been giv
by McCartor and Robertson@25#. Here we consider a
single-fermion truncation and therefore neglect p
terms and any other terms that involve anti-fermion
We also neglect longitudinal zero modes. To regul
the theory, we include three PV bosons. The result
Hamiltonian is
3-2
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HLC5(
n,s

M21dM21~n'p/L'!2

n/K
bn,s

† bn,s1(
mi

m i
21~m'p/L'!2

m/K
~21! iaim

† aim

1
gAp

2L'
2 (

nm
(
si

j i

Am
S Fe22s* •n'

n/K
1

e2s•~n'1m'!

~n1m!/K Gbn1m,2s
† bn,saim1H.c.D

1
Mg

A8pL'

(
nm

(
si

j i

Am
S F 1

n/K
1

1

~n1m!/KGbn1m,s
† bn,saim1H.c.D

1
g2

8pL'
2 (

nmm8
(
si j

j ij j

Amm8
F S bn1m1m8,s

† bn,saim8aj m

1

~n1m!/K
1H.c.D

1bn1m2m8,s
† bn,saim8

† aj mS 1

~n2m8!/K
1

1

~n1m!/K D G , ~2.2!
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whereM is the fermion mass,m[m0 is the physical boson
mass,m i and (21)i are the mass and norm of the i-th P
boson, ande2s[2(1/A2)(2s,i ). The nonzero commutator
are

@aim ,aj m8
†

#5~21! id i j dm,m8 , $bn,s ,bn8,s8
† %5dn,n8ds,s8 .

~2.3!

The different boson couplings are denoted byj ig, where
j0[1 corresponds to the physical boson; the otherj i are
chosen to arrange cancellations discussed below. Ferm
self-induced inertia terms cancel in a sum over bosons
therefore do not appear. The bare parameters are the cou
g and the mass shiftdM2.

The number of PV flavors is determined by the cance
tions needed to regulate the theory and restore chiral inv
ance in theM50 limit @26,18#. The discrete chiral symmetr
c→ ig5c, f→2f should itself guarantee a zero self-ma
in this limit, if not for the fact that the symmetry is typicall
broken by a cutoff. The one-loop self-energy of the fermi
is @18#

I ~m2,M2,L2!'
a

2p F S L2

2
2m2ln L21m2ln m22

m4

2L2D
1M2S 3 lnL223 lnm22

9

2
1

5m2

L2 D
1M4S 2

m2
ln~M2/m2!1

1

3m2
2

1

2L2D G ,

~2.4!

with L2 a cutoff such thatL2@m2@M2. In order that the
self-energy be finite and proportional toM2, the relative cou-
pling strengthsj i must satisfy the constraints
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~21! ij i
250, m21(

i 51

3

~21! ij i
2m i

250,

(
i 51

3

~21! ij i
2m i

2ln~m i
2/m2!50. ~2.5!

In addition, the norm of the i-th PV field must be chosen
(21)i .

The third constraint in Eqs.~2.5! is peculiar to the one-
loop calculation. For higher-order or nonperturbative calc
lations, it must be replaced by a more general renormal
tion condition. However, to simplify the numerical work, w
use the one-loop constraint and then check for failure
cancellation in the zero-mass limit.

As it stands,HLC contains infrared divergences associat
with the instantaneous fermion interaction, which is singu
at the point where the instantaneous fermion has zero lo
tudinal momentum. The divergences are partly cancelled
crossed-boson contributions. To cancel the remainder
need to add an effective interaction, modeled on the miss
fermion Z graph. The effective interaction is construct
from the pair creation and annihilation terms in the Yuka
light-cone energy operator@25#

Ppair
2 5

g

2L'AL
(
pqsi

F e22s•p'

p1Aq1
1

e2s* •~q'2p'!

~q12p1!Aq1G
3j ibp,s

† dq2p,s
† aiq1

Mg

2L'A2L

3 (
pqsi

F 1

p1Aq1
2

1

~q12p1!Aq1Gj ibp,s
† dq2p,2s

† aiq

1H.c. ~2.6!

The denominator for the intermediate state is
3-3
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M2

P1
2pspectators

2 2
M21p'8

2

p81
2

M21~q'8 2p'!2

q812p1
2

M21p'
2

p1
.

~2.7!

To guarantee the cancellation of the singularity in the
merical calculation, the instantaneous interaction is kept o
if the corresponding crossed-boson graph is permitted by
numerical cutoffs.

