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Systematic study of the single instanton approximation in QCD
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The single-instanton approximation~SIA! is often used to evaluate analytically instanton contributions to the
Euclidean correlation function in QCD at small distances. We discuss how this approximation can be consis-
tently derived from the theory of instanton ensemble and give precise definitions to a number of different
‘‘quark effective masses,’’ generalizing the parameterm* , which was introduced long ago to account for the
collective contribution of the whole ensemble. We test numerically the range of applicability of the SIA for
different quantities. Furthermore, we determine all the effective masses~for random and interacting instanton
liquid models! as well as from phenomenology, and discuss to what extent those are universal.
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I. INTRODUCTION

The instanton liquid model of the QCD vacuum@1# is
based on a semiclassical approximation, in which all ga
configurations are replaced by an ensemble of topologic
nontrivial fields, instantons, and anti-instantons. It remain
model because we still do not understand why large-size
stantons are not present in the ensemble. Fits to phenom
ogy and later lattice studies@23# showed that their total den
sity is n0.1 fm24 with a typical size of aboutr;1/3 fm,
leading to a small diluteness parametern0r3;1022 @1#.
With these parameters, the model quantitatively expla
such important phenomena as spontaneousSU(Nf) chiral
symmetry breaking forNf quark flavors, explicit U~1! sym-
metry breaking, and many more other details of hadro
correlators and spectroscopy~for a recent example see th
discussion of vector and axial correlators@2#, for a review
see@3#!. The main feature of the instanton@4# ensemble is
that each pseudoparticle is an effective vertex with 2Nf
quark lines@5#, which are exchanged between them and
the vacuum. A theory is developed, called the interact
instanton liquid model~IILM !, which includes these ’t Hoof
interactionsto all orders @3#.

If new sources~external currents! are added, they produc
extra quarks which interact with those in vacuum and p
duce nontrivial correlation functions. In particular, ma
~Lorentz scalar! chirally odd local operators obtain nonze
vacuum expectation values. In general, all of those ‘‘cond
sates’’ and correlation functions are determined by the in
action of instantons and thus depend on the global~collec-
tive! properties of the ensemble.

On the other hand, as the instanton vacuum is fairly
lute, one may think that the correlation functions at distan
short compared to instanton spacingx!R5n21/4;1 fm
may be dominated by asingleinstanton, the closest~or lead-
ing! one~LI !. This framework@which we shall refer to as the
single instanton approximation,~SIA!# has the advantage o
allowing us to carry out calculations analytically. It is ther
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fore possible to obtain closed expressions for an instan
contribution to Green’s functions in momentum or in Bor
space.

In SIA the collective contribution of all instantonsother
than the leading oneis taken care of by a single effectiv
parameter, usually called the effective mass,m* . In the sim-
plest approximation, it can be associated with anaverage
value of the quark condesate@6#:

m* 5m2
2

3
p2r2^ūu&, ~1!

which leads to the valuem* .170 MeV @1#. Note that it is
already very different from what one infers from the sam
model for the long distance~or zero Euclidean momentum!
limit of the quark propagator, which gives theconstituent
quark massof the order of 400 MeV.

Furthermore, although the SIA has been used in sev
phenomenological studies~e.g., @1,7–9#, and references
therein!, its derivation was never discussed in detail,
range of applicability was never quantitatively checked, a
the values of relevant effective masses well specified. A
indeed, if one uses the valuem* .170 MeV the correlation
functions, evaluated in the SIA, do not agree with the res
of the random and interacting instanton liquid@3#.

In this paper we identify the origin of such a discrepan
and calculate the values of effective mass appropriate
different observables. This analysis reveals that the disc
ancy between the SIA and full liquid calculations is due to
incorrect estimate of the effective mass,m* . We also present
a systematic study of the SIA in QCD by itself. We show th
the approach is really accurate only for calculations that
volve operators of dimension six or more, or correlators w
more than one zero-mode propagator. We shall also pr
that the mass terms, appearing in matrix elements involv
different numbers of zero-mode propagators, are indeed
dependent parameters that have to be fixed separately
provide with the definitions of all such mass factors in ter
of averages of the instanton ensembles and prove that
are nearly universal, i.e., the same for all similar correlat
functions.
©2001 The American Physical Society20-1
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The paper is organized as follows. In Sec. II we derive
SIA from the theory of the instanton ensemble, in Sec. III
present the results of our numerical simulations that estim
the contribution from the leading instanton to several cor
lation functions. In Sec. IV we evaluate the effective ma
terms both from the random and interacting instanton liq
and compare it with the values obtained phenomenologic
from the pion sum rule. In Sec. V we compare our effect
masses with the so-called ‘‘determinantal masses,’’ which
other effective parameters that can be defined in term
averages of the fermionic determinant. The main results
our analysis are summarized in Sec. VI.

II. QUARK PROPAGATOR

In this section we review how the quark propagator in
instanton vacuum is obtained and present consistent de
tion of the SIA. The quark propagator in the general ba
ground field is

SI~x,y!5^xu~ iD” I1 im!21uy&, ~2!

whereD” I denotes the Dirac operator. The inverse~2! can be
formally represented as an expansion in eigenmodes of
Dirac operator:

SI~x,y!5(
l

cl~x!cl
†~y!

l1 im
, iD” Icl~x!5lcl~x!. ~3!

From Eq.~3! it follows that the propagator of light quarks
dominated by eigenmodes with small virtuality.

We begin by considering the academic case in which
vacuum contains only one isolated instanton. One eigenm
of D” I with zero virtuality ~zero modes! is given by ’t Hooft
@5,10#:

iD” c0~x!50,

c0an~x;z!5
r

p

1

@~x2z!21r2#3/2F12g5

2

x”2z”

A~x2z!2G
ab

3Uabebb , ~4!

where z denotes the instanton position,a,b51, . . . ,4 are
spinor indices andUab represents a general group elemen

Isolating the contribution from zero modes we can wri

SI~x,y;z!5
c0~x2z!c0

†~y2z!

im
1 (

lÞ0

cl~x2z!cl
†~y2z!

l1 im

5SI
zm~x,y;z!1SI

nzm~x,y;z!. ~5!

The zero-mode part of the propagator in the field of o
instanton can be evaluated from Eqs.~5! and~4! to give@11#:

SI
zm~x,y;z!5

~x”2z” !gmgn~y”2z” !

8m Ftm
2tn

1
12g5

2 G
3f~x2z!f~y2z!, ~6!
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where

f~ t !ª
r

p

1

utu~ t21r2!3/2
, tm

6
ª~t,7 i !. ~7!

The corresponding expression in the field of one an
instanton is obtained through the substitution:

12g5

2
↔ 11g5

2
, t2↔t1. ~8!

In the chiral limit, m→0, the expression forSI
nzm(x,y;z) is

also known exactly@12#. In the limit of small distances (ux
2yu→0), or if the instanton is very far away (ux2zu→`)
one has

SI
nzm~x,y;z!.S0~x,y!, ~9!

whereS0 denotes the free propagator. Typically, correctio
to Eq.~9! lead to small contributions and will be neglected
what follows. Once the propagator has been calculated,
can in principle evaluate any correlation function in t
single-instanton background.

Now, let us turn to the realistic vacuum of QCD. Her
any configuration with a nonzero net topological char
would be highly disfavored by the small value of theu angle.
Therefore, one is lead to picture the vacuum as an ensem
with an equal density of instanton and anti-instantons. If
vacuum is dilute enough, the classical background field
be approximatively taken to be a superposition of separa
instantons and anti-instantons@13#:

Am~x,$V i% i !5(
I

Am
I ~x,$V i

I% i !1(
A

Am
A~x,$V i

A% i !,

~10!

where$V i% i denotes the set of all collective coordinates.
The propagator in such a background field can then

evaluated as follows@11#. Let us consider the expansion:

S5S01S0A” S01S0A” S0A” S01•••, ~11!

where integrations over the positions of each backgro
field insertion is understood. The series~11! can be rear-
ranged so that all terms depending on the collective coo
nates of one instanton field only are summed up first, f
lowed by all terms depending on two instantons and so
One gets

S5S01(
I

~SI2S0!1(
IÞJ

~SI2S0!S0
21~SJ2S0!1•••,

~12!

whereSI denotes the full propagator in the field of the i
stantonI so, in the approximation (9) one has