The Fock-state expansion for the single-fermion eig
state of the Hamiltonian is

Fs5A16p3P1 (
n0 ,n1 ,n2 ,n350

` E dp1d2p'

A16p3p1

3)
j 51

ntot E dqj
1d2q' j

A16p3qj
1 (

s
dS P2p2(

j

ntot

qj D fss
(ni )~qj ;p!

3
1

A) i ni !

bps
† )

j

ntot

ai jqj

† u0&, ~2.8!

wheren0 is the number of physical bosons,ni the number of
PV bosons of flavori, ntot5( i 50

3 ni , and i j is the flavor of
the j-th constituent boson. It solves the eigenvalue prob
HLCFs5M2Fs . The normalization is

Fs8
†
•Fs516p3P1d~P82P!. ~2.9!

B. Renormalization conditions

Mass renormalization is carried out by rearranging
eigenvalue problem into one fordM2 at fixedM2

xFM22
M21p'

2

x
2(

i

m i
21q' i

2

yi
G f̃~qi !

2E )
j

dyj8d
2q' j8 Axx8K~qi ,qj8!f̃8~qj8!

5dM2f̃~qi !. ~2.10!

Here x5p1/P1 is the fermion momentum fraction,K is
shorthand for the interaction kernel, and thef̃[f/Ax are
new wave functions.

The coupling is fixed by setting a value for the expec
tion value^:f2(0):&[Fs

† :f2(0):Fs for the boson field op-
eratorf. This quantity is useful because it can be compu
fairly efficiently in a sum similar to a normalization sum

^:f2~0!:&5 (
ni50

` E )
j

ntot

dqj
1d2q' j(

s
~21!(ni )

3S (
k51

n
2

qk
1/P1D Ufss

(ni )S qj ;P2(
j

qj DU2

,

~2.11!
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with (21)(ni ) being the norm of the state with boson flav
partitioning (ni).

III. RESULTS

A. Numerical methods

The principal tools for the solution of the Hamiltonia
eigenvalue problem are DLCQ@2# and the Lanczos diago
nalization algorithm@27#. The first converts the problem to
matrix form, and the second quickly generates one or m
eigenvectors. The use of negatively-normed states make
ordinary Lanczos algorithm inapplicable; however, an e
cient generalization has been developed for this situation
is discussed in the Appendix. The constraint for the coupl
renormalization is solved iteratively.

The discretization is based on the standard DLCQ
proach where longitudinal and transverse momenta are
signed discrete valuesq15mp/L andq'5n'p/L' , with L
and L' chosen length scales. Momentum conservation
quires the individualm to sum to a fixed constantK, where
P15Kp/L is the total longitudinal momentum. The integ
K is called the harmonic resolution@1#, because longitudina
momentum fractionsy5q1/P15m/K are resolved to orde
1/K. The positivity of longitudinal momenta forces a natur
cutoff such thatm<K. Also, the eigenvalue problem forM2

is independent ofL; the length scale cancels betweenP1 and
P2.

The boundary conditions in the longitudinal direction a
chosen to be periodic for the boson fields but antiperiodic
the fermion field. This means that the integersm are even for
bosons, and the corresponding fermion momentum inde
odd. The harmonic resolutionK is then also odd for the
single-fermion state considered here.

The transverse direction requires an explicit cutoffL2,
which we impose on individual light-cone energies

~m21m'
2 p2/L'

2 !/m<L2/K. ~3.1!

The total transverse momentum is taken to be zero. The

FIG. 1. The boson structure functionf B at various low to mod-
erate numerical resolutions, withM5m, ^:f2(0):&51.0, L2

550m2, m1
2510m2, m2

2520m2, andm3
2530m2. To compare with a

structure function computed at higher resolutions, see Fig. 2~d!.
3-4
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TABLE I. Fock sector probabilities* ufss
(ni )u2) jdqj , where (ni)[$n0 ,n1 ,n2 ,n3%, n5n0 is the number of

physical bosons andni the number of Pauli-Villars bosons of typei. The helicitiess and s refer to the
physical and bare fermion, respectively. The numerical and physical parameters areK517, N'55, M2

5m2, L2550m2, m1
2510m2, m2

2520m2, m3
2530m2, and^:f2(0):&50.5. Probabilities smaller than;1025

are not resolved with any accuracy.