~SI2S0! i j ~x,y!.
c0i

I ~x!c0 j
†I~y!

im
, ~13!
0-2
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where we have dropped all collective coordinates indic
Inserting Eq.~13! in Eq. ~12! and dropping also all spino
indices we get

S~x,y!.S0~x,y!1(
I

c0~x!c0
†~y!

im
1(

I ,J

c0I~x!

im

3S E d4zc0I
† ~z!~ i ]” z1 im!cJ0~z!2 imd IJ D c0J

† ~y!

im

1•••, ~14!

where 2 imd I ,J has been added in order to relax theJÞI
constraint in the summation. All the terms, starting from t
second on, form a geometrical progression, which can
resummed to give

S~x,y!.S0~x,y!1(
I ,J

c0I~x!S 1

T1o~m! D
IJ

c0J
† ~y!, ~15!

where TIJ denotes the overlap matrix in zero-modes su
space

TIJ5E d4zc†~z! I~ i ]” !c~z!J . ~16!

In Eq. ~15!, the zero-mode part of the quark propagator
approximatively written as a bilinear form in the spa
spanned by the quark zero-mode wave functions. From
~4! it follows that the contribution coming from all the term
in the sum associated with instantons very far away from
points x and y will be negligible. In particular, the bigges
term in Eq.~15! is associated with the closest instanton,I * .
Such an instanton is dominating if the average of the co
lation function calculated retaining only the (I * ,I * ) term in
Eq. ~15! is much larger than the average of the same quan
calculated from all other terms in the sum~15!. Notice that
this is a much weaker assumption than demanding

c0I* ~x!S 1

T1o~m! D
I* I*

c0I*
†

~y!

@ (
IÞI* ,JÞI*

c0I~x!S 1

T1o~m! D
IJ

c0J
† ~y!, ~17!

for eachconfiguration.
Let us summarize the framework developed so far. F

of all, the inverse matrix (1/T) IJ contains all the information
about the particular configuration of the instanton ensem
In order to evaluate correlation functions, one needs to a
age over all possible configurations. Since contributio
from distant instantons are suppressed by their zero-m
wave functions, one expects correlation functions with
highest number of zero modes to be most influenced by
leading instantonI * . If it is possible to retain only the con
tribution from I * , the global properties of the ensemble a
present in the matrix element (1/T) I* I* .

As it was suggested a long time ago by one of us@1#, one
can represent the collective contribution of all other inst
11402
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tons by introducing an effective mass associated with qu
propagating in the zero modes. In other words, one assu
that for ux2yu,1 fm, the quark propagator can be written

S~x,y!5
c0~x!c0

†~y!

im*
. ~18!

With such a propagator all quark correlation functions in t
instanton background could be evaluated simply by comp
ing all relevant Feynman diagrams and then averaging o
the instanton collective coordinates@14#.

More specifically, in the random instanton liquid mod
~RILM ! one introduces a model instanton densityn(r),

nI~r!ªn̄Id~r!, ~19!

where n̄I5n̄A. 1
2 fm24 and d(r) represents the instanto

size distribution. The latter is schematically taken to be

d~r!5d~r2 r̄ ! ~20!

with r̄.1/3 fm. This approach has the advantage of be
considerably simple and was also proven to be quite p
nomenologically successful@7,8#. However, we show below
that the effective mass defined in Eq.~18! is a quantity quite
different from its naive estimate~1!.

In order to clarify the statement, let us first consider t
quark condensate

xuu5^0uTr ū~x!u~x!u0&5^Tr S~x,x!&, ~21!

where, in general, the average is done over all possible ga
field configurations. In the SIA the average is easily eva
ated

^0uū~x!u~x!u0&5E d4zE drn̄d~r!

3F 22r2

@~z2x!21r2#3p2muu
G , ~22!

where, for reasons that will become clear shortly, we ha
denoted withmuu the quark effective mass andn̄ªn̄I1n̄A .
After performing the integrations one finds

xuu52
n̄

muu
, ~23!

for any normalizedd(r).
Now, repeating the same calculation in the full liquid@15#

gives

xuu5K TrF(
I ,J

c0I~x!S 1

TD
IJ

c0J
† ~x!G L , ~24!

where, again, the average is made over all possible confi
rations of the ensemble. A comparison between Eqs.~23! and
~24! gives
0-3
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muuª2
n̄

K TrF(
I ,J

c0I~x!S 1

TD
IJ

c0J
† ~x!G L . ~25!

Let us now consider another quark condensate

xuuddª^0uTr@ ū~x!u~x!#Tr@ d̄~x!d~x!#u0&5^@TrS~x,x!#2&.

~26!

Such a condensate receives a double contribution from
modes. In the SIA one obtains

xuudd5E drd~r!
n̄

5p2r4muudd
2

, ~27!

where we have now denoted withmuudd the quark effective
mass.

Comparing, as before, with the result of full liquid calc
lations leads to

muudd
2 5S E drd~r!

n̄

5p2r4D
3

1

K FTr (
I ,J

c0I~x!S 1

TD
IJ

c0J
† ~x!G2L . ~28!

Now, if the effective mass is universal, (muu)
25muudd

2 , it
would imply

K TrF(
I ,J

c0I~x!S 1

TD
IJ

c0J
† ~x!G L 2

K FTr (
I ,J

c0I~x!S 1

TD
IJ

c0J
† ~x!G2L

5
5p2n̄

E drd~r!
1

r4

.5p2n̄r̄4;
5

8
, ~29!

where we have used the ansatz~20! @16#. Some comments on
Eq. ~29! are in order. First of all, in general the quark co
densate is rather inhomogeneous, and for a parametric
dilute instanton ensemble this ratio is small. However, w
empirical diluteness it happens to be not so small, ab
0.6. In principle, by measuring the left-hand side and rig
hand side of Eq.~29! on the latticeseparately, one can esti-
mate the accuracy of the universality of the effective ma

However, since different configurations and even poi
have different leading instantons, the corresponding va
TI* I* fluctuates, and the average of its different powers
general leads to different effective masses.~This effect
should not be confused with the inhomogeneity of the c
densates discussed above.! Let us define a parameterRm ,
such thatRm51 means universal mass (muu)

25muudd
2 :
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K TrF(
I ,J

c0I~x!S 1

TD
IJ

c0J
† ~x!G L 2

5p2r̄4n̄K FTr (
I ,J

c0I~x!S 1

TD
IJ

c0J
† ~x!G2L . ~30!

III. NUMERICAL STUDY OF THE SINGLE INSTANTON
APPROXIMATION

In general, reliability of the SIA depends on the vacuu
diluteness. In this section we want to establish whether
QCD vacuum with realistic density is actually dilute enou
for the leading instanton to be dominant, at least for so
observables.

For this purpose we have performed a numerical anal
of several correlation functions, measured in the random
stanton liquid model. In such an ensemble, the vacuum
pectation values are obtained by averaging over config
tions of randomly distributed instantons of sizer51/3 fm.
The contribution from the leading instanton is evaluated
retaining only the largest term in Eq.~15! for each configu-
ration.

We begin by considering two quark condensatesxuu and
xuudd, introduced in Eqs.~21! and ~26!. We will show later
that they represent all generic observables which rece
contributions from one and two zero-mode propagators,
spectively.

In this calculation we average 5000 configurations of
instantons in a box of volume 3.431.83 fm4. The results of
this simulation are presented in Table I. From these res
one can see how the accuracy of the SIA~keeping only the
closest instanton! depends on the particular matrix eleme
being evaluated. Naturally, the accuracy increases with
dimension of the operator involved because it diminishes
contribution of distant instantons. Specifically, the SIA f
dimension-six local operators which receive contributi
from two zero-mode propagators agree with full calculati
within a few percent. On the other hand, prediction for o
erators and/or correlators with only one zero-mode propa
tors are not really accurate: the error in quark condesat
large (*35%).

Next we consider two-point correlation functions. Th
allows us to determine the scale at which the closest ins
ton is no longer dominant. At this purpose we have measu
the pion pseudoscalar two-point function

P~x!ª^0uJ5~x!J5
†~0!u0&, ~31!

where

J5~x!ªū~x!g5d~x!. ~32!

TABLE I. Quark condensates evaluated in the full instant
ensemble and from the leading-instanton only.