Number of bosons Probability No. of
total n n1 n2 n3 s5s s52s total states

0 0 0 0 0 0.9461 0.9461 1
1 1 0 0 0 0.0593 0.0444 0.1037 332
1 0 1 0 0 0.0340 0.0571 0.0911 219
1 0 0 1 0 0.0182 0.0300 0.0481 117
1 0 0 0 1 0.0036 0.0044 0.0080 55
2 2 0 0 0 0.0014 0.0021 0.0036 12414
2 1 1 0 0 0.0021 0.0022 0.0043 9969
2 0 2 0 0 0.0006 0.0003 0.0009 1499
2 1 0 1 0 0.0007 0.0007 0.0014 2998
2 0 1 1 0 0.0002 0.0001 0.0003 598
2 0 0 2 0 0.531025 0.431025 0.931025 25
2 1 0 0 1 0.731024 0.731024 0.0001 655
2 0 1 0 1 0.731025 0.631025 0.131024 45
3 3 0 0 0 0.0001 0.231024 0.0001 136568
3 2 1 0 0 0.0002 0.331024 0.0002 102490
3 1 2 0 0 0.631024 0.131024 0.731024 18021
3 0 3 0 0 0.431025 0.131025 0.531025 748
3 2 0 1 0 0.431024 0.631025 0.531024 16631
3 1 1 1 0 0.131024 0.331025 0.231024 2992
3 0 2 1 0 ;1026 ;1026 ;1026 79
4 4 0 0 0 ;1026 ;1026 ;1026 624372
4 3 1 0 0 ;1026 ;1026 ;1026 381016
4 2 2 0 0 ;1026 ;1026 ;1026 57132
4 1 3 0 0 ;1027 ;1027 ;1027 2577
4 0 4 0 0 ;1029 ;1029 ;1029 30
4 3 0 1 0 ;1027 ;1026 ;1026 28613
4 2 1 1 0 ;1027 ;1027 ;1027 2647
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tegersnx andny are limited to a range@2N' ,N'#, which,
along with the cutoff, determines the transverse scaleL' .

Given this discretization, the eigenvalue problem is co
verted to a matrix problem by a trapezoidal approximation
any momentum integrals. We have found useful modifi
tions @18,21# which include non-constant weighting facto
near the integral boundaries. These weights are adjuste
compensate for the DLCQ grid being incommensurate w
the boundaries. In the present calculation, these weights
kept only in the two-body sector where maximal symme
can be maintained. For higher Fock sectors, sensitivity
cancellations is of greater concern than boundary effects,
the weights disrupt the cancellations.

Unlike an ordinary eigenvalue problem, the presence
negatively normed states allows unphysical states to
lower in mass than the physical one-fermion state. Crite
must be employed to select the correct state in a nume
calculation. We used the following: a positive norm, a re
eigenvalue, a minimum number of nodes~preferably zero! in
the parallel-helicity boson-fermion wave function, and t
largest bare-fermion probability between 0 and 1. Each
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these characteristics can be computed without construc
the full eigenvector, provided one saves a few component
each Lanczos vectorqj ~see the Appendix!.

As a check on the calculation, we took advantage of
exact solution that exists for the unphysical situation
equal-mass PV bosons@28#. In a particular~null! basis the
matrix representation is purely triangular. Each wave fu
tion of the dressed fermion is then directly computable in
finite number of steps.

For comparison, we also solved the problem us
Brillouin-Wigner perturbation theory, for which

Fs.AZ(
n50

S 12bK
† u0&^0ubK

dM22Kdiag

Koff-diagD n

bK
† u0&. ~3.2!

The integrals were computed numerically with the same d
cretization as the nonperturbative DLCQ calculation. T
main effort in the perturbative expansion is then matrix m
tiplication, just as for the Lanczos algorithm.
3-5
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TABLE II. Bare parameters and observables. The input parameter values areM25m2, L2550m2, m1
2

510m2, m2
2520m2, andm3

2530m2.