Condensate Complete calculation LI

xuu (223265 MeV)3 (219861 MeV)3

xuudd (31067 MeV)6 (30963 MeV)6
0-4
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This particular choice is motivated by the fact that suc
correlation function is known to receive maximal contrib
tion from quark zero modes@17#. One expects many instan
tons effects to become important foruxu larger than the in-
stanton size and smaller than the typical distance betw
two neighbor instantons

1/3 fm&uxu&1 fm. ~33!

Results of simulations, including the contribution from a
instantons and from the leading-instanton only, are repo
in Fig. 1. One can see that the agreement is lost for ra
large values ofuxu (uxu*0.6 fm).

IV. NUMERICAL STUDY OF THE QUARK EFFECTIVE
MASS PARAMETERS

In Sec. II we argued that the universality of the effecti
mass, which collectively describes the effects of all nonle
ing instantons, can be set in relation to the fluctuations of
quark condensates through Eq.~29!. Obviously, the accuracy
of calculations in the SIA depends on the value ofRm @de-
fined in Eq.~30!# in realistic ensembles.

We have have evaluatedRm and the corresponding effec
tive masses, numerically@18# in the random instanton liquid
and in the interacting liquid~for a review of these ensemble
see@3#!. Our results are summarized in Table II.

These results show that, in the instanton vacuum w
realistic density, theuniversality does not hold

FIG. 1. Pion pseudoscalar correlation function in the RIL
normalized to the same correlation function in the free theory. T
solid line corresponds to the full RILM simulation; the dashed li
denotes the leading-instanton contribution.

TABLE II. Universality parameterRm and the effective masse
evaluated in the RILM and in the IILM.

Quantity RILM calculation IILM calculation

Rm 0.4 0.2
muu 120 MeV 177 MeV

Amuudd
2 65 MeV 91 MeV
11402
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muu
2 Þmuudd

2 . ~34!

This implies that an effective mass extracted from the qu
condesate cannot be used in calculations involving more t
one zero-mode propagator.

On the other hand, the results of numerical simulatio
presented in Sec. III have shown that matrix elements
volving only one zero-mode propagator~like the quark con-
densate! cannot be reliably evaluated in the SIA simp
because the leading instanton is not dominant. As a co
quence, one is forced to consider only correlation functio
involving at least two such propagators and thereforemuu is
of no practical usefulness.

In more general terms, one may address the ques
whether the effective mass parameter depends on the par
lar correlation function being evaluated. If so, this featu
would spoil much of the predictive power of the SIA. In suc
a pessimistic scenario the SIA would only allow us to wo
out the functional expressions of small-sized correlatio
but not their overall normalization. However, we will sho
that the effective mass parameters depend essentially on
number of zero-mode propagators involved, and thatmuudd

2

is in a way universal for a number of applications. In th
case, SIA is predictive including the normalization. To che
that we have extractedm2

2 from the analysis of several had
ronic two-point functions evaluated in SIA and in the liqui
In particular, we considered the pion pseudoscalar the sc
diquark and the a nucleon scalar correlation functions:

P~x!5^0uJ5~x!J5
†~0!u0&, ~35!

D~x!5^0uJC5
a ~x!JC5

a† ~0!u0&, ~36!

N~x!5^0uTr@h~x!h̄~0!g4#u0&, ~37!

where

J5~x!ªū~x!g5d~x!, ~38!

JC5
a ~x!ªeabcub~x!Cg5dc~x!, ~39!

ha~x!ªeabc@ua~x!Cg5ub~x!#ua
c ~x!. ~40!

All these correlations function are known to receive a co
tribution from two propagators in the zero mode.

The comparison between results obtained in the SIA
the random instanton liquid model~RILM !, and in the inter-
acting instanton liquid model~IILM ! are reported in Figs. 2

3, and 4. The corresponding values forAm2
2 are presented in

Table III. These values are indeed rather different from
traditionally adopted estimatem* 5170 MeV, extracted
from the quark condensate.

e

0-5
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The general reason why these masses are rather sm
the following. Instantons have fluctuating strength of int
action with others in the ensemble: some of them are ‘‘h
mits’’ and have small matrix elements in the correspond
entries of the overlap matrixT. In all expressions, we aver
age theinverseof this matrix, therefore the contribution o
such hermits is enhanced. This phenomenon is effectiv
described by a lower value of the effective mass. Furth
more, because the random ensemble of RILM has more s
hermits, as compared to IILM~where the fermionic determi
nant in the statistical weight suppresses them!, these masse
are smaller in RILM as compared to IILM. Such a discre
ancy reflects the fact that the two ensembles give actu
quite different correlation functions@3#.