K N' ^:f2(0):& g dM2/m2 uc0u2 2100m2F8(0)

~^y1y2&2^y&2!n>2

^y&2

11 4 0.100 1.279 0.062 0.988 0.090 3653.
11 5 0.100 1.339 0.060 0.989 0.092 3938.
11 6 0.100 1.366 0.066 0.989 0.095 3150.
13 4 0.100 1.274 0.035 0.988 0.092 4117.
13 5 0.100 1.335 0.037 0.989 0.093 3426.
15 4 0.100 1.306 0.084 0.988 0.086 3671.
15 5 0.100 1.361 0.087 0.988 0.091 3108.
17 4 0.100 1.292 0.055 0.988 0.088 3331.
17 5 0.100 1.342 0.055 0.989 0.097 2868.
19 4 0.100 1.287 0.054 0.988 0.091 3324.
19 5 0.100 1.349 0.056 0.988 0.096 3375.
21 4 0.100 1.281 0.055 0.988 0.088 4075.
21 5 0.100 1.350 0.057 0.988 0.095 3257.
21 6 0.100 1.378 0.058 0.989 0.099 2788.
21 7 0.100 1.392 0.058 0.989 0.101 2977.
21 8 0.100 1.400 0.059 0.989 0.104 2920.
29 4 0.100 1.302 0.062 0.987 0.091 3572.
29 5 0.100 1.353 0.063 0.988 0.096 3441.
29 6 0.100 1.386 0.065 0.989 0.099 2920.
29 7 0.100 1.400 0.066 0.989 0.103 2983.
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B. Computed quantities

Various quantities can be computed from the wave fu
tions f (ni ) for the different Fock sectors. We compute t
slope of the no-flip form factor of the fermion, structu
functions for bosons and the fermion, average momenta,
erage multiplicities, and a quantity sensitive to boson co
lations. The form factor slopeF8(0) is given by@18#

F8~0!52 (
ni50

` E )
j

dqj
1 d2q' j(

s
~21!(ni )

3F (
k51

ntot Uyk

2
¹'kfss

(ni )S qj ;P2(
j

qj DU2G .

~3.3!

The physical boson structure function for bare helicitys is
defined as

f Bs~y![ (
ni50

` E )
j

dqj
1 d2q' j (

k51

n0

d~y2qk
1/P1!~21!(ni )

3Ufss
(ni )S qj ;P2(

i
qj DU2

. ~3.4!

The normalization is such that the integral yields the aver
multiplicity ^nB&. We separate two pieces, for parallel a
antiparallel bare helicity
11402
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^nBs&5E
0

1

f Bs~y!dy, ~3.5!

and have

^nB&5^nB1&1^nB2&. ~3.6!

The average boson momentum is treated analogously, w

^yBs&5E
0

1

y fBs~y!dy and ^yB&5^yB1&1^yB2&.

~3.7!

As a measure of the correlations in the multiple-boson F
sectors, we compute (^y1y2&2^y&2)n>2 /^y&2 where

^y1y2&n>25 (
n0>2,ni

E )
j

dqj
1 d2q' j(

s
(

k1Þk2

n0 qk1

1

P1

qk2

1

P1

3~21!(ni )Ufss
(ni )S qj ;P2(

j
qj DU2

, ~3.8!

and ^y&n>2 is the same aŝy& except that only states with
two or more bosons are included.

Calculations at low resolutions tend to have difficulty f
stronger coupling. This can be seen already at third orde
perturbation theory, where loop integrals are poorly appro
mated and subtractions between loops with different bo
flavors magnify the errors. Fully averaged quantities such
3-6
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TABLE III. Additional observables. The input parameter values are the same as for Table II. The
entries represent values not extracted from preliminary, lower-resolution calculations.

K N' ^:f2(0):& ^nB,s& ^nB,2s& ^nB& ^yB,s& ^yB,2s& ^yB&

11 4 0.100 0.021 0.01191
11 5 0.100 0.021 0.01209
11 6 0.100 0.021 0.01213
13 4 0.100 0.021 0.01170
13 5 0.100 0.022 0.01219
15 4 0.100 0.021 0.01198
15 5 0.100 0.022 0.01225
17 4 0.100 0.022 0.01220
17 5 0.100 0.022 0.01234
19 4 0.100 0.022 0.01231
19 5 0.100 0.022 0.01238
21 4 0.100 0.0147 0.0072 0.0219 0.00836 0.00417 0.0125
21 5 0.100 0.0133 0.0086 0.0218 0.00735 0.00506 0.0124
21 6 0.100 0.0128 0.0091 0.0220 0.00712 0.00540 0.0125
21 7 0.100 0.0125 0.0094 0.0219 0.00695 0.00556 0.0125
21 8 0.100 0.0125 0.0096 0.0220 0.00691 0.00566 0.0125
29 4 0.100 0.0145 0.0076 0.0221 0.00808 0.00444 0.0125
29 5 0.100 0.0135 0.0086 0.0221 0.00753 0.00508 0.0126
29 6 0.100 0.0129 0.0092 0.0221 0.00711 0.00546 0.0125
29 7 0.100 0.0126 0.0095 0.0221 0.00697 0.00564 0.0126
ig

a-
um

ing
nts
m
of
I,
^nB& are less affected by this, but the structure functionf B
can be quite poorly represented. An example is given in F
1.