From these results we conclude thatm2
2 seems to be a

universal parameter, describing the collective ma

FIG. 2. Pion pseudoscalar two-point function normalized to
same correlation function in the free theory. The open circ
~squares! represent RILM~IILM ! points, the dashed lines represe
SIA calculations with masses given in Table III and the dotted l
is the phenomenological curve obtained from the spectral dec
position.

FIG. 3. Diquark scalar two-point function normalized to th
same correlation function in the free theory. The open circ
~squares! represent RILM~IILM ! points and the dashed lines re
resent SIA calculations with the effective masses given in Table
11402
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instanton effects. It is important to know what value ofm2
2 is

suggested by the available phenomenology. As before,
chose to consider the pion pseudoscalar correlator, becau
receives maximal contribution from instanton zero mod
The traditional ‘‘pole-plus-continuum’’ model for the spec
tral decomposition ofP(x), gives@19,17#

P~x!5lp
2 D~mp ;x!1

3

8p2Es0

`

dssD~As;x!, ~41!

whereD(m;x) is the scalar propagator,s0 is the threshold
for the continuum (As0.1.6 GeV) and the pseudoscalar d
cay constantlp is given by

lp5^0uūg5dup&5
f pmp

2

mu1md
.~480 MeV!2. ~42!

We determinedm2
2 by fitting the SIA prediction to the

phenomenological curve obtained from Eq.~41!. We found
~see Fig. 2!

m2phen.
2 5~86 MeV!2. ~43!

To further check the approach, we have evaluated the sc
proton two-point functionN(x), using the value~43! and we
have compared with the phenomenological curve~see Fig. 4
@20#!. In summary: with this value we obtained very goo
agreement with phenomenology and therefore we sug

e
s

e
-

s

I.

FIG. 4. Nucleon scalar two-point function normalized to t
same correlation function in the free theory. The open circ
~squares! represent RILM~IILM ! points and the dashed lines rep
resent SIA calculations with the effective masses given in Table

TABLE III. Estimates of the quark effective massm2
2 from sev-

eral correlation functions.

Correlation function m2
2 @MeV2# ~RILM ! m2

2 @MeV2# ~IILM !

xuudd condensate (65)2 (91)2

Pion pseudoscalar (65)2 (105)2

Diquark scalar (69)2 (105)2

Nucleon scalar (67)2 (105)2
0-6
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that Eq.~43! should be used for the applications of the SI
when two zero-mode propagators are involved.

V. EVALUATION OF AN EFFECTIVE MASS IN THE
FERMIONIC DETERMINANT

The propagator is not the only place where the Dirac
erator appears: the QCD statistical sum contains itsdetermi-
nant, appearing in power given by the number of light qua
flavorsNf . If one considers the academic vacuum with on
one instanton, this determinat contains the product of ‘‘c
rent’’ quark masses for all quarks@5#. If this would be the
final answer for the instanton density, the instanton eff
would be strongly suppressed by their small values.

However, in a physical vacuum there are sufficien
many instantons to break chiral symmetry and produce n
zero quark condesates and effective quark masses, w
substitute for much smaller ‘‘current’’ masses and make
stanton effects significantly stronger. The interplay betwe
these effective masses and current quark masses is espe
interesting for strange quark, since the former and the la
ms are of comparable magnitude. This issue has been s
ied, e.g., in a recent paper@21#, where it was concluded tha
the usual additive formula for the total effective quark ma
of the strange quarkMs

tot5me f f(ms50)1ms is wrong, and
the true value ofMs

tot is not very different from that foru,d
quarks becauseme f f(ms) strongly decreases withms .