Clearly one cure is to work at higher resolution. Limit
tions on computer storage then require truncation in the n
11402
.

-

ber of constituents. Luckily, even at the strongest coupl
that we consider, states with large numbers of constitue
are unimportant, and yet the results differ significantly fro
lowest-order perturbation theory. The relative importance
different numbers of constituents can be seen in Table
TABLE IV. Same as Table II, but for stronger coupling.

K N' ^:f2(0):& g dM2/m2 uc0u2 2100m2F8(0)

~^y1y2&2^y&2!n>2

^y&2

11 4 1.000 5.417 0.863 0.891 1.340 21.42
11 5 1.001 5.325 0.699 0.899 1.073 27.77
11 6 1.000 5.105 0.819 0.883 2.849 22.06
13 4 1.000 4.520 0.362 0.886 0.929 36.62
13 5 0.998 4.746 0.362 0.893 1.244 28.91
15 4 1.000 5.783 1.161 0.918 0.457 22.85
15 5 1.000 5.589 1.124 0.913 0.641 23.52
17 4 1.000 5.045 0.619 0.909 0.683 25.69
17 5 0.998 4.806 0.562 0.899 1.032 26.31
19 4 1.000 4.804 0.576 0.895 0.853 28.82
19 5 1.000 4.973 0.597 0.902 0.868 29.83
21 4 1.000 4.925 0.615 0.896 0.774 32.23
21 5 1.000 5.082 0.616 0.903 0.876 28.27
21 6 1.000 4.978 0.619 0.900 1.266 25.64
21 7 0.999 5.046 0.612 0.903 1.140 27.78
21 8 1.000 5.009 0.622 0.901 1.248 27.68
29 4 1.000 5.089 0.713 0.902 0.659 29.23
29 5 1.000 5.072 0.695 0.901 0.837 29.11
29 6 1.000 5.173 0.708 0.907 0.867 26.29
29 7 0.999 5.152 0.712 0.905 0.933 27.62
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TABLE V. Same as Table III, but for stronger coupling.

K N' ^:f2(0):& ^nB,s& ^nB,2s& ^nB& ^yB,s& ^yB,2s& ^yB&

11 4 1.000 0.237 0.1425
11 5 1.001 0.231 0.1342
11 6 1.000 0.233 0.1383
13 4 1.000 0.217 0.1205
13 5 0.998 0.222 0.1280
15 4 1.000 0.210 0.1167
15 5 1.000 0.212 0.1181
17 4 1.000 0.211 0.1192
17 5 0.998 0.214 0.1212
19 4 1.000 0.216 0.1220
19 5 1.000 0.216 0.1217
21 4 1.000 0.1179 0.0994 0.2173 0.06625 0.05649 0.12
21 5 1.000 0.1044 0.1129 0.2174 0.05788 0.06580 0.12
21 6 1.000 0.1031 0.1154 0.2185 0.05770 0.06759 0.12
21 7 1.000 0.1008 0.1162 0.2170 0.05575 0.06751 0.12
21 8 1.000 0.1016 0.1153 0.2169 0.05608 0.06655 0.12
29 4 1.000 0.1088 0.1057 0.2145 0.05894 0.06072 0.11
29 5 1.000 0.1048 0.1122 0.2170 0.05738 0.06452 0.12
29 6 1.000 0.0982 0.1178 0.2160 0.05363 0.06824 0.12
29 7 1.000 0.0985 0.1180 0.2165 0.05360 0.06803 0.12
n
a
o
is

io

-
re-

of
where we list probabilities for the various Fock sector co
tributions to a calculation with moderate resolution. Trunc
tion to a maximum of two bosons is seen to offer a very go
approximation. For weaker couplings, lower resolution
sufficient.

Given these considerations for resolution and truncat
we have done two sets of calculations withK between 11 and
11402
-
-
d

n,

29, or even 39. ForK511 and 13 there is no explicit trun
cation and the maximum number of bosons is 5 and 6,
spectively. ForK515, 17, and 19, the maximum number
bosons used is 4, and forK>21 the maximum used is 2. Two
different sets of cutoff and PV masses were considered:L2

550m2, m1
2510m2, m2

2520m2, and m3
2530m2; and L2

5100m2, m1
2520m2, m2

2540m2, andm3
2560m2. The trans-
TABLE VI. Same as Table IV, but forL25100m2, m1
2520m2, m2

2540m2, andm3
2560m2.

K N' ^:f2(0):& g dM2/m2 uc0u2 2100m2F8(0)

~^y1y2&2^y&2!n>2

^y&2

11 4 0.989 4.661 1.220 0.858 1.195 22.07
11 5 0.998 4.326 0.991 0.868 1.114 26.07
11 6 0.904 4.181 1.063 0.882 1.442 28.64
13 4 1.002 3.378 0.487 0.836 1.122 32.87
13 5 1.000 4.182 0.537 0.863 1.245 27.45
15 4 1.000 5.332 1.849 0.912 0.337 19.69
15 5 1.000 5.142 1.804 0.908 0.458 21.64
17 4 0.998 4.448 1.131 0.896 0.448 28.27
17 5 1.000 4.527 1.094 0.889 0.758 24.09
19 4 1.000 4.317 0.915 0.873 0.759 27.20
19 5 0.999 4.412 0.970 0.880 0.960 24.52
21 4 1.000 4.300 0.966 0.876 0.752 25.75
29 4 1.000 4.795 1.160 0.886 0.565 23.4
29 5 0.999 4.683 1.132 0.893 0.699 22.5
29 6 1.000 4.772 1.164 0.897 0.757 21.9
29 7 0.999 4.706 1.160 0.893 1.079 20.9
39 4 0.998 4.562 1.006 0.884 0.660 23.6
39 5 1.000 4.678 1.026 0.892 0.729 22.3
39 6 1.000 4.656 1.020 0.894 0.833 21.8
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TABLE VII. Same as Table V, but forL25100m2, m1
2520m2, m2

2540m2, andm3
2560m2.

K N' ^:f2(0):& ^nB,s& ^nB,2s& ^nB& ^yB,s& ^yB,2s& ^yB&

11 4 0.989 0.245 0.1524
11 5 0.998 0.227 0.1310
11 6 0.904 0.206 0.1207
13 4 1.002 0.228 0.1297
13 5 1.000 0.230 0.1370
15 4 1.000 0.205 0.1149
15 5 1.000 0.204 0.1140
17 4 0.998 0.198 0.1078
17 5 1.000 0.212 0.1203
19 4 1.000 0.218 0.1261
19 5 0.999 0.218 0.1271
21 4 1.000 0.215 0.1245
29 4 1.000 0.1051 0.1152 0.2203 0.06028 0.06653 0.126
29 5 1.000 0.0894 0.1231 0.2125 0.04925 0.07260 0.121
29 6 1.000 0.0798 0.1317 0.2115 0.04334 0.07794 0.121
29 7 1.000 0.0787 0.1350 0.2137 0.04357 0.08055 0.124
39 4 1.000 0.1069 0.1090 0.2159 0.06156 0.06396 0.125
39 5 1.000 0.0907 0.1232 0.2139 0.05109 0.07272 0.123
39 6 1.000 0.0836 0.1297 0.2133 0.04611 0.07694 0.123
n
1
d

n
es
f

s.

wo-
a-
al

in
verse resolutionN' was at least 4 and was increased beyo
that to the extent allowed by the available storage on a
GB node of an IBM SP. The four processors of the no
were used in parallel.