Apart from the role of the strange quark mass in gene
there is also a general issue of correct connection of u
and vacuum parameters~with the instanton density being on
of them! for QCD with a different number of flavors~for
example, between no-quark or quenched QCD and the ph
cal world!. In order to study all of this, it is important to
know what is the absolute magnitude of the fermionic de
minants in the instanton-based vacuum models conside
Some of those are reported in this section.

In the instanton-based model context, the fermionic de
minant is usually represented by the determinant of the o
lap matrix T ~see description, e.g., in@3#! in the zero mode
subspace. After averaging over the appropriate ensem
one can define the so-called ‘‘determinantal masses’’:

mdet
i

ª

^~det@D” # ! i /Nr i&

^r i&
, i 51,2, . . . ~44!

where the indexi refers to the number of flavors andN
denotes the number of instantons. Their values tell us h
much the presence of fermions reduces the instanton den
compared to the same ensemble without them.

Originally, in @6,22# an estimate for the determinant effe
tive mass was extracted from the averaging of the ’t Ho
Lagrangian assuming factorization of quark condesates,
using the samem* 5170 MeV. If so, each flavor reduce
instanton density by the factorm* r̄'0.28. As we will see
shortly, the corresponding reduction factor is actually ev
smaller. In principle, there is no reason why the values
mdet andmdet

2 should agree withm1 andm2
2 , defined in the

previous section: we now average the positive rather t
negative powers of the overlap matrix.
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We have evaluated the determinantal masses in the R
and in the IILM. The results are reported in Table IV. Som
comments are in order. First of all note that, in both e
sembles, the values ofmdet

2 turn out to be quite consisten
with the values ofm2

2 . Furthermore, the fluctuations of th
determinantal massmdet and (mdet)

2 are very small

mdet
2 2~mdet!

2!m2
22~m1!2, ~45!

implying essentially thatm1 is inconsistent withmdet . This
fact could have two possible explanations. On the one ha
one could argue thatm1 is a somewhat ill-defined paramete
because the SIA cannot be used to evaluate quark con
sate. On the other hand, one could observe that larger
tuations for the effective masses defined in Sec. IV sho
not be surprising, since such parameters appear alway
denominators of SIA calculations.

VI. CONCLUSIONS AND OUTLOOK

Summarizing our study of the SIA approximation
QCD, we first notice that this approach has been relate
the theory of the full ensemble and all the effective para
eters previously loosely called ‘‘effective masses’’ are d
fined. All of them describe different aspects of collecti
interaction between the ‘‘leading’’ instanton~the closest to
the observation points! and all others, and related to the ove
lap matrix T. Different effective mass values simply follow
from different ensemble averaging. In particular, the fac
1/m1, appearing in SIA calculations with one propagator
the zero mode, does not correspond to the square root o
factor 1/m2

2, appearing when two such propagators are
volved.

We have made numerical simulations in the RILM a
IILM and found that the contribution of the leading-instanto
actually dominates all condensates of operators of dimen
six or more, as well as short-distance correlation functio
(uxu&0.6 fm). This, however, is true only for correlatio
functions with at least two zero-mode propagators involv
Earlier estimates extracted from the quark condensate are
accurate.

Furthermore, the parameter 1/m2
2 is approximatively uni-

versal for several correlation functions withtwo zero-mode
propagators involved. We have also extracted a phenom
logical estimate of its value from the analysis of the pi
pseudoscalar correlator. We foundm2phen.

2 .(86 MeV)2,
much smaller than the value originally obtained from t
quark condensate. Our new value should be used in m
applications of the SIA.

Finally, we have compared our estimates for the effect
mass parametersm1 and m2

2, with the measurements of th

TABLE IV. Determinantal masses evaluated in the RILM and
the IILM as compared tom1 andm2

2, defined in Sec. IV.

Mass RILM calculation IILM calculation

m1 120 MeV 177 MeV
mdet 63 MeV 102 MeV
m2

2 (65 MeV)2 (103 MeV)2

mdet
2 (64 MeV)2 (103 MeV)2
0-7
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‘‘determinantal’’ masses, introduced in@22#. We observed
substantial agreement betweenm2

2 and mdet
2 both in the

RILM and the IILM, but different fromm1 extracted from
the quark condesate alone. This implies that light quarks
about twice more effective~per flavor! in diluting the instan-
ton vacuum density@23#.
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