A sampling of explored parameter values can be see
Tables II–VII. For each choice of input parameter valu
these tables present the results for the bare parameters o
Hamiltonian,g anddM2, and for various expectation value

For higher resolution (K521 and 29 forL2550m2 and
K529 and 39 forL25100m2) we plot the structure function
11402
d
6
e

in
,
the

f B in Figs. 2 and 3. Typical contributions tof B from one-
boson and two-boson states are shown in Fig. 4. The t
boson contribution to the structure function is further an
lyzed in terms of its dependence on both longitudin
momentum fractions in Fig. 5, where

f̃ Bs~y1 ,y2![E d2q'1 d2q'2ufss
(2,0,0,0)~qj !u2 ~3.9!

is plotted. We also show typical two-body wave functions
FIG. 2. The boson structure
function f B at various numerical
resolutions for ~a! ^:f2(0):&
50.1, ~b! ^:f2(0):&50.25, ~c!
^:f2(0):&50.5, and ~d!
^:f2(0):&51.0, with M5m, L2

550m2, m1
2510m2, m2

2520m2,
and m3

2530m2. The solid line is
from first-order perturbation
theory.
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FIG. 3. Same as Fig. 2 but fo
L25100m2, m1

2520m2, m2
2

540m2, andm3
2560m2.
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Fig. 6; the agreement with the necessaryLz51 symmetry in
the antiparallel helicity case is an important check ofJz con-
servation in the calculation.

As a check on the logarithmic PV coupling constraint
Eq. ~2.5!, we compute the bare mass shiftdM2 whenM2 is
much less thanm2. Figure 7 shows its behavior as a functio
of the longitudinal resolution for various bare couplings.
the logarithmic constraint was sufficient for nonperturbat
calculation,dM2 should go to zero asM2 approaches zero
and the resolution approaches the continuum limit. This
pears to work well only for weak coupling.

IV. CONCLUSIONS AND PROSPECTS FOR THE
APPLICATION OF DLCQ „3¿1… TO GAUGE THEORY

We have used the discretized light-cone quantizat
method to successfully solve for the mass and light-c
wave functions of a dressed fermionic state in a Yuka
theory in 311 spacetime dimensions. Noa priori constraint
on the number of bosonic constituents was necessary; h
ever, since the fermion constituent was treated as he
states containing fermion–anti-fermion pairs were trunca
We have found that the eigensolution at strong coupling
11402
-

n
e
a

w-
y,

d.
-

plays features which significantly deviated from first-ord
perturbation theory. Numerical resolution in this domain
strong coupling was not a limiting factor in this analysis.

The regularization procedure which we have chosen, w
three PV scalars, functioned well. However, better conv
gence of the DLCQ method at strong coupling could be
tained by constraining the PV couplings non-perturbative
rather than using the one-loop perturbative constraints
Eqs.~2.5!.

A number of properties of the Yukawa-theory eigenso
tion could be extracted from its light-cone Fock-state wa
function. This illustrates the power of the DLCQ method
making the Fock-state wave functions of the eigenstates
plicitly available. It is also possible to use the derived wa
functions to compute the Pauli and Dirac form factors of t
dressed fermion state at general momentum transfers@29#.

There are additional calculations which might be do
within the context of the zero fermion pair approximatio
We could consider two-fermion states and study true bo
states and scattering solutions. We could also cons
dressed spin-3/2 states and the analog of Np↔D transitions.
Extension of these methods to pseudo-scalar Yukawa th
would make the Np↔D connection stronger.
,

FIG. 4. The~a! one-boson and
~b! two-boson contributions to the
boson structure functionf B at
various numerical resolutions
with M5m, ^:f2(0):&51, L2

550m2, m1
2510m2, m2

2520m2,
andm3

2530m2.
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Although the approach used in this paper to solve
11)-dimensional Yukawa theory at strong coupling has b
successful, future progress for solving other quantum fi
theories will require more efficient analytic methods and n
merical algorithms. An alternative ultraviolet regularizatio
procedure, using only one PV scalar and one PV ferm
@30,28# may potentially provide a more efficient approach f
solving Yukawa theories. Not only is the constraint on t
couplings trivial, but the light-cone Hamiltonian is also mu
simpler. The simplifications occur because the instantane
fermion interactions@the terms in Eq.~2.2! of orderg2# can-
cel. Moreover, the DLCQ matrix for the remaining thre
point interactions is much more sparse, allowing calculati
at higher resolutions. Our next step will be to test this alt
native regularization.

One can consider two other possibilities for PV regul
ization @30# of full Yukawa theory. One is to use two heav
fermions and one heavy scalar@23#; the other is to use one
less heavy fermion but make the transverse momentum
off part of the regularization rather than just a numeri
procedure. In each case af4 term must be added. We plan t
explore both of these methods.

Quantum electrodynamics and quantum chromodynam
in physical spacetime, including the phenomenon of ch
symmetry breaking remain the central challenge to DLC
methods. One attractive possible approach is to use bro

FIG. 5. The two-boson structure functionf̃ Bs for K529 and
N'57, with M5m, ^:f2(0):&51, L2550m2, m1

2510m2, m2
2

520m2, andm3
2530m2.
11402
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supersymmetry as an effective ultraviolet regulator of
light-cone Hamiltonians of gauge theories.

The PV method also has applicability to the renormaliz
tion of non-Abelian Hamiltonian gauge theories on the lig
cone. Paston, Franke and Prokhvatilov@31,32# have recently
extended their analysis to the nonperturbative regulation
light-cone QCD, including the regularization of the infrare
singularities introduced by using light-cone gauge. They fi
that a combination of light-cone gauge, PV fields, high
derivative regulation, and carefully chosen momentum c
offs can regulate the theory in such a way as to prov
agreement with Feynman calculations using t
Mandelstam-Leibbrandt prescription@33# for the spurious
singularity in the gauge propagator. The resulting dynam
operator is rather complex and several regulating fields
needed, but the regulation procedures appear suitable fo
merical calculations. We plan to test these methods in A
lian theory, including the calculation of positronium boun
states @34,35# and the non-perturbative calculation o
the anomalous magnetic moments of leptons at str
coupling @36#.
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APPENDIX: LANCZOS ALGORITHM FOR INDEFINITE
METRIC

The ordinary Lanczos algorithm@27# was designed for
diagonalization of real symmetric or Hermitian matrices.
more general form, the biorthogonal Lanczos algorithm@37#,
can be applied to non-symmetric cases but is quite cum
some. In the case of a complex symmetric matrix, the b
thogonal algorithm can be reduced to a form nearly as sim
as the real symmetric case@38#; this approach was used i
previous work @18,21# where imaginary couplings mad
negative norms unnecessary. The complex-symmetric
proach is not easy to implement for Yukawa theory beca
FIG. 6. The one-boson amplitude fss
(1,0,0,0), with ~a! parallel (s5s) and ~b! antiparallel (s

52s) bare helicity, as a function of longitudinal momentum fractiony and one transverse momentum componentqx in the qy50 plane.
The parameter values areK529, N'57, M5m, L2550m2, m1

2510m2, m2
2520m2, m3

2530m2, and^:f2(0):&50.25.
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the Hamiltonian is fully Hermitian. Instead, negative norm
are assigned, and the eigenvalue problem becomes one
indefinite metric.

For this case the biorthogonal algorithm can still be
duced to a simpler form. Leth represent the metric signa
ture, so that numerical dot products are written^f8uf&
5f8*•hf. The Hamiltonian matrixH is constructed to be
self-adjoint with respect to this metric, which means th

@39# H̄[h21H†h5H. The Lanczos algorithm for the diago
nalization ofH then takes the form

FIG. 7. The bare mass shiftdM2 as a function of the longitudi-
nal resolutionK for various bare couplingsg, with N'54, M2

50.001m2, L2550m2, m1
2510m2, m2

2520m2, andm3
2530m2.
r,

in

ys

,’’

da
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a j5n jqj* •hHqj , r j5Hqj2g j 21qj 212a jqj ,

b j51Aur j* •hr j u,
~A1!

qj 115r j /b j , n j 115sgn~r j* •hr j !,

n15sgn~q1* •hq1!, g j5n j 11n jb j ,

whereq1 is taken as a normalized initial guess andg050.
This initial guess is generated with use of high-ord
Brillouin-Wigner perturbation theory. To determine when
stop the Lanczos iterations, the convergence of the eig
value and parts of the boson-fermion wave function
monitored.

Just as for the ordinary Lanczos algorithm, the origin
matrix H acquires the following tridiagonal matrix represe
tation T with respect to the basis formed by the vectorsqj :

H→T[S a1 b1 0 0 0 . . .

g1 a2 b2 0 0 . . .

0 g2 a3 b3 0 . . .

0 0 g3 • • . . .

0 0 0 • • . . .

• • • • • . . .

D . ~A2!

By construction, the elements ofT are real. The new matrix
is also self-adjoint, but with respect to an induced metricn
5$n1 ,n2 , . . . %. The eigenvalues ofT approximate some o
the eigenvalues ofH, even after only a few iterations. Ap
proximate eigenvectors ofH are constructed from the righ
eigenvectorsci of T asfi5(k(ci)kqk .
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